

Valor enters into exclusive option agreements to acquire 100% of three lithium projects in north-western Ontario, Canada FRAZER LAKE ACQUISITION Frazer Lake Lithium Project covering an area of 83km² located within Ontario, Canada Frazer Lake Lithium Project has spodumene bearing pegmatites mapped and channel sampled. Recent channel sampling has returned: 44m at 0.54% Li₂O Including 3m at 0.97% Li₂O 3m at 1.27% Li₂O, 1m at 1.76% Li₂O and -AD 2m at 0.87% Li₂O Multiple significant rock chips including, 7.26% Li₂O, 7.02% Li₂O, 6.42% Li₂O ~30m wide outcrop of spodumene bearing pegmatite is completely open along strike to the north-east and is yet to be drill tested. Channel sampling along strike of identified spodumene bearing pegmatite is proposed to be conducted during option period. **MORRISON RIVER ACQUISITION** Morrison River Lithium Project, covering an area of 55km² located within Ontario, Canada Mapping by OGS (Ontario Geological Survey) defined five white pegmatite dykes within the greenstone belt. Pegmatite dykes trend in northwest-southeast direction over 13km strike length. Morrison River is interpreted to be analogous in geological setting to Frontier Lithium's Pak Lithium Project JESAULENKO ACQUISITION Valor has also, separately, entered into an agreement to acquire the Jesaulenko Lithium Project, located 25km east of the Frazer Lake Lithium Project The Jesaulenko Project comprises 46km² of contiguous tenure and is underlain by Archaean metasediments which have been intruded by muscovite-bearing granites which are a potential source

of lithium mineralisation in the district.

CORPORATE

Valor has received firm commitments to undertake a share placement to sophisticated and institutional investors to raise A\$1 million through the issue of VAL Shares at an issue price of \$0.004 per share on a pre-consolidation basis.

The Board has resolved to undertake a share capital consolidation on a 25-for-1 basis and to seek

shareholder approval for a change of name to Thunderbird Resources Ltd.

Figure 1: Frazer Lake Lithium Project- Exceptionally Coarse Spodumene Crystal

Note: Laboratory assays are required for representative estimates of total Li₂O content and other metal contents. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates provide no information regarding impurities or deleterious physical properties relevant to valuations.

Valor Resources Limited (Valor or the Company) (ASX: VAL) is pleased to advise that it has entered into exclusive option agreements across three lithium projects that provide the potential to significantly expand the Company's new energy metals portfolio in North America.

Executive Chairman, George Bauk commented ...

"The option to acquire a high-quality lithium exploration portfolio in Canada presents an outstanding opportunity for Valor to significantly expand our exposure to the burgeoning new energy metals thematic. These acquisitions will form a complementary addition to Valor's existing portfolio of high-quality uranium projects in the Athabasca Basin, Saskatchewan and build upon our Canadian expertise.

The grade and scale of mineralisation identified to date at the Frazer Lake Lithium Project provides Valor with an exceptionally compelling target with substantial exploration potential. The work done to date by Pegmatite One (PGA) has identified high grade lithium mineralisation at surface which, due to the very recent nature of the discovery, has only undergone limited exploration. Systematic trenching along strike of this pegmatite trend is required prior to drill testing to gain an understanding of the extent of mineralisation.

The Morrison River Project is in an underexplored greenstone belt with significant mapped pegmatites and a geological setting very similar to Frontier Lithium's PAK Lithium Project.

The Jesaulenko Project located 14km to the east of the Frazer Lake Lithium Project is underlain by metasediments intruded by muscovite bearing granites. These muscovite bearing granites are interpreted as a potential source of lithium mineralisation within the district.

Mapping and geochemical sampling is proposed to be completed across the Morrison River and Jesaulenko Projects in order to define targets for drill testing.

We look forward to providing further updates in relation to these exciting transactions."

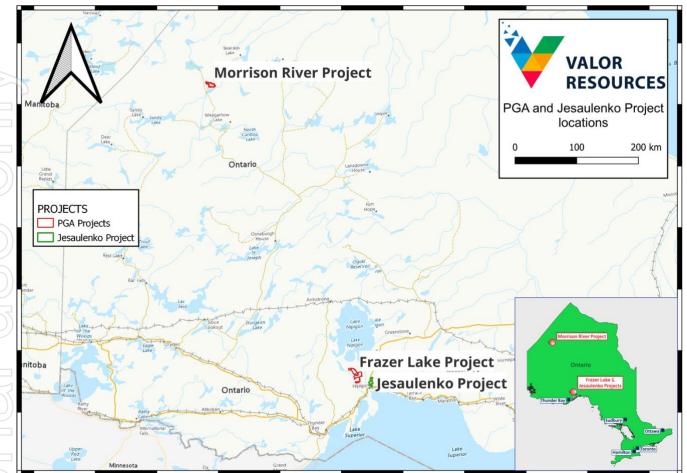


Figure 2: Location of the Pegmatite One assets and the Jesaulenko Lithium Project in northwestern Ontario.

FRAZER LAKE LITHIUM PROJECT OVERVIEW:

The Frazer Lake Lithium Project, is located in north-western Ontario, covers an area of 83.1km2. The initial discovery of spodumene was made in August 2023, whereby rock chip samples returned up to 7.25% Li₂O.

Channel sampling was undertaken subsequently with the aim of determining the orientation and width of the spodumene bearing pegmatite. A 49m continuous channel sample was undertaken obliquely to the strike of the spodumene bearing pegmatite, with pegmatite logged across 47.5m of the channel (see Figures 3,4,5 below). Results of the channel sampling were highlighted by the following (cut-off of 0.20% Li_2O and max. internal dilution of 3m continuous):

- 44m at 0.54% Li₂O
 - Including 3m at 0.97% Li₂O

3m at 1.27% Li₂O,

1m at 1.76% Li₂O and

2m at 0.87% Li₂O

Follow up channel sampling along strike to the northeast is proposed to be conducted upon completion of the transaction to further refine the geometry and extent of mineralisation. Access along strike to the southwest is limited by the Black Sturgeon Provincial Park. Targeted drilling will be rapidly conducted

following the channel sampling. Further exploration will also be carried out to identify additional Lithium-Caesium-Tantalum (LCT) pegmatites within the exploration area. This will include following up on some of the anomalous rock chip/grab samples taken by PGA across the project area (see Figure 6 below).

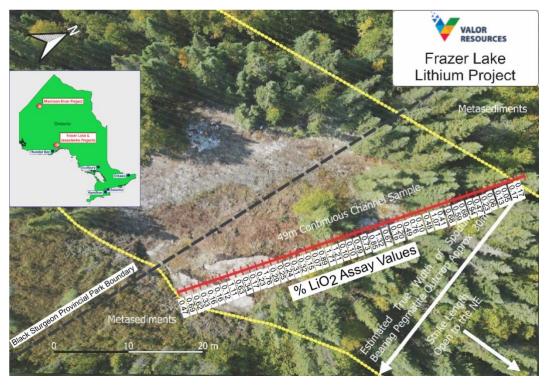


Figure 3: Plan View of Frazer Lake Channel Sample and Li₂O assay values

Figure 4: Spodumene Bearing Pegmatite from Channel Sampling

Note: Laboratory assays are required for representative estimates of total Li₂O content and other metal contents. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates provide no information regarding impurities or deleterious physical properties relevant to valuations.

ASX ANNOUNCEMENT 5 December 2023

Figure 5: Channel Sample mark-up

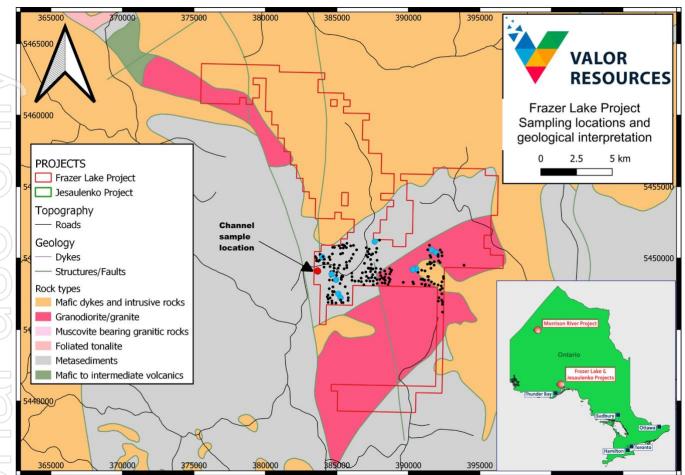


Figure 6: Frazer Lake Lithium Project Geology, Rock Chip/grab samples (Li ppm) and Channel Sample location

MORRISON RIVER LITHIUM PROJECT OVERVIEW

The Morrison River Lithium Project is located just north of the Muskrat Dam First Nation settlement and near the Bearskin Lake and Sachigo Lake First Nations communities and covers a land area of 55km². The Project is located within a greenstone belt surrounded by granitic batholiths which are potentially fertile parental granites for spodumene bearing pegmatites (see Figure 7 below).

Mapping by OGS (Ontario Geological Survey) defined five white pegmatite dykes within the greenstone belt. The white pegmatite dykes trend in northwest- south east direction over 13km strike length.

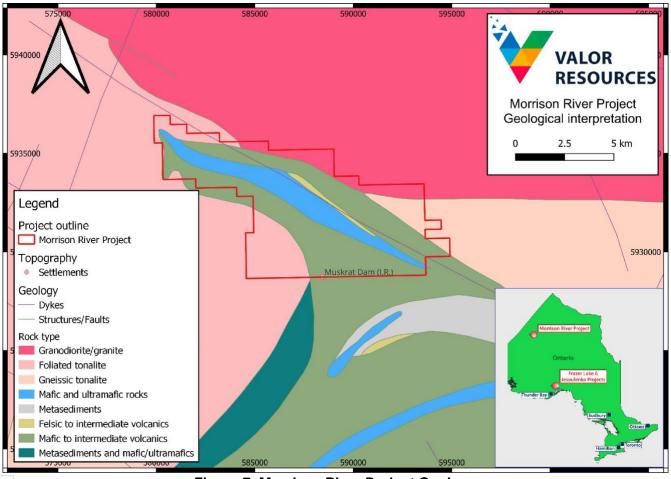


Figure 7: Morrison River Project Geology

The Morrison River Project is located approximately 150km northeast of Frontier Lithium's PAK Lithium Project, in a geologically analogous setting. The PAK Lithium deposit comprises an Open Pit Measured and Indicated Resource of 5.96Mt @ 1.81% Li₂O and an Inferred Resource of 0.68Mt @ 1.75% Li₂O. In addition, there is an underground Measured and Indicated Resource of 1.26Mt @ 2.14% Li₂O and an Inferred Resource of 2.07Mt @ 2.37% Li₂O (Frontier Lithium Inc. *PAK Lithium Project Fully Integrated Pre-Feasibility Study*).

JESAULENKO PROJECT OVERVIEW

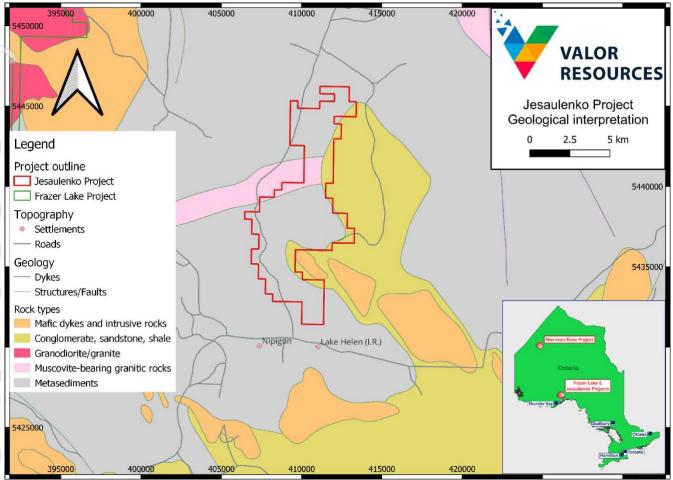


Figure 8: Jesaulenko Lithium Project Location & Geology

The Jesaulenko Project comprises 46km² of contiguous tenure in the Thunder Bay district of north-western Ontario, Canada, with direct highway access to the project tenure.

The Project is located 21km west-southwest of Rock Tech Lithium's Georgia Lake Project, which hosts an Indicated Mineral Resource of 10.6Mt @ 0.88% Li₂O, an Inferred Resource of 4.2Mt @ 1% Li₂O and a Probable Ore Reserve of 7.33Mt @ 0.82% Li₂O. Production from Georgia Lake is scheduled to commence in 2025. (Rock Tech Technical Report "*Georgia Lake Lithium Project Pre-Feasibility Study*" 1st October 2022)

The Frazer Lake Lithium Project is located 25km to the west.

The Jesaulenko Project area is underlain by Archaean metasediments which have been intruded by muscovite-bearing granites, which are a potential source of lithium mineralisation in the district (see Figure 8). This geological setting is analogous to Georgia Lake.

