

# SUBSTANTIAL MINERAL RESOURCE UPGRADE AT GOVERNOR BROOME MINERAL SANDS PROJECT, WA

Updated Mineral Resources to underpin Scoping Study due in Q1 2024



## Key Highlights

- Substantial 18% upgrade in Governor Broome Project Measured and Indicated resource tonnes following successful in-fill drill programs.
- Combined 93.4Mt of Resources now in the highconfidence Measured (28.4Mt) and Indicated (65Mt) Resource Categories
- Latest Mineral Assemblage results demonstrate high-value mineralogy at the Jack Track Deposit, including:
  - Combined Jack Track-Jack Track East assemblage of 68% Primary Ilmenite, 14% Secondary Ilmenite, 4.5% Rutile, 10% Zircon, and 0.8% Monazite, for a 97% VHM content
- Updated Mineral Resource Estimate and Mineral Assemblages to be incorporated in Governor Broome Project Scoping Study

Astute Metals NL (ASX: ASE) ("ASE", "Astute" or "the Company") is pleased to announce a significant upgrade of the Mineral Resources at its 100%-owned **Governor Broome Heavy Mineral Sands Project** in the South West of Western Australia.

## Astute Executive Chairman, Tony Leibowitz, said:

"The completion of this Resource upgrade marks another key step forward in our value-realisation strategy for Governor Broome. Successful in-fill drilling programs completed earlier this year have resulted in a substantial uplift of the higher confidence Indicated and Measured categories. This means these Resources can be included in the upcoming Scoping Study and will ultimately be available for conversion to Ore Reserves. With this key resource upgrade now finalized, the data will be handed over to our consultants for inclusion in the Scoping Study – which remains on track for completion in QI 2024."

### Background

The 100%-owned Governor Broome Heavy Mineral Sands Project is located in the mineral sands-rich coastal areas of the South West of WA. The Project is, by sealed road, located about 95km south of Busselton, 105km south of Iluka's processing plant at Capel, and 135km from Bunbury Port and from Picton, where Doral Australia has a heavy mineral separation plant. The area is well serviced by electrical infrastructure with a 132kV line located just 5km to the north and a three-phase power line passing through the Project.

### **Resource Development**

The Governor Broome Project has been systematically de-risked by Astute over a number of years. Recent work includes the successful separation of marketable zircon, ilmenite, zircon and monazite products from bulk sample testwork for the Jack Track (eastern) part of the Project<sup>1</sup>. This updated Mineral Resource Estimate (MRE) has resulted in a substantial 18% upgrade in higher-confidence Measured and Indicated resources from a previous 79Mt of Indicated Resources to 28.4Mt of Measured and 65Mt of Indicated Resources. This update in Mineral Resources incorporates the results of Astute's 502-hole aircore drilling programme that was carried out earlier this year, designed specifically to upgrade the category of Mineral Resources.

The upgraded resources are being included in the current Scoping Study, which is scheduled for completion in QI 2024. The locations of the various Project deposits are shown on Figure I, and a summary of the Project's Mineral Resources is shown in Table I. The deposits within R70/58, for which these revised resources are reported, are shown in Figure 2. Details of the various resources are given in Table 3.



Figure 1. Governor Broome Project tenements and Mineral Resources.



Figure 2. Resources within and adjacent to R70/58.

| Tenement                 | Category  | Tonnage<br>(Mt) | HM<br>(%) | Slimes |
|--------------------------|-----------|-----------------|-----------|--------|
| R70/58 - Jack Track      | Measured  | 20.4            | 4.2       | 8.4    |
| -                        | Indicated | 21              | 3.5       | 7.9    |
|                          | Total     | 41              | 3.8       | 8.2    |
|                          | -         |                 |           | 1      |
| R70/53 - Governor Broome | Measured  | 8.0             | 5.0       | 13     |
|                          | Indicated | 44              | 5.0       | 13     |
|                          | Inferred  | 7               | 3.5       | 12     |
|                          | Total     | 59              | 4.8       | 12.5   |
|                          |           |                 |           |        |
| R70/22 - Fouracres       | Indicated | 0.72            | 11.4      | 6.5    |
|                          | Inferred  | 0.2             | 4         | 9      |
|                          | Total     | 0.93            | 9.4       | 7.1    |
|                          |           |                 |           |        |
| Project                  | Measured  | 28.4            | 4.4       | 9.7    |
|                          | Indicated | 65              | 4.5       | 11     |
|                          | Inferred  | 8.5             | 3.6       | 11     |
|                          | Total     | 102             | 4.4       | 11     |
|                          | Resources |                 |           |        |

 Table 1. Governor Broome Project Resources – at 2% HM lower block-cut-off grade<sup>2</sup>

Note that the above figures have been appropriately rounded. The Fouracres Resources estimated at a 3% Heavy Mineral (HM) lower block-cut-off grade

Governor Broome and Jack Track Resources estimated at a 2% HM lower block-cut-off grade

### **Geology and Mineralisation**

The Governor Broome Project mineralisation is hosted in unconsolidated beach sands occurring on the Scott River Coastal Plain. The geological character of the mineralisation is like that of other heavy mineral deposits occurring along the Swan Coastal Plain, which have a long history of mining and processing. The mineralisation is hosted in beach placer facies sediments of the Pleistocene aged Barlee Shore-line on the southward facing Scott Coastal Plain.

The host unit to the Jack Track Deposit mineralisation, and that of the other deposits in the eastern section of R70/58, is the Warren Sands, which do not contain significant clay.

A sub-surface Bunbury Basalt headland is present to the west of the Jack Track Deposit (see Figures 1 and 2). The characteristics of both the Warren Sands-hosted mineralisation and of the underlying Beenup Beds, are markedly different on either side of the headland. To its east, both the Warren Sands and the immediately unconformably underlying Beenup Beds of the Cretaceous Warnbro Group are very fine grained, as are the heavy minerals.

To the west the grain sizes are larger, with most of the mineralisation within R70/58 also being within the Warren Sands, but its lower portions are hosted within the Beenup Beds. The Beenup Beds sediments are of two main facies in the area: clayey sands and organic clays. The clayey sands contain medium - to coarse-grained, angular to sub-angular, unconsolidated quartz and minor feldspar grains. The clay content, which is variable, tends to increase downward. Generally, it contains between 1% and 8% of valuable HM. Common accessory minerals are garnet, pyrite, and fine coal fragments.

The mineralisation that has been reported as Mineral Resources is based upon a minimum heavy mineral content of 2% over a thickness of 2m and a maximum Slimes content of 20% in any one intersection.

#### **Exploration**

The Jack Track Tenement, R70/58, has been explored with air-core drilling by Metal Sands in 2007, Astro in 2012, by Iluka in 2015, and by Astro in 2022 and 2023. Those holes within R70/58, or marginal to it and within the vicinity of the modelled mineralisation, are summarised in Table 1. The holes used in these revised Jack Track Deposit resource estimations are listed in Appendix 2.

| Company         | Year | Air-core | Metres  |
|-----------------|------|----------|---------|
|                 |      | Holes    | Drilled |
| Metal Sands     | 2007 | 265      | 2,600   |
| Astro Resources | 2012 | 176      | 3,208   |
| lluka           | 2015 | 159      | 2,409   |
| Astro Resources | 2022 | 314      | 3,520   |
| Astro Resources | 2023 | 502      | 5,351   |
| Total           |      | 1,416    | 17,088  |

| Table 2. S | Significant exp | loration | drill holes |
|------------|-----------------|----------|-------------|
|------------|-----------------|----------|-------------|

### 2007, 2012, and 2015 Drilling and Sampling

The Metal Sands and the 2012 Astro holes were predominantly drilled on 45° oriented lines that were up to 480m apart, with the holes mostly 80m apart along the lines. All drilling was by NQ air-core. Samples were taken at one-metre intervals, after which they were selected for HM separation on the basis of the presence of visual HM.

The Iluka holes were drilled on five near north-south lines, with holes mostly 50m apart. Along strike, however, the lines were spaced between 800m and 1700m apart. All drilling was by NQ air-core.

### 2022 and 2023 Drilling and Sampling

The 2022 and 2023 drilling was designed to in-fill the earlier broad-spaced lines with holes mostly spaced 80m apart on lines spaced up to 160m apart and holes. As most of the 2022 drilling and some of the 2023 drilling was within blue-gum plantations, the orientation of those lines was dependent upon the orientations of the tree rows. The orientation of remainder of the 2023 drilling lines, which were within farmland was dependent upon access.

### Sample Analytical Techniques

The Metal Sands analyses (Samples GB0991 to GB1310 in Appendix 2) were analysed by Western Geolabs Pty Ltd using its standard HM analytical procedure: Split ~100g sub-sample; remove -45µ slimes and +1mm oversize; obtain HM concentrate from sub-sample using Tetrabromoethane ("TBE") separation (SG = 2.97g/cc); report HM%, slimes%, and oversize%.

The Iluka samples (Samples W00161 to W00303 in Appendix 2) were analysed at its Hamilton laboratory, where they were separated using Iluka's standard heavy media technique (Lithium Heteropolytungstate; SG = 2.85g/cc). Clay and oversize fractions were screened at sizes of -53µ and plus 710µ respectively.

The Company's 2022 and 2023 samples (Samples GB2295 to GB3110 in Appendix 2) were analysed by Western Geolabs Pty Ltd using its revised standard procedure, except that the clay and oversize fractions were screened at sizes of  $-53\mu$  and plus 710 $\mu$  respectively so that the results would be comparable to those from the Iluka holes: Remove and weigh >3.3mm fraction; split 100g sub-sample; remove  $-53\mu$  slimes and plus 710 $\mu$  oversize; obtain HM concentrate from remaining sub-sample TBE separation; report HM%, slimes%, and total oversize%.

Although the three methods differ, the differences have had no significant effect on the HM and the slimes contents. The Oversize percentages, however, are not comparable between all programmes.

#### Jack Track Deposit Mineral Assemblages – Iluka and 2022

luka carried out mineralogical testwork on 12 composite samples of HM sinks from its 2015 drilling to determine the mineral assemblage and indicative mineral quality. It reported that the assemblage of the Jack Track Deposit is ilmenite dominated and high in zircon; containing 75% ilmenite, 10.8% zircon, 6.8% leucoxene, and 2.4% rutile; for a 94% VHM content and 59.4% TiO<sub>2</sub>.

The Company also carried out mineralogical testwork on composite samples of HM sinks from its 2022 drilling of the Jack Track Deposit<sup>2</sup>. It reported that the deposit contains approximately 66.5% primary ilmenite (58% TiO<sub>2</sub>), 14.5% secondary ilmenite (including approximately 8.5% leucoxene), 4.5% rutile, 10.5% zircon, and 0.8% monazite – for an overall 96.5% valuable heavy mineral ("VHM") content. The titanium minerals have an average composition of 63% TiO<sub>2</sub>.

