

ASX Announcement | 23 November 2023

Further High-Grade Gold Intersections Received from Drilling at Crown Prince

Highlights:

- Assay results from the recent phase of RC (diameter 4.5") and DD drilling at SEB¹ has delivered further high-grade gold mineralisation down dip from previously reported intersections.
- Recent new intercepts include:

1m at 69.3g/t Au from 226m, **1m at 18.07g/t Au** from 203m within **9m at 4.46g/t Au** from 202m and **1.55m at 7.7g/t Au** from 192.15m in OGGRCDDRC586

11m at 3.93g/t Au from 114m in OGGRC606

2m at 6.36g/t Au from 135m in OGGRC612

- The results in this announcement relate to a series of holes drilled in October 2023.
- Assays are pending for 45 holes totaling 4,332m drilled in November 2023.

Ora Gold Limited (**ASX: OAU**, "**Ora**" or the "**Company**") is pleased to announce further exploration results from the Crown Prince Prospect (M51/886) part of Ora's Garden Gully Project.

The advanced Crown Prince Prospect continues to be a focus as a key growth area for gold resources. The prospect comprises the SEB¹ and MOB² mineralised zones. High-grade gold assay results discussed in this release include results from OGGRCDD586, importantly this hole successfully targeted depth extensions in the hinge zone of SEB mineralisation. This zone plunges towards the south-west and is open at depth below this intersection recorded at 226m down hole.

Assay results discussed in this announcement are shown in Appendix 1 & Figures 2-3. RC and DD hole details are included in Table 1.

Alex Passmore Ora Gold's CEO commented: "We are very pleased with the assay results from Ora's RC and DD drilling program targeting depth extensions at SEB which continues to demonstrate further highgrade gold mineralisation at depth. We look forward to following up with further extensional drilling which is focused on adding to the known strike and depth extent of Crown Prince."

¹ SEB = Crown Prince "South Eastern Ore Body"

² MOB = Crown Prince "Main Ore Body"

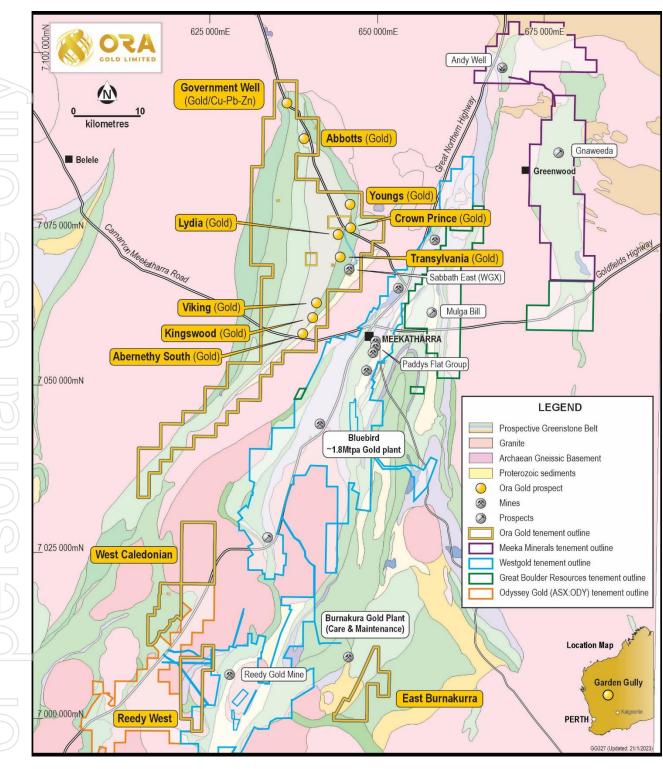


Figure 1. Ora Gold Regional Tenements - Crown Prince located 21km north of Meekatharra

