ASX RELEASE | 27 November 2023

Adina Main strike length extended by 300m to over 1,300m

HIGHLIGHTS

- Lithium mineralisation has been extended by 300m east at Adina between the Main and Far East Zones
- Strike length of mineralisation at Adina Main Zone defined by systematic drilling now increased to over 1,300m
- Recent results from the Main zone are detailed below and include:
 - o 1.24% Li₂O over 13.6m from 20m below surface (Main, AD-23-014),
 - 1.52% Li₂O over 12.1m from 90m below surface (Main, AD-23-076),
 - o 1.63% Li₂O over 9.0m from 10m below surface (Main, AD-23-076),
 - o 1.23% Li₂O over 8.3m from 5m below surface (Main, AD-23-016)
- Up dip drill testing of Footwall Zone to the north also confirms mineralisation closer to surface.
 - \circ 1.42% Li₂O over 18.0m from 280m below surface (FWZ, AD-23-074),
 - o 1.04% Li₂O over 18.3m from 135m below surface (FWZ, AD-23-012),
 - 1.23% Li₂O over 11.4m from 195m below surface and 1.14% Li₂O over 11.3m from 215m below surface (FWZ, AD-23-032).
- Drilling will continue until the 20th December, with 4 drill rigs focussed on the increased volume of resource drilling required to define the expanding body of lithium mineralisation at Adina
- 5th drill rig about to commence exploration drilling on new targets at Adina
- New service providers engaged to improve assay turnaround times
- Resource, Environmental and Project Development Studies to support the development of Adina are ongoing

Lithium exploration and development company Winsome Resources (ASX:WR1; "Winsome" or "the Company") is pleased to announce that drilling has extended lithium mineralisation by over 300m at the 100% owned Adina project in the James Bay region of Quebec, Canada.

Recent results have resulted in an increase in the strike length of mineralisation defined by systematic drilling to 1340m as well as confirming the continuity of mineralisation between Adina Main and Adina East.

High grade mineralisation also continues to be intersected north of Adina Main, with further results from the near surface up-dip extensions of the Main and Footwall Zones as detailed in Table 1 below.

Drilling is increasing in pace following the remobilisation of rigs after the wildfire emergency, with 4 drill rigs focussed on the increased volume of resource drilling required to define the expanding body of lithium mineralisation at Adina. A further 5th rig is about to commence exploration drilling on new targets at Adina.

Resource, Environmental and Project Development Studies to support the development of Adina continue on site. These include an aquatic DNA testing programme in the region and the installation of a weather station to gather baseline environmental data ultimately needed for project approvals.

WINSOME'S MANAGING DIRECTOR CHRIS EVANS SAID:

Drilling continues to intersect high grade lithium mineralisation as we step out away from the core of the Adina mineralisation and we look forward to further results.

It is great to have the normal routine of drilling back underway at Adina and especially pleasing to see the various Project studies and activities progressing on site in parallel with drilling operations and we have taken action to ensure future assay results are received in improved timeframes. Despite challenges to receiving assays in a timely manner, this has not delayed the expected publication of the MRE at Adina.

The remainder of 2023 will be a very busy time for Winsome with several work programmes to be completed as well as a long list of targets requiring drill testing. "

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

Hole	Intercepts	Setting	Zone
AD-23-012	1.04% Li ₂ O over 18.3m from 159.3m to 185.7m (135m vertically below surface)	East / Eastern step-out	Footwall
AD-23-014	1.24% Li ₂ O over 13.6m from 26.2m to 39.8m (20m vertically below surface)	East / Eastern step-out	Main
AD-23-016	1.23% Li ₂ O over 8.3m from 6.2m to 14.5m (5m vertically below surface)	East / Eastern step-out	Main
AD-23-032	1.23% Li ₂ O over 11.4m from 159.3m to 185.7m & 1.14% Li ₂ O over 11.3m from 206.9m to 214.7m (195m vertically below surface)	East / Eastern step-out	Footwall
AD-23-074	1.37% Li ₂ O over 4.8m from 121.9m to 126.7m	East / Eastern	Main
	1.42% Li₂O over 18.0m from 159.3m to 185.7m (125m vertically below surface) & 1.29% Li₂O over 7.8m from 206.9m to 214.7m	- step-out	Footwall
AD-23-076	1.52% Li ₂ O over 12.1m from 93.4m to 105.5m	East / Eastern step-out	Main
AD-23-078A	1.63% Li ₂ O over 9.0m from 15.5m to 24.5m	East / Eastern	Main
	2.55% Li₂O over 2.4m from 198.8m to 201.4m (130m vertically below surface)	- step-out	Footwall
AD-23-089	1.11% Li ₂ O over 11.0m from 14.6m to 25.6m	Northern step-out	Main
AD-23-091	1.23% Li ₂ O over 22.2m from 14.8m to 37.0m	Northern	Main
	1.55% Li₂O over 26.4m from 159.3m to 185.7m (135m vertically below surface) & 1.29% Li₂O over 7.8m from 206.9m to 214.7m	- step-out	Footwall
AD-23-092	1.18% Li ₂ O over 22.2m from 14.8m to 37.0m	Northern	Main
	1.55% Li ₂ O over 26.4m from 159.3m to 185.7m (125m vertically below surface) & 1.29% Li ₂ O over 7.8m from 206.9m to 214.7m	- step-out	Footwall
AD-23-097	1.47% Li ₂ O over 6.2m from 53.2m to 59.4m (35m vertically below surface)	East / Eastern step-out	Main
	1.55% Li₂O over 26.4m from 159.3m to 185.7m (125m vertically below surface) & 1.29% Li₂O over 7.8m from 206.9m to 214.7m		Footwall
AD-23-104	1.07% Li ₂ O over 6.8m from 129.4m to 136.2m (90m vertically below surface) & 1.19% Li ₂ O over 10.6m from 149.5m to 160.1m	West	Footwall

Table 1. Key mineralised intercepts, Adina Main

27 November 2023

Commentary on Drilling Results

Intersections reported in this announcement confirm the continuity of lithium mineralisation in spodumene-bearing pegmatites to the east of Adina Main, with drilling completed on 100m centres up to 300 metres east of drilling previously reported, and to the north of Adina Main, up-dip from previous intersections of the Main and Footwall Zones and closer to surface.

New results received are shown on Figure 1 with all data from the programme to date included in the Appendices. A total of 19 drillholes are reported in this announcement with assays from a further 54 holes pending as at the time of this report. The new results have enabled the company to update the conceptual model for the pegmatite dyke swarms at Adina in preparation for resource modelling.