Satellite imagery interpretation has defined extensive areas of outcrop at Jesaulenko that warrant immediate field investigation, with prospective metasedimentary lithologies extending throughout the entire project area. Extensive outcrop provides the potential to rapidly evaluate the potential of LCT-type pegmatites within the Project area.

CAPITAL RAISING, CAPITAL CONSOLIDATION & PROPOSED CHANGE OF COMPANY NAME

PLACEMENT

In conjunction with the acquisitions, Valor will undertake a capital raising via a share placement to sophisticated and institutional investors to raise A\$1 million via the issue of 250,000,000 VAL shares at an issue price of \$0.004 (**Placement**) on a pre consolidation basis. The Placement will be conducted under Valor's existing ASX Listing Rule 7.1A capacity.

Funds raised in the Placement will be allocated towards costs associated with:

- Frazer Lake: Exploration during due diligence phase
- Morrison River: Exploration during due diligence phase
- Jesaulenko: Initial field-based exploration activities
- General working capital purposes

The Company has appointed CPS Capital Group (Lead Manager) as lead manager and bookrunner to the Placement and to provide corporate advisory services in connection with the Frazer Lake, Morrison River and Jesaulenko acquisitions.

The Company has agreed to pay a fee of 6% (\$60,000) for the funds raised under the Placement to the Lead Manager for its services in relation to the Placement. In addition, the Lead Manager will receive up to 137,000,000 Shares (on a pre-Consolidation basis as defined below) for its corporate advisory services provided in connection with the Frazer Lake, Morrison River and Jesaulenko acquisitions.

- > 37m shares to be issue on the proposed transactions being announced, and
- > 100m shares on the exercise of the "Frazer Lake" and "Morrison River options" to acquire 100% of the projects.

CONSOLIDATION AND NAME CHANGE

The Valor Board has also resolved to undertake a share capital consolidation on a 25-for-1 basis (**Consolidation**) and to seek shareholder approval for a change of name to Thunderbird Resources Ltd.

The Consolidation is proposed by the Company to reduce the number of shares on issue as the Board considers that this will provide the best structure for continued growth and a capital structure that is more in line with companies of a similar scale relative to the Company's peer group.

The proposed Consolidation and name change will be put to shareholders at a general meeting indicatively scheduled for the first quarter of 2024 (**General Meeting**).

FRAZER LAKE OPTION AGREEMENT

- ▷ Pegmatite One Lithium and Gold Corp (CSE: **PGA**) (PGA) has entered into an exclusive binding option agreement with Valor for the acquisition of 100% of the Frazer Lake Lithium Project.
- ▷ For the exclusive right until the 30th of September 2024 to acquire the Frazer Laker Lithium Project, Valor is to pay on a pre-Consolidation basis:
 - 20,000,000 Shares at a deemed issue price of \$0.004 per Share or \$80,000 cash at the Company's election upon execution of the agreement;

- 30,000,000 Shares at a deemed issue price of \$0.004 per Share or \$120,000 cash at the Company's election upon commencement of on ground field-based exploration activities; and
- 30,000,000 Shares at a deemed issue price of \$0.004 per Share or \$120,000 cash at the Company's election three months post commencement of on ground field-based exploration activities.

In the event Valor elects to proceed with 100% acquisition, Valor is required to issue 1,000,000,000 shares on a pre-Consolidation basis. The issue of these Shares will be subject to Shareholder approval pursuant to Listing Rule 7.1.

Conditions precedent include the Company and PGA obtaining all required shareholder and regulatory approvals and no material adverse change having incurred in relation to the Company.

A termination fee of up to \$400,000 will be payable by PGA to the Company in the event the agreement is terminated as a result of PGA accepting a superior proposal or failing to obtain shareholder approval for the acquisition.

The parties intend to enter into a formal agreement consistent with customary option agreements of this nature in Ontario, Canada.

MORRISON RIVER OPTION AGREEMENT

PGA has entered into an exclusive non-binding option agreement with Valor for the acquisition of 100% of the Morrison River Lithium Project.

- For the exclusive right until the 30th of September 2024 to acquire the Properties Valor is to pay pre-Consolidation basis:
 - 5,000,000 Shares at a deemed issue price of \$0.004 per Share or \$20,000 cash at the Company's election upon execution of the agreement;
 - 7,500,000 Shares at a deemed issue price of \$0.004 per Share or \$30,000 cash at the Company's election upon commencement of on ground field-based exploration activities; and
 - 7,500,000 Shares at a deemed issue price of \$0.004 per Share or \$30,000 cash at its election three months post commencement of on ground field-based exploration activities.

In the event Valor elects to proceed with 100% acquisition, Valor is required to issue 250,000,000 Shares on a pre-Consolidation basis. The issue of these Shares will be subject to Shareholder approval pursuant to Listing Rule 7.1.

Conditions precedent include the Company and PGA obtaining all required shareholder and regulatory approvals and no material adverse change having incurred in relation to the Company.

- A termination fee of up to \$100,000 will be payable by PGA to the Company in the event the agreement is terminated as a result of PGA accepting a superior proposal or failing to obtain shareholder approval for the acquisition.
- ▷ The parties intend to enter into a binding formal agreement consistent with customary option agreements of this nature in Ontario, Canada.

The Company cautions that the agreement in respect of the Morrison River option is non-binding (unlike the Frazer Lake option, which is binding) and there can be no guarantee that a binding agreement will be entered into.

JESAULENKO ACQUISITION AGREEMENT

- The Company has entered into an agreement to acquire 100% of the issued share capital of Stratosphere Li Pty Ltd (SLi). SLi is the 100% beneficial owner of the Jesaulenko lithium project.
- SLi will hold the Jesaulenko Lithium Projects at the completion date.
- The consideration payable by the Company for the acquisition is 312,500,000 Shares at a deemed issue price \$0.004 per Share (on a pre-Consolidation basis) upon completion of the acquisition.
- SLi is to ensure that it has a minimum of A\$350,000 in cash at completion.

APPROVALS

The Company intends to convene the General Meeting to seek shareholder approval for various matters associated with the proposed acquisitions, including for the purposes of Listing Rule 7.1 and Listing Rule 7.4 in relation to the Placement Shares and respective consideration shares (as applicable), the proposed name change and the Consolidation.

PROFORMA CAPITAL STRUCTURE

Current Shares on Issue	3,873,334,790
Completion of Acquisition of 1325020 BC Ltd	50,000,000
Acquisition of Jesaulanko	312,500,000
Frazer Lake and Morrison River Option Fees – PGA on signing of option agreement	25,000,000
Frazer Lake and Morrison River Option Fees – PGA on commencement of exploration	37,500,000
Frazer Lake and Morrison River Option Fees – PGA 3 months after commencement of exploration	37,500,000
Placement – \$1,000,000 @ \$0.004	250,000,000
Fee – Broker	137,000,000
Sub-total	4,722,834,790
100% acquisition of Frazer Lake and Morrison River	1,250,000,000
Total – Fully Diluted	5,972,834,790
Shares on Issue post consolidation (25:1)	238,913,392

This announcement has been authorised for release by the Board of Directors.

For further information, please contact:

George Bauk	Joe Graziano	Media enquiries Read Corporate
Executive Chairman	Company Secretary	Nicholas Read
+61 408 931 746	+61 411 649 551	+61 419 929 046
george@totode.com.au	joe@pathwayscorporate.com.au	nicholas@readcorporate.com.au

COMPETENT PERSON STATEMENT

The information in this documents that relates to Exploration Results is based on and fairly represents information compiled by Mr Robin Wilson who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Wilson is a consultant and Technical Director for Valor Resources and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Wilson consents to the inclusion of this information in the form and context in which it appears.

ABOUT VALOR RESOURCES

- Diversified critical minerals explorer focused on Tier-1 jurisdictions
- Strong track record of generating high-value projects (Uranium, Copper)
- Entered into binding agreements to acquire three lithium assets in Ontario, Canada

Portfolio streamlined through recent sale of Picha and Charaque Copper Projects in Peru to Firetail Resources (ASX: FTL)

Focus on high-potential, drill-ready uranium assets in Canada's Athabasca Basin at the right time in the Uranium cycle:

- Hidden Bay 5 drill-ready targets identified.
- Cluff Lake 4 priority drill targets identified.
- Surprise Creek Fault mineralisation delineated over 500m of strike.
- Hook Lake Follow-up on 11 new targets
- Beatty River Follow-up on historical HRE exploration results

Significant leverage to exploration success in Peru through 20.58% shareholding in Firetail plus retained 20% project interest – drilling commenced at Picha Project in October.

Tenure ID	Anniversary Date	Tenure Type	Tenure Status
776745	19/01/2025	Single Cell Mining Claim	Active
776852	19/01/2025	Single Cell Mining Claim	Active
776853	19/01/2025	Single Cell Mining Claim	Active
776854	19/01/2025	Single Cell Mining Claim	Active
776753	19/01/2025	Single Cell Mining Claim	Active
776754	19/01/2025	Single Cell Mining Claim	Active
776755	19/01/2025	Single Cell Mining Claim	Active
776756	19/01/2025	Single Cell Mining Claim	Active
776757	19/01/2025	Single Cell Mining Claim	Active
776758	19/01/2025	Single Cell Mining Claim	Active
776759	19/01/2025	Single Cell Mining Claim	Active
776760	19/01/2025	Single Cell Mining Claim	Active
776761	19/01/2025	Single Cell Mining Claim	Active
776769	19/01/2025	Single Cell Mining Claim	Active
776762	19/01/2025	Single Cell Mining Claim	Active
776763	19/01/2025	Single Cell Mining Claim	Active
776764	19/01/2025	Single Cell Mining Claim	Active
776765	19/01/2025	Single Cell Mining Claim	Active
776766	19/01/2025	Single Cell Mining Claim	Active
776767	19/01/2025	Single Cell Mining Claim	Active
776768	19/01/2025	Single Cell Mining Claim	Active
776779	19/01/2025	Single Cell Mining Claim	Active
776780	19/01/2025	Single Cell Mining Claim	Active
776781	19/01/2025	Single Cell Mining Claim	Active
776782	19/01/2025	Single Cell Mining Claim	Active
776783	19/01/2025	Single Cell Mining Claim	Active
776784	19/01/2025	Single Cell Mining Claim	Active
776785	19/01/2025	Single Cell Mining Claim	Active
776786	19/01/2025	Single Cell Mining Claim	Active
776787	19/01/2025	Single Cell Mining Claim	Active
776788	19/01/2025	Single Cell Mining Claim	Active
776771	19/01/2025	Single Cell Mining Claim	Active
776770	19/01/2025	Single Cell Mining Claim	Active
776772	19/01/2025	Single Cell Mining Claim	Active
776773	19/01/2025	Single Cell Mining Claim	Active
776774	19/01/2025	Single Cell Mining Claim	Active
776775	19/01/2025	Single Cell Mining Claim	Active
776776	19/01/2025	Single Cell Mining Claim	Active

Ì
ĺ
ĺ
l
j
ļ
Ì
ļ
ļ

Tenure ID	Anniversary Date	Tenure Type	Tenure Status
776777	19/01/2025	Single Cell Mining Claim	Active
776778	19/01/2025	Single Cell Mining Claim	Active
776789	19/01/2025	Single Cell Mining Claim	Active
776790	19/01/2025	Single Cell Mining Claim	Active
776797	19/01/2025	Single Cell Mining Claim	Active
776798	19/01/2025	Single Cell Mining Claim	Active
776791	19/01/2025	Single Cell Mining Claim	Active
776792	19/01/2025	Single Cell Mining Claim	Active
776799	19/01/2025	Single Cell Mining Claim	Active
776793	19/01/2025	Single Cell Mining Claim	Active
776794	19/01/2025	Single Cell Mining Claim	Active
776795	19/01/2025	Single Cell Mining Claim	Active
776796	19/01/2025	Single Cell Mining Claim	Active
776807	19/01/2025	Single Cell Mining Claim	Active
776808	19/01/2025	Single Cell Mining Claim	Active
776809	19/01/2025	Single Cell Mining Claim	Active
776810	19/01/2025	Single Cell Mining Claim	Active
776811	19/01/2025	Single Cell Mining Claim	Active
776800	19/01/2025	Single Cell Mining Claim	Active
776801	19/01/2025	Single Cell Mining Claim	Active
776802	19/01/2025	Single Cell Mining Claim	Active
776803	19/01/2025	Single Cell Mining Claim	Active
776804	19/01/2025	Single Cell Mining Claim	Active
776806	19/01/2025	Single Cell Mining Claim	Active
776812	19/01/2025	Single Cell Mining Claim	Active
776813	19/01/2025	Single Cell Mining Claim	Active
776814	19/01/2025	Single Cell Mining Claim	Active
776815	19/01/2025	Single Cell Mining Claim	Active
776816	19/01/2025	Single Cell Mining Claim	Active
776817	19/01/2025	Single Cell Mining Claim	Active
845985	13/07/2025	Single Cell Mining Claim	Active
845986	13/07/2025	Single Cell Mining Claim	Active
845987	13/07/2025	Single Cell Mining Claim	Active
845988	13/07/2025	Single Cell Mining Claim	Active
845989	13/07/2025	Single Cell Mining Claim	Active
845990	13/07/2025	Single Cell Mining Claim	Active
846021	13/07/2025	Single Cell Mining Claim	Active
846022	13/07/2025	Single Cell Mining Claim	Active
776818	19/01/2025	Single Cell Mining Claim	Active
776819	19/01/2025	Single Cell Mining Claim	Active