## Jack Track Deposit Mineral Assemblages – 2023

Composite samples of heavy mineral concentrate ("HMC") from Astro's 2023 drilling of the JT E (Jack Track East), JT E U (Jack Track East Upper), JT SW E (Jack Track Southwest East), JT SW S (Jack track Southwest South), JT NW (Jack Track Northwest), and JT W (Jack Track West) Deposits were processed by Allied Mineral Laboratories, Perth, to assess their heavy mineral assemblages.

Five JT E composites averaged 69.2% Primary Ilmenite (57% TiO2), 14.0% Secondary Ilmenite (63% TiO2), 9.2% zircon, 4.5% Rutile (95% TiO2), and 0.7% Monazite, for a 97.5% VHM content.

The JT EU composite contained 70.9% Primary Ilmenite (57% TiO2), 12.3% Secondary ilmenite (63% TiO2), 10.2% zircon, 4.6% Rutile (95% TiO2), and 0.8% Monazite, for a 98.7% VHM content.

The JT SW E composite contained 71.2% Primary Ilmenite (57% TiO2), 10.8% Secondary ilmenite (63% TiO2), 9.3% zircon, 4.0% Rutile (95% TiO2), and 0.7% Monazite, for a 96.1% VHM content.

The JT SW S composite contained 68.7% Primary Ilmenite (57% TiO2), 11.8% Secondary ilmenite (63% TiO2), 9.7% zircon, 3.2% Rutile (95% TiO2), and 0.6% Monazite, for a 93.9% VHM content.

Two JT NW composites averaged 72.6% Primary Ilmenite (54% TiO2), 6.3% Secondary ilmenite (60% TiO2), 5.6% zircon, 2.4% Rutile (95% TiO2), 0.3% Monazite, and 8.7% Garnet, for a 95.9% VHM content.

The JT W composite contained 67.0% Primary Ilmenite (54% TiO2), 8.3% Secondary Ilmenite (60% TiO2), 8.5% zircon, 3.4% Rutile (95% TiO2), 0.4% Monazite, and 12.4% Garnet, for a 100% VHM content.

The combined results for the Jack Track and Jack Track East deposits give an average assemblage of 68% Primary Ilmenite, 14% Secondary Ilmenite, 4.5% Rutile, 10% Zircon, and 0.8% Monazite, for a 97% VHM content.

### **Resource Estimates**

### Estimate Methodology

The estimates employed Inverse Distance Squared ("ID2") modelling to produce ore block models ("OBMs") of the HM mineralisation.

HM and slimes grades were used to form wireframed hard upper and lower boundaries to the mineralisation. The grade boundaries were based on a minimum 2% HM content; and a maximum slimes limit of 35% for individual samples and 20% for intersections.

No upper cut was used for the HM grades, as virtually no outlying high values were present. The 2% lower cut-off was selected as this grade allowed grade continuity to be established between drill-holes. Grade interpolation was within 25m East-West x 25m North-South x 0.5m vertical blocks.

The wireframed bodies of mineralisation were restricted to areas that contained drill-holes with significant ratios of contained mineralisation to depth of overburden. The ratio used was "sum of 1m HM grades within intersection to depth of base of mineralisation" (e.g., 4m @ 4% HM from 6m to 10m would give a ratio of 16:10 or 1.6:1).

The wireframed areas contained drill-holes returning ratios of 1 or greater. A minimum intersection length of 2m was used.

### Ore Block Models

The resulting Ore Block Models (OBMs) are shown in plan-view in Figure 2 and in sectional view in Figures 3 to 13.

Apparent gaps along the northern and southern margins of the Jack Track resource, between the Jack Track and Jack Track East resources, in the north of the JT SW E resource, and in the southeast of the SW N resource are areas of wetland containing native vegetation. Although mineralisation is present in these areas, the Competent Person considers it unlikely that regulatory permission would be obtained to mine these areas. Consequently, they are not included in the Mineral Resources.





Figure 6. Jack Track East Deposit OBM; 364400E Cross-section; V.E. 10:1



Figure 8 JT SW N Deposit OBM Cross-section; V.E. 10:1



Figure 9. JT SW E Deposit OBM and indicated cross-section location





Figure 10 JT SW S Deposit OBM Cross-section; V.E. 10:1





Figure 12. JT NW Deposit OBM Cross-section; V.E. 10:1



Figure 13. JT W Deposit OBM Cross-section; V.E. 10:1

## Specific Gravities

The Specific Gravity (SG) was calculated for each ore block based on its interpolated HM content, according to the standard formula SG = 1.686 + (0.0108 x HM%).

### Mineral Resources

The newly estimated mineral resources for the various deposits within and adjacent to R70/58 Jack Track Deposit are set out in Table 3.

| Deposit                    | Category  | Tonnage<br>(Mt) | нм<br>(%) | Slimes<br>(%) |
|----------------------------|-----------|-----------------|-----------|---------------|
| Jack Track                 | Measured  | 20.4            | 4.2       | 8.4           |
| Jack Track East            | Indicated | 11              | 3.6       | 7.4           |
|                            | Total     | 31.5            | 4.0       | 8.0           |
|                            |           |                 |           |               |
| Jack Track Southwest North | Indicated | 2.6             | 2.8       | 9.5           |
| Jack Track Southwest East  | Indicated | 1.4             | 3.4       | 8.3           |
| Jack Track Southwest South | Indicated | 0.9             | 2.5       | 8.6           |
| Jack Track Northwest       | Indicated | 2.3             | 4.2       | 9.5           |
| Jack Track West            | Indicated | 2.5             | 3.4       | 6.7           |
|                            | Total     | 9.6             | 3.3       | 8.5           |
|                            |           |                 |           |               |
| Southeast                  | Inferred  | 1.3             | 3.5       | 8             |
|                            |           |                 |           |               |
| Totals                     | Measured  | 20.4            | 4.2       | 8.4           |
|                            | Indicated | 21              | 3.5       | 7.9           |
|                            | Inferred  | 1.3             | 3.5       | 8             |
|                            | Total     | 42.5            | 3.8       | 8.1           |
|                            | Resources |                 |           |               |

Note that the above figures have been appropriately rounded. **Table 3.** R70/58 Resources – at 2% HM lower block-cut-off grade

#### Resource Classification

The estimated resource within the infill-drilled portion of the Jack Track Deposit to the west of 363800E is classified as Measured, as the quantity, grade, density, shape, and mineral assemblage are estimated

with sufficient confidence to support detailed mine planning and final evaluation of its economic viability. In addition, Bulk Testwork carried out indicated that its mineralisation is amenable to processing using conventional wet and dry plant techniques<sup>1</sup>.

The other estimated Jack Track resources are classified as Indicated, as the drilling has shown both geological and mineralisation continuity throughout the area and the drilling density has been such to enable the verification of grade continuity.

The estimated resource within the Southeast Deposit is classified as Inferred, as, although the drilling has shown both geological and mineralisation continuity throughout the area, the drilling density has not been such to enable the verification of grade continuity.

The drill-hole locations are shown on Figure 2. Appendix 2 lists the air-core drill-holes drilled into the deposits for which updated resource estimates are reported. HM intercepts are provided for each hole.

### Cut-off Grade

CRM selected the lower block-cut-off grade of 2% as:

- 1. This grade has been used for the estimation of the Governor Broome Resources to the west within R70/53 and consistency will be necessary for planned study of the economics of the entire Governor Broome Project; and
- 2. TZ Minerals International Pty Ltd's ("TZMI's") study in 2019 demonstrated the possibility of economic viability of mining 22.9Mt from the North Deposit and 7.9Mt from the South Deposit in R70/53. The study was based upon the resources that had been estimated using a 2% lower block-cut-off grade<sup>3</sup>. As the mineral assemblage of the Jack Track Deposit is more valuable than that of the North and South Deposits, it is reasonable to conclude that the 2% cut-off grade is also potentially economic within R70/58; and
- 3. A 2% cut-off grade allows grade continuity to be established between drill-holes.

## Previous Resource Estimates

The Jack Track Deposit was estimated by Iluka and reported by the Company in 2016 as an Inferred Mineral Resource of 18.8 Mt @ 4.7% HM containing 890 thousand tonnes of HM at a 3.0% HM lower cut-off grade<sup>4</sup>.

The Company reported a revised Inferred Resource for the deposit of 28Mt @ 4.1% HM containing 1.15Mt of HM<sup>5</sup>. The larger tonnage was the result of the use of a lower block-cut-off grade of 2% HM and the extension of the resource about 800m to the west by the inclusion of two lines of holes drilled by Metal Sands in 2007.

Following infill drilling of the western portion of the Jack Track Deposit in 2022, Astro reported revised resources for mineralisation within R70/58<sup>6</sup>. The resources comprised an Indicated Resource of 22Mt @ 4.5% HM for the western portion of the Jack Track Deposit, an Inferred Resource of 12Mt @ 3.5% HM for the eastern portion of the Jack Track Deposit, and Inferred Resources for the Jack Track, Southwest, Northwest, and West Deposits of 22Mt @ 3.8% HM, 3.8Mt @ 4.5% HM, and 5Mt @ 3.9% HM respectively.

### Overburden

The Jack Track Measured Resource's overburden has an average depth of 5.1m. The mineralisation has an average thickness of 4.0m, for an overburden to mineralisation ratio of 1.25 : 1. The Jack Track Indicated Resource's overburden has an average depth to the mineralisation of 6.7m. Its mineralisation has an average thickness is 3.4m for an overburden to mineralisation ratio of 1.95 : 1.

The JT SW N Deposit overburden has an average depth of 6.1m. The mineralisation has an average thickness of 4.7m, for an overburden to mineralisation ratio of 1.3 : 1.

The JT SW E Deposit overburden has an average depth of 10.4m. The mineralisation has an average thickness of 5.3m, for an overburden to mineralisation ratio of 2.0 : 1.

The JT SW S Deposit overburden has an average depth of 6.4m. The mineralisation has an average thickness of 6.6m, for an overburden to mineralisation ratio of 1.0 : 1.

The JT NW Deposit overburden has an average depth of 4.4m. The mineralisation has an average thickness of 2.2m, for an overburden to mineralisation ratio of 2.0 : 1.

The JT W Deposit overburden has an average depth of 4.3m. The mineralisation has an average thickness of 3.6m, for an overburden to mineralisation ratio of 1.2 : 1.

The Southeast Deposit overburden has an average depth of 7.8m. The mineralisation has an average thickness of 4.6m, for an overburden to mineralisation ratio of 1.7 : 1.