Results from holes AD-23-012, AD-23-097, AD-23-032, AD-23-049 and AD-23-058 define a complete section stepping 100 metres east of drilling previously reported. Results have also been returned from AD-23-014, AD-23-016 and AD-23-017, which tested for the continuity of mineralisation between Adina Main and Adina East¹. Mineralisation was returned in all holes enabling the pegmatite swarm to be modelled in this area and follow up drilling planned to better delineate mineralisation.

In addition, results were received from holes AD-23-104 and AD-23-107 on the western side of Adina Main. The strike length of mineralisation between AD-23-107 and AD-23-014 is 1,340 metres, representing an additional 340 metres of strike length to that previously defined at Adina Main.

Results from holes AD-23-012, AD-23-078A, AD-23-091 and AD-23-092 provide additional data to delineate the Footwall Zone to the north of previous drilling, closer to surface, confirming the zone is continuous to shallow depths of 100 to 150 metres from surface. These follow similar results released to the ASX on 4th September 2023. *Further drill tests are in progress to the north of this drilling to test the Footwall Zone closer to surface.*

Commentary on Operations in Quebec

Drilling at Adina is now achieving targeted levels of production with four rigs focused on resource development drilling. A total of 57 holes for 17,154 metres have been completed since the recommencement of drilling in August. This places the total drill metres to date at 40,200m at Adina. The Company anticipates completion of a further 10,000 metres of drilling by the end of the year.

Extensional resource drilling is currently testing extensions to mineralisation to the north, west and east of drilling previously undertaken given the success of step-out drilling to date (refer discussion below) as well as completing infill holes to ensure high grade zones are well defined ahead of resource modelling.

Exploration drilling is also planned to test targets defined by gravity survey and as well as targets defined in the recent airborne geophysical survey (refer ASX Announcement 4th September 2023). Data from the airborne survey has recently been received and processed, with exploration targeting work currently underway.

Unfortunately, despite assurances to the contrary, the laboratory Winsome has been using to date has failed to meet the forecast turnaround time agreed at the recommencement of drilling. It has also failed to put into operation the mobile sample preparation unit it promised would be installed in Radisson during October. In response, Winsome is trialling its first batch of assays through an alternative laboratory provider. Fortunately this has not delayed the expected publication of the MRE at Adina.

In addition, work continues on site with environmental and other project studies to aid in the future development of Adina. A meteorological station has also been installed at the site for collection of climate baseline data for environmental studies. An aquatic DNA testing programme in the region is also in progress.

.

¹ "Over 3km of lithium mineralisation confirmed at Adina" ASX Announcement 3 April 2023

This announcement is authorised for release by the Board of Winsome Resources Limited. For further information please contact:

INVESTORS

Chris Evans – Managing Director Winsome Resources

administration@winsomeresources.com.au

MEDIA

Josh Nyman – Senior Media Counsel Spoke Corporate

josh@hellospoke.com.au

+61 413 243 440

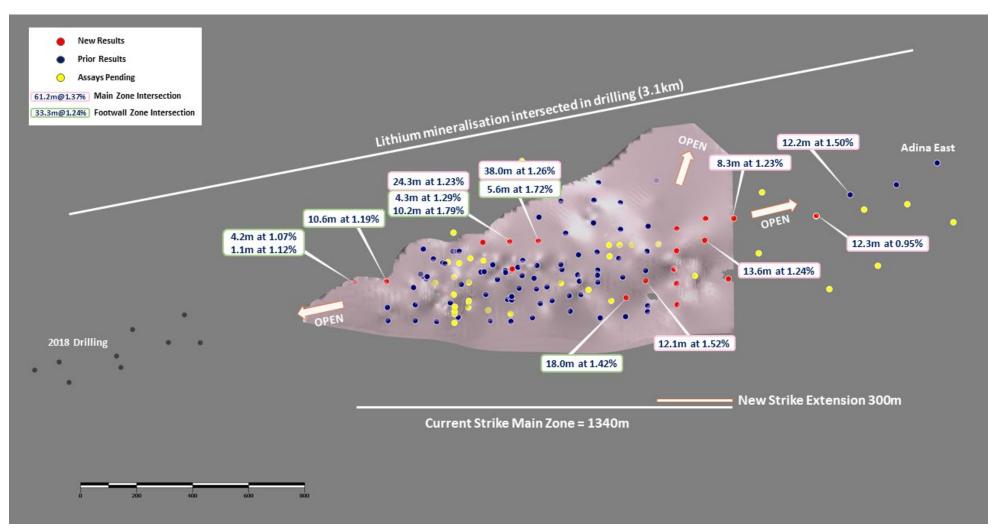
ABOUT WINSOME RESOURCES

Winsome Resources (ASX: WR1) is a Perth-based, lithium focused exploration and development company with four project areas in Quebec, Canada. All of Winsome's projects – Cancet, Adina Sirmac-Clappier and Tilly are 100% owned by the Company. Recently the Company acquired a further 47km² of claims at the Tilly Project, located near Adina, and an option over the 29 claims of the Jackpot Property, immediately north of Adina.

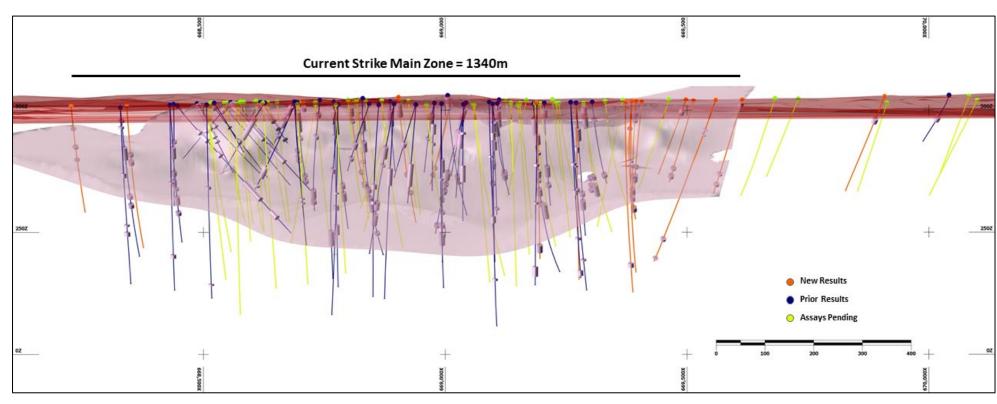
The most advanced of Winsome's projects - Adina and Cancet, provide shallow, high grade lithium deposits and are strategically located close to established infrastructure and supply chains.