Tenure ID	Anniversary Date	Tenure Type	Tenure Status
776820	19/01/2025	Single Cell Mining Claim	Active
776821	19/01/2025	Single Cell Mining Claim	Active
776876	19/01/2025	Single Cell Mining Claim	Active
776877	19/01/2025	Single Cell Mining Claim	Active
776878	19/01/2025	Single Cell Mining Claim	Active
776879	19/01/2025	Single Cell Mining Claim	Active
776880	19/01/2025	Single Cell Mining Claim	Active
776822	19/01/2025	Single Cell Mining Claim	Active
776881	19/01/2025	Single Cell Mining Claim	Active
776882	19/01/2025	Single Cell Mining Claim	Active
776883	19/01/2025	Single Cell Mining Claim	Active
776884	19/01/2025	Single Cell Mining Claim	Active
776885	19/01/2025	Single Cell Mining Claim	Active
776886	19/01/2025	Single Cell Mining Claim	Active
776887	19/01/2025	Single Cell Mining Claim	Active
776888	19/01/2025	Single Cell Mining Claim	Active
776889	19/01/2025	Single Cell Mining Claim	Active
776890	19/01/2025	Single Cell Mining Claim	Active
776891	19/01/2025	Single Cell Mining Claim	Active
776892	19/01/2025	Single Cell Mining Claim	Active
776669	19/01/2025	Single Cell Mining Claim	Active
776670	19/01/2025	Single Cell Mining Claim	Active
776671	19/01/2025	Single Cell Mining Claim	Active
776672	19/01/2025	Single Cell Mining Claim	Active
776673	19/01/2025	Single Cell Mining Claim	Active
776674	19/01/2025	Single Cell Mining Claim	Active
776675	19/01/2025	Single Cell Mining Claim	Active
776676	19/01/2025	Single Cell Mining Claim	Active
776677	19/01/2025	Single Cell Mining Claim	Active
776678	19/01/2025	Single Cell Mining Claim	Active
776679	19/01/2025	Single Cell Mining Claim	Active
776680	19/01/2025	Single Cell Mining Claim	Active
776681	19/01/2025	Single Cell Mining Claim	Active
776682	19/01/2025	Single Cell Mining Claim	Active
776683	19/01/2025	Single Cell Mining Claim	Active
776684	19/01/2025	Single Cell Mining Claim	Active
776685	19/01/2025	Single Cell Mining Claim	Active
776686	19/01/2025	Single Cell Mining Claim	Active
776687	19/01/2025	Single Cell Mining Claim	Active
776690	19/01/2025	Single Cell Mining Claim	Active

\rightarrow

Tenure ID	Anniversary Date	Tenure Type	Tenure Status
776691	19/01/2025	Single Cell Mining Claim	Active
776692	19/01/2025	Single Cell Mining Claim	Active
776688	19/01/2025	Single Cell Mining Claim	Active
776689	19/01/2025	Single Cell Mining Claim	Active
776693	19/01/2025	Single Cell Mining Claim	Active
776694	19/01/2025	Single Cell Mining Claim	Active
776695	19/01/2025	Single Cell Mining Claim	Active
776696	19/01/2025	Single Cell Mining Claim	Active
776697	19/01/2025	Single Cell Mining Claim	Active
776698	19/01/2025	Single Cell Mining Claim	Active
776699	19/01/2025	Single Cell Mining Claim	Active
776700	19/01/2025	Single Cell Mining Claim	Active
776701	19/01/2025	Single Cell Mining Claim	Active
776702	19/01/2025	Single Cell Mining Claim	Active
776703	19/01/2025	Single Cell Mining Claim	Active
776704	19/01/2025	Single Cell Mining Claim	Active
776705	19/01/2025	Single Cell Mining Claim	Active
776706	19/01/2025	Single Cell Mining Claim	Active
776707	19/01/2025	Single Cell Mining Claim	Active
776708	19/01/2025	Single Cell Mining Claim	Active
776710	19/01/2025	Single Cell Mining Claim	Active
776711	19/01/2025	Single Cell Mining Claim	Active
776712	19/01/2025	Single Cell Mining Claim	Active
776713	19/01/2025	Single Cell Mining Claim	Active
776714	19/01/2025	Single Cell Mining Claim	Active
776715	19/01/2025	Single Cell Mining Claim	Active
776716	19/01/2025	Single Cell Mining Claim	Active
776717	19/01/2025	Single Cell Mining Claim	Active
776893	19/01/2025	Single Cell Mining Claim	Active
776924	19/01/2025	Single Cell Mining Claim	Active
776925	19/01/2025	Single Cell Mining Claim	Active
776709	19/01/2025	Single Cell Mining Claim	Active
776926	19/01/2025	Single Cell Mining Claim	Active
776927	19/01/2025	Single Cell Mining Claim	Active
776928	19/01/2025	Single Cell Mining Claim	Active
846031	13/07/2025	Single Cell Mining Claim	Active
846030	13/07/2025	Single Cell Mining Claim	Active
846032	13/07/2025	Single Cell Mining Claim	Active
846033	13/07/2025	Single Cell Mining Claim	Active
846034	13/07/2025	Single Cell Mining Claim	Active

\rightarrow
GDI

Т	enure ID	Anniversary Date	Tenure Type	Tenure Status
8	46035	13/07/2025	Single Cell Mining Claim	Active
8	46036	13/07/2025	Single Cell Mining Claim	Active
8	46037	13/07/2025	Single Cell Mining Claim	Active
8	46038	13/07/2025	Single Cell Mining Claim	Active
8	46039	13/07/2025	Single Cell Mining Claim	Active
8	46040	13/07/2025	Single Cell Mining Claim	Active
8	46041	13/07/2025	Single Cell Mining Claim	Active
8	46042	13/07/2025	Single Cell Mining Claim	Active
8	46043	13/07/2025	Single Cell Mining Claim	Active
8	45992	13/07/2025	Single Cell Mining Claim	Active
8	45993	13/07/2025	Single Cell Mining Claim	Active
8	45994	13/07/2025	Single Cell Mining Claim	Active
8	45995	13/07/2025	Single Cell Mining Claim	Active
8	45996	13/07/2025	Single Cell Mining Claim	Active
8	45997	13/07/2025	Single Cell Mining Claim	Active
8	45998	13/07/2025	Single Cell Mining Claim	Active
8	45999	13/07/2025	Single Cell Mining Claim	Active Pending
8	46000	13/07/2025	Single Cell Mining Claim	Active
8	46001	13/07/2025	Single Cell Mining Claim	Active
8	46002	13/07/2025	Single Cell Mining Claim	Active
8	46003	13/07/2025	Single Cell Mining Claim	Active Pending
8	46004	13/07/2025	Single Cell Mining Claim	Active
8	46005	13/07/2025	Single Cell Mining Claim	Active
8	46006	13/07/2025	Single Cell Mining Claim	Active
8	46007	13/07/2025	Single Cell Mining Claim	Active
8	46008	13/07/2025	Single Cell Mining Claim	Active
8	46009	13/07/2025	Single Cell Mining Claim	Active
8	46010	13/07/2025	Single Cell Mining Claim	Active
	46011	13/07/2025	Single Cell Mining Claim	Active
8	46012	13/07/2025	Single Cell Mining Claim	Active
	46013	13/07/2025	Single Cell Mining Claim	Active
	46019	13/07/2025	Single Cell Mining Claim	Active
	46014	13/07/2025	Single Cell Mining Claim	Active
	46015	13/07/2025	Single Cell Mining Claim	Active
	46016	13/07/2025	Single Cell Mining Claim	Active
	46017	13/07/2025	Single Cell Mining Claim	Active
	46018	13/07/2025	Single Cell Mining Claim	Active
	46020	13/07/2025	Single Cell Mining Claim	Active
	76824	19/01/2025	Single Cell Mining Claim	Active
7	76825	19/01/2025	Single Cell Mining Claim	Active

>>

	Tenure ID	Anniversary Date	Tenure Type	Tenure Status
	776823	19/01/2025	Single Cell Mining Claim	Active
	776826	19/01/2025	Single Cell Mining Claim	Active
	776827	19/01/2025	Single Cell Mining Claim	Active
1	776828	19/01/2025	Single Cell Mining Claim	Active
1	776855	19/01/2025	Single Cell Mining Claim	Active
1	776856	19/01/2025	Single Cell Mining Claim	Active
)	776857	19/01/2025	Single Cell Mining Claim	Active
	776858	19/01/2025	Single Cell Mining Claim	Active
	776859	19/01/2025	Single Cell Mining Claim	Active
)	776860	19/01/2025	Single Cell Mining Claim	Active
	776861	19/01/2025	Single Cell Mining Claim	Active
	776720	19/01/2025	Single Cell Mining Claim	Active
2	776721	19/01/2025	Single Cell Mining Claim	Active
	776722	19/01/2025	Single Cell Mining Claim	Active
	776723	19/01/2025	Single Cell Mining Claim	Active
1 1	776724	19/01/2025	Single Cell Mining Claim	Active
	776725	19/01/2025	Single Cell Mining Claim	Active
	776727	19/01/2025	Single Cell Mining Claim	Active
	776728	19/01/2025	Single Cell Mining Claim	Active
	776729	19/01/2025	Single Cell Mining Claim	Active
)	776730	19/01/2025	Single Cell Mining Claim	Active
	776731	19/01/2025	Single Cell Mining Claim	Active
	776732	19/01/2025	Single Cell Mining Claim	Active
1	776726	19/01/2025	Single Cell Mining Claim	Active
	776734	19/01/2025	Single Cell Mining Claim	Active
	776735	19/01/2025	Single Cell Mining Claim	Active
)	776733	19/01/2025	Single Cell Mining Claim	Active
	776736	19/01/2025	Single Cell Mining Claim	Active
	776737	19/01/2025	Single Cell Mining Claim	Active
1	776738	19/01/2025	Single Cell Mining Claim	Active
)	776739	19/01/2025	Single Cell Mining Claim	Active
	776740	19/01/2025	Single Cell Mining Claim	Active
	776741	19/01/2025	Single Cell Mining Claim	Active
	776742	19/01/2025	Single Cell Mining Claim	Active
	776743	19/01/2025	Single Cell Mining Claim	Active
	776744	19/01/2025	Single Cell Mining Claim	Active
	776746	19/01/2025	Single Cell Mining Claim	Active
	776747	19/01/2025	Single Cell Mining Claim	Active
	776748	19/01/2025	Single Cell Mining Claim	Active
	776749	19/01/2025	Single Cell Mining Claim	Active

\rightarrow
651

Tenure ID	Anniversary Date	Tenure Type	Tenure Status
776750	19/01/2025	Single Cell Mining Claim	Active
776751	19/01/2025	Single Cell Mining Claim	Active
776912	19/01/2025	Single Cell Mining Claim	Active
776913	19/01/2025	Single Cell Mining Claim	Active
776914	19/01/2025	Single Cell Mining Claim	Active
776915	19/01/2025	Single Cell Mining Claim	Active
776916	19/01/2025	Single Cell Mining Claim	Active
776917	19/01/2025	Single Cell Mining Claim	Active
776918	19/01/2025	Single Cell Mining Claim	Active
776919	19/01/2025	Single Cell Mining Claim	Active
776920	19/01/2025	Single Cell Mining Claim	Active
776921	19/01/2025	Single Cell Mining Claim	Active
776922	19/01/2025	Single Cell Mining Claim	Active
776923	19/01/2025	Single Cell Mining Claim	Active
776862	19/01/2025	Single Cell Mining Claim	Active
776830	19/01/2025	Single Cell Mining Claim	Active
776831	19/01/2025	Single Cell Mining Claim	Active
776832	19/01/2025	Single Cell Mining Claim	Active
776829	19/01/2025	Single Cell Mining Claim	Active
776833	19/01/2025	Single Cell Mining Claim	Active
776834	19/01/2025	Single Cell Mining Claim	Active
776835	19/01/2025	Single Cell Mining Claim	Active
776836	19/01/2025	Single Cell Mining Claim	Active
776837	19/01/2025	Single Cell Mining Claim	Active
776838	19/01/2025	Single Cell Mining Claim	Active
776839	19/01/2025	Single Cell Mining Claim	Active
776840	19/01/2025	Single Cell Mining Claim	Active
776841	19/01/2025	Single Cell Mining Claim	Active
776842	19/01/2025	Single Cell Mining Claim	Active
776843	19/01/2025	Single Cell Mining Claim	Active
776844	19/01/2025	Single Cell Mining Claim	Active
776845	19/01/2025	Single Cell Mining Claim	Active
776846	19/01/2025	Single Cell Mining Claim	Active
776847	19/01/2025	Single Cell Mining Claim	Active
776848	19/01/2025	Single Cell Mining Claim	Active
776849	19/01/2025	Single Cell Mining Claim	Active
776851	19/01/2025	Single Cell Mining Claim	Active
776850	19/01/2025	Single Cell Mining Claim	Active
790115	10/02/2025	Single Cell Mining Claim	Active
790116	10/02/2025	Single Cell Mining Claim	Active