## **Mining Method**

It has been assumed that, for potential mining of the deposits, topsoil and overburden would be removed by scrapers and the mineralisation would be mined by bulldozer feeding an in-pit slurry unit. The slurry would be pumped to a wet concentrator to produce an HM concentrate. The waste would be returned to the mine void and covered with stored topsoil.

The deposits are within farmland and blue-gum plantations and suitable agreements for compensation would need to be addressed with the owners and occupiers before mining was carried out.

## Proposed Work Program

### Governor Broome Project Scoping Study

TZ Minerals International (TZMI) has been engaged by Astute to carry out a Scoping Study on the Project<sup>7</sup>. The study, scheduled for completion in QI 2024, will include the review and assessment of mining and processing options, and a mineral products market review. It will be guided by the results of recent Project bulk testwork studies and HMC mineralogical studies. Results from the review will be used to generate the capital cost and operating cost estimates, and an economic evaluation.

### Extensional Exploration Drilling

Exploratory drilling is recommended for two areas within E70/5872 that are along strike to the south-east of the Jack Track Deposits, with a view to eventual addition of further tonnes to mineral resource inventory. The drilling has regulatory approval.

Exploration of the first area would consist of the follow-up of previous air-core drilling conducted in 2012 along Fouracres Road. This drilling intersected heavy mineral mineralisation within eight holes that were located down-dip of a radiometric thorium anomaly. Unfortunately, the drill samples were not analysed.

The second area is located 4km further south-east within farmland.

ASX: ASE 23 August 2023 'Jack Track Bulk Testwork Produces Marketable Heavy Mineral Products'

## Authorisation

This announcement has been authorised for release by the Board of Astute.

## More Information

Matt Healy General Manager – Exploration <u>mhealy@astutemetals.com</u> +61 (0) 431 683 952 Nicholas Read Media & Investor Relations <u>nicholas@readcorporate.com.au</u> +61 (0) 419 929 046

<sup>2</sup> ASX: ARO 21 November 2022 'High Value Mineral Content for Jack Track Deposit'

<sup>3</sup> ASX: ARO 16 October 2019 'Review of the Governor Broome Project Preliminary Study'

RASX: ARO 26 April 2016 'Jack Track Maiden Inferred Heavy Mineral Resource'

<sup>5</sup> ASX: ARO 8 November 2021 'Re-estimation of Jack Track Tenement Resource'

<sup>6</sup> ASX: ARO 19 September 2022 'Substantial increase in Mineral Resource for Governor Broome'

<sup>7</sup> ASX: ASE 14 September 2023 'Commencement of Scoping Study at Governor Broome'

### **Competent Persons**

The information in this report as it relates to Mineral Resources and Exploration Results for the Governor Broome Project is based on information compiled by John Doepel, a Director of Continental Resource Management Pty Ltd (CRM), who is a member of the Australasian Institute of Mining and Metallurgy. Mr Doepel has sufficient experience in mineral resource estimation relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Doepel consents to the inclusion in this announcement of the information in the form and context in which it appears.



## Section 1 – Sampling Techniques and Data

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                               |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | Nature and quality of sampling (eg cut<br>channels, random chips, or specific<br>specialisedindustry standard measurement<br>tools appropriate to the minerals under<br>investigation, such as down hole gamma<br>sondes, or handheldXRF instruments, etc).<br>These examples should not be taken as<br>limiting the broad meaning of sampling.                                                                                                                                                                                                                                                                                                                                                                                                     | Air-core drilling was used to obtain 1m samples<br>from target horizons;<br>Approximately 1 to 1.5 kg sub-samples were split<br>by scoop from 1m samples |
|                          | <ul> <li>Include reference to measures taken to ensuresample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, suchas where there is coarse gold that has inherentsampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information</li> </ul> |                                                                                                                                                          |
| Drilling<br>techniques   | Drill type (eg core, reverse circulation, open-<br>holehammer, rotary air blast, auger, Bangka,<br>sonic, etc) and details (eg core diameter,<br>triple or standard tube, depth of diamond tails,<br>face-sampling bit or other type, whether core<br>isoriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vertical NQ Air-core                                                                                                                                     |
| Drill sample<br>recovery | Method of recording and assessing core<br>andchip sample recoveries and results<br>assessed.<br>Measures taken to maximise sample<br>recoveryand ensure representative nature<br>of the samples.<br>Whether a relationship exists between<br>sample recovery and grade and whether<br>sample bias may have occurred due to<br>preferential loss/gainof fine/coarse material.                                                                                                                                                                                                                                                                                                                                                                        | Good recovery and retention of all size<br>fractions;<br>Holes cleaned at completion of each two-<br>metre rod;<br>Cyclone cleaned after each hole       |
| Logging                  | <ul> <li>Whether core and chip samples have<br/>been geologically and geotechnically<br/>logged to alevel of detail to support<br/>appropriate MineralResource estimation,<br/>mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or<br/>quantitative innature. Core (or costean,<br/>channel, etc) photography.</li> <li>The total length and percentage of the<br/>relevantintersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                        | All intervals geologically logged by Competent<br>Person during drilling                                                                                 |

## APPENDIX 1 - JORC Code, 2012 Edition – Table 1



| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | If core, whether cut or sawn and whether<br>quarter, half or all core taken.<br>If non-core, whether riffled, tube sampled,<br>rotarysplit, etc and whether sampled wet or<br>dry.<br>For all sample types, the nature, quality<br>and appropriateness of the sample<br>preparationtechnique.<br>Quality control procedures adopted for all<br>sub-sampling stages to maximise<br>representivity of samples.<br>Measures taken to ensure that the sampling<br>isrepresentative of the in situ material                                                                                                                                                                                                                         | Sample preparation via drying and manual<br>pulverisation before removal of +3.3mm material;<br>100g sub- samples riffle split from remaining<br>sample                                                                                                                                                                  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | collected,including for instance results for<br>field duplicate/second-half sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                          |
| Quality of<br>assay data<br>and<br>laboratory<br>tests      | <ul> <li>Whether sample sizes are appropriate to thegrain size of the material being sampled.</li> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial ortotal.</li> <li>For geophysical tools, spectrometers, handheldXRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bigs) and precisionhave been established</li> </ul> | Analysis by Western Geolabs Pty Ltd by its<br>standard HM analytical procedures for HM%,<br>Slimes % (-53µ), and Oversize % (+710µ); Repeat<br>laboratory sub-sample splits analysed at 1:12<br>ratio.<br>Western Geolabs Pty Ltd re-analysed 10% of<br>samples from within the mineralised wireframes<br>at -45µ, +710µ |
| Verification<br>of sampling<br>and<br>assaying              | The verification of significant intersections by<br>either independent or alternative company<br>personnel.<br>The use of twinned holes.<br>Documentation of primary data, data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampling and logging carried out by or under<br>supervision of Competent Person.<br>Assay entry by digital capture of laboratory<br>files, with later verification of significant<br>intervals against geological logging                                                                                                |
|                                                             | entryprocedures, data verification, data<br>storage (physical and electronic)<br>protocols.<br>Discuss any adjustment to assay data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                          |
| Location of<br>data points                                  | Accuracy and quality of surveys used to<br>locatedrill holes (collar and down-hole<br>surveys), trenches, mine workings and other<br>locations used in Mineral Resource<br>estimation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Holes located by hand-held GPS for Astro<br>holes.<br>Grid MGA_GDA94, Zone 50;                                                                                                                                                                                                                                           |
|                                                             | Specification of the grid system used.<br>Quality and adequacy of topographic<br>control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elevation data interpolated from elevation data on Google Earth                                                                                                                                                                                                                                                          |



| Data<br>spacing and<br>distribution                              | Data spacing for reporting of Exploration<br>Results.                                                                                                                                                                                                                                                                                                                                        | Im samples collected and analysed throughout mineralized horizons.                                                                                                      |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | Whether the data spacing and distribution<br>is sufficient to establish the degree of<br>geological and grade continuity appropriate<br>for the MineralResource and Ore Reserve<br>estimation procedure(s) and classifications<br>applied.                                                                                                                                                   | Holes drilled on approximate 80m spacing<br>along lines approximately 160m apart.<br>Duplicate samples collected at 1:20 ratio.<br>Twinned holes drilled at 1:20 ratio. |
|                                                                  | Whether sample compositing has been applied.                                                                                                                                                                                                                                                                                                                                                 | No sample compositing applied                                                                                                                                           |
| Orientation of<br>data in relation<br>to geological<br>structure | Whether the orientation of sampling<br>achieves unbiased sampling of possible<br>structures and the extent to which this is<br>known, considering thedeposit type.<br>If the relationship between the drilling<br>orientation and the orientation of key<br>mineralised structures is considered to have<br>introduced a sampling bias, this should be<br>assessed and reported if material. | Vertical drilling through horizontal stratigraphy<br>resulted in intersected thickness equivalent to<br>true thickness.                                                 |
| Sample<br>Security                                               | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                | Samples transported from site to laboratory<br>by drill company personnel                                                                                               |
| Audits or<br>Reviews                                             | The results of any audits or reviews of samplingtechniques and data.                                                                                                                                                                                                                                                                                                                         | Review will be carried out by Competent Person                                                                                                                          |



## Section 2 - Reporting of Exploration Results

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement<br>and land<br>tenure status | Type, reference name/number, location and<br>ownership including agreements or material<br>issues with third parties such as joint ventures,<br>partnerships, overriding royalties, native title<br>interests, historical sites, wilderness or national<br>park and environmental settings.                                                                                                                                                                                                                                                                                                                                                                                                                  | The Jack Track Deposits are within Retention<br>Licence R70/58, held by Governor Broome Sands<br>Pty Ltd, a wholly owned subsidiary of Astute<br>Metals NL. R70/58 has an expiry date of<br>24/07/24 and is in good standing.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The Southeast Deposit is within Retention Licence<br>R70/53, held by Governor Broome Sands Pty Ltd,<br>a wholly owned subsidiary of Astute Metals NL.<br>R70/53 has an expiry date of 03/07/26 and is in<br>good standing.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A small portion of the Jack Track West Deposit is<br>within Exploration Licence E70/5200, held by<br>Governor Broome Sands Pty Ltd, a wholly owned<br>subsidiary of Astute Metals NL. E70/5200 has an<br>expiry date of 25/02/24 and is in good standing.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Exploration<br>done by<br>other parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metals Sands Australia Ltd carried out an air-<br>core drilling campaign over the ground in 2007<br>within E70/1583, 1584, and 2464.<br>Iluka carried out an air-core drilling campaign<br>over the ground in 2015 within E70/2464.<br>The recent drilling infills and extends that<br>coverage.                                                                                                                                                                                                                                                                                                                                                           |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The deposits are located in the Scott Coastal Plain,<br>within the Perth Basin. They consist of beach<br>deposited HM strands. The main host beach sand<br>unit (Warren Sands) is overlain by surficial sand<br>and soil. It unconformably overlies the Beenup<br>Beds.<br>The heavy mineral assemblage of the Jack Track<br>and Jack Track East deposits comprises<br>approximately 68% primary ilmenite (58% TiO <sub>2</sub> ), 14%<br>secondary ilmenite, 4.5% rutile, 10% zircon, and 0.8%<br>monazite – for an overall 97% valuable heavy<br>mineral content. The TiO <sub>2</sub> minerals have an<br>average composition of 63% TiO <sub>2</sub> . |
| Drill hole<br>Information                        | A summary of all information material to the<br>understanding of the exploration results<br>including a tabulation of the following<br>information for all Material drill holes:<br>• easting and northing of the drill hole collar<br>• elevation or RL (Reduced Level – elevation<br>above sea level in metres) of the drill hole<br>collar<br>• dip and azimuth of the hole<br>• down hole length and interception depth<br>• hole length.<br>If the exclusion of this information is justified on<br>the basis that the information is not Material and<br>this exclusion does not detract from the<br>understanding of the report, the Competent<br>Person should clearly explain why this is the case. | See Appendix 2, which lists the air-core drill-holes<br>drilled into the deposits for which updated resource<br>estimates are reported. HM intercepts are provided<br>for each hole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