In addition to its impressive portfolio of lithium projects in Quebec, Winsome Resources owns 100% of the offtake rights for lithium, caesium and tantalum from Power Metals Corp (TSXV:PWM) Case Lake Project in Eastern Ontario, as well as a 19.6% equity stake in PWM. The Company recently divested Decelles and Mazerac, two early stage projects located near the Quebec mining town of Val-d'Or, to PWM in exchange for an increased shareholding.

Winsome is led by a highly qualified team with strong experience in lithium exploration and development as well as leading ASX listed companies. **More details:** www.winsomeresources.com.au


CAUTION REGARDING FORWARD-LOOKING INFORMATION

This document contains forward-looking statements concerning Winsome. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory, including environmental regulation and liability and potential title disputes.


Forward-looking statements in this document are based on the Company's beliefs, opinions and estimates of Winsome as of the dates the forward-looking statements are made, and no obligation is assumed to update forward-looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

COMPETENT PERSON'S STATEMENT

The information in this report which relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Antoine Fournier, VP Exploration of Winsome Resources Ltd. Mr Fournier is a member of the Quebec Order of Geologists (OGQ #0516), a Registered Overseas Professional Organisation as defined in the ASX Listing Rules, and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Fournier consents to the inclusion in this release of the matters based on the information in the form and context in which they appear.ends-

Figure 1: Conceptual Adina Main Zone pegmatite model showing strike extent of systematic drilling and intersection points of drilling with Main Zone (upper contact).

Figure 2: Long Section of Main Zone showing location of recent drilling results, conceptual pegmatite model showing strike extent of systematic drilling and extensions to mineralisation defined to the east.

winsomeresources.com.au ASX:WR1 I FSE:4XJ I QTCQB:WRSLF

WINSOMERESOURCES

Appendix 1: Significant Drillhole Lithium Intercepts – New Results Adina Main ².

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Length (m)	Li₂O %	Zone
AD-23-012	669381	5908956	520	-45	350	189.7	194.7	5.0	1.18	FWZ
						217.7	236.0	18.3	1.04	FWZ
AD-23-013	669482	5908995	520	-45	338	201.3	205.3	4.0	0.84	FWZ
						224.2	231.9	7.7	0.56	FWZ
AD-23-014	669478	5908900	522	-60	350	26.2	39.8	13.6	1.24	Main
AD-23-015	669560	5908732	521	-50	330	80.3	81	0.7	2.01	Main
						93.7	95	1.3	2.43	Main
						390.0	395.4	5.4	0.97	FWZ
						448.6	449.3	0.7	1.36	FWZ
AD-23-016	669583	5908994	522	-55	328	6.2	14.5	8.3	1.23	Mair
						189	193.4	4.4	1.01	FWZ
						216.8	222	5.2	0.80	FWZ
AD-23-017	669877	5908995	529	-45	330	65.3	77.6	12.3	0.95	Mair
AD-23-032	669381	5908756	520	-50	350	75.7	76.7	1.0	2.41	Mair
						278.6	290	11.4	1.23	FWZ
						312.45	323.7	11.3	1.14	FWZ
AD-23-049	669381	5908756	520	-70	350	130.5	133.5	3.0	1.16	Mair
						142.6	145.6	3.0	1.43	Mair
AD-23-058	669381	5908670	517	-70	350	348.0	357.0	9.0	0.69	FWZ
AD-23-070	668780	5909054	516	-50	360	21.95	25.85	3.9	0.97	Mair
						155.15	158	2.85	1.05	FWZ
AD-23-074	669195	5908663	517	-58	360	121.9	126.7	4.8	1.37	Mair
						168.4	183.8	15.4	0.71	Main

 $^{^2}$ Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 5m thickness and widths including up to 7m internal dilution.

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Length	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						357.0	375.0	18.0	1.42	FWZ
AD-23-076	669269	5908768	516	-75	360	93.4	105.5	12.1	1.52	Main
						286.0	290.3	4.3	1.15	FWZ
AD-23-078A	668970	5909079	522	45	340	15.5	24.5	9.0	1.63	Main
						198.8	201.4	2.6	2.14	FWZ
						222.7	224.7	2.0	0.97	FWZ
AD-23-089	668683	5908906	518	-45	360	14.6	25.6	11.0	1.11	Main
AD-23-091	668782	5908901	518	-45	360	15.0	39.25	24.3	1.23	Main
						55.4	60.0	4.7	1.25	Main
						209.6	213.9	4.3	1.29	FWZ
						246.2	256.4	10.2	1.79	FWZ
AD-23-092	668881	5908898	528	-45	360	16.0	54.0	38.0	1.26	Main
						229.4	235.0	5.6	1.72	FWZ
						290.7	293.3	2.6	0.87	FWZ
AD-23-097	669381	5908856	519	-45	350	31.0	42.8	11.8	0.72	Main
						53.2	59.4	6.2	1.47	Main
						218.9	223.7	4.8	1.53	FWZ
						260.4	277.3	16.9	1.09	FWZ
AD-23-104	668343	5908730	510	-50	360	129.4	136.2	6.8	1.07	FWZ
						149.5	160.1	10.6	1.19	FWZ
AD-23-107	668240	5908732	508	-50	360	60.5	61.5	1.0	2.89	Main
						109.3	113.5	4.2	1.07	FWZ
						147.0	148.1	1.1	1.12	FWZ

Appendix 2: Significant Drillhole Lithium Intercepts – Previous Results ³.

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Thickness (m)	Li₂O %	Zone
AD-22-001 ²	668477	5908772	511	-45	135	3.0	66.1	63.1	1.35	Main
	including					3.0	11.0	8.0	1.61	Main
	including					23.0	39.0	16.0	2.16	Main
	including					60.4	66.1	5.7	2.37	Mair
	including					73.1	85.8	12.7	1.89	Mair
		further including				73.1	77.2	4.1	4.19	Mair
AD-22-002 ²	668503	5908851	511	-45	135	6.0	11.0	5.0	0.60	Mair
AD-22-003 ³	668555	5908901	513	-45	135	85.0	89.0	4.0	2.08	Mair
AD-22-004 ³	668513	5908739	512	-45	135	87.1	90.2	3.1	1.50	Mair
						93.0	96.0	3.0	1.18	Mair
AD-22-005 ¹	668542	5908812	513	-45	135	2.3	109.9	107.6	1.34	Mair
	including					2.3	23.0	20.7	1.52	Mair
	including					41.0	71.0	30.0	2.21	Mair
AD-22-005A ²	668542	5908812	513	-45	315	4.6	28.5	23.9	1.52	Mair
	including					4.6	18.5	13.9	2.04	Mair
						78.6	84.4	5.8	1.59	Mair
AD-22-006 ³	668596	5908861	515	-45	135	2.2	57	54.8	1.14	Mair
	including					2.2	8	5.8	1.88	Mair
	including					10	20	10.0	1.69	Mair
	including					27	32	5.0	1.37	Mair
	including					45	51	6.0	1.54	Mair
						66.2	78	11.8	0.55	Mair
AD-22-006B ³	668596	5908861	515	-45	315	1	11	10.0	0.89	Mair
						34.1	37.45	3.35	1.46	Mair

³ Refer footnotes to table for announcement details. Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 5m thickness and widths including up to 7m internal dilution.