\rightarrow

Tenure ID	Anniversary Date	Tenure Type	Tenure Status
790117	10/02/2025	Single Cell Mining Claim	Active
776929	19/01/2025	Single Cell Mining Claim	Active
776930	19/01/2025	Single Cell Mining Claim	Active
776894	19/01/2025	Single Cell Mining Claim	Active
776895	19/01/2025	Single Cell Mining Claim	Active
776896	19/01/2025	Single Cell Mining Claim	Active
776897	19/01/2025	Single Cell Mining Claim	Active
776898	19/01/2025	Single Cell Mining Claim	Active
776899	19/01/2025	Single Cell Mining Claim	Active
776900	19/01/2025	Single Cell Mining Claim	Active
776901	19/01/2025	Single Cell Mining Claim	Active
776902	19/01/2025	Single Cell Mining Claim	Active
776903	19/01/2025	Single Cell Mining Claim	Active
776904	19/01/2025	Single Cell Mining Claim	Active
776905	19/01/2025	Single Cell Mining Claim	Active
776906	19/01/2025	Single Cell Mining Claim	Active
776907	19/01/2025	Single Cell Mining Claim	Active
776908	19/01/2025	Single Cell Mining Claim	Active
776909	19/01/2025	Single Cell Mining Claim	Active
776910	19/01/2025	Single Cell Mining Claim	Active
776911	19/01/2025	Single Cell Mining Claim	Active
776863	19/01/2025	Single Cell Mining Claim	Active
776864	19/01/2025	Single Cell Mining Claim	Active
776865	19/01/2025	Single Cell Mining Claim	Active
776866	19/01/2025	Single Cell Mining Claim	Active
776867	19/01/2025	Single Cell Mining Claim	Active
776868	19/01/2025	Single Cell Mining Claim	Active
776869	19/01/2025	Single Cell Mining Claim	Active
776870	19/01/2025	Single Cell Mining Claim	Active
776871	19/01/2025	Single Cell Mining Claim	Active
776872	19/01/2025	Single Cell Mining Claim	Active
776873	19/01/2025	Single Cell Mining Claim	Active
776874	19/01/2025	Single Cell Mining Claim	Active
776875	19/01/2025	Single Cell Mining Claim	Active
845963	13/07/2025	Single Cell Mining Claim	Active
845964	13/07/2025	Single Cell Mining Claim	Active
845965	13/07/2025	Single Cell Mining Claim	Active
845966	13/07/2025	Single Cell Mining Claim	Active
845967	13/07/2025	Single Cell Mining Claim	Active
845968	13/07/2025	Single Cell Mining Claim	Active

Tenure ID	Anniversary Date	Tenure Type	Tenure Status
845969	13/07/2025	Single Cell Mining Claim	Active
845970	13/07/2025	Single Cell Mining Claim	Active
845971	13/07/2025	Single Cell Mining Claim	Active
845972	13/07/2025	Single Cell Mining Claim	Active
845973	13/07/2025	Single Cell Mining Claim	Active
845974	13/07/2025	Single Cell Mining Claim	Active
845975	13/07/2025	Single Cell Mining Claim	Active
845976	13/07/2025	Single Cell Mining Claim	Active
845977	13/07/2025	Single Cell Mining Claim	Active
845978	13/07/2025	Single Cell Mining Claim	Active
845979	13/07/2025	Single Cell Mining Claim	Active
845980	13/07/2025	Single Cell Mining Claim	Active
845981	13/07/2025	Single Cell Mining Claim	Active
845982	13/07/2025	Single Cell Mining Claim	Active
845983	13/07/2025	Single Cell Mining Claim	Active
845984	13/07/2025	Single Cell Mining Claim	Active
845991	13/07/2025	Single Cell Mining Claim	Active
846237	17/07/2025	Single Cell Mining Claim	Active
846238	17/07/2025	Single Cell Mining Claim	Active
846239	17/07/2025	Single Cell Mining Claim	Active
846240	17/07/2025	Single Cell Mining Claim	Active
846241	17/07/2025	Single Cell Mining Claim	Active
846242	17/07/2025	Single Cell Mining Claim	Active
846243	17/07/2025	Single Cell Mining Claim	Active
846244	17/07/2025	Single Cell Mining Claim	Active
846245	17/07/2025	Single Cell Mining Claim	Active
846246	17/07/2025	Single Cell Mining Claim	Active
846247	17/07/2025	Single Cell Mining Claim	Active
846248	17/07/2025	Single Cell Mining Claim	Active
790124	10/02/2025	Single Cell Mining Claim	Active
790125	10/02/2025	Single Cell Mining Claim	Active
790126	10/02/2025	Single Cell Mining Claim	Active
790127	10/02/2025	Single Cell Mining Claim	Active
790128	10/02/2025	Single Cell Mining Claim	Active
790129	10/02/2025	Single Cell Mining Claim	Active
790130	10/02/2025	Single Cell Mining Claim	Active
790131	10/02/2025	Single Cell Mining Claim	Active
790132	10/02/2025	Single Cell Mining Claim	Active
790133	10/02/2025	Single Cell Mining Claim	Active
790134	10/02/2025	Single Cell Mining Claim	Active

	Tenure ID	Anniversary Date	Tenure Type	Tenure Status
	790135	10/02/2025	Single Cell Mining Claim	Active
	790136	10/02/2025	Single Cell Mining Claim	Active
	790118	10/02/2025	Single Cell Mining Claim	Active
	790119	10/02/2025	Single Cell Mining Claim	Active
	790120	10/02/2025	Single Cell Mining Claim	Active
	790121	10/02/2025	Single Cell Mining Claim	Active
)	790122	10/02/2025	Single Cell Mining Claim	Active
	790123	10/02/2025	Single Cell Mining Claim	Active
	846023	13/07/2025	Single Cell Mining Claim	Active
))	846208	17/07/2025	Single Cell Mining Claim	Active
$\left\{ \right\}$	846209	17/07/2025	Single Cell Mining Claim	Active
IJ	846210	17/07/2025	Single Cell Mining Claim	Active
2	846211	17/07/2025	Single Cell Mining Claim	Active
リ	846212	17/07/2025	Single Cell Mining Claim	Active
	846213	17/07/2025	Single Cell Mining Claim	Active
	846214	17/07/2025	Single Cell Mining Claim	Active
Ń	846215	17/07/2025	Single Cell Mining Claim	Active
ショ	846216	17/07/2025	Single Cell Mining Claim	Active
	846217	17/07/2025	Single Cell Mining Claim	Active
5	846218	17/07/2025	Single Cell Mining Claim	Active
))	846219	17/07/2025	Single Cell Mining Claim	Active
2	846220	17/07/2025	Single Cell Mining Claim	Active
낏	846221	17/07/2025	Single Cell Mining Claim	Active
	846222	17/07/2025	Single Cell Mining Claim	Active
\mathcal{I}	846223	17/07/2025	Single Cell Mining Claim	Active
ク	846224	17/07/2025	Single Cell Mining Claim	Active
))	846225	17/07/2025	Single Cell Mining Claim	Active
12	846226	17/07/2025	Single Cell Mining Claim	Active
	846227	17/07/2025	Single Cell Mining Claim	Active
	846228	17/07/2025	Single Cell Mining Claim	Active
)	846229	17/07/2025	Single Cell Mining Claim	Active
2	846230	17/07/2025	Single Cell Mining Claim	Active
	846231	17/07/2025	Single Cell Mining Claim	Active
	846232	17/07/2025	Single Cell Mining Claim	Active
	846233	17/07/2025	Single Cell Mining Claim	Active
	846234	17/07/2025	Single Cell Mining Claim	Active
	846235	17/07/2025	Single Cell Mining Claim	Active
	846236	17/07/2025	Single Cell Mining Claim	Active

Notes:

Frazer Lake Original Claims

An existing royalty of 2.0% of net smelter returns from minerals mined and removed from the Property exists across the original Frazer Lake Claims. 1.0% of this royalty may be purchased at any time by paying a total of \$1,500,000.

Frazer Lake Subsequent Claims (Announced 9th August 2023 by Pegmatite One Lithium and Gold Corp:

A royalty of 2.0% of net smelter returns from minerals mined and removed from the Claims exists across the subsequent claims. 1.0% of this royalty may be purchased at any **ti**me by paying a total of \$750,000.

Appendix 2: Morrison River Lithium Mining Claims:

	Tenure ID	Anniversary Date	Tenure Type	Tenure Status
	773107	08-Jan-2025	Single Cell Mining Claim	Active
\leq	773106	08-Jan-2025	Single Cell Mining Claim	Active
	773105	08-Jan-2025	Single Cell Mining Claim	Active
	773104	08-Jan-2025	Single Cell Mining Claim	Active
	773103	08-Jan-2025	Single Cell Mining Claim	Active
\bigcirc	773102	08-Jan-2025	Single Cell Mining Claim	Active
	773101	08-Jan-2025	Single Cell Mining Claim	Active
15	773100	08-Jan-2025	Single Cell Mining Claim	Active
	773099	08-Jan-2025	Single Cell Mining Claim	Active
\bigcirc	773098	08-Jan-2025	Single Cell Mining Claim	Active
שו	773097	08-Jan-2025	Single Cell Mining Claim	Active
5	773076	08-Jan-2025	Single Cell Mining Claim	Active
	773075	08-Jan-2025	Single Cell Mining Claim	Active
	773074	08-Jan-2025	Single Cell Mining Claim	Active
	773073	08-Jan-2025	Single Cell Mining Claim	Active
(\cup)	773072	08-Jan-2025	Single Cell Mining Claim	Active
	773071	08-Jan-2025	Single Cell Mining Claim	Active
	773070	08-Jan-2025	Single Cell Mining Claim	Active
	773069	08-Jan-2025	Single Cell Mining Claim	Active
Ľ	773068	08-Jan-2025	Single Cell Mining Claim	Active
\bigcirc	773067	08-Jan-2025	Single Cell Mining Claim	Active
1 D	773066	08-Jan-2025	Single Cell Mining Claim	Active
	773065	08-Jan-2025	Single Cell Mining Claim	Active
15	773064	08-Jan-2025	Single Cell Mining Claim	Active
	773063	08-Jan-2025	Single Cell Mining Claim	Active
)	773062	08-Jan-2025	Single Cell Mining Claim	Active
	773061	08-Jan-2025	Single Cell Mining Claim	Active
	773060	08-Jan-2025	Single Cell Mining Claim	Active
	773059	08-Jan-2025	Single Cell Mining Claim	Active
)	773058	08-Jan-2025	Single Cell Mining Claim	Active
	768928	14-Dec-2024	Multi-cell Mining Claim	Active
	763310	30-Nov-2024	Single Cell Mining Claim	Active
	763309	30-Nov-2024	Single Cell Mining Claim	Active
	763308	30-Nov-2024	Single Cell Mining Claim	Active
	763307	30-Nov-2024	Single Cell Mining Claim	Active
	763306	30-Nov-2024	Single Cell Mining Claim	Active
	763305	30-Nov-2024	Multi-cell Mining Claim	Active
	763304	30-Nov-2024	Single Cell Mining Claim	Active

Tenure ID	Anniversary Date	Tenure Type	Tenure Status
763303	30-Nov-2024	Single Cell Mining Claim	Active
763302	30-Nov-2024	Single Cell Mining Claim	Active
763301	30-Nov-2024	Single Cell Mining Claim	Active
763300	30-Nov-2024	Single Cell Mining Claim	Active
763299	30-Nov-2024	Single Cell Mining Claim	Active
763286	30-Nov-2024	Multi-cell Mining Claim	Active
763285	30-Nov-2024	Multi-cell Mining Claim	Active
763284	30-Nov-2024	Multi-cell Mining Claim	Active
763283	30-Nov-2024	Multi-cell Mining Claim	Active
763282	30-Nov-2024	Multi-cell Mining Claim	Active
684701	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684700	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684699	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684698	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684697	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684696	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684695	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684694	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684693	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684692	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684691	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684690	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684689	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684688	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684687	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684686	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684685	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684684	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684683	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684682	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684681	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684680	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684679	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684678	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684677	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684676	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684675	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684674	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684673	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684672	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply

	Tenure ID	Anniversary Date	Tenure Type	Tenure Status
	684671	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684670	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
\geq	684669	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684668	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684667	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684666	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684665	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684664	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684663	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684662	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684661	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684660	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684659	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684658	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684657	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684656	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684655	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684654	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684653	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684652	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684651	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684650	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684649	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684648	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684647	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684646	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684645	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684644	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684643	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684642	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684641	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684640	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684639	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684638	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684637	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684636	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684635	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684634	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684633	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684632	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply

	Tenure ID	Anniversary Date	Tenure Type	Tenure Status
	684631	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684630	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
\geq	684629	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684628	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684627	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684626	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
)	684625	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
2	684624	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684623	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
))	684622	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
\overline{a}	684621	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
J	684620	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
7	684619	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
リ	684618	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684617	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684616	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
))	684615	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684614	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684613	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684612	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
))	684611	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
ā	684610	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
IJ	684609	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684608	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
5	684607	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
Ŀ	684606	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684605	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684604	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684603	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684602	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
)	684601	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
2	684600	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684599	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684598	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684597	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684596	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684595	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684594	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684593	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684592	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply

	Tenure ID	Anniversary Date	Tenure Type	Tenure Status
	684591	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684590	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
\geq	684589	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684588	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684587	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684586	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684585	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684584	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684583	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684582	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684581	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684580	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684579	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684578	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684577	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684576	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684575	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684574	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684573	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684572	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684571	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684570	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684569	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684568	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684567	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684566	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684565	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684564	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684563	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684562	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684561	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684560	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684559	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684558	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684557	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684556	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684555	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684554	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684553	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
	684552	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply

Tenure ID	Anniversary Date	Tenure Type	Tenure Status
684551	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684550	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684549	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684548	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684547	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684546	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684545	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684544	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684543	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684542	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684541	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684540	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684539	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684538	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684537	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684536	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684535	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684534	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684533	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684532	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684531	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684530	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684529	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply
684528	10-Nov-2023	Single Cell Mining Claim	Hold Special Circumstances Apply

Appendix 3: Jesaulenko Lithium Mining Claims:

	Title ID	Туре	Status	Anniversary
	851221	Single Cell Mining Claim	Active	9/08/2025
	851228	Single Cell Mining Claim	Active	9/08/2025
	851222	Single Cell Mining Claim	Active	9/08/2025
	851223	Single Cell Mining Claim	Active	9/08/2025
	851224	Single Cell Mining Claim	Active	9/08/2025
	851225	Single Cell Mining Claim	Active	9/08/2025
	851226	Single Cell Mining Claim	Active	9/08/2025
5	851227	Single Cell Mining Claim	Active	9/08/2025
ノ	851229	Single Cell Mining Claim	Active	9/08/2025
	851230	Single Cell Mining Claim	Active	9/08/2025
Y	851285	Single Cell Mining Claim	Active	9/08/2025
3	851286	Single Cell Mining Claim	Active	9/08/2025
2	851287	Single Cell Mining Claim	Active	9/08/2025
	851288	Single Cell Mining Claim	Active	9/08/2025
3	851289	Single Cell Mining Claim	Active	9/08/2025
C)	851290	Single Cell Mining Claim	Active	9/08/2025
	851135	Single Cell Mining Claim	Active	9/08/2025
	851141	Single Cell Mining Claim	Active	9/08/2025
	851136	Single Cell Mining Claim	Active	9/08/2025
ノ	851137	Single Cell Mining Claim	Active	9/08/2025
\mathbb{A}	851138	Single Cell Mining Claim	Active	9/08/2025
Ð	851139	Single Cell Mining Claim	Active	9/08/2025
	851140	Single Cell Mining Claim	Active	9/08/2025
5	851142	Single Cell Mining Claim	Active	9/08/2025
2	851185	Single Cell Mining Claim	Active	9/08/2025
)	851186	Single Cell Mining Claim	Active	9/08/2025
	851187	Single Cell Mining Claim	Active	9/08/2025
	851188	Single Cell Mining Claim	Active	9/08/2025
	851189	Single Cell Mining Claim	Active	9/08/2025
)	851190	Single Cell Mining Claim	Active	9/08/2025
~	851191	Single Cell Mining Claim	Active	9/08/2025
	851192	Single Cell Mining Claim	Active	9/08/2025
	851193	Single Cell Mining Claim	Active	9/08/2025
	851194	Single Cell Mining Claim	Active	9/08/2025
	851195	Single Cell Mining Claim	Active	9/08/2025
	851196	Single Cell Mining Claim	Active	9/08/2025
	851197	Single Cell Mining Claim	Active	9/08/2025
	851198	Single Cell Mining Claim	Active	9/08/2025

	Title ID	Туре	Status	Anniversary
	851199	Single Cell Mining Claim	Active	9/08/2025
	851200	Single Cell Mining Claim	Active	9/08/2025
\gg	851201	Single Cell Mining Claim	Active	9/08/2025
	851202	Single Cell Mining Claim	Active	9/08/2025
	851203	Single Cell Mining Claim	Active	9/08/2025
	851204	Single Cell Mining Claim	Active	9/08/2025
$\bigcirc)$	851211	Single Cell Mining Claim	Active	9/08/2025
\subseteq	851205	Single Cell Mining Claim	Active	9/08/2025
	851206	Single Cell Mining Claim	Active	9/08/2025
JD)	851207	Single Cell Mining Claim	Active	9/08/2025
	851208	Single Cell Mining Claim	Active	9/08/2025
JD	851209	Single Cell Mining Claim	Active	9/08/2025
-7	851210	Single Cell Mining Claim	Active	9/08/2025
	851212	Single Cell Mining Claim	Active	9/08/2025
	851231	Single Cell Mining Claim	Active	9/08/2025
	851232	Single Cell Mining Claim	Active	9/08/2025
JDĮ	851233	Single Cell Mining Claim	Active	9/08/2025
	851234	Single Cell Mining Claim	Active	9/08/2025
	851291	Single Cell Mining Claim	Active	9/08/2025
	851298	Single Cell Mining Claim	Active	9/08/2025
\bigcirc	851213	Single Cell Mining Claim	Active	9/08/2025
	851214	Single Cell Mining Claim	Active	9/08/2025
עע	851215	Single Cell Mining Claim	Active	9/08/2025
	851216	Single Cell Mining Claim	Active	9/08/2025
75	851217	Single Cell Mining Claim	Active	9/08/2025
JU	851218	Single Cell Mining Claim	Active	9/08/2025
	851219	Single Cell Mining Claim	Active	9/08/2025
$\bigcirc 2$	851173	Single Cell Mining Claim	Active	9/08/2025
	851174	Single Cell Mining Claim	Active	9/08/2025
	851175	Single Cell Mining Claim	Active	9/08/2025
	851176	Single Cell Mining Claim	Active	9/08/2025
>	851177	Single Cell Mining Claim	Active	9/08/2025
	851178	Single Cell Mining Claim	Active	9/08/2025
	851179	Single Cell Mining Claim	Active	9/08/2025
	851165	Single Cell Mining Claim	Active	9/08/2025
	851166	Single Cell Mining Claim	Active	9/08/2025
	851167	Single Cell Mining Claim	Active	9/08/2025
	851168	Single Cell Mining Claim	Active	9/08/2025
	851169	Single Cell Mining Claim	Active	9/08/2025
	851170	Single Cell Mining Claim	Active	9/08/2025

Title ID	Туре	Status	Anniversary
851171	Single Cell Mining Claim	Active	9/08/2025
851172	Single Cell Mining Claim	Active	9/08/2025
851180	Single Cell Mining Claim	Active	9/08/2025
851220	Single Cell Mining Claim	Active	9/08/2025
851292	Single Cell Mining Claim	Active	9/08/2025
851293	Single Cell Mining Claim	Active	9/08/2025
851294	Single Cell Mining Claim	Active	9/08/2025
851295	Single Cell Mining Claim	Active	9/08/2025
851296	Single Cell Mining Claim	Active	9/08/2025
851299	Single Cell Mining Claim	Active	9/08/2025
851181	Single Cell Mining Claim	Active	9/08/2025
851182	Single Cell Mining Claim	Active	9/08/2025
851183	Single Cell Mining Claim	Active	9/08/2025
851184	Single Cell Mining Claim	Active	9/08/2025
851297	Single Cell Mining Claim	Active	9/08/2025
851340	Single Cell Mining Claim	Active	9/08/2025
851143	Single Cell Mining Claim	Active	9/08/2025
851144	Single Cell Mining Claim	Active	9/08/2025
851145	Single Cell Mining Claim	Active	9/08/2025
851146	Single Cell Mining Claim	Active	9/08/2025
851147	Single Cell Mining Claim	Active	9/08/2025
851148	Single Cell Mining Claim	Active	9/08/2025
851149	Single Cell Mining Claim	Active	9/08/2025
851150	Single Cell Mining Claim	Active	9/08/2025
851151	Single Cell Mining Claim	Active	9/08/2025
851152	Single Cell Mining Claim	Active	9/08/2025
851153	Single Cell Mining Claim	Active	9/08/2025
851154	Single Cell Mining Claim	Active	9/08/2025
851155	Single Cell Mining Claim	Active	9/08/2025
851156	Single Cell Mining Claim	Active	9/08/2025
851157	Single Cell Mining Claim	Active	9/08/2025
851158	Single Cell Mining Claim	Active	9/08/2025
851159	Single Cell Mining Claim	Active	9/08/2025
851160	Single Cell Mining Claim	Active	9/08/2025
851161	Single Cell Mining Claim	Active	9/08/2025
851162	Single Cell Mining Claim	Active	9/08/2025
851163	Single Cell Mining Claim	Active	9/08/2025
843277	Single Cell Mining Claim	Active	30/06/2025
843278	Single Cell Mining Claim	Active	30/06/2025
843279	Single Cell Mining Claim	Active	30/06/2025

	Title ID	Туре	Status	Anniversary
	843280	Single Cell Mining Claim	Active	30/06/2025
	843281	Single Cell Mining Claim	Active	30/06/2025
\geq	843282	Single Cell Mining Claim	Active	30/06/2025
	843283	Single Cell Mining Claim	Active	30/06/2025
	843284	Single Cell Mining Claim	Active	30/06/2025
	843285	Single Cell Mining Claim	Active	30/06/2025
2	843286	Single Cell Mining Claim	Active	30/06/2025
シ	843287	Single Cell Mining Claim	Active	30/06/2025
~	843288	Single Cell Mining Claim	Active	30/06/2025
)	843289	Single Cell Mining Claim	Active	30/06/2025
	843290	Single Cell Mining Claim	Active	30/06/2025
))	843291	Single Cell Mining Claim	Active	30/06/2025
7	843292	Single Cell Mining Claim	Active	30/06/2025
기	843293	Single Cell Mining Claim	Active	30/06/2025
	843294	Single Cell Mining Claim	Active	30/06/2025
	843295	Single Cell Mining Claim	Active	30/06/2025
7	843296	Single Cell Mining Claim	Active	30/06/2025
2	843297	Single Cell Mining Claim	Active	30/06/2025
	843298	Single Cell Mining Claim	Active	30/06/2025
\leq	843299	Single Cell Mining Claim	Active	30/06/2025
))	843300	Single Cell Mining Claim	Active	30/06/2025
5	843301	Single Cell Mining Claim	Active	30/06/2025
IJ	843302	Single Cell Mining Claim	Active	30/06/2025
	843303	Single Cell Mining Claim	Active	30/06/2025
5	843304	Single Cell Mining Claim	Active	30/06/2025
기	843305	Single Cell Mining Claim	Active	30/06/2025
2	843306	Single Cell Mining Claim	Active	30/06/2025
/	843307	Single Cell Mining Claim	Active	30/06/2025
	843308	Single Cell Mining Claim	Active	30/06/2025
	843309	Single Cell Mining Claim	Active	30/06/2025
)	843310	Single Cell Mining Claim	Active	30/06/2025
2	843311	Single Cell Mining Claim	Active	30/06/2025
	843312	Single Cell Mining Claim	Active	30/06/2025
	843313	Single Cell Mining Claim	Active	30/06/2025
	843314	Single Cell Mining Claim	Active	30/06/2025
	843315	Single Cell Mining Claim	Active	30/06/2025
	843316	Single Cell Mining Claim	Active	30/06/2025
	843317	Single Cell Mining Claim	Active	30/06/2025
	843318	Single Cell Mining Claim	Active	30/06/2025
	843319	Single Cell Mining Claim	Active	30/06/2025