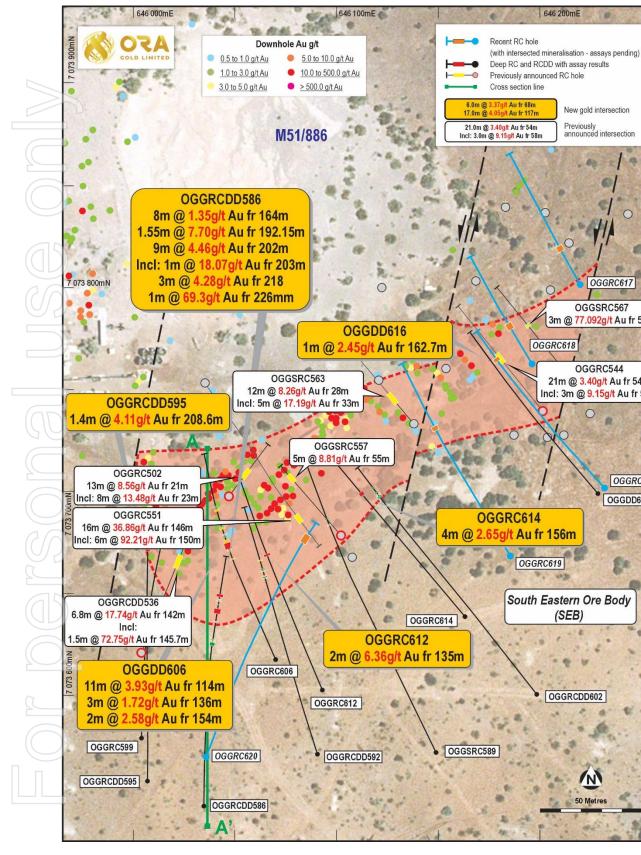


Figure 2. Significant gold intercepts from the previous deep RCDD holes with the new interpreted structural setting at SEB

646 200mE

New gold intersection

Previously announced intersection

OGGRC617

OGGSRC567 3m @ 77.092g/t Au fr 53m

OGGRC544

21m @ 3.40g/t Au fr 54m

Incl: 3m @ 9.15g/t Au fr 58m

OGGRC628

8

OGGDD616

OGGRC618

OGGRC619

South Eastern Ore Body

(SEB)

OGGRCDD602

50 Moto

t Au fr 68m t Au fr 117n

The best intersection from the recent RC/DD phase of drilling was returned in OGGRCDD586 with **1m at 69.3g/t Au from 226m** (Figures 2-3 and Appendix 1). This is down dip of the interpreted high grade hinge zone at SEB i.e. 60m down dip from OGGDD536 which intersected **6.8m at 17.74g/t Au** from 142m down hole (refer ASX release 4th July 2023).

Immediately below this reported zone in OGGDD586 a 1m sample is still pending (226m-227m) as that section of core was collected for geotechnical analysis before grade sampling of the hole took place. Highgrade assay results are expected on this 1m sample as strong alteration and quartz-carbonate veining are displayed as within the previous interval.

Figure 3 shows the position of the high-grade gold intersection from OGGRCDD586 in relation to up-dip hole OGGRC606 which returned **11m at 3.93g/t Au** from 114m and narrowly missed the hinge zone of SEB but intersected a wide zone of mineralisation.

Some of the other holes (e.g. OGGRC614 and OGGDD616) to the north east along strike returned modest grades away from then hinge zone however encouragingly are still mineralised with dilational zones likely along strike. A detailed structural analysis of these core sections is being undertaken to assist in the design and placement of the new proposed deep holes, as high-grade mineralisation indicatively persists well below 200m.

OGGRCDD595 and OGGRC599, to the west, have been drilled above the deep plunging hinge zone of SEB and only wide and low-grade gold anomalism was intersected (Figure 2).

Four new deep RC holes were recently drilled over the north-eastern extension of SEB and all the assay results are pending (OGGRC617-19 and OGGRC628). All of these assay results have intersected prospective structures as shown in Figure 2. One hole was drilled north-easterly over the inferred hinge zone of SEB. A prospective structure was also intersected on the lower section of the hole and its trace is shown in Figure 2 with assays also pending.

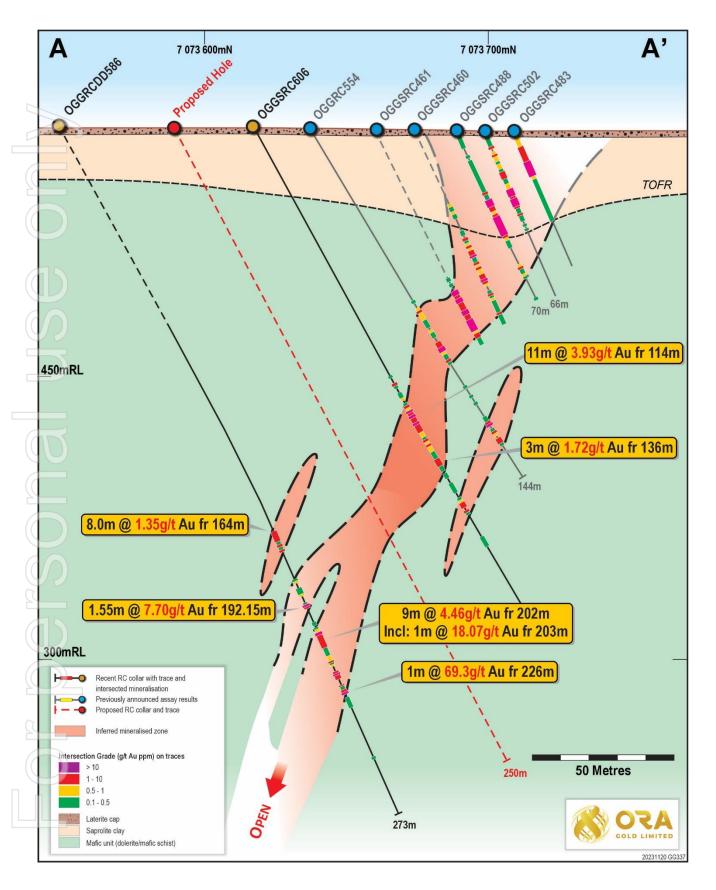


Figure 3. Cross section looking west showing position of OGGRCDD586 and OGGRC606 on the hinge zone of the SEB