27 November 2023

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
noie iD	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-22-007 ²	668430	5908809	510	-45	135	88.6	105.6	17.0	1.56	Main
	including					98.6	105.6	7.0	2.72	Main
						141.9	151.4	9.5	0.69	Main
						232.8	287.0	54.2	1.04	Main
	including					232.8	238.8	6.0	2.14	Mair
	including					249.0	260.0	11.0	1.14	Mair
	including					275.3	287.0	11.7	1.77	Mair
						324.6	343.6	19.0	0.88	Mair
	including	•				324.6	329.6	4.6	2.01	Mair
AD-22-008 ²	668460	5908892	510	-45	135	41.9	65.7	23.8	0.88	Mair
	including					41.9	48.9	7.0	1.31	Mair
	including					51.9	54.9	3.0	1.34	Mair
	including					60.5	63.5	3.0	1.89	Mair
AD-22-009 ³	668512	5908942	511	-45	135	33.9	37.9	4.0	0.26	Mair
AD-23-010 ⁷	668441	5908641	511	-55	360	106.3	133.0	26.7	1.01	Mair
	including					111.4	116.0	4.6	2.11	Mair
						210.5	214.5	4.0	1.01	FWZ
						231.9	251.2	19.3	0.91	FWZ
	including					237.0	240.8	3.8	2.20	FWZ
	including					245.5	249.5	4.0	1.39	FWZ
						271.3	278.7	7.4	0.85	FWZ
AD-22-011 ³	668687	5908776	517	-45	320	13.6	37	23.4	0.88	Mair
	including					28	37	9.0	1.70	Mair
						51	72	21.0	0.82	Mair
	including					51	66	15.0	1.00	Mair
						94.8	102.2	7.4	0.53	Mair
AD-23-021 ⁷	669186	5908747	513	-55	360	77.0	99.4	22.4	1.09	Mair

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						251.2	286.6	35.4	1.98	FWZ
AD-23-022 ⁶	669174	5908833	514	-55	360	35.4	77	41.6	1.08	Main
	including					35.4	42.2	6.8	1.97	Main
	including					52.1	60.8	8.7	1.80	Main
						191.4	197.0	5.6	1.27	FWZ
						215.3	232.6	17.3	1.72	FWZ
						252.6	260.8	8.2	1.43	FWZ
AD-23-023 ⁷	669195	5908663	517	-75	360	129.3	134.5	5.2	4.03	Main
						209.5	214.0	4.5	1.00	Main
						345.3	365.6	20.4	1.62	FWZ
AD-23-024 ⁷	669271	5908856	515	-45	360	8.9	70.1	61.2	1.37	Main
	including					29.0	36.0	7.0	2.10	Main
	including					62.0	70.1	8.1	2.60	Main
						217.1	224.4	7.3	1.35	FWZ
						239.0	242.6	3.6	1.25	FWZ
						254.0	259.2	5.2	2.30	FWZ
AD-23-024A ⁷	669271	5908856	515	-50	360	9.0	21.4	12.4	1.01	Main
						32.4	60.0	27.6	1.59	Main
	including					32.4	49.0	16.6	1.97	Main
						198.1	208.3	10.2	1.18	FWZ
						227.3	260.6	33.3	1.24	FWZ
	including					249.1	260.6	11.5	1.89	FWZ
AD-23-025 ⁶	668898	5908704	514	-55	340	110.5	140	29.5	1.16	Main
	including					114.5	121.5	6.0	2.21	Main
						157.2	160.3	3.1	1.33	Main
						255.5	275.7	20.2	0.91	FWZ
						290.0	317.4	27.4	1.11	FWZ

27 November 2023

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	,
	including					290.0	312.0	22.0	1.26	FWZ
AD-23-026 ⁶	668898	5908704	514	-78	340	135.5	171.0	35.5	0.89	Main
	including					149.0	163.0	14.0	1.46	Main
AD-23-027 ⁶	668827	5908751	525	-50	350	57	83.4	26.4	2.04	Main
						116.7	142.2	25.5	1.93	Main
						245.7	255.7	10.0	1.65	Main
						271.3	313.0	41.7	1.03	FWZ
	including					271.3	290.8	19.5	1.32	FWZ
	including					298.0	306.0	8.0.	1.45	FWZ
						375.6	379.7	4.1	1.23	FWZ
AD-23-028 ⁵	668735	5908748	518	-50	350	35.2	45.2	10	2.09	Main
						95.7	104.0	8.3	0.99	Main
						253.0	276.2	23.2	1.02	FW
	•					284.2	294	9.8	0.46	FW
AD-23-029 ⁷	669002	5908666	514	-55	350	139.0	170.0	31.0	1.45	Main
	including					140.0	150.0	10.0	2.32	Main
						272.0	277.0	5.0	1.24	FWZ
						302.8	312.0	9.2	0.94	FWZ
						329.0	356.9	27.9	1.85	FWZ
AD-23-030 ⁵	668789	5908668	512	-60	350	161.2	178.5	17.3	0.46	Main
	including					174.4	178.5	4.1	1.24	Main
						204.6	210.5	5.9	0.67	Main
AD-23-031 ⁵	669002	5908666	514	-75	350	158	216.9	58.9	0.37	Main
	including					191.3	198.4	7.1	0.84	Main
	including					214.0	216.9	2.9	0.81	Main
AD-23-033 ⁶	668521	5908640	512	-75	360	172.7	178.0	5.3	1.41	Main
						378.2	381.2	3.0	1.11	FWZ