+61 (0) 2 8046 2799 | admin@astutemetals.com www.astutemetals.com

## APPENDIX 1 - JORC Code, 2012 Edition – Table 1



| Data<br>aggregation<br>methods                                                      | In reporting Exploration Results, weighting<br>averaging techniques, maximum and/or<br>minimum grade truncations (eg cutting of high<br>grades) and cut-off grades are usually Material<br>and should be stated.<br>Where aggregate intercepts incorporate short<br>lengths of high grade results and longer lengths<br>of low grade results, the procedure used for such<br>aggregation should be stated and some<br>typical examples of such aggregations should<br>be shownin detail.<br>The assumptions used for any reporting of metal<br>equivalent values should be clearly stated. | No grade cutting carried out;<br>No metal equivalents employed.                                                                  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Relationship<br>between<br>mineralisatio<br>n widths<br>and<br>intercept<br>lengths | These relationships are particularly important in<br>the reporting of Exploration Results.<br>If the geometry of the mineralisation with respect<br>to the drill hole angle is known, its nature should be<br>reported.If it is not known and only the down hole<br>lengths are reported, there should be a clear<br>statement to this effect (eg 'down hole length, true<br>width notknown').                                                                                                                                                                                             | Vertical drilling through virtually horizontal<br>stratigraphy resulted in intersected thickness<br>equivalent to true thickness |
| Diagrams                                                                            | Appropriate maps and sections (with scales)<br>andtabulations of intercepts should be included<br>for any significant discovery being reported<br>These should include, but not be limited to a plan<br>view of drill hole collar locations and<br>appropriate sectional views.                                                                                                                                                                                                                                                                                                            | See figures in announcement body                                                                                                 |
| Balanced<br>reporting                                                               | Where comprehensive reporting of all Exploration<br>Results is not practicable, representative<br>reporting of both low and high grades and/or<br>widths should be practiced to avoid misleading<br>reporting of Exploration Results.                                                                                                                                                                                                                                                                                                                                                      | Report gives balanced view of the deposits                                                                                       |



| Other<br>substantive<br>exploration<br>data | Other exploration data, if meaningful and<br>material, should be reported including (but not<br>limited to): geological observations; geophysical<br>survey results; geochemical survey results; bulk<br>samples – size and method of treatment;<br>metallurgical test results; bulk density,<br>groundwater, geotechnical and rock<br>characteristics; potential deleterious or<br>contaminating substances. | <ul> <li>2015: Iluka carried out mineralogical testwork on<br/>12 composite samples of HM sinks from its 2015<br/>drilling of the Jack Track Deposit. Its results were<br/>similar to those reported here. Iluka reported<br/>that the HM assemblage of the deposit was 75%<br/>ilmenite, 10.8% zircon, 6.8% leucoxene, and 2.4%<br/>rutile – for an overall 94% VHM content and<br/>59.4% TiO<sub>2</sub>.</li> <li>2023: 2t Jack Track Deposit bulk sample test-<br/>work completed.</li> <li>4t bulk sample composited from 960 Im<br/>samples within mineralisation.</li> <li>4t sample split into two 2t samples. 2t sample<br/>processed through the feed preparation circuit<br/>with no indication of potential issues with slimes<br/>within the mineralisation.</li> <li>Remaining 2t bulk sample split retained at AML.</li> <li>Heavy mineral concentrate successfully<br/>produced in wet concentrator using<br/>conventional mineral sands processing<br/>equipment.</li> <li>Ilmenite, rutile, zircon, and monazite products<br/>successfully produced from HMC using<br/>conventional dry plant mineral separation<br/>equipment.</li> </ul> |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Further work                                | The nature and scale of planned further work<br>(egtests for lateral extensions or depth extensions<br>orlarge-scale step-out drilling).<br>Diagrams clearly highlighting the areas of<br>possible extensions, including the main geological<br>interpretations and future drillingareas, provided<br>this information is not commercially sensitive.                                                         | Scoping study to be completed.<br>Exploratory air-core drilling of two areas within<br>E70/5872 along struke to the southeast of the Jack<br>Track Deposits.<br>Areas shown on figure 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



## Section 3 – Estimation and Reporting of Mineral Resources

| Criteria                     | JORC Code explanation                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Database<br>integrity        | Measures taken to ensure that data has not<br>been corrupted by, for example, transcription<br>or keying errors, between its initial collection<br>and its use for Mineral Resource estimation<br>Data validation procedures used                                                                  | Assay and drill-hole data entered by Competent<br>Person.<br>Assay data copied digitally from Astro database<br>and from files obtained from Iluka.<br>Micromine drill-hole verification performed.<br>Anomalous intersections checked.<br>Drill-hole collar elevations checked, and if<br>necessary, adjusted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (D)                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Site visits                  | Comment on any site visits undertaken by the<br>Competent Person and the outcome of those<br>visits.<br>If no site visits have been undertaken indicate<br>why this is the case                                                                                                                    | The Competent Person drilled the various Jack<br>Track Deposits in 2022 and 2023.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Geological<br>interpretation | Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.                                                                                                                                                                                            | High degree of confidence in geological interpretation as stratigraphy is both visually and analytically distinct and continuous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              | Nature of the data used and of any<br>assumptions made.<br>The effect, if any, of alternative interpretations<br>on Mineral Resource estimation.<br>The use of geology in guiding and controlling<br>Mineral Resource estimation.<br>The factors affecting continuity both of grade<br>and geology | Mineralisation >2% HM and <20% Slimes<br>wireframed. Area limited by ratio >1 for<br>"mineralisation thickness times HM% divided by<br>depth of base of mineralisation".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dimensions                   | The extent and variability of the Mineral<br>Resource expressed as length (along strike or<br>otherwise), plan width, and depth below<br>surface to the upper and lower limits of the<br>Mineral Resource.                                                                                         | The Jack Track and Jack Track East Resources<br>have a combined strike length of 5.2km and a<br>maximum across-strike width of 1.25km.<br>The Jack Track Measured Resource overburden<br>is between 1m and 12m thick, with an average<br>depth of 5.2m; the mineralisation is between 2m<br>and 10m thick, with an average of 4.0m, for an<br>overburden to mineralisation ratio of 1.25:1.<br>The Jack Track East overburden is also between<br>1m and 12m thick, with an average depth of 6.7m;<br>the mineralisation is between 2m and 8m thick,<br>with an average of 3.4m, for an overburden to<br>mineralisation ratio of 1.95:1.<br>The JT SW N Deposit has a strike length of 1.5km<br>and a maximum across-strike width of 0.5km. It<br>has an average overburden thickness of 6.2m<br>and an average mineralisation thickness of 4.7m;<br>for an overburden to mineralisation ratio of 1.3:1.<br>The JT SW E Deposit has a strike length of 0.25km.<br>It has an average overburden thickness of 10.4m<br>and a maximum across-strike width of 0.25km.<br>It has an average overburden thickness of 10.4m<br>and a maximum across-strike width of 0.25km.<br>It has an average mineralisation thickness of 5.3m;<br>for an overburden to mineralisation ratio of 2.0:1.<br>The JT SW S Deposit has a strike length of 0.5km<br>and a maximum across-strike width of 0.25km.<br>It has an average overburden thickness of 5.3m;<br>for an overburden to mineralisation ratio of 2.0:1. |



| -  |                |                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
|----|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                |                                                                                                                                                             | and an average mineralisation thickness of 6.6m; for an overburden to mineralisation ratio of 1.0:1.                                                                                                                                                               |
|    |                |                                                                                                                                                             | The JT NW Deposit has a strike length of 1.8km<br>and a maximum across-strike width of 0.6km. It<br>has an average overburden thickness of 4.4m<br>and an average mineralisation thickness of 2.2m;<br>for an overburden to mineralisation ratio of 2.0:1.         |
| 0  |                |                                                                                                                                                             | The JT W Deposit has a strike length of 2.0km<br>and a maximum across-strike width of 0.3km. It<br>has an average overburden thickness of 4.3m<br>and an average mineralisation thickness of<br>3.6m; for an overburden to mineralisation ratio of<br>1.2:1.       |
| 0  | D<br>N         |                                                                                                                                                             | The Southeast Deposit has a strike length of<br>0.8km and a maximum across-strike width of<br>0.25km. It has an average overburden thickness<br>of 7.8m and an average mineralisation thickness<br>of 4.6m; for an overburden to mineralisation ratio<br>of 1.7:1. |
|    | Estimation and | The nature and appropriateness of the                                                                                                                       | Estimation of HM and Slimes ore block grades by                                                                                                                                                                                                                    |
|    | techniques     | estimation technique(s) applied and key<br>assumptions, including treatment of extreme                                                                      | isz witnin >2% dajustea HM and <20% Silmes<br>wireframes using Micromine software.                                                                                                                                                                                 |
|    |                | grade values, aomaining, interpolation<br>parameters and maximum distance of<br>outproperties from data points. If a computer                               | Block size 25m E-W x 25m N-S x 0.5m vertical.                                                                                                                                                                                                                      |
| C  | $\square$      | assisted estimation method was chosen<br>include a description of computer software<br>and parameters used.                                                 | For areas drilled in 2022 and 2023 average hole<br>spacing along lines 80m and average line<br>spacing 160m.                                                                                                                                                       |
| 2  |                | The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate                            | For Iluka holes drilled in 2015, average hole<br>spacing along lines 50m and line spacing but up<br>to 1700m along strike.                                                                                                                                         |
| (( |                | takes appropriate account of such data.                                                                                                                     | Grade boundaries form hard upper and lower boundaries.                                                                                                                                                                                                             |
| 6  | $\bigcirc$     | The assumptions made regarding recovery of<br>by-products.                                                                                                  | No assumptions made re correlation between                                                                                                                                                                                                                         |
| ğ  |                | Estimation of deleterious elements or other<br>non-grade variables of economic significance                                                                 | No upper cuts, as virtually no outlying values.                                                                                                                                                                                                                    |
| (( | 15             | (eg sulphur for acid mine drainage<br>characterisation).                                                                                                    | No estimation of deleterious elements, as no                                                                                                                                                                                                                       |
|    |                | In the case of block model interpolation, the<br>block size in relation to the average sample<br>spacing and the search employed.                           | No assumptions made re recovery of by-<br>products.                                                                                                                                                                                                                |
|    |                | Any assumptions behind modelling of selective mining units                                                                                                  | OBM grades validated by comparison with assays.                                                                                                                                                                                                                    |
| 8  |                | Any assumptions about correlation between variables.                                                                                                        |                                                                                                                                                                                                                                                                    |
|    |                | Description of how the geological interpretation was used to control the resource estimates.                                                                |                                                                                                                                                                                                                                                                    |
| -  |                | Discussion of basis for using or not using grade cutting or capping.                                                                                        |                                                                                                                                                                                                                                                                    |
|    |                | The process of validation, the checking<br>process used, the comparison of model data<br>to drill hole data, and use of reconciliation<br>data if available |                                                                                                                                                                                                                                                                    |
|    | Moisture       | Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content                         | Tonnages estimated on dry basis.                                                                                                                                                                                                                                   |
|    |                |                                                                                                                                                             |                                                                                                                                                                                                                                                                    |