A: Level 2, 5 Ord Street, West Perth, WA 6005

Table 1. Recent reverse circulation and diamond drill hole details

Hole ID	Туре	Easting	Northing	RL	Azi	Dip	Depth	Prospect	Sampling details
OGGRCDD586	RC/DD	646033	7073543	485	320	-60	180	SEB	Assays received
OGGRCDD589	RC/DD	646148	7073570	485	340	-60	156	SEB	Assays received
OGGRCDD592	RC/DD	646090	7073569	485	0	-60	160	SEB	Assays received
OGGRC595	RC	646003.5	7073557.3	485	340	-60	150	SEB	Assays received
OGGRC599	RC	646003.5	7073582.3	485	320	-60	210	SEB	Assays received
OGGRC602	RC	646200	7073600	485	320	-60	138	SEB	Assays received
OGGRC606	RC	646071	7073619	485	320	-60	210	SEB	Assays received
OGGRC612	RC	646082	7073594	485	335.96	-60	210	SEB	Assays received
OGGRC614	RC	646162	7073636	485	340	-60	210	SEB	Assays received
OGGDD616	DD	646162	7073636	485	340	-60	210	SEB	Assays received

Next Steps

SEB mineralisation is open along strike to the north and down dip with mineralisation persisting below 200m as indicated by this drilling. The Company continues to interpret results as they come to hand and is designing additional areas for drilling.

Resource estimation and other technical studies for the Crown Prince prospect are progressing well.

The announcement has been authorised for release to ASX by the Board of Ora Gold Limited.

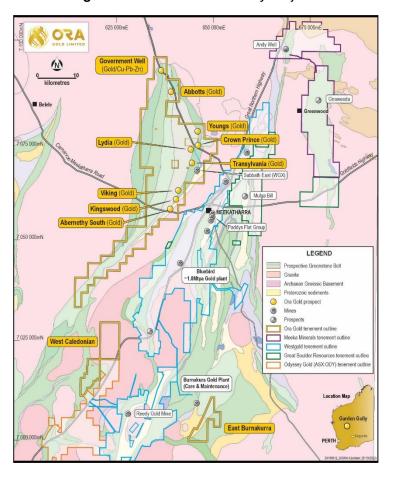
For further background on Ora Gold Ltd please visit our website: https://www.ora.gold/

For Further Information Contact:

Alex Passmore Chief Executive Officer 08 9389 6927 Jane Morgan Investor and Media Relations jm@janemorganmanagement.com.au + 61 (0) 405 555 618

Competent Person Statement

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon, and fairly represent, information and supporting documentation compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and a full-time employee of the Company. Mr Vieru has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears.


About Ora Gold

Ora Gold Limited (ASX:OAU) is a mineral exploration and development company which holds a substantial package of tenements in the prolific Murchison goldfield near Meekatharra, Western Australia.

The Company is focused on the Garden Gully Gold Project which comprises a 677km² tenure package covering the Abbots Greenstone Belt and other key regional structures. The project has multiple gold prospects along the belt with the most advanced being the Crown Prince Prospect.

Gold mineralisation in the belt is controlled by major north trending structures and contact zones between felsic and mafic metamorphosed rocks.

Crown Prince Prospect is located within a granted mining lease and is advancing towards development.