	Title ID	Туре	Status	Anniversary
	843320	Single Cell Mining Claim	Active	30/06/2025
	843321	Single Cell Mining Claim	Active	30/06/2025
\geq	843322	Single Cell Mining Claim	Active	30/06/2025
	843323	Single Cell Mining Claim	Active	30/06/2025
	843324	Single Cell Mining Claim	Active	30/06/2025
	843325	Single Cell Mining Claim	Active	30/06/2025
	843326	Single Cell Mining Claim	Active	30/06/2025
	851318	Single Cell Mining Claim	Active	9/08/2025
	851319	Single Cell Mining Claim	Active	9/08/2025
	851320	Single Cell Mining Claim	Active	9/08/2025
	851321	Single Cell Mining Claim	Active	9/08/2025
	851322	Single Cell Mining Claim	Active	9/08/2025
	851323	Single Cell Mining Claim	Active	9/08/2025
	851324	Single Cell Mining Claim	Active	9/08/2025
	851325	Single Cell Mining Claim	Active	9/08/2025
	851326	Single Cell Mining Claim	Active	9/08/2025
	851327	Single Cell Mining Claim	Active	9/08/2025
	851328	Single Cell Mining Claim	Active	9/08/2025
	851329	Single Cell Mining Claim	Active	9/08/2025
	851330	Single Cell Mining Claim	Active	9/08/2025
	851331	Single Cell Mining Claim	Active	9/08/2025
	851332	Single Cell Mining Claim	Active	9/08/2025
	851333	Single Cell Mining Claim	Active	9/08/2025
	851334	Single Cell Mining Claim	Active	9/08/2025
	851335	Single Cell Mining Claim	Active	9/08/2025
	851336	Single Cell Mining Claim	Active	9/08/2025
	851337	Single Cell Mining Claim	Active	9/08/2025
	851338	Single Cell Mining Claim	Active	9/08/2025
	851339	Single Cell Mining Claim	Active	9/08/2025
	851341	Single Cell Mining Claim	Active	9/08/2025
	851342	Single Cell Mining Claim	Active	9/08/2025
	851343	Single Cell Mining Claim	Active	9/08/2025
	851344	Single Cell Mining Claim	Active	9/08/2025
	851345	Single Cell Mining Claim	Active	9/08/2025
	851346	Single Cell Mining Claim	Active	9/08/2025
	851347	Single Cell Mining Claim	Active	9/08/2025
	851348	Single Cell Mining Claim	Active	9/08/2025
	851349	Single Cell Mining Claim	Active	9/08/2025
	851350	Single Cell Mining Claim	Active	9/08/2025
	851351	Single Cell Mining Claim	Active	9/08/2025

	Title ID	Туре	Status	Anniversary
	851352	Single Cell Mining Claim	Active	9/08/2025
	851353	Single Cell Mining Claim	Active	9/08/2025
>>>	851164	Single Cell Mining Claim	Active	9/08/2025
	851235	Single Cell Mining Claim	Active	9/08/2025
	851236	Single Cell Mining Claim	Active	9/08/2025
	851237	Single Cell Mining Claim	Active	9/08/2025
	851238	Single Cell Mining Claim	Active	9/08/2025
	851239	Single Cell Mining Claim	Active	9/08/2025
	851240	Single Cell Mining Claim	Active	9/08/2025
	851241	Single Cell Mining Claim	Active	9/08/2025
	851242	Single Cell Mining Claim	Active	9/08/2025
	851243	Single Cell Mining Claim	Active	9/08/2025
	851244	Single Cell Mining Claim	Active	9/08/2025
	851245	Single Cell Mining Claim	Active	9/08/2025
	851246	Single Cell Mining Claim	Active	9/08/2025
	851247	Single Cell Mining Claim	Active	9/08/2025
	851248	Single Cell Mining Claim	Active	9/08/2025
	851249	Single Cell Mining Claim	Active	9/08/2025
	851250	Single Cell Mining Claim	Active	9/08/2025
	851251	Single Cell Mining Claim	Active	9/08/2025
	851252	Single Cell Mining Claim	Active	9/08/2025
	851253	Single Cell Mining Claim	Active	9/08/2025
	851254	Single Cell Mining Claim	Active	9/08/2025
	851255	Single Cell Mining Claim	Active	9/08/2025
	851256	Single Cell Mining Claim	Active	9/08/2025
	851257	Single Cell Mining Claim	Active	9/08/2025
	851258	Single Cell Mining Claim	Active	9/08/2025
	851259	Single Cell Mining Claim	Active	9/08/2025
	851260	Single Cell Mining Claim	Active	9/08/2025
	851261	Single Cell Mining Claim	Active	9/08/2025
	851262	Single Cell Mining Claim	Active	9/08/2025
	851263	Single Cell Mining Claim	Active	9/08/2025
	851264	Single Cell Mining Claim	Active	9/08/2025
	851265	Single Cell Mining Claim	Active	9/08/2025
	851266	Single Cell Mining Claim	Active	9/08/2025
	851267	Single Cell Mining Claim	Active	9/08/2025
	851268	Single Cell Mining Claim	Active	9/08/2025
	851269	Single Cell Mining Claim	Active	9/08/2025
	851270	Single Cell Mining Claim	Active	9/08/2025
	851271	Single Cell Mining Claim	Active	9/08/2025

Title ID	Туре	Status	Anniversary
851272	Single Cell Mining Claim	Active	9/08/2025
851273	Single Cell Mining Claim	Active	9/08/2025
851274	Single Cell Mining Claim	Active	9/08/2025
851275	Single Cell Mining Claim	Active	9/08/2025
851276	Single Cell Mining Claim	Active	9/08/2025
851277	Single Cell Mining Claim	Active	9/08/2025
851278	Single Cell Mining Claim	Active	9/08/2025
851279	Single Cell Mining Claim	Active	9/08/2025
851280	Single Cell Mining Claim	Active	9/08/2025
851281	Single Cell Mining Claim	Active	9/08/2025
851282	Single Cell Mining Claim	Active	9/08/2025
851283	Single Cell Mining Claim	Active	9/08/2025
851284	Single Cell Mining Claim	Active	9/08/2025
851300	Single Cell Mining Claim	Active	9/08/2025
851301	Single Cell Mining Claim	Active	9/08/2025
851302	Single Cell Mining Claim	Active	9/08/2025
851303	Single Cell Mining Claim	Active	9/08/2025
851304	Single Cell Mining Claim	Active	9/08/2025
851305	Single Cell Mining Claim	Active	9/08/2025
851306	Single Cell Mining Claim	Active	9/08/2025
851307	Single Cell Mining Claim	Active	9/08/2025
851308	Single Cell Mining Claim	Active	9/08/2025
851309	Single Cell Mining Claim	Active	9/08/2025
851310	Single Cell Mining Claim	Active	9/08/2025
851311	Single Cell Mining Claim	Active	9/08/2025
851312	Single Cell Mining Claim	Active	9/08/2025
851313	Single Cell Mining Claim	Active	9/08/2025
851314	Single Cell Mining Claim	Active	9/08/2025
851315	Single Cell Mining Claim	Active	9/08/2025
851316	Single Cell Mining Claim	Active	9/08/2025
851317	Single Cell Mining Claim	Active	9/08/2025

Appendix 4: Channel Sample Results (NAD83-16N grid system)

	Sample	Easting	Northing	Cs ppm	Li ppm	Li ₂ O%	Rb ppm	Ta ppm
	K043151	383,651	5,449,082	31.4	2,200	0.47	253	77.3
	K043152	383,651	5,449,083	35.5	3,210	0.69	313	41.3
	K043153	383,651	5,449,084	44.6	2,880	0.62	346	62.9
	K043154	383,651	5,449,085	42.6	1,550	0.33	304	45.9
	K043155	383,651	5,449,086	61.3	750	0.16	374	53.3
	K043156	383,651	5,449,087	47.5	760	0.16	277	33.5
	K043157	383,652	5,449,088	57.7	560	0.12	265	41
	K043158	383,652	5,449,089	45.8	5,140	1.11	225	68.9
	K043159	383,652	5,449,090	61.1	2,910	0.63	285	58.7
	K043160	383,652	5,449,091	60.8	1,590	0.34	241	70.2
	K043161	383,652	5,449,092	68.7	790	0.17	229	52.8
	K043162	383,652	5,449,093	68.5	1,080	0.23	250	57.6
	K043163	383,652	5,449,094	67.1	8,170	1.76	170	48.2
	K043164	383,652	5,449,095	114.5	1,360	0.29	312	72
2	K043165	383,652	5,449,096	69.5	1,160	0.25	237	47.9
	K043166	383,652	5,449,097	63.3	1,120	0.24	247	49.1
	K043167	383,652	5,449,098	70.7	1,460	0.31	264	57.1
	K043168	383,653	5,449,099	47.3	1,470	0.32	203	48
	K043171	383,653	5,449,100	53.7	680	0.15	251	66
	K043172	383,653	5,449,101	52.4	320	0.07	268	53.8
	K043173	383,653	5,449,102	54.8	4,140	0.89	292	86.3
	K043174	383,653	5,449,103	59.2	7,930	1.71	394	25.1
	K043175	383,653	5,449,104	68.7	5,610	1.21	430	155.5
	K043176	383,653	5,449,105	57.8	450	0.1	273	42.4
	K043177	383,653	5,449,106	58.7	460	0.1	294	54.7
	K043178	383,653	5,449,107	51.5	2,290	0.49	319	43
	K043179	383,653	5,449,108	60.9	3,380	0.73	266	84.5
	K043180	383,653	5,449,109	58.6	3,950	0.85	263	85.6
	K043181	383,653	5,449,110	97.5	6,120	1.32	362	99.7
	K043182	383,654	5,449,111	73.5	3,090	0.67	262	72.3
	K043183	383,654	5,449,112	88	850	0.18	275	53.5
	K043184	383,654	5,449,113	98.1	920	0.2	266	55.7
	K043185	383,654	5,449,114	74.6	2,260	0.49	326	60.4
	K043186	383,654	5,449,115	104.5	3,530	0.76	308	43
	K043187	383,654	5,449,116	99.5	470	0.1	298	43.7
	K043188	383,654	5,449,117	87.6	2,240	0.48	464	58.8
	K043191	383,654	5,449,118	87.7	4,970	1.07	295	58.2
	K043192	383,654	5,449,119	80	1,920	0.41	306	51.6

Sample
K043193
K043194
K043195
K043196
K043197
K043198
K043199
K043200
K043201
K043202
K043203

	Sample	Easting	Northing	Cs ppm	Li ppm	Li ₂ O%	Rb ppm	Ta ppm
	K043193	383,654	5,449,120	67	3,170	0.68	307	48.6
	K043194	383,654	5,449,121	76.1	2,750	0.59	342	70.6
\sim	K043195	383,655	5,449,122	57.1	3,140	0.68	251	44
]	K043196	383,655	5,449,123	60.9	4,360	0.94	251	105.5
	K043197	383,655	5,449,124	46.5	2,160	0.47	242	36.6
]	K043198	383,655	5,449,125	49.9	1,070	0.23	278	38.8
	K043199	383,655	5,449,126	26	280	0.06	214	41.6
	K043200	383,655	5,449,127	30.3	610	0.13	229	52.4
	K043201	383,655	5,449,128	49.6	230	0.05	376	52.8
	K043202	383,655	5,449,129	354	780	0.17	667	53.1
	K043203	383,655	5,449,130	110	770	0.17	186.5	0.76

Appendix 5: Rock Chip Sample Results (NAD83-16N grid system)

	Sample ID	Easting	Northing	Cs ppm	Li ppm	Li ₂ O%	Rb ppm	Ta ppm
	K043251	387981	5451254	1.98	35.7	0.008	25.4	0.12
	K043252	387645	5451155	1.88	102.5	0.022	34.9	0.18
	K043254	387789	5450680	5.75	64.3	0.014	89.8	0.61
	K043255	387737	5450410	0.57	10.2	0.002	13.4	< 0.05
	K043256	387499	5450295	5.19	54.3	0.012	97.2	0.51
\bigcirc	K043257	387400	5450230	166	12.8	0.003	303	470
	K043258	387260	5450635	5.35	36	0.008	77.6	3.27
22	K043001	387416	5449221	2.97	29.7	0.006	53.2	0.47
JU	K043002	387382	5449290	6.11	11.1	0.002	102.5	13.6
	K043003	387410	5449559	3.54	38.1	0.008	57.4	0.45
ענ	K043004	387356	5449898	4.98	41.1	0.009	92.3	0.54
	K043005	387156	5450071	5.83	68.5	0.015	90.8	0.53
	K043006	387054	5450191	6.17	39.4	0.008	92.9	0.47
	K043007	387230	5450300	3.79	33.9	0.007	67.3	0.33
	K043008	387157	5450467	4.01	44.8	0.010	63.1	0.45
$(U)_{c}$	K043011	387355	5449054	2.56	16.8	0.004	35.3	0.11
	K043012	387272	5449276	4.48	42.6	0.009	149.5	0.36
	K043013	387191	5449295	5.83	14.2	0.003	197	19.7
	K043014	386927	5449630	4.39	41.8	0.009	79.1	0.57
\mathcal{D}	K043015	387018	5449021	5.78	38	0.008	68	0.42
$^{1}\bigcirc$	K043016	386783	5448970	2.16	16.3	0.004	32.4	0.14
99	K043261	386715	5448348	0.99	5.4	0.001	10.4	0.75
	K043262	386885	5448129	1.85	24.2	0.005	39.5	0.14
15)	K043263	387068	5448410	6.26	52.7	0.011	109.5	0.47
	K043264	387075	5448722	0.9	2.7	0.001	7.3	<0.05
\bigcirc	K043265	387214	5448599	1.78	25	0.005	75.9	0.32
	K043266	387418	5448629	2.39	22.9	0.005	42.7	0.16
	K043267	387443	5448653	2.83	93.4	0.020	56	0.45
	K043268	387310	5448391	0.6	13.2	0.003	11.1	0.05
\bigcirc	K043271	387543	5448384	2.13	12.2	0.003	31.5	0.13
	K043272	387544	5448128	15.95	45.3	0.010	139	0.58
	K043273	387811	5448216	29.1	60.8	0.013	364	2.08
	K043017	387810	5449843	2.28	36.3	0.008	54.4	0.25
	K043018	387521	5449238	1.52	20.5	0.004	34	0.14
	K043021	388065	5449238	3.29	24.8	0.005	49.1	0.14
	K043022	388018	5448992	0.34	2.2	0.000	6.8	0.82
	K043023	388062	5448777	2.44	44.3	0.010	35.4	0.16
	K043024	388146	5448627	77.1	46.5	0.010	501	176.5