## APPENDIX 1 - JORC Code, 2012 Edition – Table 1



| Cupc | ut-off<br>arameters                    | The basis of the adopted cut-off grade(s) or quality parameters applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Estimates initially reported above a range of<br>grades. Final report grade of above 2% HM<br>selected on basis of grade continuity of<br>mineralisation.                                                                                              |
|------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | ining factors or<br>ssumptions         | Assumptions made regarding possible mining<br>methods, minimum mining dimensions and<br>internal (or, if applicable, external) mining<br>dilution. It is always necessary as part of the<br>process of determining reasonable prospects<br>for eventual economic extraction to consider<br>potential mining methods, but the<br>assumptions made regarding mining methods<br>and parameters when estimating Mineral<br>Resources may not always be rigorous. Where<br>this is the case, this should be reported with<br>an explanation of the basis of the mining<br>assumptions made                                                                                                                                    | Topsoil and overburden to be removed by<br>scrapers and mineralisation to be mined by<br>bulldozer feeding in-pit slurry unit.                                                                                                                         |
|      | etallurgical<br>ctors or<br>ssumptions | The basis for assumptions or predictions<br>regarding metallurgical amenability. It is<br>always necessary as part of the process of<br>determining reasonable prospects for eventual<br>economic extraction to consider potential<br>metallurgical methods, but the assumptions<br>regarding metallurgical treatment processes<br>and parameters made when reporting Mineral<br>Resources may not always be rigorous. Where<br>this is the case, this should be reported with an<br>explanation of the basis of the metallurgical<br>assumptions made                                                                                                                                                                   | Slurry pumped to wet concentrator to produce<br>HM concentrate.                                                                                                                                                                                        |
|      | vironmental<br>ctors or<br>sumptions   | Assumptions made regarding possible waste<br>and process residue disposal options. It is<br>always necessary as part of the process of<br>determining reasonable prospects for<br>eventual economic extraction to consider the<br>potential environmental impacts of the mining<br>and processing operation. While at this stage<br>the determination of potential environmental<br>impacts, particularly for a greenfields project,<br>may not always be well advanced, the status<br>of early consideration of these potential<br>environmental impacts should be reported.<br>Where these aspects have not been<br>considered this should be reported with an<br>explanation of the environmental assumptions<br>made | Waste to be returned to mine void and covered<br>with stored topsoil.<br>Only for the Jack Track Northwest and West<br>Deposits and for the Southeast Deposit, is there<br>potential for the creation of acidic soils that<br>would need to be managed |
| Bu   | Ilk density                            | Whether assumed or determined. If assumed,<br>the basis for the assumptions. If determined,<br>the method used, whether wet or dry, the<br>frequency of the measurements, the nature,<br>size and representativeness of the samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SG calculated for each ore block on the basis of<br>its interpolated HM content according to the<br>standard formula SG = 1.686 + (0.0108 x HM%)<br>Average SG = 1.73;                                                                                 |
|      | 2                                      | The bulk density for bulk material must have<br>been measured by methods that adequately<br>account for void spaces (vugs, porosity, etc),<br>moisture and differences between rock and<br>alteration zones within the deposit.<br>Discuss assumptions for bulk density                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        |
| Cl   | assification                           | estimates used in the evaluation process of<br>the different material<br>The basis for the classification of the Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The estimated resource within the infill-drilled portion of the Jack Track Deposit to the west of                                                                                                                                                      |
|      |                                        | Whether appropriate account has been taken<br>of all relevant factors (ie relative confidence in<br>tonnage/grade estimations, reliability of input<br>data, confidence in continuity of geology and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 363800E is classified as Measured, as the<br>quantity, grade, density, shape, and mineral<br>assemblage are estimated with sufficient<br>confidence to support detailed mine planning<br>and final evaluation of its economic viability. In            |

## **APPENDIX 1 - JORC Code, 2012 Edition – Table 1**



|                                                       | metal values, quality, quantity and distribution<br>of the data).<br>Whether the result appropriately reflects the<br>Competent Person's view of the deposit                                                                                                                                                                                                                                                                                                                                                                                            | addition, Bulk Testwork carried out indicated that<br>its mineralisation is amenable to processing<br>using conventional wet and dry plant techniques.<br>The other estimated Jack Track resources are<br>classified as Indicated, as the drilling has shown<br>both geological and mineralisation continuity<br>throughout the area and the drilling density has<br>been such to enable the verification of grade<br>continuity.<br>The estimated resource within the Southeast<br>Deposit is classified as Inferred, as, although the<br>drilling has shown both geological and<br>mineralisation continuity throughout the area, the<br>drilling density has not been such to enable the<br>verification of grade continuity.<br>The resource estimates appropriately reflect the<br>Competent Person's impression of the deposits. |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Audits or<br>reviews                                  | The results of any audits or reviews of Mineral<br>Resource estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No audit or review has been carried out on these resource estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Discussion of<br>relative<br>accuracy /<br>confidence | Where appropriate a statement of the relative<br>accuracy and confidence level in the Mineral<br>Resource estimate using an approach or<br>procedure deemed appropriate by the<br>Competent Person. For example, the<br>application of statistical or geostatistical<br>procedures to quantify the relative accuracy<br>of the resource within stated confidence<br>limits, or, if such an approach is not deemed<br>appropriate, a qualitative discussion of the<br>factors that could affect the relative accuracy<br>and confidence of the estimate. | The relative accuracy of the Mineral Resource<br>estimates are reflected in the reporting of the<br>Mineral Resources as per the guidelines of the<br>2012 JORC Code.<br>The global resources reported are the total of<br>the local estimates reported for each of the<br>areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                       | The statement should specify whether it<br>relates to global or local estimates, and, if<br>local, state the relevant tonnages, which<br>should be relevant to technical and<br>economic evaluation.                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                       | Documentation should include assumptions<br>made and the procedures used.<br>These statements of relative accuracy and<br>confidence of the estimate should be<br>compared with production data, where<br>available                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