Figure 1. Ora Gold Garden Gully Project

Hole_ID	From	То	Int	Au(ppm)	Au Rpt	Average	Intersection
OGGRCDD586	164	168	1	1.424			8m at 1.35g/t Au
	168	169	1	0.133			(164-172m)
	169	170	1	3.34	3.479	3.4095	
	170	171	1	0.459			
	171	172	1	1.115			
	172	173	1	0.066			
	182.5	183.2	0.7	0.189			
	183.2	184	0.8	0.717			
70	186	187	1	0.333			
	187	187.5	0.5	0.437			
	187.5	188.25	0.75	0.194	0.079		
()	188.25	189.15	0.9	0.845			
	191.5	192.15	0.65	0.257			
\bigcirc	192.15	193	0.85	10.756	11.292	11.024	1.55m at 7.7g/t A
	193	193.7	0.7	4.299	3.068	3.6835	(192.15-193.7m)
	199	200	1	0.101			
	200	200.4	0.4	0.415			
(D)	201	202	1	0.239			
	202	203	1	0.565	1.374	0.9695	9m at 4.46g/t Au
	203	204	1	18.507	17.645	18.076	(202-211m)
	204	205	1	1.193			incl.
	205	206	1	3.268			1m at 18.07g/t A
2	206	207	1	2.183			(203-204m)
()	207	208	1	1.789			
	208	209	1	3.887	3.665	3.776	
	209	210	1	0.444			
15	210	211	1	0.252			
	211	212	1	0.393			
\bigcirc	212	213	1	0.864			
	213	214	1	0.538			
	214	214.75	0.75	1.486			
	214.75	215.3	0.55	0.177			
	215.3	216	0.7	0.682			
\bigcirc	216	217	1			Assays pending	Geotech Sample
	217	218	1			Assays pending	Geotech Sample
	218	218.8	0.8	3.722			3m at 4.28g/t Au
	218.8	219.6	0.8	7.161	7.572	7.3665	(218-221m)
	219.6	220.32	0.72	1.11			
	220.32	221	0.68	2.215			
	223.35	223.65	0.3	1.908			
	223.65	224.15	0.5	0.45			
	224.55	225	0.45	0.175			
	225	226	1	1.851			

Appendix 1. Assay results (>0.1g/t Au) - Fire Assay 50g charge and analysed by ICP-OES at Intertek labs, Perth.

	226	227	1	59.034	79.581	69.3075	1m at 69.3g/t Au
	227	228	1			Assays pending	(226-227m)
	228	229	1	0.159			
	229	230	1	0.274			
	230	230.47	0.47	0.474			
	230.47	231.2	0.73	0.344			
	231.2	232	0.8	0.249			
OGGRCDD589	244	244.5	0.5	1.025			
	244.5	245	1	0.193			
	245	245.55	0.55	2.554			
	245.55	246.5	0.95	0.139			
	246.5	247.35	0.85	0.571			
	248.2	249	0.8	0.517			
	249	250	1			Geotech Sample	
()	250	251	1				
	251	252	1	1.382			
\sim	251	252	1	0.744			
	252	259	1	0.231			
	278	278.85	0.85	0.231			
	278	278.05	1	0.395			
TIDÍ	281	282	1	0.843			
	287	288	1	0.179			
	287	289	1	0.179			
			1				
	291	292		0.122		Castash Camala	
_)	292	293	1			Geotech Sample	
	293	294	1	0.070		Geotech Sample	
<u> </u>	294	295	1	0.278			
	295	296	1	0.472			
510	299	300	1	0.115			
[]D)	300	301	1	0.815			
	308.55	309	0.45	0.159			
\bigcirc	309	310	1	0.257			
	310	311	1			Geotech Sample	
	311	312	1			Geotech Sample	
	316.55	317	1	0.269			
OGGRCDD592	172	173	1	0.549			
\square	174.65	175.7	1.05	0.385			
	175.7	176.1	0.4	0.417			
	176.1	177	0.9	0.29			
	178	178.35	0.35	1.367			
	178.35	179	0.65	0.456			
	179	180	1	1.079	0.42	0.7495	
	180	181	1	1.674			
	181	182	1	0.197			
	182	183	1	0.14	1		
	183	184	1	0.239	1		

| Tel: +61 8 9389 6927 | E: info@ora.gold com.au

	184	185	1	0.796			
	185	185	1	1.861			
	186	187	1	0.111			
	180	187	1	1.263	1.171	1.217	
	188	189	1	0.413	1.1/1	1.217	
	196	196.5	0.5	2.462			
	196.5			2.462			
		197.2	0.7				
	197.2	198	0.8	0.658			
OGGRCDD595	148	150	2	0.11			
	151	152	1	0.707			
	153	154	1	0.375			
76	154	155	1	0.171			
\square	155	156	1	0.333			
	158	159	1	3.272	3.687	3.4795	
<u>(D)</u>	161	161.5	0.5	0.169			
	163	163.5	0.5	0.58	0.591	0.5855	
	172	172.65	0.65	0.199			
	172.65	173.4	0.75	3.109			
	176	177	1	0.11			
	178.72	179.2	0.48	0.535			
(\cup)	180	181	1	0.135			
	182.8	183.2	0.4	0.285			
	186	187	1	0.128			
	187	188	1	0.46			
	189	190	1	0.168	0.057	0.1125	
	191	192	1	0.123			
(\cap)	192	193	1	0.453			
00	193	194	1	0.163			
	196	197	1	0.348			
15	198	199	1	0.609			
	199	200	1	0.12			
	201	202	1	0.22			
	207	208	1	0.206			
	208	208.6	0.6	0.159			
	208.6	209	0.4	3.523	2.686	3.1045	1.4m at 4.11g/t A
	209	210	1	3.431	2.318	2.8745	(208.6-210m)
\rightarrow	210	211	1	0.236	0.352	0.294	
	152.5	153	1	0.198	???		
OGGRC599	116	117	1	0.327			
	117	118	1	0.158			
	117	110	1	0.95	0.934		
	110	110	1	0.397	0.004		
	119	145	1	0.138			
	144	145	1	1.049	0.814		
		147	1	0.763	0.014		
	147						
	148	149	1	0.168			