Comple ID	Facting	Northing	Comm	Linn
Sample ID	Easting	Northing	Cs ppm	Li ppn
K043025	388271	5448540	0.86	7.
K043026	388166	5448264	3.17	28.0
K043027	388358	5448245	23.5	31.
K043028	388375	5448442	0.42	4.2
K043031	388349	5448659	3.53	33.
K043032	388418	5448875	90.9	18.9
K043033	388343	5449094	0.79	6.
K043034	389645	5448302	5.9	58.3
K043035	389645	5448302	8.36	30.2
K043036	390313	5448326	7.39	8.2
K043037	390366	5448203	13	52.2
K043038	390890	5448517	18.05	20.0
K043041	391018	5448510	8.05	40.
K043042	391123	5448450	1.58	78.0
K043274	391161	5449098	2.94	23.8
K043275	390932	5449151	10.25	20.9
K043276	390677	5449010	20.4	59.9
K043277	390555	5449253	17.75	10
K043278	390301	5449203	14.95	172.
K043043	391638	5450570	46	11
K043044	391940	5450385	33	120.
K043045	392081	5450239	23.9	74.
K043046	392079	5450119	28.7	3
K043047	392122	5449802	0.65	18.
K043048	392218	5449690	8.74	8.2
K043051	392357	5450157	9.17	59.4
K043052	392334	5450400	12.2	86.
K043053	392227	5450567	48.8	48.3
K043054	391476	5450898	18.2	74
K043281	391338	5449576	10.8	:
K043282	391501	5449713	9.29	6.4
K043283	391618	5449655	8.3	24.3
K043284	391533	5449584	8.36	26.2
K043285	391580	5449285	17.85	65.
K043286	391800	5449503	19.95	11.2
K043287	391804	5449742	10.8	11.4
K043288	391570	5450055	11.85	11.4
1/0 10000	001510	E 1 E O 1 O 1	0.00	

Sample ID	Easting	Northing	Cs ppm	Li ppm	Li ₂ O%	Rb ppm	Ta ppm
K043025	388271	5448540	0.86	7.7	0.002	20.6	0.26
K043026	388166	5448264	3.17	28.6	0.006	55.1	0.29
K043027	388358	5448245	23.5	31.1	0.007	73.5	1.02
K043028	388375	5448442	0.42	4.2	0.001	4.3	0.07
K043031	388349	5448659	3.53	33.1	0.007	49	0.18
K043032	388418	5448875	90.9	18.9	0.004	473	123
K043033	388343	5449094	0.79	6.7	0.001	12	0.21
K043034	389645	5448302	5.9	58.3	0.013	59.1	0.51
K043035	389645	5448302	8.36	30.2	0.007	83	34.2
K043036	390313	5448326	7.39	8.2	0.002	151	8.99
K043037	390366	5448203	13	52.2	0.011	52.1	39.1
K043038	390890	5448517	18.05	20.6	0.004	304	2.16
K043041	391018	5448510	8.05	40.1	0.009	304	1.68
K043042	391123	5448450	1.58	78.6	0.017	124	1.74
K043274	391161	5449098	2.94	23.8	0.005	47.9	0.13
K043275	390932	5449151	10.25	20.9	0.004	111	0.45
K043276	390677	5449010	20.4	59.9	0.013	365	1.85
K043277	390555	5449253	17.75	105	0.023	467	3.25
K043278	390301	5449203	14.95	172.5	0.037	342	2.02
K043043	391638	5450570	46	115	0.025	406	7.22
K043044	391940	5450385	33	120.5	0.026	396	2.79
K043045	392081	5450239	23.9	74.7	0.016	288	2.15
K043046	392079	5450119	28.7	37	0.008	345	3.3
K043047	392122	5449802	0.65	18.5	0.004	34.8	0.93
K043048	392218	5449690	8.74	8.2	0.002	246	1.08
K043051	392357	5450157	9.17	59.4	0.013	262	1.96
K043052	392334	5450400	12.2	86.5	0.019	274	2.25
K043053	392227	5450567	48.8	48.3	0.010	524	1.42
K043054	391476	5450898	18.2	74	0.016	387	1.88
K043281	391338	5449576	10.8	5	0.001	329	0.9
K043282	391501	5449713	9.29	6.4	0.001	209	0.2
K043283	391618	5449655	8.3	24.3	0.005	275	1.44
K043284	391533	5449584	8.36	26.2	0.006	152.5	1.36
K043285	391580	5449285	17.85	65.7	0.014	313	1.74
K043286	391800	5449503	19.95	11.2	0.002	305	1.72
K043287	391804	5449742	10.8	11.4	0.002	258	1.32
K043288	391570	5450055	11.85	11.4	0.002	349	1.38
K043289	391516	5450184	2.28	49.3	0.011	56	1.18
K043293	391354	5450581	17.85	72.3	0.016	334	2.73
K043055	388579	5448149	16	22.2	0.005	30	224

Sample ID	Easting	Northing	Cs ppm	Li
K043056	388662	5448336	0.87	
K043057	388726	5448502	3.56	
K043058	388627	5448611	340	
K043061	388699	5448887	4.91	
K043062	388772	5449046	4.55	
K043063	388828	5449160	0.41	
K043064	388689	5449264	2.68	
K043294	387501	5448835	3.26	
K043295	387668	5448614	1.58	
K043296	387797	5448489	1.77	
K043297	388001	5448511	17.35	
K043301	387684	5449032	6.62	
K043302	387740	5449286	28.8	
K043065	391356	5448707	1.9	
K043066	391402	5448699	9.77	
K043067	392451	5448699	0.86	
K043068	392463	5448568	0.78	
K043071	392297	5448052	0.71	
K043072	392231	5447781	0.64	
K043073	393894	5449501	5.67	
K043074	392140	5447226	1.91	
K043075	392091	5446988	4.07	
K043303	392330	5447058	3.27	
K043304	392393	5446924	2.12	
K043305	392383	5446762	5.18	
K043306	392391	5446219	3.68	
K043307	392347	5448338	4.26	
K043308	392339	5447498	11.7	
K043311	392357	5447878	0.85	
K043312	392079	5448117	1.24	
K043313	391814	5448197	1.02	
K043314	391613	5448332	1.17	
K043315	391411	5448468	5.43	
K043316	391192	5448158	18.55	
K043317	391175	5448084	13.8	
K043318	390936	5448187	6	
K043321	391456	5448086	6.22	

Sample ID	Easting	Northing	Cs ppm	Li ppm	Li ₂ O%	Rb ppm	Ta ppm
K043056	388662	5448336	0.87	5.6	0.001	8.7	0.65
K043057	388726	5448502	3.56	32.7	0.007	61	0.51
K043058	388627	5448611	340	34.7	0.007	227	311
K043061	388699	5448887	4.91	35.8	0.008	71	0.82
K043062	388772	5449046	4.55	39.1	0.008	60.5	0.41
K043063	388828	5449160	0.41	4.1	0.001	4.4	0.12
K043064	388689	5449264	2.68	24.7	0.005	58	0.88
K043294	387501	5448835	3.26	44.2	0.010	28	0.13
K043295	387668	5448614	1.58	43.5	0.009	20.4	0.11
K043296	387797	5448489	1.77	15.6	0.003	21.8	0.29
K043297	388001	5448511	17.35	15.4	0.003	223	126.5
K043301	387684	5449032	6.62	47.1	0.010	182	1.59
K043302	387740	5449286	28.8	84.1	0.018	118	0.53
K043065	391356	5448707	1.9	22.6	0.005	24.7	0.28
K043066	391402	5448699	9.77	20.3	0.004	301	1.06
K043067	392451	5448699	0.86	13.2	0.003	12.1	0.3
K043068	392463	5448568	0.78	15.4	0.003	15.3	0.22
K043071	392297	5448052	0.71	21	0.005	171.5	0.74
K043072	392231	5447781	0.64	14	0.003	13.3	0.2
K043073	393894	5449501	5.67	38.2	0.008	254	0.96
K043074	392140	5447226	1.91	10.7	0.002	154	0.6
K043075	392091	5446988	4.07	8	0.002	266	0.42
K043303	392330	5447058	3.27	10.6	0.002	178.5	0.81
K043304	392393	5446924	2.12	10.8	0.002	108.5	0.6
K043305	392383	5446762	5.18	27.1	0.006	129	0.83
K043306	392391	5446219	3.68	2.8	0.001	229	0.17
K043307	392347	5448338	4.26	12.6	0.003	265	0.52
K043308	392339	5447498	11.7	19.1	0.004	303	1.12
K043311	392357	5447878	0.85	10.9	0.002	13.5	0.2
K043312	392079	5448117	1.24	14	0.003	17.8	0.18
K043313	391814	5448197	1.02	19.2	0.004	21.8	0.27
K043314	391613	5448332	1.17	7.6	0.002	92.4	0.47
K043315	391411	5448468	5.43	55.6	0.012	312	1.45
K043316	391192	5448158	18.55	57.8	0.012	302	2.19
K043317	391175	5448084	13.8	16.6	0.004	337	1.28
K043318 K043321	390936	5448187	6	26.8	0.006	268	2.22
K043321 K043322	391456	5448086 5449402	6.22 1.56	36.3 18.9	0.008	320 68.4	1.47
K043322 K043323	384523 384372	5449402 5449635	0.37	5.9	0.004	68.4 11	0.22
	384372	5449635	1.14	13.4	0.001	31	0.15
K043324	304320	0449093	1.14	13.4	0.003	31	0.11

Sample ID	Easting	Northing	Cs ppm	Li ppm	Li ₂ O%	Rb ppm	Ta ppm
K043325	384444	5450058	1.47	30.3	0.007	38.7	0.13
K043326	384478	5450085	3.76	3.4	0.001	92.9	2.35
K043327	384687	5450291	0.37	8.3	0.002	11.4	0.23
K043328	385255	5450286	2.29	29	0.006	52.5	0.21
K043331	385403	5450339	0.33	3.4	0.001	6.2	< 0.05
K043332	385181	5449495	0.59	16	0.003	10.1	0.27
K043333	385091	5449294	3.4	86.5	0.019	128	0.58
K043334	384994	5448993	7.27	6.5	0.001	335	59.1
K043076	385504	5449248	4.44	46.5	0.010	69	0.49
K043077	385694	5449329	3.62	44	0.009	75	0.42
K043078	385689	5449492	6.71	58.2	0.013	85.8	0.51
K043081	385659	5449707	1.64	31.7	0.007	31.5	0.2
K043082	385891	5449787	5.12	67.3	0.014	77.7	0.53
K043083	386017	5449980	6.64	27.9	0.006	62.7	0.38
K043084	386143	5450265	4.03	39.5	0.009	74.7	0.36
K043085	386380	5450577	1.7	36.6	0.008	28.2	0.21
K043086	387055	5450727	1.7	23.8	0.005	23.7	0.08
K043087	385343	5448734	4.02	17.9	0.004	53	1.14
K043088	385303	5448620	27.8	34.6	0.007	534	106
K043091	385315	5448506	11.75	13.3	0.003	603	11.15
K043092	385218	5448216	5.48	83.8	0.018	93.4	0.62
K043093	385101	5447500	7.38	102.5	0.022	95.5	0.44
K043094	385257	5447221	32.6	128	0.028	86.2	0.47
K043095	385261	5447064	2	14.5	0.003	28.5	0.12
K043096	385335	5446889	5.92	83.1	0.018	94.1	0.54
K043097	385430	5446882	74.8	27.6	0.006	936	20.6
K043098	385781	5447034	0.65	12.1	0.003	21	0.3
K043101	385800	5447221	0.77	11.5	0.002	14	0.27
K043102	385748	5447520	0.91	9.5	0.002	11.9	0.18
K043103	385582	5447996	0.87	25.8	0.006	56.6	0.25
K043104	385415	5448714	1.3	29.5	0.006	34.5	0.25
K043335	384653	5447002	3.18	37.4	0.008	27	0.06
K043336	384525	5447215	5.81	39.9	0.009	98.4	0.49
K043337	384380	5447412	2.18	39.6	0.009	50	0.55
K043338	384327	5447289	6.12	43.8	0.009	85.6	0.46
K043339	384392	5447133	5.02	35.1	0.008	52.8	0.1
K043340	384389	5446899	2.52	31.4	0.007	43	0.23
K043341	384663	5446856	2.23	56.9	0.012	37.2	0.17
K043342	384931	5446855	31	13.9	0.003	168	27.8
K043343	384703	5447431	5.67	56	0.012	82.6	0.56