|               |           |         | East   | North   | RL      | Depth | From | Interval | нм   |
|---------------|-----------|---------|--------|---------|---------|-------|------|----------|------|
|               | Wireframe | Hole ID | (GDA94 | (GDA94  | (m ASL) | (m)   | (m)  | (m)      | (%)  |
|               |           |         | Z50)   | Z50)    | (       | (/    | ()   | (''')    | (70) |
|               | JT 1 M    | GB2298  | 362193 | 6206896 | 46.1    | 8.0   | 2    | 5        | 5.3  |
| (             | JT 1 M    | GB2299  | 362185 | 6206969 | 46.9    | 7.0   | 3    | 3        | 3.8  |
| 27            | JT 1 M    | GB2300  | 362007 | 6206865 | 45.7    | 10.0  | 5    | 2        | 3.3  |
| 6             | JT 1 M    | GB2301  | 361867 | 6206862 | 45.7    | 10.0  | 5    | 3        | 4    |
| 9             | JT 1 M    | GB2303  | 362534 | 6206565 | 42.4    | 10.0  | 7    | 2        | 2.4  |
|               | JT 1 M    | GB2304  | 362534 | 6206645 | 43.3    | 10.0  | 4    | 5        | 5.3  |
|               | JT 1 M    | GB2305  | 362531 | 6206725 | 44.2    | 10.0  | 2    | 5        | 3.4  |
| ((            | JT 1 M    | GB2306  | 362530 | 6206805 | 45.1    | 10.0  | 3    | 3        | 3.6  |
| 7             | JT 1 M    | GB2307  | 362539 | 6206884 | 45.9    | 9.0   | 2    | 4        | 3.1  |
| ((            | JT 1 M    | GB2309  | 362019 | 6206934 | 46.5    | 10.0  | 4    | 2        | 3.4  |
|               | JT 1 M    | GB2310  | 362011 | 6207005 | 47.3    | 9.0   | 3    | 3        | 3.9  |
|               | JT 1 M    | GB2311  | 362002 | 6207080 | 48.2    | 10.0  | 3    | 2        | 2.7  |
|               | JT 1 M    | GB2312  | 361704 | 6206882 | 45.9    | 10.0  | 4    | 2        | 3.9  |
|               | JT 1 M    | GB2318  | 362365 | 6206559 | 42.3    | 10.0  | 7    | 2        | 6.4  |
|               | JT 1 M    | GB2319  | 362362 | 6206637 | 43.2    | 10.0  | 6    | 2        | 3.9  |
| A             | JT 1 M    | GB2320  | 362358 | 6206717 | 44.1    | 10.0  | 4    | 4        | 3.3  |
| 9             | JT 1 M    | GB2321  | 362356 | 6206797 | 45.0    | 10.0  | 5    | 2        | 3.6  |
| C             | JT 1 M    | GB2322  | 362353 | 6206875 | 45.8    | 10.0  | 3    | 3        | 3.8  |
| $\mathcal{Q}$ | JT 1 M    | GB2323  | 362346 | 6206953 | 46.7    | 8.0   | 3    | 2        | 2.4  |
| 7             | JT 1 M    | GB2366  | 362350 | 6206480 | 41.4    | 10.0  | 8    | 2        | 4.2  |
| ((            | JT 1 M    | GB2367  | 362350 | 6206481 | 41.4    | 12.0  | 8    | 2        | 3.6  |
| 7             | JT 1 M    | GB2368  | 362344 | 6206398 | 40.5    | 12.0  | 9    | 3        | 3.3  |
| A             | JT 1 M    | GB2369  | 362348 | 6206317 | 39.6    | 10.5  | 7    | 2        | 2.5  |
| 2             | JT 1 M    | GB2377  | 362544 | 6206490 | 41.5    | 10.0  | 6    | 3        | 4.1  |
| 29            | JT 1 M    | GB2378  | 362544 | 6206415 | 40.7    | 12.0  | 6    | 4        | 5.3  |
| C             | JT 1 M    | GB2379  | 362545 | 6206340 | 39.8    | 12.0  | 7    | 4        | 5.9  |
| ((            | ) JT 1 M  | GB2380  | 362546 | 6206265 | 39.0    | 12.0  | 9    | 2        | 5    |
|               | JT 1 M    | GB2381  | 362546 | 6206190 | 38.1    | 12.0  | 9    | 3        | 2.3  |
| ((            | JT 1 M    | GB2382  | 362549 | 6206115 | 37.3    | 12.0  | 9    | 2        | 1.7  |
|               | JT 1 M    | GB2383  | 362550 | 6206040 | 36.5    | 12.0  | 9    | 2        | 1.4  |
| ~             | JT 1 M    | GB2384  | 362551 | 6205965 | 36.0    | 12.0  | 10   | 1        | 1.7  |
| 29            | JT 1 M    | GB2385  | 362553 | 6205890 | 35.8    | 12.0  | 11   | 1        | 2.3  |
|               | JT 1 M    | GB2409  | 363300 | 6205204 | 34.9    | 14.0  | 12   | 2        | 4.8  |
| ((            | JT 1 M    | GB2410  | 363255 | 6205137 | 34.8    | 16.0  | 12   | 2        | 4.1  |
|               | JT 1 M    | GB2411  | 363407 | 6205251 | 34.9    | 14.0  | 11   | 3        | 3.9  |
|               | JT 1 M    | GB2417  | 363650 | 6204899 | 34.4    | 16.0  | 12   | 4        | 4.6  |
| _             | JT 1 M    | GB2418  | 363803 | 6204887 | 34.4    | 16.0  | 10   | 5        | 5.8  |
|               | JT 1 M    | GB2420  | 363803 | 6205248 | 34.9    | 16.0  | 9    | 3        | 4.6  |
|               | JT 1 M    | GB2421  | 363803 | 6205247 | 34.9    | 14.0  | 9    | 3        | 4.9  |
|               | JT 1 M    | GB2422  | 363227 | 6205303 | 35.0    | 14.0  | 8    | 5        | 5.5  |
|               | JT 1 M    | GB2424  | 363177 | 6205247 | 34.9    | 14.0  | 9    | 5        | 6    |
|               | JT 1 M    | GB2427  | 363392 | 6205119 | 34.7    | 16.0  | 9    | 5        | 4.4  |
|               | JT 1 M    | GB2428  | 363618 | 6205271 | 35.0    | 14.0  | 10   | 4        | 3.3  |
|               | JT 1 M    | GB2429  | 363635 | 6205198 | 34.9    | 16.0  | 10   | 5        | 4    |



|                                 |           |         | East           | North          | RL      | Depth       | From | Interval | ШМ  |
|---------------------------------|-----------|---------|----------------|----------------|---------|-------------|------|----------|-----|
|                                 | Wireframe | Hole ID | (GDA94<br>Z50) | (GDA94<br>Z50) | (m ASL) | (m)         | (m)  | (m)      | (%) |
| C                               | JT 1 M    | GB2430  | 363456         | 6205184        | 34.8    | 14.0        | 8    | 6        | 4.2 |
| 2                               | JT 1 M    | GB2431  | 363650         | 6205086        | 34.7    | 16.0        | 10   | 3        | 4.1 |
|                                 | JT 1 M    | GB2432  | 363513         | 6205072        | 34.7    | 16.0        | 10   | 3        | 4.1 |
|                                 | JT 1 M    | GB2433  | 363674         | 6205037        | 34.6    | 14.0        | 11   | 3        | 3.6 |
| 7                               | JT 1 M    | GB2448  | 362697         | 6206561        | 42.3    | 10.0        | 3    | 5        | 5.9 |
|                                 | JT 1 M    | GB2449  | 362698         | 6206485        | 41.5    | 10.0        | 2    | 7        | 5.2 |
| ((                              | JT 1 M    | GB2450  | 362702         | 6206405        | 40.6    | 10.0        | 4    | 5        | 7   |
| 6                               | JT 1 M    | GB2451  | 362703         | 6206327        | 39.7    | 12.0        | 3    | 7        | 4.9 |
| P                               | JT 1 M    | GB2452  | 362705         | 6206250        | 38.8    | 12.0        | 5    | 6        | 4.4 |
| C                               | JT 1 M    | GB2453  | 362705         | 6206164        | 37.8    | 10.0        | 7    | 2        | 5.5 |
|                                 | JT 1 M    | GB2454  | 362709         | 6206084        | 36.9    | 10.0        | 7.3  | 2        | 2.8 |
|                                 | JT 1 M    | GB2455  | 362709         | 6206085        | 37.0    | 10.0        | 8    | 2        | 5.1 |
|                                 | JT 1 M    | GB2456  | 362710         | 6206000        | 36.0    | 12.0        | 8    | 2        | 2.8 |
|                                 | JT 1 M    | GB2457  | 362711         | 6205925        | 35.9    | 12.0        | 9    | 2        | 2.3 |
| 6                               | JT 1 M    | GB2458  | 362712         | 6205828        | 35.8    | 12.0        | 10   | 2        | 2.2 |
|                                 | JT 1 M    | GB2459  | 362706         | 6205750        | 35.6    | 12.0        | 10   | 2        | 2.2 |
| Z                               | JT 1 M    | GB2465  | 362825         | 6206562        | 42.3    | 12.0        | 3    | 7        | 4.1 |
| ((                              | JT 1 M    | GB2466  | 362826         | 6206490        | 41.5    | 10.0        | 3    | 6        | 5.5 |
| 2                               | JT 1 M    | GB2467  | 362825         | 6206406        | 40.6    | 10.0        | 4.2  | 5.8      | 3.8 |
| 6                               | JT 1 M    | GB2468  | 362835         | 6206331        | 39.7    | 10.0        | 5    | 5        | 4   |
| 6                               | JT 1 M    | GB2469  | 362835         | 6206332        | 39.7    | 10.0        | 5    | 5        | 4.9 |
| 0                               | JT 1 M    | GB2470  | 362833         | 6206242        | 38.7    | 12.0        | 6    | 5        | 3.8 |
| U                               | JT 1 M    | GB2471  | 362832         | 6206170        | 37.9    | 12.0        | 4    | 7        | 4.6 |
| 2                               | JT 1 M    | GB2472  | 362834         | 6206091        | 37.0    | 10.0        | 6    | 4        | 3.8 |
|                                 | JT 1 M    | GB2473  | 362836         | 6206006        | 36.1    | 12.0        | 8    | 3        | 3.6 |
|                                 | JT 1 M    | GB2474  | 362836         | 6205930        | 35.9    | 12.0        | 9    | 2        | 3.8 |
| 7                               | JT 1 M    | GB2475  | 362838         | 6205854        | 35.8    | 10.9        | 8.9  | 2        | 2.8 |
| (                               | JT 1 M    | GB2476  | 362837         | 6205762        | 35.7    | 12.0        | 9    | 3        | 2.2 |
| 2                               | JT_1 M    | GB2506  | 363031         | 6206565        | 42.4    | 8.0         | 2    | 5        | 3.5 |
|                                 | JT 1 M    | GB2507  | 363186         | 6206562        | 42.3    | 8.0         | 1    | 3        | 3.3 |
| 2                               | JT 1 M    | GB2510  | 363473         | 6206377        | 40.2    | 8.0         | 2    | 3        | 2.6 |
|                                 | JT 1 M    | GB2511  | 363421         | 6206318        | 39.6    | 8.0         | 1    | 4        | 3.9 |
| $\left( \left( \right) \right)$ | JI1M      | GB2512  | 363361         | 6206246        | 38.8    | 8.0         | 1    | 5        | 4.5 |
| 7                               | JI 1 M    | GB2513  | 363305         | 6206186        | 38.1    | 8.0         | 2    | 5        | 4./ |
|                                 | JIIM      | GB2514  | 363258         | 6206126        | 37.4    | 10.0        | 3.1  | 4.9      | 5.6 |
|                                 | JI 1 M    | GB2515  | 363205         | 6206065        | 36.7    | 10.0        | 5    | 3        | 6.7 |
|                                 | JI 1 M    | GB2516  | 363147         | 6206003        | 36.0    | 10.0        | 5    | 4        | 5.9 |
|                                 |           | GB2517  | 363091         | 6205941        | 35.9    | 10.0        | 6    | 4        | 5.2 |
|                                 |           | GB2518  | 303043         | 6205892        | 35.8    | 10.0        | 6    | 4        | 4.2 |
|                                 |           | GB2520  | 363596         | 6206323        | 39.6    | 8.0         | 2    | 2        | 2.2 |
|                                 |           | GB2521  | 303531         | 6206249        | 38.8    | 8.0         | 1    | 5        | 3.0 |
|                                 |           | GB2522  | 363480         | 6206189        | 38.1    | 8.0         | 1    | 5        | 4.6 |
|                                 |           | GB2523  | 303429         | 6206132        | 37.5    | 8.U         | 1 4  | b<br>Г С | 4.1 |
|                                 |           | GB2524  | 262225         | 6206072        | 36.1    | 0.0<br>10.0 | 5    | 3.0<br>2 | 7.7 |



| JT 1 M | GB2526 | 363280 | 6205955 | 35.9 | 10.0 | 3 | 6 | 5.9 |
|--------|--------|--------|---------|------|------|---|---|-----|
| JT 1 M | GB2527 | 363220 | 6205894 | 35.8 | 10.0 | 4 | 5 | 5   |
| JT 1 M | GB2528 | 363163 | 6205830 | 35.8 | 12.0 | 5 | 4 | 3.4 |
| JT 1 M | GB2529 | 363109 | 6205772 | 35.7 | 12.0 | 7 | 3 | 4.9 |