| Tel: +61 8 9389 6927 | E: info@ora.gold-com.au

Г		455	450	1	0 1 1 4			
-		155	156	1	0.114			
_		156	157	1	0.262			
		158	159	1	0.32			
		159	160	1	0.279			
-		160	161	1	0.467	0.418	0.4425	
1		161	162	1	0.16			
1		163	164	1	0.24			
9		164	165	1	0.501			
ł		165	166	1	0.249			
		166	167	1	0.237			
		167	168	1	0.216			
J	75	176	177	1	0.145			
		177	178	1	0.121			
1		178	179	1	0.204			
1	(\cap)	179	180	1	0.202			
1	90	180	181	1	0.384			
)	182	183	1	0.134			
F		184	188	1	0.089	0.103	0.096	
F		188	192	1	0.205			
-		196	197	1	0.403			
7	TET	198	199	1	0.342	0.406	0.374	
J		199	200	1	0.172	0.100	0.07 1	
7		200	200	1	0.429			
	OGGRCDD602	229	229.3	0.3	1.342			
7	OGGREDDUCZ	230	231	1	0.797			
Y	Ì	230	231.4	0.4	1.158			
7		231.4	231.75	0.35	2.532	2.758	2.645	
5	J.J.	232.4	233	0.6	0.301	2.750	2.045	
4		232.4	233	1	0.895	1.01	0.9525	
ł	75	2 33 234	234.64	0.64	1.147	1.01	0.5525	
ł	}}	234.64	235.2	0.56	0.217			
ł								
ŀ		237	238	1	0.129			
ŀ		238	239	1	1.451			
7	00000000	239	239.6	0.6	0.137			
	OGGRC606	102	103	1	0.133			
6		105	106	1	2.952			
J		106	107	1	0.278			
		109	110	1	0.167			
-		110	111	1	0.328			
		111	112	1	0.786			
ļ		113	114	1	0.154			
		114	115	1	3.273			11m 3.93g/t Au
		115	116	1	0.521			(114-125m)
		116	117	1	6.922	7.311	7.1165	
		117	118	1	1.937			
-		118	119	1	5.8	5.663	5.7315	1

| Tel: +61 8 9389 6927 | E: info@ora.gold com.au

	119	120	1	3.733			
	120	121	1	4.538			
	121	122	1	5.236	4.663	4.9495	
	122	123	1	4.078	3.669	3.8735	
	123	124	1	2.917			
	124	125	1	4.66			
	125	126	1	0.865			
	126	127	1	0.834			
	127	128	1	0.461			
	128	129	1	1.147			
	129	130	1	0.503			
	130	131	1	3.717			
66	131	132	1	0.729			
	132	133	1	0.655			
	133	134	1	0.121			
9.9	134	135	1	0.265			
	135	136	1	0.341			
	136	137	1	1.766			3m 1.72g/t Au
	137	138	1	2.139			(136-139m)
	138	139	1	1.269			(100 10011)
	139	140	1	0.237			
<u>40</u>	140	141	1	0.144	0.112	0.128	
	140	141	1	0.296	0.112	0.128	
	142	143	1	0.156			
	145	147	1	0.130			
2	140	148	1	0.150			
20	147	149	1	0.393			
9.9	148	150	1	0.166			
	145	153	1	0.100			
715	152	155	1	0.684			
(HD)	153	155	1	1.503			2m at 2.58g/t Au
	154	155	1	3.659			(154-156m)
	155	157	1	0.095			(134-13011)
	150 157	158	1	1.265	1.426	1.3455	
	157	159	1	0.153	0.183	0.168	
	168	169	1	0.135	0.105	0.100	
	169	170	1	0.25	$\left \right $		
	170	170	1	0.232	$\left \right $		
	170	171	1	0.180			
OGGRC612	132	133	1	0.148	$\left \right $		
UGGRC012	132	133	1	0.184	$\left \right $		
	133	134	1	0.392	0.344	0.376	
	134 135	135 136	1	0.408 6.467	0.344 9.821	0.376 8.144	2m at 6 26 a /+ A
							2m at 6.36g/t Au
	136	137	1	5.415	3.761	4.588	(135-137m)
	137	138	1	0.939			
	138	139	1	0.396			