ASX:WR1 I FSE:4XJ I QTCQB:WRSLF

27 November 2023

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
поје јо	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-22-034 ³	668852	5908687	517	-45	340	112.9	129.9	17.0	1.32	Main
	including					112.9	117.9	5.0	1.93	Main
	including					121.9	128.9	7.0	1.67	Main
						156.9	164.4	7.5	1.28	Main
AD-22-035 ³	668634	5908726	519	-45	315	41.6	101	59.4	1.26	Mair
	including					41.6	63	21.4	1.71	Mair
	including					78	101	23.0	1.49	Mair
AD-22-036 ³	668687	5908776	517	-45	360	28	83.5	55.5	1.35	Mair
	including					49	58	9.0	2.40	Mair
	including					62	71	9.0	1.51	Mair
	including					74	83.5	9.5	1.17	Mair
						101.8	107.7	5.9	0.36	Mair
						227.7	234.5	6.8	0.76	Mair
AD-22-037 ³	668702	5908651	515	-55	315	162.3	190.7	28.4	1.12	Mair
	including					162.3	179.7	17.4	1.48	Mair
						207.7	213.1	5.4	1.75	Mair
AD-22-039 ³	668702	5908651	515	-45	360	135	142	7.0	0.59	Mair
						154	160	6.0	2.37	Mair
						166	170.6	4.6	0.97	Mair
AD-23-038A ⁵	668789	5908668	511	-60	350	152	162	10.0	1.17	Mair
			_			303.4	337.5	34.1	0.69	FW
	including					306.4	314.4	8.0	1.00	FW
	including					318.8	323.6	4.8	1.47	FW
AD-23-040 ^{5,6}	668769	5908781	519	-45	360	49.9	92.7	42.8	1.71	Mair
						244.2	255.5	11.3	1.38	FW
						270.6	294.1	23. 5	1.15	FW
	including					270.6	278.7	8.1	1.55	FW

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
	including					283.7	294.1	10.4	1.32	FW
AD-22-041 ³	668872	5908797	520	-45	360	26.3	71	44.7	1.56	Main
	including					26.3	41.4	15.1	2.00	Main
	including					48	66	18.0	1.92	Main
AD-22-042 ³	668968	5908803	520	-45	340	32.7	80.1	47.4	1.64	Main
	including					32.7	47.3	14.6	2.15	Main
	including					55.1	78.1	23.0	1.78	Main
						100.4	104.65	4.25	1.39	Main
AD-22-043 ⁴	670003	5909088	531	-45	340	62.3	74.5	12.2	1.50	Main
	including					62.3	69.5	7.2	2.08	Main
AD-23-044 ⁴	670165	5909126	533	-45	340	83.4	89.4	6.0	1.77	Main
	including					83.4	85.4	2.0	3.63	Main
AD-23-045 ⁴	670312	5909224	533	-45	330	47.4	62.4	15.0	1.26	Main
	including					50.4	54.4	4.0	2.51	Main
AD-22-046 ³	668968	5908803	520	-65	340	45	66	21.0	1.09	Main
	including					45	49	4.0	1.20	Main
	including					52	65	13.0	1.33	Main
						84	90	6.0	2.82	Main
AD-23-047 ⁶	669031	5908845	520	-45	340	17.8	64.25	46.45	1.73	Main
						84.1	87.0	2.9	1.52	Main
						215.5	241.5	26.0	1.32	FW
	including					219.5	229.2	9.7	2.32	FW
						257.7	263.9	6.2	1.76	FW
						281.7	293.1	11.4	1.71	FW
						314.6	320.0	5.4	0.80	FW
						410.2	417.7	7.5	1.28	FW
AD-23-048 ⁵	668702	5908651	515	-75	0	198.7	201.7	3.0	3.32	Main

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						208	211	30.0	1.35	Main
AD-23-050 ⁵	668789	5908668	512	-75	350	181.5	184.5	30.0	1.14	Main
						307.4	317.9	10.5	0.90	FW
AD-23-051 ⁵	668769	5908781	519	-75	0	15.9	31.1	15.2	1.29	Main
						70.5	75.5	5.0	1.50	Main
						219.9	230	10.1	2.44	FW
						260.6	281.6	21.0	1.10	FW
AD-23-053 ⁵	669034	5908748	512	-45	360	73.5	115.2	41.7	0.83	Main
						80.6	99.2	18.6	1.16	Main
AD-23-054 ⁵	669090	5908854	512	-45	360	20.2	64.2	44.0	0.48	Main
						200.7	214.7	14.0.	1.29	FW
AD-23-057 ⁵	669034	5908748	512	-65	360	66.5	99.1	32.6	1.34	Mair
	including					66.5	78.2	11.7	2.27	Mair
	including					86.9	94.9	8.0	1.61	Mair
AD-22-055 ³	668944	5908718	512	-55	330	95.5	105.5	10	1.55	Mair
AD-22-059 ³	668944	5908718	512	-82	330	123	167	44.0	1.08	Mair
	including					123	133	10.0	1.37	Mair
AD-23-060 ⁵	669034	5908748	512	-85	240	57.5	62.0	4.5	3.59	Mair
						126.0	160.0	34.0	1.68	Mair
						139.2	158.0	18.8	2.42	Mair
AD-23-068 ⁶	669102	5908677	517	-82	0	111	114	3	1.79	Mair
						236	250	14	0.96	Mair
	including					236	246	10	1.10	Mair
						364.55	369.25	4.7	2.04	FW
AD-23-071 ⁵	669094	5908773	512	-85	360	59	75	16.0	1.41	Mair
AD-23-072 ⁵	669094	5908773	512	-65	360	43.4	62	18.6	2.25	Mair
						83.5	103.5	20.0	0.74	Mair