| =         |         | East     | North   | RL      | Depth | From  | Interval | ЦМ  |
|-----------|---------|----------|---------|---------|-------|-------|----------|-----|
| Wireframe | Hole ID | (GDA94   | (GDA94  | (m ASI) | (m)   | (m)   | (m)      | (%) |
|           |         | Z50)     | Z50)    |         |       | (iii) |          | (%) |
| JT 1 M    | GB2530  | 363792   | 6205791 | 35.7    | 10.0  | 4     | 4        | 4.7 |
| JT 1 M    | GB2531  | 363791.5 | 6205792 | 35.7    | 10.0  | 3     | 5        | 4.5 |
| JT 1 M    | GB2532  | 363809   | 6204993 | 34.6    | 16.0  | 7     | 7        | 4.4 |
| JT 1 M    | GB2533  | 363669   | 6204958 | 34.5    | 16.0  | 10    | 6        | 4.8 |
|           | GB2526  | 363280   | 6205955 | 35.9    | 10.0  | 3     | 6        | 5.9 |
| JT 1 M    | GB2527  | 363220   | 6205894 | 35.8    | 10.0  | 4     | 5        | 5   |
| JT 1 M    | GB2528  | 363163   | 6205830 | 35.8    | 12.0  | 5     | 4        | 3.4 |
| JT 1 M    | GB2529  | 363109   | 6205772 | 35.7    | 12.0  | 7     | 3        | 4.9 |
| JT 1 M    | GB2534  | 363461   | 6204999 | 34.6    | 16.0  | 11    | 4        | 6.1 |
| JT 1 M    | GB2535  | 363027   | 6205712 | 35.6    | 14.0  | 9     | 2        | 3.6 |
| JT 1 M    | GB2536  | 363023   | 6205759 | 35.7    | 12.0  | 8     | 2        | 5.3 |
| JT 1 M    | GB2537  | 363006   | 6205861 | 35.8    | 12.0  | 7     | 3        | 5.2 |
| JT 1 M    | GB2538  | 362833   | 6205700 | 35.6    | 14.0  | 10    | 2        | 2.7 |
| JT 1 M    | GB2539  | 362833   | 6205622 | 35.5    | 14.0  | 11    | 2        | 2.3 |
| JT 1 M    | GB2540  | 362833   | 6205542 | 35.3    | 14.0  | 10    | 2        | 2.3 |
| JT 1 M    | GB2541  | 363329   | 6206503 | 41.7    | 8.0   | 1     | 2        | 2.9 |
| JT 1 M    | GB2542  | 363269   | 6206427 | 40.8    | 8.0   | 1     | 5        | 2.9 |
| JT 1 M    | GB2543  | 363208   | 6206356 | 40.0    | 8.0   | 2     | 4        | 3.4 |
| JT 1 M    | GB2544  | 363156   | 6206293 | 39.3    | 10.0  | 3     | 5        | 6.1 |
| JT 1 M    | GB2545  | 363091   | 6206226 | 38.5    | 10.0  | 2     | 7        | 5.3 |
| JT 1 M    | GB2546  | 363045   | 6206171 | 37.9    | 10.0  | 5     | 4        | 4.2 |
| JT 1 M    | GB2547  | 363018   | 6206132 | 37.5    | 10.0  | 5     | 5        | 5.4 |
| JT 1 M    | GB2548  | 363124   | 6206496 | 41.6    | 8.0   | 1     | 5        | 3.5 |
| JT 1 M    | GB2549  | 363074   | 6206432 | 40.9    | 8.0   | 1     | 6        | 4.8 |
| JT 1 M    | GB2550  | 363032   | 6206379 | 40.3    | 8.0   | 2     | 5        | 7.8 |
| ЛТ 1 М    | GB2551  | 362981   | 6206327 | 39.7    | 10.0  | 2     | 6        | 6.8 |
| JT 1 M    | GB2552  | 362961   | 6206438 | 40.9    | 8.0   | 3     | 4        | 5.9 |
| JT 1 M    | GB2553  | 362976   | 6206491 | 41.5    | 8.0   | 2     | 5        | 4.2 |
| JT 1 M    | GB2554  | 362975.3 | 6206490 | 41.5    | 8.0   | 2     | 6        | 4.9 |
| JT 1 M    | GB2555  | 362840   | 6206735 | 44.3    | 8.0   | 3     | 3        | 3.4 |
| JT 1 M    | GB2557  | 362830   | 6206643 | 43.2    | 8.0   | 3     | 4        | 3.7 |
| JT 1 M    | GB2558  | 362710   | 6206643 | 43.2    | 8.0   | 2     | 6        | 4.4 |
| JT 1 M    | GB2561  | 363032   | 6206626 | 43.0    | 8.0   | 2     | 5        | 2.8 |
| JT 1 M    | GB2562  | 363139   | 6206615 | 42.9    | 8.0   | 2     | 3        | 2.6 |
| JT 1 M    | GB2563  | 363734   | 6206162 | 37.8    | 8.0   | 2     | 2        | 5.2 |
| JT 1 M    | GB2564  | 363685   | 6206104 | 37.2    | 8.0   | 3     | 4        | 3.2 |
| JT 1 M    | GB2565  | 363626   | 6206033 | 36.4    | 8.0   | 2.1   | 4.9      | 4   |
| JT 1 M    | GB2566  | 363570   | 6205968 | 36.0    | 10.0  | 3     | 5        | 4.1 |
| JT 1 M    | GB2567  | 363570.7 | 6205969 | 36.0    | 10.0  | 3     | 6        | 3.8 |
| JT 1 M    | GB2568  | 363515   | 6205906 | 35.9    | 10.0  | 6     | 2        | 4.4 |
| JT 1 M    | GB2569  | 363458   | 6205845 | 35.8    | 10.0  | 6     | 3        | 5.5 |
| JT 1 M    | GB2570  | 363403   | 6205782 | 35.7    | 10.0  | 2.3   | 7.7      | 5.3 |



|    |           |         | East     | North   | RL      | Depth | From | Interval | ым   |
|----|-----------|---------|----------|---------|---------|-------|------|----------|------|
|    | Wireframe | Hole ID | (GDA94   | (GDA94  | (m ASL) | (m)   | (m)  | (m)      | (%)  |
|    |           |         | Z50)     | Z50)    | (       |       | ()   | ("")     | (70) |
| 2  | JT 1 M    | GB2571  | 363345   | 6205720 | 35.6    | 12.0  | 5    | 5        | 4.6  |
|    | JT 1 M    | GB2572  | 363280   | 6205658 | 35.5    | 12.0  | 8    | 3        | 4.9  |
| (( | JT 1 M    | GB2573  | 363223   | 6205594 | 35.4    | 12.0  | 9    | 2        | 3.6  |
|    | JT 1 M    | GB2574  | 363165   | 6205536 | 35.3    | 12.0  | 10   | 2        | 3    |
| (( | JT 1 M    | GB2575  | 363118   | 6205474 | 35.2    | 12.0  | 9    | 3        | 3.7  |
| 9  | JT 1 M    | GB2576  | 363752   | 6205640 | 35.5    | 10.0  | 4    | 6        | 2.7  |
|    | JT 1 M    | GB2577  | 363699   | 6205578 | 35.4    | 12.0  | 5    | 6        | 3.7  |
|    | JT 1 M    | GB2578  | 363647   | 6205520 | 35.3    | 14.0  | 8    | 4        | 4.9  |
| (( | JT 1 M    | GB2579  | 363590   | 6205456 | 35.2    | 14.0  | 9    | 3        | 6.4  |
| 7  | JT 1 M    | GB2580  | 363533   | 6205390 | 35.1    | 14.0  | 9    | 4        | 3.7  |
| (( | JT 1 M    | GB2581  | 363479   | 6205328 | 35.0    | 14.0  | 10   | 4        | 3.65 |
|    | JT 1 M    | GB2582  | 363760   | 6205863 | 35.8    | 8.0   | 3    | 4        | 4.6  |
|    | JT 1 M    | GB2583  | 363706   | 6205806 | 35.7    | 10.0  | 4    | 5        | 5.1  |
| -  | JT 1 M    | GB2584  | 363652   | 6205749 | 35.6    | 10.0  | 4    | 5        | 3.1  |
|    | JT 1 M    | GB2585  | 363595   | 6205686 | 35.6    | 10.0  | 5    | 5        | 5.8  |
|    | JT 1 M    | GB2586  | 363595.7 | 6205687 | 35.6    | 12.0  | 5    | 5        | 5    |
| (( | JT 1 M    | GB2587  | 363519   | 6205653 | 35.5    | 12.0  | 6    | 4        | 6.1  |
| 9  | JT 1 M    | GB2588  | 363465   | 6205596 | 35.4    | 12.0  | 7    | 5        | 5.2  |
| A  | JT 1 M    | GB2589  | 363408   | 6205536 | 35.3    | 14.0  | 7    | 5        | 2.1  |
| 2  | JT 1 M    | GB2590  | 363355   | 6205471 | 35.2    | 14.0  | 10   | 3        | 4    |
|    | JT 1 M    | GB2591  | 363298   | 6205409 | 35.2    | 14.0  | 8    | 4        | 3.8  |
| (( | JT 1 M    | GB2592  | 363253   | 6205353 | 35.1    | 14.0  | 9    | 3        | 4.2  |
| 7  | JT 1 M    | GB2593  | 363775   | 6205467 | 35.2    | 12.0  | 8    | 3        | 3.2  |
| (( | JT 1 M    | GB2594  | 363716   | 6205404 | 35.1    | 14.0  | 8    | 4        | 5.1  |
| G  | JT 1 M    | GB2595  | 363661   | 6205342 | 35.1    | 14.0  | 9    | 4        | 3.8  |
| 2  | JT 1 M    | GB2596  | 363001   | 6205376 | 35.1    | 14.0  | 11   | 2        | 3.6  |
| 6  | JT 1 M    | GB2597  | 362961   | 6205315 | 35.0    | 14.0  | 11   | 2        | 3.3  |
| 6  | JT 1 M    | W00161  | 363787.3 | 6206191 | 38.2    | 18.0  | 1    | 2        | 2.3  |
|    | JT 1 M    | W00162  | 363787.6 | 6206141 | 37.6    | 18.0  | 2    | 2        | 3.7  |
| (( | JT 1 M    | W00163  | 363789.4 | 6206091 | 37.0    | 18.0  | 1    | 4        | 2.6  |
| _  | JT 1 M    | W00164  | 363789   | 6206040 | 36.5    | 18.0  | 2    | 3        | 3.6  |
|    | JT 1 M    | W00165  | 363789.8 | 6205991 | 36.0    | 18.0  | 2    | 3        | 3.6  |
| 2  | JT 1 M    | W00166  | 363791.3 | 6205940 | 35.9    | 18.0  | 1    | 4        | 3.7  |
| 6  | JT 1 M    | W00167  | 363792   | 6205891 | 35.8    | 18.0  | 2    | 4        | 4.4  |
| Q  | JТ 1 М    | W00168  | 363792.6 | 6205841 | 35.8    | 18.0  | 3    | 4        | 5.3  |
|    | JT 1 M    | W00169  | 363793.6 | 6205791 | 35.7    | 18.0  | 3    | 5        | 3.9  |
|    | JT 1 M    | W00170  | 363793.9 | 6205741 | 35.6    | 18.0  | 3    | 5        | 4.9  |
| -  | JT 1 M    | W00171  | 363795.1 | 6205691 | 35.6    | 18.0  | 4    | 5        | 4.6  |
|    | JT 1 M    | W00172  | 363796.1 | 6205640 | 35.5    | 18.0  | 5    | 5        | 4.3  |
|    | JT 1 M    | W00173  | 363796.3 | 6205591 | 35.4    | 18.0  | 5    | 4        | 4.2  |
|    | JT 1 M    | W00174  | 363795.7 | 6205540 | 35.3    | 18.0  | 5    | 5        | 3.4  |
|    | JT 1 M    | W00175  | 363796.1 | 6205537 | 35.3    | 18.0  | 5    | 5        | 4    |
|    | JT 1 M    | W00176  | 363797.5 | 6205491 | 35.3    | 18.0  | 4    | 6        | 4.8  |
|    | JT 1 M    | W00177  | 363798.3 | 6205440 | 35.2    | 18.0  | 5    | 5        | 4.6  |
|    | JT 1 M    | W00178  | 363799.9 | 6205390 | 35.1    | 18.0  | 6    | 5        | 4.2  |
|    | JT 1 M    | W00179  | 363800.4 | 6205340 | 35.1    | 18.0  | 7    | 5        | 4.2  |