ASX Code: OAU | ABN: 74 950 465 654 | www.ora.gold

	139	140	1	0.635			
	164	165	1	0.107			
	168	169	1	0.1			
OGGRC614	64	68	4	0.733			
	155	156	1	0.104	0.051	0.0775	
	156	157	1	1.486			4m at 2.65g/t Au
	157	158	1	3.177			(156-160m)
	158	159	1	3.124	2.75	2.937	
	159	160	1	2.98			
\bigcirc	160	161	1	0.706			
	161	162	1	0.649			
OGGDD616	148	149	1	0.247			
(D)	162.7	163.7	1	2.459			

ASX Code: OAU | ABN: 74 950 465 654 | www.ora.gold 05 | Tel: +61 8 9389 6927 | E: info@ora.gold-com.au

A: Level 2, 5 Ord Street, West Perth, WA 6005

13

Appendix 2: JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

Criteria	section apply to all succeeding sections.) JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC sample was collected and split in even metre intervals where sample was dry. Wet sample was speared or on occasion sampled by scooping. RC drill chips from each metre were examined visually and logged by the geologist. Evidence of alteration or the presence of mineralisation was noted on the drill logs. Intervals selected by the site geologist were tested by hand-held XRF and all those with elevated arsenic contents have been bagged and numbered for laboratory analysis. Duplicate samples are submitted at a rate of approximately 10% of total samples taken (ie one duplicate submitted for every 20 samples). The Vanta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule. The presence or absence of mineralisation is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralisation being sought.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 For OGGRC586–614 drilling technique was a Reverse Circulation (RC) with a hammer diameter of 5.5" (130mm) using a truck mounted 660 Schramm drill rig with a 1350cfm/500psi onboard Sullair compressor. For OGGRCDD586–602 drilling technique was diamond technique using a Sandvick DE880 truck mounted drill rig with HQ diameter from surface which was changed to NQ2 within the fresh rocks below 100m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Volume of material collected from each metre interval of drilling completed is monitored visually by the site geologist and field assistants. Dry sample recoveries were estimated at ~95%. Wet sample recovery was lower, estimated to an average of 40%. Samples were collected and dry sample split using a riffle splitter. Based on the relatively small number of assays received to date, there is no evidence of either a recovery/grade relationship or of sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC chips are logged visually by qualified geologists. Lithology, and where possible structures, textures, colours, alteration types and minerals estimates are recorded. Representative chips are retained in chip trays for each meter interval drilled. The entire length of each drill hole is logged and evaluated.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	• RC samples were collected and dry sample split using a riffle splitter. Material too moist for effective riffle splitting was sampled using a 4cm diameter spear. Sample submitted to the laboratory comprised three spear samples in different directions into the material for each meter interval.

	 Quality control procedures adopted for all sub- sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second- half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The samples were sent to Intertek labs in Perth for Au analysis by FA50 (Fire Assay on 50g charge). Sample preparation techniques are well-established standard industry best practice techniques. Drill chips are dried and crushed and pulverised (whole sample) to 95% of the sample passing -75µm grind size. Field QC procedures include using certified reference materials as assay standards at every 20m. One duplicate sample is submitted for every 20 samples and a blank at 50 samples, approximately. Evaluation of the standards, blanks and duplicate samples assays shows them to be within acceptable limits of variability. Sample representativity and possible relationship between grain size and grade was confirmed following re-sampling and re-assaying of high-grade interval. Sample size follows industry standard best practice and is considered appropriate for these style(s) of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The assay techniques used for these assays are international standard and can be considered total. Samples were dried, crushed and pulverised to 95% passing -75µm using 50g Fire Assay and analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry. The handheld XRF equipment used is an Olympus Vanta XRF Analyser and Ora Gold Ltd. follows the manufacturer's recommended calibration protocols and usage practices but does not consider XRF readings sufficiently robust for public reporting. Ora Gold Ltd. uses the handheld XRF data as an indicator to support the selection of intervals for submission to laboratories for formal assay. The laboratory that carried out the assays is an AQIS registered site and is ISO certified. It conducts its own internal QA/QC processes in addition to the QA/QC implemented by Ora Gold Ltd, as its sample submission procedures. Evaluation of the relevant data indicates satisfactory performance of the field sampling protocols in place and of the assay laboratory. The laboratory uses check samples and assay standards to complement the duplicate sampling procedures practiced by Ora Gold Ltd.
Verification of sampling and assaying Location of	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill 	 All significant intersections are calculated and verified on screen and are reviewed prior to reporting. The programme included no twin holes. Data is collected and recorded initially on hand-written logs with summary data subsequently transcribed in the field to electronic files that are then copied to head office. No adjustment to assay data has been needed. Drill hole locations have been established using a
data points Data spacing and distribution	 holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 differential GPS with an accuracy of ±0.3m. Regular surveys were undertaken every 18m using a Gyro survey tool. The map projection applicable to the area is Australian Geodetic GDA94, Zone 50. Drill hole collars were located and oriented to deliver maximum relevant geological information to allow the geological model being tested to be assessed effectively. This is still early-stage exploration and is not sufficiently advanced for this to be applicable. Various composite sampling was applied depending on the geology of the hole. All anomalous sample intervals are reported in Appendix 1. Zones where geological logging and/or XRF analyses indicated the presence of mineralised intervals were sampled on one meter intervals.