27 November 2023

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
поје ір	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						236.1	240.1	4.0	1.46	FW
AD-23-073 ⁵	669094	5908773	512	-45	360	49.9	94	44.1	1.38	Main
	including					49.9	61.3	11.4	2.36	Main
						221.5	236.9	15.5	1.57	FW
AD-23-075 ⁷	669269	5908768	516	-50	360	67.5	98.3	30.8	1.35	Main
	including					88.0	98.3	10.3	2.66	Main
						244.9	254.0	9.1	1.29	FWZ
						268.5	292.6	24.1	2.18	FWZ
AD-23-077 ⁷	669270	5908672	517	-75	360	127.0	132.1	5.1	2.00	Mair
						184.4	194.0	9.7	1.57	Mair
						352.0	363.0	11.0	1.65	FW2
AD-23-077A ⁷	669270	5908672	517	-70	360	136.8	140.0	3.2	3.17	Mair
						186.5	194.8	8.3	0.66	Mair
						340.9	343.9	3.0	2.03	FWZ
AD-23-083 ⁸	669281	5908956	519	-45	360	51.4	54.4	3.0	1.35	Mair
						226.3	235.3	9.0	1.11	FWZ
AD-23-085 ⁸	669084	5908977	522	-45	360	13.6	23.9	10.3	1.44	Mair
						183.0	199.9	16.9	1.06	FWZ
						245.7	250.7	5.0	0.86	FWZ
AD-23-086 8	668981	5908938	531	-45	360	2.8	31.3	28.5	1.28	Mair
						237.0	260.4	23.4	1.80	FWZ
						245.7	250.7	5.0	0.86	FWZ
AD-23-095 8	669181	5908952	516	-55	360	14.8	37.0	22.2	1.18	Mair
						159.3	185.7	26.4	1.55	FWZ
						206.9	214.7	7.8	1.29	FWZ
AD-23-099 ⁷	668440	5908717	512	-55	360	92.0	97.0	5.0	0.50	Mair
						171.0	181.0	10.0	0.70	FWZ

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

	Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Thickness (m)	Li₂O %	Zone
							194.0	208.0	14.0	1.62	FWZ
	AD-23-100 ⁷	668441	5908641	511	-75	360	162.6	165.7	3.1	1.06	Main
							315.3	322.7	9.4	1.16	FWZ
	AD-23-102 ⁷	668343	5908635	506	-75	360	40.6	45.0	4.4	1.96	Main
							140.0	149.0	9.0	1.45	Main
							248.8	252.4	3.6	1.47	FWZ
							264.6	273.3	8.6	1.14	FWZ
Ī	AD-23-103 ⁷	668343	5908635	506	-55	360	31.1	35.0	3.9	1.91	Main
Ī							100.0	130.0	30.0	0.99	Main
		including					109.5	114.0	4.5	2.18	Main
Ī							221.7	230.5	8.8	0.80	FWZ
							245.1	254.1	9.0	1.78	FWZ

¹ Assays previously reported. "Strong lithium mineralisation recorded from first Adina drill hole assays" ASX Announcement 6 January 2023

² Assays previously reported. "New assay results confirm strong lithium mineralisation at Adina" ASX Announcement 14 February 2023

³ Assays previously reported. "Assays confirm Adina as a robust, high-grade lithium project" ASX Announcement 23 March 2023

⁴ Assays previously reported. "Over 3km of lithium mineralisation confirmed at Adina" ASX Announcement 3 April 2023

⁵ Assays previously reported. "New Lithium Bearing Pegmatite Dyke Swarm at Adina" ASX Announcement 10 May 2023

⁶ Assays previously reported. "New results confirm multiple zones and continuation of lithium mineralisation at Adina" ASX Announcement 13 June 2023

⁷ Assays previously reported. "Substantial high-grade intersections continue to grow Adina" ASX Announcement 1 August 2023

⁸ Assays previously reported. "Key intersections confirm extent of Footwall Zone at Adina" ASX Announcement 4 September 2023

Appendix 3: Diamond Drilling Summary for Winsome's drilling program at Adina.

III-II-IB	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-22-001	668477	5908772	511	-45	135	171.0
AD-22-002	668503	5908851	511	-45	135	213.0
AD-22-003	668555	5908901	513	-45	135	138.0
AD-22-004	668513	5908739	511	-45	135	147.0
AD-22-005	668542	5908812	513	-45	135	261.0
AD-22-005A	668542	5908812	513	-45	315	162.0
AD-22-006	668596	5908861	515	-45	135	118.0
AD-22-006B	668596	5908861	515	-45	315	56.5
AD-22-007	668430	5908809	510	-45	135	390.0
AD-22-008	668460	5908892	510	-45	135	210.2
AD-22-009	668512	5908942	511	-45	135	246.0
AD-22-011	668687	5908776	517	-45	320	150.0
AD-22-034	668688	5909055	519	-45	340	196.4
AD-22-035	668634	5908726	519	-45	315	186.0
AD-22-036	668687	5908776	517	-45	360	243.0
AD-22-037	668702	5908651	515	-45	315	228.0
AD-22-039	668702	5908651	515	-45	360	201.0
AD-22-041	668872	5908797	520	-45	360	213.0
AD-22-042	668968	5908803	520	-45	340	150.0
AD-22-043	670003	5909088	531	-45	340	141.1
AD-22-046	668968	5908803	520	-75	340	186.0
AD-22-055	668944	5908718	512	-55	330	300.0
AD-22-059	668944	5908718	512	-82	330	204.0
AD-23-044	670165	5909126	533	-45	340	168.0
AD-23-045	670312	5909224	533	-45	330	114.0
AD-23-010	668441	5908641	511	-55	360	300.0
AD-23-012	669380	5908952	519	-45	350	351.0
AD-23-013	669482	5908995	520	-45	338	246.0
AD-23-014	669478	5908900	522	60	350	207.0
AD-23-015	669560	5908732	521	-50	330	459.0
AD-23-016	669583	5908994	522	-55	328	243.0
AD-23-017	669877	5908995	529	45	330	294.0
AD-23-018	668829	5909258	510	60	335	304.0
AD-23-019	668829	5909261	510	-45	335	330.0
AD-23-020	670048	5909022	530	-45	330	229.0
AD-23-021	669185	5908751	514	-55	360	363.0
AD-23-022	669174	5908833	514	-55	360	450.0
AD-23-023	669195	5908663	517	-75	360	384.0
AD-23-024	669271	5908859	515	-45	330	384.0