	Sample ID	Easting	Northing	Cs ppm	Li ppm
	K043344	384816	5449537	0.25	1.6
	K043345	384802	5449299	2.44	28
\geq	K043346	384731	5448792	0.4	4.8
	K043347	384582	5448733	6.03	98.5
	K043348	384581	5449035	2.57	19.5
	K043351	384770	5449079	5.25	66.4
	K043352	384971	5448792	6.01	61.8
	K043353	384632	5448876	3.41	439
	K043354	384942	5448484	22.5	202
	K043355	384725	5447983	0.24	5.8
	K043356	384811	5447644	0.27	2.5
	K043105	386697	5448595	1.88	17.7
	K043106	386265	5448388	8	36
	K043107	386055	5448445	0.84	17
	K043108	386058	5448694	3.49	74.5
	K043109	386038	5448944	2.14	29.1
	K043110	384722	5448462	0.58	5.6
	K043111	384480	5448462	7.98	89.5
	K043112	384465	5447856	7.66	73.2
	K043113	384695	5447664	5.84	41.2
	K043114	386524	5448393	83.9	5.1
	K043115	384099	5449368	1.63	21.6
	K043116	384111	5449644	2.99	40.2
	K043117	384064	5449653	0.49	23.6
	K043118	384128	5449914	0.36	8.8
	K043121	384029	5450093	0.82	37.8
	K043122	383978	5450067	0.74	116
	K043123	383828	5450216	2.04	11.2
	K043124	383818	5450264	0.88	14.9
	K043128	383503	5450096	2.01	9.7
	K043129	383564	5449985	2.08	2
	K043130	383666	5449801	28.8	62.5
	K043357	386160	5450886	4.3	54.2
	K043358	385963	5450854	5.27	80.8
	K043359	385703	5451033	8.53	25.2
	K043361	385391	5450921	0.12	5.9
	K043362	385478	5450908	41.9	3.4

Sample ID	Easting	Northing	Cs ppm	Li ppm	Li ₂ O%	Rb ppm	Ta ppm
K043344	384816	5449537	0.25	1.6	0.000	6.5	0.07
K043345	384802	5449299	2.44	28	0.006	79.5	0.11
K043346	384731	5448792	0.4	4.8	0.001	8.5	< 0.05
K043347	384582	5448733	6.03	98.5	0.021	92.4	0.67
K043348	384581	5449035	2.57	19.5	0.004	48.4	0.11
K043351	384770	5449079	5.25	66.4	0.014	105.5	0.53
K043352	384971	5448792	6.01	61.8	0.013	81.2	0.47
K043353	384632	5448876	3.41	439	0.095	52.5	358
K043354	384942	5448484	22.5	202	0.043	116.5	1.75
K043355	384725	5447983	0.24	5.8	0.001	3	0.33
K043356	384811	5447644	0.27	2.5	0.001	3.7	0.11
K043105	386697	5448595	1.88	17.7	0.004	32.3	0.12
K043106	386265	5448388	8	36	0.008	89.1	0.48
K043107	386055	5448445	0.84	17	0.004	20.6	0.28
K043108	386058	5448694	3.49	74.5	0.016	94.9	0.53
K043109	386038	5448944	2.14	29.1	0.006	43.9	0.87
K043110	384722	5448462	0.58	5.6	0.001	36.6	1.36
K043111	384480	5448462	7.98	89.5	0.019	86.2	0.51
K043112	384465	5447856	7.66	73.2	0.016	102	0.63
K043113	384695	5447664	5.84	41.2	0.009	115.5	0.3
K043114	386524	5448393	83.9	5.1	0.001	291	405
K043115	384099	5449368	1.63	21.6	0.005	18.8	0.96
K043116	384111	5449644	2.99	40.2	0.009	61.7	0.77
K043117	384064	5449653	0.49	23.6	0.005	23.8	0.31
K043118	384128	5449914	0.36	8.8	0.002	8.5	0.32
K043121	384029	5450093	0.82	37.8	0.008	17.8	0.14
K043122	383978	5450067	0.74	116	0.025	43.2	0.28
K043123	383828	5450216	2.04	11.2	0.002	45.1	2.22
K043124	383818	5450264	0.88	14.9	0.003	59.9	0.67
K043128	383503	5450096	2.01	9.7	0.002	12.8	1.56
K043129	383564	5449985	2.08	2	0.000	32.3	0.61
K043130	383666	5449801	28.8	62.5	0.013	198	14.7
K043357	386160	5450886	4.3	54.2	0.012	103.5	0.99
K043358	385963	5450854	5.27	80.8	0.017	74.9	0.46
K043359	385703	5451033	8.53	25.2	0.005	217	1.07
K043361	385391	5450921	0.12	5.9	0.001	0.9	0.06
K043362 K043363	385478 385553	5450908 5450837	10.05	3.4 29.1	0.001	154.5	0.83
K043363	385667		7.76	29.1	0.008	296	
		5450732 5450707					0.65
K043365	385447	5450707	2.49	57.6	0.012	47.7	0.22

ASX ANNOUNCEMENT

	Sample ID	Easting	Northing	Cs ppm	Li ppm	Li ₂ O%	Rb ppm	Ta ppm
	K043366	385248	5450700	63.9	18.8	0.004	244	2.62
	K043367	385150	5450861	15.35	2.9	0.001	279	1.08
>>	K043368	384829	5450749	48.9	2.2	0.000	188.5	1.96
	K043371	384710	5450754	8.15	10.1	0.002	330	0.68
	K043134	384028	5449927	5.64	4	0.001	101	1.62
	K043135	383702	5449783	6.34	8.9	0.002	183.5	7.34
	K043136	383575	5449811	10.45	8.3	0.002	250	3.62
	K043137	383775	5449844	22.1	5.4	0.001	163	107
	K043142	383978	5450067	3.53	100.5	0.022	54.8	0.22
	K043379	383653	5449085	26	32600	7.019	36.5	2.38
	K043380	383654	5449096	19.55	29800	6.416	40.6	271
	K043382	383649	5449105	39.6	33700	7.256	32	2.29

Appendix 2: JORC Code, 2012 Edition – Table 1– Frazer Lake Project

Section 1 Sampling techniques and data

(Criteria in this section apply to all succeeding sections.)

\square	Criteria	JORC Code explanation	Comments
	Sampling techniques	 Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. 	Rock chip and grab samples were taken as selective samples in areas of pegmatite. A single channel was excavated across a mineralised pegmatite. A continuous 1m channel was taken for each sample and submitted for analysis. The sampling technique for each sample is shown in the table above in the body of the report. All samples were taken from in-situ mineralisation.
		 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	Rock chip/grab/channel samples are taken for an indication of mineralisation only. It is interpreted that the channel sample taken was oblique to the mineralisation trend and does not represent the true width of mineralisation
		 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information. 	The channel and grab samples were collected by personnel from Planet X Exploration Services Ltd. All samples were bagged, sealed and stored inside a storage locker until delivery to an independent laboratory, ALS Laboratories in Thunder Bay, Ontario (ISO/IEC 17025:2017). The initial batch of samples was analysed by four acid digestion with ICP-MS finish (ME-MS61) and the over limits were finished by ICP-AES (Li-OG63). One standard (OREAS 750) and one blank were submitted with the shipment to supplement the lab's internal controls.
	Drilling techniques	 Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling undertaken.
	recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	No drilling undertaken.
		 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	No drilling undertaken.

	Criteria	JORC Code explanation	Comments
		 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling undertaken.
	Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	The samples are for reconnaissance purposes and not intended for use in a mineral resource estimate
		 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Rock chip and channel samples were qualitatively and quantitatively (mineral percentages) logged. Photos of each sample were taken.
\subseteq		• The total length and percentage of the relevant intersections logged.	The total channel was geologically logged in detail.
1	Sub-sampling techniques	 If core, whether cut or sawn and whether quarter, half or all core taken. 	No diamond drilling.
	and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	Whole samples of rock and channel sample material was submitted for analysis.
	5	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	Sample preparation was completed by ALS Laboratories in Thunder Bay Ontario using their standard preparation method. Samples were crushed to 80% passing 2mm, riffle split and pulverized to 95% passing <75µm.
	_	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	Standard preparation procedure inclusive of internal laboratory internal crushing and pulverizing tests were utilised by ALS Laboratories.
R	5	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	A limited number of standards and blank material was submitted for QAQC purposes. QAQC verified that the blank material reported below detection and thus no cross contamination between samples.
		• Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate to the mineralisation style and grain size of the material.
	Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	Four acid digestion with ICP-MS finish (ME-MS61) and the over limits were finished by ICP-AES (Li-OG63). Assay methods are considered industry standard for lithium exploration and are considered total digestion methods for the lithium minerals. The four-acid digestion method may under-report Ta and Nb which are commonly contained within refractory minerals such as columbite-tantalite

	Criteria	JORC Code explanation	Comments
		 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	No geophysical tools were utilised.
		 Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Standard reference materials and blanks were inserted routinely. No QAQC issues were identified.
	Verification of sampling and	 The verification of significant intersections by either independent or alternative company personnel. 	Results were reviewed by external consultants to Pegmatite One Lithium and Gold Corp. Data was provided to Valor and reviewed by the Company geologists.
	assaying	The use of twinned holes.	No drilling conducted to date.
		 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	All data was recorded in field logging sheets, digitised then imported into a validated database.
)	 Discuss any adjustment to assay data. 	Lithium values reported by assay laboratory have been reported herein using a conversion factor of 2.1527 x 10-4 to convert Li_ppm to LiO2_%. This is an industry standard practice.
	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Surface samples and channel samples located using a handheld GPS with an accuracy of +/- 5m.
		 Specification of the grid system used. 	All sample locations are reported in NAD83- 16N grid system.
		 Quality and adequacy of topographic control. 	Handheld GPS was utilised to obtain elevation information.
	Data spacing and distribution	 Data spacing for reporting of Exploration Results. 	Irregular spacing rock chip sampling was undertaken based on prospecting activities. A single channel sample has been taken.
		• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No drilling conducted to date.
	2	 Whether sample compositing has been applied. 	Sample compositing has been applied to channel samples. Results reported are length weighted averages for channel sampling where lengths are longer than 1m. A cut-off of 0.20% Li ₂ O was used, with maximum continuous internal dilution of 3m

ASX ANNOUNCEMENT

5 December 2023

	Criteria	JORC Code explanation	Comments
	Orientation of data in relation to geological	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	It was noted that the channel sampling is oblique to the interpreted mineralisation trend and the outcropping width of the pegmatite is approximately 30m.
> str	structure	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No drilling conducted.
	Sample security	 The measures taken to ensure sample security. 	All samples were bagged, sealed and stored inside a storage locker until delivery to an independent laboratory, ALS Laboratories in Thunder Bay, Ontario (ISO/IEC 17025:2017).
	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits are documented to have occurred in relation to sampling techniques or data.

3445-0024-3241, v. 2

ASX:VAL

Section 2 Reporting of exploration results – Frazer Lake Project

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	 Valor has secured the exclusive option to acquire the three lithium projects: Frazer Lake, Morrison River and Jesaulenko. Frazer Lake Original Claims: An existing royalty of 2.0% of net smelter returns from minerals mined and removed from the Property exists across the original Frazer Lake Claims. 1.0% of this royalty may be purchased at any time by paying a total of \$1,500,000. Frazer Lake Subsequent Claims (Announced 9th August 2023 by Pegmatite One Lithium and Gold Corp: A royalty of 2.0% of net smelter returns from minerals mined and removed from the Claims exists across the subsequent claims. 1.0% of this royalty may be purchased at any time by paying a total of \$750,000. It is noted that the western boundary of the Frazer Lake Project abuts the Black
)		Sturgeon Provincial Park. No other impediments to development have been identified.
K	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Open file verification has been conducted to confirm licenses are in full force.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Only documented exploration completed to date has been conducted by Pegmatite One Lithium and Gold Corp.
Geology	 Deposit type, geological setting and style of mineralisation. 	Regionally the geology is dominated by Archean mafic/ultramafic and sedimentary lithologies that have been intruded by granites. Synclines and fault patterns provide pathways and fracture systems for parental melts and deposition of pegmatite bodies.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	No drilling conducted.

3445-0024-3241, v. 2

Criteria	JORC Code explanation	Commentary
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All information that is available to the Company has been reported.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	Length weighted averages are reported in the highlights and body of the announcement. A full listing of the individual samples is reported in the body of the release above (Appendix 4 and 5).
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	Length weighted averages have been applied where necessary to calculate composite intervals. Calculations were performed in excel using the sum product function to calculate the length weighted average grades. A cut-off of 0.20% Li ₂ O was used, with maximum continuous internal dilution of 3m
5	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalents are reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Intervals of channel sampling is reported as an apparent width. It was interpreted that the channel was oblique to the mineralisation trend.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Maps and plans have been included in body of the announcement.
Balanced	Where comprehensive reporting of all Exploration Results is not	All available information has been reported.

3445-0024-3241, v. 2

Criteria	JORC Code explanation	Commentary
	and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other exploration data is considered meaningful and material to this announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). 	Further channel sampling along strike from the mineralisation is proposed to be conducted to determine the extent and geometry of the mineralised pegmatite. Additional surface sampling of outcropping pegmatites across the project will also be undertaken.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Maps including the location of samples and prospects are included in the body of this release.
$\overline{\mathbf{D}}$		

ASX:VAL