| Tel: +61 8 9389 6927 | E: info@ora.gold com.au

Orientation	Whether the orientation of sampling achieves	• This programme is the third exploration drilling to test
of data in	unbiased sampling of possible structures and the	the south-east extension of the Crown Prince main ore
relation to	extent to which this is known, considering the deposit	body. All drill holes within this area have been drilled
geological	type.	320 to 360 degrees north-westerly at -60 degrees dip.
structure	 If the relationship between the drilling orientation 	Insufficient data has been collected and compiled to be
	and the orientation of key mineralised structures is	able to establish true widths, orientation of lithologies,
	considered to have introduced a sampling bias, this	relationships between lithologies, or the nature of any
	should be assessed and reported if material.	structural controls as no diamond drilling was
		undertaken. The main aim of this programme is to
		generate geological data to develop an understanding
		of these parameters.
		Data collected so far presents no suggestion that any
		sampling bias has been introduced.
Sample	The measures taken to ensure sample security.	When all relevant intervals have been sampled, the
security	· · · · · · · · · · · · · · · · · · ·	samples are collected and transported by company
		personnel to secure locked storage in Perth before
		delivery by company personnel to the laboratory for
		assav.
Audits or	The results of any audits or reviews of sampling	Internal reviews are carried out regularly as a matter
reviews	techniques and data.	of policy. All assay results are considered representative
	4	as both the duplicates, standards and blanks from this
YU		programme have returned satisfactory replicated
		results.
(11)	1	

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary		
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Garden Gully project comprises of one prospecting license, P51/3009, twenty-one granted exploration licenses E51/1737, E51/1661, E51/1708, E51/1609, E51/1790, E51/1791, E51/2150, E51/1709, E51/1888, E51/1924, E51/1936, E51/1963, E51/1989, E51/2002, E51/2012, E51/2013, E51/2014, E51/2015, E51/1932, E51/1972, E51/1973 and four mining leases M51/390, M51/567, M51/886 and M51/889, totaling 		
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 approximately 677km². Ora Gold Limited holds a 100% interest in each lease. The project is partially located in the Yoothapina pastoral lease, 15km north of Meekatharra, in the Murchison of WA. The licences are in good standing and there are no known impediments to obtaining a licence to operate. 		
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 First workings in the Garden Gully area: 1895 - 1901 with the Crown gold mine. 264 tonnes gold at 1.99 oz/t average (~ 56 g/t Au). Maximum depth~24m. Kyarra Gold Mine (1909 – 1917): 18,790 oz gold from quartz veins in "strongly sheared, decomposed, sericite rich country rock". Seltrust explored for copper and zinc from 1977, reporting stratigraphically controlled "gossanous" rock from chip sampling and drilling. In 1988, Dominion gold exploration at Crown defined a >100ppb gold soil anomaly. RAB to 32m: "no significant mineralisation": drilling was "sub-parallel to the dip of mineralisation"; best intersection: 15m at 2.38g/t from 5m. 1989 at Lydia: Julia Mines RAB drill holes 30 m intervals 100m apart across the shear zone targeting the arsenic anomaly. 12m at 5.16 g/t Au from 18m; 6m at 3.04 g/t Au from 18m. No samples deeper than 24m due to poor recovery, so open at depth in the prospective shear zone. Julia also drilled shallow air core at Crown mine, returned best intersection of 2m at 0.4g/t Au from 34m in quartz veins in felsic volcanics. 		