27 November 2023

11.1.15	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-024A	669271	5908859	515	-50	360	259.2
AD-23-025	668898	5908704	514	-55	340	396.0
AD-23-026	668898	5908704	514	-78	340	408.0
AD-23-027	668827	5908751	525	-50	350	444.4
AD-23-028	668735	5908748	518	-50	350	315.7
AD-23-029	669002	5908666	514	-55	350	402.0
AD-23-030	668874	5908645	508	-75	340	402.0
AD-23-031	669002	5908666	514	-75	350	387.0
AD-23-032	669384	5908756	520	-50	350	351.0
AD-23-033	668521	5908640	512	-75	360	408.0
AD-23-038A	668789	5908668	512	-60	350	420.0
AD-23-040	668769	5908781	519	-45	360	384.0
AD-23-047	669031	5908845	520	-45	340	444.0
AD-23-048	668702	5908651	515	-75	360	297.0
AD-23-049	669384	5908756	520	-70	350	375.0
AD-23-050	668789	5908668	512	-75	350	378.0
AD-23-051	668769	5908781	519	-75	360	392.5
AD-23-052	668566	5908827	518	-60	360	294.0
AD-23-053	669034	5908748	512	-45	360	187.0
AD-23-054	669090	5908854	512	-45	360	231.0
AD-23-056	670203	5909041	533	-45	340	276.0
AD-23-057	669037	5908748	512	-65	360	213.0
AD-23-058	669382	5908671	517	-70	350	411.0
AD-23-060	669036	5908750	512	-85	360	240.0
AD-23-061	668600	5908813	519	-70	360	288.0
AD-23-062	668641	5908834	517	-50	360	351.0
AD-23-063	670366	5908963	530	-45	330	254.0
AD-23-064	668689	5909085	512	-60	335	348.0
AD-23-065	668687	5908825	516	-45	360	330.0
AD-23-066	670095	5908783	520	-45	330	294.0
AD-23-067	669920	5908688	515	-50	330	249.0
AD-23-068	669102	5908677	517	-82	360	462.0
AD-23-070	668780	5909054	516	-50	360	303.0
AD-23-071	669094	5908773	512	-85	360	324.0
AD-23-072	669094	5908773	512	-65	360	252.0
AD-23-073	669094	5908773	512	-45	360	292.1
AD-23-074	669195	5908663	517	-58	360	393.0
AD-23-075	669269	5908768	516	-50	360	372.0
AD-23-076	669269	5908768	516	-75	360	350.0
AD-23-077	669270	5908672	517	-75	360	367.3

Hele ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-077A	669270	5908672	517	-70	0	408.0
AD-23-078	668970	5909079	522	-50	340	153.4
AD-23-078A	668970	5909079	522	-45	340	255.0
AD-23-079	669670	5908840	525	-50	330	282.0
AD-23-080	668811	5908790	521	-50	360	321.0
AD-23-081	669462	5908746	522	-50	330	258.0
AD-23-082	669117	5909149	522	50	340	273.0
AD-23-083	669281	5908956	519	-45	360	258.0
AD-23-084	669685	5909105	524	-50	330	228.0
AD-23-085	669084	5908977	522	-45	360	378.0
AD-23-086	668981	5908938	531	-45	360	378.0
AD-23-087	668827	5908806	520	-45	360	300.0
AD-23-088	669325	5909077	521	-50	340	366.0
AD-23-089	668683	5908906	518	-45	360	31.3
AD-23-090	668794	5908776	522	-45	360	321.0
AD-23-091	668782	5908901	518	-45	360	351.0
AD-23-092	668881	5908898	528	-45	360	399.0
AD-23-093	668869	5908740	519	-50	360	406.5
AD-23-094	669184	5909040	523	-45	0	252.0
AD-23-095	669181	5908952	516	-55	360	264.0
AD-23-096	669084	5909070	520	-45	360	150.0
AD-23-097	669381	5908856	519	-45	350	320.0
AD-23-098	668876	5909008	519	45	0	336.0
AD-23-099	668440	5908717	512	-55	360	261.0
AD-23-100	668441	5908641	511	-75	360	390.0
AD-23-101	668780	5908999	521	-50	0	241.9
AD-23-102	668343	5908635	506	-75	360	375.0
AD-23-103	668343	5908635	506	-55	360	384.0
AD-23-104	668343	5908730	510	-50	360	417.0
AD-23-105	668516	5908738	515	-75	360	375.0
AD-23-106	668966	5908702	512	-50	360	414.0
AD-23-107	668240	5908732	508	-50	360	306.0
AD-23-108	668547	5908711	515	-50	360	342.0
AD-23-109	668579	5908947	516	-50	360	324.0
AD-23-110	669313	5908885	519	-50	360	297.0
AD-23-111	669217	5908887	515	-50	360	291.0
AD-23-112	668786	5908646	511	-70	360	365.0
AD-23-113	669063	5908701	513	-60	360	406.1
AD-23-114	669177	5908889	514	-50	360	254.6
AD-23-115	668635	5908730	516	-50	360	324.0

27 November 2023

Hele ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-116	668708	5908630	512	-63	360	411.0
AD-23-117	669135	5908893	514	-50	360	309.0
AD-23-118	669141	5908700	515	-75	360	387.4
AD-23-119	668634	5908650	515	-65	360	420.0
AD-23-120	668580	5908684	515	-55	360	344.2
AD-23-121	669138	5908842	512	-60	360	18.5
AD-23-121A	669139	5908841	513	-60	360	354.0
AD-23-122	668582	5908633	513	-80	360	435.0
AD-23-123	668582	5908749	517	-45	360	356.5
AD-23-124	669059	5908752	513	-55	360	444.0
AD-23-125	669218	5908835	515	-50	360	357.0
AD-23-126	668521	5908640	512	-55	360	120.0
AD-23-126A	668521	5908640	511	-55	360	375.0
AD-23-127	668540	5908817	516	-45	360	312.0
AD-23-129	668914	5908820	519	-50	360	303.0
AD-23-130	669224	5908796	515	-60	360	42.0
AD-23-130A	669224	5908795	515	-60	360	350.0

Legend for Appendix 3:

AD-22-005 Assays previously reported

AD-22-001 Assays reported in this announcement

AD-22-006 Assays awaited, collar/lithological data reported previously

AD-22-060 Assays awaited, collar/lithological data reported in this announcement

JORC Code, 2012 edition Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Explanation
Sampling techniques	 All core is NQ (76mm) in this program. Core sample intervals were geologically logged, measured for average length, photographed, and placed into numbered core trays.
	 RC drilling utilised face sampling hammers with samples split down to a 2kg sample size.
	 Samples from Adina were sent to SGS Minerals Geochemistry under standard preparation procedures.
	Gravity data obtained by ground measurements at regular intervals.
Drilling techniques	NQ diamond drilling was completed at Adina.
	 Oriented core drilling was not completed. Downhole surveying was conducted using a gyro-based system.
Drill sample recovery	 The recovery of the diamond drilling samples was reported by the operators and supervised by our consulting geologist.
	No sample bias has been established.
Logging	 NQ core was logged and cut according to geological boundaries, with ~1 m intervals targeted for individual samples.
	 For RC and DD drilling features such as rock type, modal mineralogy, rock textures, alteration were recorded. Geological logging information was recorded directly onto the GeoticLog system and compiled onto Database platform, with weekly backups.
	 The core is stored in the Geological consultants (Technominex) yard in Rouyn-Noranda which is a secure location.
	 Various qualitative and quantitative logs were completed. All core has been photographed.
	 The logging database contains lithological data for all intervals in all holes in the database.
Sub-sampling techniques and sample preparation	 Adina drill core was split (sawn) at the Winsome core logging and cutting facility located at the project base in James Bay, with half core samples intervals submitted to SGS preparation facilities in Val-d'Or, Quebec.
	 Half core NQ samples are believed to be representative of the mineralisation targeted. Sampling intervals are based on geological boundaries to aid representivity.
	 Samples are crushed, milled and split at the laboratory (SGS) to achieve a 250g sub-sample for assay. Laboratory QC procedures for sample preparation include quality control on checks crushing and milling to ensure representivity.

ſ	Criteria	Explanation
	Quality control & Quality of assay data and laboratory tests	 Assay and laboratory procedures have been selected following a review of techniques provided by laboratories in Canada. SGS and AGAT are both internationally certified independent service providers. Industry standard assay quality control techniques were used for lithium related elements.
2		 Samples are submitted for multi-element ICP analysis by SGS or AGAT Laboratories which is an appropriate technique for high-grade lithium analysis.
	15)	 Sodium Peroxide Fusion is used followed by combined ICP-AES and ICP-MS analyses (56 elements). Li is reported by the lab and converted to Li₂O for reporting using a factor of 2.153.
		No handheld instruments were used for analysis.
		 Comparison of results with standards indicate sufficient quality in data. No external laboratory checks have been used but are planned to be completed shortly.
		 Different grades of certified reference material (CRM) for lithium mineralisation were inserted, as well as field duplicates, and blanks. The CRM's submitted represented a weakly mineralised pegmatite (OREAS 750), and a moderate lithium mineralised pegmatite (AMIS 0341) to high grade lithium mineralised pegmatite (OREAS 752 & 753). Quality Assurance and Quality Control utilised standard industry practice, using prepared standards, field blanks (approximately 0.4 kg), duplicates sampled in the field and pulp duplicates at the lab.
	<u>)</u>	 Blank samples were submitted at a rate of approximately 5%, same for duplicates and repeat assay determinations, whereas standards were submitted at a rate of approximately 20%.
	Verification of sampling and	Significant intersections have been estimated by consultants to the company and cross checked.
	assaying	 Hard copy field logs are entered into and validated on an electronic database, which is maintained by Winsome on site in James Bay and backed up regularly by the Company's IT consultants in Val D'Or.
		 Data verification is carried out by the Project Geologist on site, and a final verification was performed by the Senior Geologist and the geologist responsible for database management. An independent verification is carried out by consultants to the company.
	<i>)</i> 1	 No assays have been adjusted. A factor of 2.153 has been applied to the reported Li assays by the laboratory so to report as Li₂O.
	Location of data points	The drill holes have been reported as being located by hand-held GPS. Historical drill holes have been verified by GPS.
		The grid datum is NAD83. Zone 18N.
		Topographic elevation and landmarks are readily visible from a Digital Elevation Model with a 50cm grid resolution and orthophoto obtained from Lidar surveys performed in 2017 and 2022 over the property. Government topographic maps have been used for topographic

Criteria	Explanation
	validation. The GPS is otherwise considered sufficiently accurate for elevation data.
	 Down hole dip surveys were taken at approximately 30m intervals and a the bottom of the diamond drill holes.
Data spacing and distribution	 In this early delineation stage, drilling is largely set along sections at 100m spacing and aiming to intercept targeted horizon at 80-100m centres.
	No assessment has been made regarding the current drill hole location and intersections with respect to resources or reserve estimation.
	 No sample compositing has been completed. However, internal dilution of non-mineralised material into calculated grade over widths reported herein may occur but is not considerable.
Orientation of data in relation to geological structure	 Drilling is designed to confirm the historical drilling results and test potential mineralisation. They were oriented sub-perpendicular to the potential mineralised trend and stratigraphic contacts as determined by field data and cross section interpretation. Intersection widths will therefore be longer than true widths.
	 No significant sample bias has been identified from drilling due to the optimum drill orientation described above. Where present, sample bia will be reported.
Sample security	The company takes full responsibility on the custody of the sample including the sampling process itself and transportation.
	 Samples are shipped during the weekly supply run and delivered direct to the respective laboratories.
Audits or reviews	 No external audit of the database has been completed, apart from by consulting geologists acting on behalf of the company.

Section 2 Reporting of Exploration Results

(Criteria in the preceding section also apply to this section.)

Criteria	Explanation
Mineral tenement and land tenure	The Winsome Adina Lithium Project is 100% owned by Winsome Adina Lithium Inc.
status	All tenements are in good standing and have been legally validated by a Quebec lawyer specialising in the field.
Exploration done by	Initial Exploration and Review was undertaken by MetalsTech Limited.
other parties	Government mapping records multiple lithium bearing pegmatites within the project areas with only regional data available.
Geology	 The mineralisation encountered at the Adina project is typical of a Lithium-Caesium-Tantalum (LCT) type of pegmatite. The pegmatite body is oriented sub-parallel to the general strike of the host rocks. The host rocks are composed of Archean Lac Guyer greenstone rocks, which include mafic and ultramafic rocks interlayered with horizons of metasedimentary and felsic volcanic rocks
Drill hole Information	For the current drill program, the following information has been included for all holes reported:
	 easting and northing of the drill hole collar
	elevation or RL (reduced level – elevation above sea level in metres) of the drill hole collar
	dip and azimuth of the hole
	down hole length and interception level
	hole length
	 A summary of historical drill hole information was included in the Independent Geologists Report prepared by Mining Insights within the Company's prospectus
Data aggregation methods	No sample weighting or metal equivalent values have been used in reporting.
	Aggregation issues are not considered material at this stage of project definition. No metal equivalent values were used
Relationship between mineralisation widths and intercept lengths	The pierce angle of the drilling varies from hole to hole, in order to attempt, wherever possible, to represent true widths
Diagrams	See figures and maps provided in the text of the announcement.
Balanced reporting	Winsome Resources Ltd will endeavour to produce balanced reports accurately detailing all results from any exploration activities.
	All drillholes and intersections have been presented in this announcement and in previous announcements.

Criteria	Explanation
Other substantive exploration data	All substantive exploration data has been included in ASX Announcements. No other substantive exploration data is available at this time.
Further work	 Winsome Resources Ltd continues to complete further site investigations. Further work planned includes comprehensive data interpretation, field mapping and exploration drilling.