| www.ora.gold

			- In 1989, Matlock Mining explored North Granite Well and Nineteenth Hole; best result 8m at 2.1 g/t Au. Supergene zone: grades to 3.17 g/t Au and still open.
			- 1993 – 2003: St Barbara Mines: RAB, RC on
			E51/1661. Gold associated with black shale (best: 1m
			at 0.64 g/t). - In 1996, Australian Gold Resources RAB and RC
			drilling found Cu, Zn and Ag anomalies (up to 1800ppm
			Cu, 1650ppm Zn and 3.8 g/t Ag) associated with saprolitic clay and black shales at 60-80m deep on
			current E51/1661.
0			- 2001-2002, Gamen (Bellissimo & Red Bluff Noms)
(trenched, sampled, mapped and RC drilled at Crown. Results (up to 0.19 g/t Au) suggest the presence of gold
			mineralisation further to the east of Crown Gold Mine.
			- 2008 – 2009: Accent defined targets N and S of Nineteenth Hole from satellite imagery and airborne
7			magnetics.
	Geology	 Deposit type, geological setting and style of mineralisation. 	- The Garden Gully project comprises now most of the Abbotts Greenstone Belt; comprised of Archaean rocks
((115)		of the Greensleeves Formation (Formerly Gabanintha);
9			a bimodal succession of komatilitic volcanic mafics and
C	\bigcirc		ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones
C	00		and interlayered with mafic to ultramafic sills. Regional
	75		synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by
			NE trending shear zones, linearity with the NE trend of
			the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement
			in Abbotts and Meekatharra Greenstone Belts and in
ſ			the Meekatharra Granite and associated dykes.
G			- Au in the Southernmost tenements (E51/1989, E51/2002 E51/1936) have a similar orogenic
C			depositional style to the rest of the Garden Gully
2			Prospects but is hosted within the Meekatharra- Wydgee greenstone belt. The area is characterized by
6			the Norrie group and the Meekatharra Formation (part
Q	\bigcirc		of the Poelle Group). The Noorie Group comprises of thick successions of pillowed and massive tholeiitic
Q			basalts and conformably overlying felsic volcanics with
C	9.9		interbedded Banded Iron Formations and felsic rocks of the Yaloginda Formation. The Meekatharra
4			formation is composed of weakly metamorphosed
	70		basalt, komatiic basalt and other ultramafic rocks. The
	JD)		Au is associated with the Burnakura Shear Zone which is again typical of a brittle to semi-ductile shear zone
			which would form semi-continuous dilatational veins.
			The local Burnakura Mine (under care and maintenance by Monument) is located approximately
Ē			3km away from Ora's tenements and features
(7			mineralization dominated by steeply dipping quartz (±minor sulphides) veins orientated parallel to the
2			foliation of the fault zone.
6			- Mineralisation in the West Caledonian tenements (E51/1709 and E51/2013) can be shown in the
9	\square		Kohinoor open pit mine. This is an isolated gold mine
] [and features Au mineralisation located on the contact
			between banded iron formations and meta basalts and associated with steep SW plunging ore shoots which
			are structurally controlled by shear zone orientated
			NW-SE. within this mine there is a high association with sulphides (pyrite and pyrrhotite) and quartz veining
			which runs parallel to the shear zones. Much of the
			tenement is largely untested greenstone belt. The project is blanketed by broad alluvial flats,
			occasional lateritic duricrust and drainage channels
			braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite,
			typically massive and unaltered. Small basalt and

| Tel: +61 8 9389 6927 | E: info@ora.gold com.au

Drill hole	 A summary of all information material to the 	metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones.
Information	 understanding of the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All relevant drill hole details are presented in Table 1. The principal geologic conclusion of the work reported from this programme at the Crown Prince prospect confirms the presence of high-grade gold mineralization in what are interpreted to be steep plunging shoots. Extensive primary gold mineralization was also intercepted below the base of oxidation; primary mineralization associated with sulphides, mainly pyrite and arsenopyrite, which offers a very positive outlook for deep potential for the prospect which is to be further tested in follow-up drilling.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut- off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All significant drill intercepts are displayed in Figures 2-3. Full assay data over 0.1g/t Au are included in Appendix 1. No assay grades have been cut. Arithmetic weighted averages are used. For example, 136m to 139m in OGGRC606 is reported as 3m at 1.72g/t Au. This comprised 3 samples, each of 1m, calculated as follows: [(1*1.766) +(1*2.139 +(1*1.269)] = [5.174/3] = 1.72g/t Au. No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known'). 	 Insufficient geological data have yet been collected to allow the geometry of the mineralization to be interpreted. True widths are unknown and insufficient information is available yet to permit interpretation of geometry. Reported intercepts are downhole intercepts and are noted as such.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views. 	• Relevant location maps and figures are included in the body of this announcement (Figures 2-3). Sufficient data have been collected to allow a meaningful cross- section to be drawn with confidence (Figure 3).
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• This announcement includes the results of 10 RC and RCDD holes. The reporting is comprehensive and thus by definition balanced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• This announcement includes qualitative data relating to interpretations and potential significance of geological observations made during the programme. As additional relevant information becomes available it will be reported and announced to provide context to current and planned programmes.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Additional deeper RC drilling will be undertaken between SEB and Crown Prince East to test the potential for high grade gold and the link between these two mineralized structures. More diamond drilling will be undertaken to better define the structural setting of the mineralized systems.