|                     |           |         | East     | North   | RL      | Depth | From   | Interval | НМ   |
|---------------------|-----------|---------|----------|---------|---------|-------|--------|----------|------|
|                     | Wireframe | Hole ID | (GDA94   | (GDA94  | (m ASL) | (m)   | (m)    | (m)      | (%)  |
| A                   |           |         | Z50)     | Z50)    |         | ()    | (11)   | (11)     | (10) |
| 24                  | JT 1 M    | W00180  | 363801.3 | 6205291 | 35.0    | 18.0  | 8      | 5        | 4.7  |
| 2                   | JT 1 M    | W00181  | 363802.4 | 6205241 | 34.9    | 18.0  | 9      | 4        | 3.6  |
|                     | JT 1 M    | W00182  | 363802.3 | 6205205 | 34.9    | 18.0  | 9      | 3        | 4.1  |
| 7                   | JT 1 M    | W00183  | 363803   | 6205140 | 34.8    | 18.0  | 10     | 3        | 3    |
|                     | JT 1 M    | W00184  | 363802.7 | 6205091 | 34.7    | 18.0  | 10     | 3        | 3    |
| 6                   | JT 1 M    | W00185  | 363803.9 | 6205041 | 34.6    | 18.0  | 6      | 8        | 3    |
| 9                   | JT 1 M    | W00186  | 363805.3 | 6204993 | 34.6    | 18.0  | 7      | 7        | 3.8  |
| 0                   | JT 1 M    | W00187  | 363807.3 | 6204788 | 34.3    | 18.0  | 12     | 3        | 6.2  |
| U                   | JT 1 M    | W00197  | 362951.6 | 6206757 | 44.5    | 15.0  | 3      | 2        | 2.4  |
|                     | JT 1 M    | W00198  | 362938.6 | 6206705 | 43.9    | 15.0  | 3      | 3        | 2.9  |
|                     | JT 1 M    | W00199  | 362926.5 | 6206657 | 43.4    | 15.0  | 2      | 5        | 2.6  |
|                     | JT 1 M    | W00200  | 362915.5 | 6206607 | 42.8    | 15.0  | 3      | 4        | 4.1  |
|                     | JT 1 M    | W00201  | 362908.9 | 6206559 | 42.3    | 15.0  | 5      | 3        | 3.4  |
|                     | JT 1 M    | W00202  | 362914   | 6206511 | 41.8    | 15.0  | 3      | 3        | 4.4  |
| $(\square$          | JT 1 M    | W00203  | 362922.5 | 6206459 | 41.2    | 15.0  | 3      | 4        | 5.8  |
| 0                   | JT 1 M    | W00204  | 362931   | 6206410 | 40.6    | 15.0  | 4      | 3        | 6.4  |
| C                   | JT 1 M    | W00205  | 362936   | 6206359 | 40.0    | 15.0  | 3      | 5        | 5    |
| $\mathbb{Z}$        | IT 1 M    | W00206  | 362945.8 | 6206309 | 39.5    | 15.0  | 5      | 4        | 5.7  |
|                     | IT 1 M    | W00207  | 362952.3 | 6206264 | 39.0    | 15.0  | 4      | 5        | 6    |
| Q                   | IT 1 M    | W00208  | 362959.7 | 6206211 | 38.4    | 15.0  | 4      | 5        | 6.4  |
| A                   |           | W00209  | 362968.1 | 6206161 | 37.8    | 15.0  | 4      | 5        | 4.8  |
| (C                  | IT 1 M    | W00210  | 362971.2 | 6206114 | 37.3    | 15.0  | 4      | 5        | 5    |
| 2                   | JT 1 M    | W00211  | 362981.3 | 6206063 | 36.7    | 15.0  | 4      | 5        | 5.6  |
|                     | JT 1 M    | W00212  | 362988.8 | 6206015 | 36.2    | 15.0  | 5      | 4        | 6.1  |
| (                   | JT 1 M    | W00213  | 362987   | 6206014 | 36.2    | 15.0  | 4      | 5        | 4.4  |
| 9                   | JT 1 M    | W00214  | 362994.7 | 6205965 | 36.0    | 15.0  | 6      | 3        | 4.9  |
|                     | JT 1 M    | W00215  | 363002.8 | 6205914 | 35.9    | 15.0  | 6      | 4        | 3.8  |
| 29                  | T 1 M     | W00216  | 363010.6 | 6205860 | 35.8    | 15.0  | 7      | 3        | 4.9  |
|                     | JT 1 M    | W00217  | 363018.5 | 6205807 | 35.7    | 15.0  | ,<br>7 | 3        | 3.3  |
| $\overline{\Omega}$ | JT 1 M    | W00218  | 363024.3 | 6205758 | 35.7    | 15.0  | 8      | 2        | 3.3  |
|                     | JT 1 M    | W00219  | 363029.7 | 6205711 | 35.6    | 15.0  | 8      | 3        | 2.9  |
| A                   | JT 1 M    | W00220  | 363036.9 | 6205659 | 35.5    | 15.0  | 9      | 2        | 3.6  |
| 9                   | JT 1 M    | W00221  | 363044   | 6205609 | 35.4    | 15.0  | 9      | 3        | 2.9  |
|                     | JT 1 M    | W00222  | 363049.6 | 6205565 | 35.4    | 15.0  | 8      | 3        | 2.4  |
|                     | JT 1 M    | W00223  | 363055.6 | 6205513 | 35.3    | 15.0  | 9      | 5        | 2.6  |
|                     | JT 1 M    | W00225  | 363070.8 | 6205412 | 35.2    | 15.0  | 9      | 3        | 4.9  |
|                     | JT 1 M    | W00226  | 363071.8 | 6205336 | 35.1    | 15.0  | 9      | 4        | 5.6  |
|                     | JT 1 M    | W00227  | 363027.4 | 6205282 | 35.0    | 18.0  | 10     | 3        | 5.7  |
|                     | JT 1 M    | W00229  | 363116.8 | 6205348 | 35.1    | 15.0  | 8      | 5        | 4.2  |
|                     | JT 1 M    | W00230  | 362189.4 | 6207061 | 47.9    | 15.0  | 3      | 5        | 6.2  |
|                     | JT 1 M    | W00233  | 362218.8 | 6206756 | 44.5    | 15.0  | 3      | 5        | 3.8  |
|                     | JT 1 M    | W00234  | 362219.8 | 6206707 | 44.0    | 15.0  | 6      | 2        | 4.5  |
|                     | JT 1 M    | W00235  | 362220.6 | 6206656 | 43.4    | 15.0  | 5      | 3        | 5.7  |
|                     | JT 1 M    | W00236  | 362222.4 | 6206608 | 42.8    | 15.0  | 6      | 2        | 6.1  |



|        |           |         | East     | North   | RL      | Depth | From | Intorval |      |
|--------|-----------|---------|----------|---------|---------|-------|------|----------|------|
|        | Wireframe | Hole ID | (GDA94   | (GDA94  | (m ASL) | (m)   | (m)  | (m)      | (%)  |
|        |           |         | Z50)     | Z50)    | (       | (/    | ()   | ()       | (10) |
| $\leq$ | JT 1 M    | W00237  | 362224.1 | 6206545 | 42.1    | 15.0  | 6    | 2        | 3.2  |
|        | JT 1 M    | W00238  | 362224.1 | 6206508 | 41.7    | 15.0  | 6    | 2        | 2.1  |
|        | JT 1 V M  | GB1147  | 361952   | 6206811 | 45.1    | 15.0  | 5.0  | 2.0      | 5.0  |
|        | JT 1 V M  | GB1148  | 361926   | 6206751 | 44.4    | 9.0   | 5.0  | 2.0      | 3.7  |
| (      | JT 1 V M  | GB1149  | 361865   | 6206691 | 43.8    | 12.0  | 5.0  | 2.0      | 1.3  |
| 5      | JT 1 V M  | GB1167  | 361919   | 6206371 | 40.2    | 12.0  | 8.0  | 1.0      | 2.1  |
|        | JT 1 V M  | GB2295  | 362223   | 6205968 | 36.0    | 12.0  | 8.0  | 4.0      | 4.5  |
| 1      | JT 1 V M  | GB2296  | 362216   | 6206313 | 39.5    | 12.0  | 7.0  | 4.0      | 2.3  |
| Ĺ      | JT 1 V M  | GB2297  | 362209   | 6206707 | 44.0    | 8.2   | 6.0  | 2.0      | 5.1  |
| 0      | JT 1 V M  | GB2298  | 362193   | 6206896 | 46.1    | 8.0   | 2.0  | 5.0      | 5.3  |
| (      | JT 1 V M  | GB2299  | 362185   | 6206969 | 46.9    | 7.0   | 3.0  | 3.0      | 3.8  |
|        | JT 1 V M  | GB2300  | 362007   | 6206865 | 45.7    | 10.0  | 4.0  | 2.0      | 3.1  |
|        | JT 1 V M  | GB2301  | 361867   | 6206862 | 45.7    | 10.0  | 4.0  | 4.0      | 3.4  |
|        | JT 1 V M  | GB2302  | 361517   | 6206860 | 45.7    | 10.0  | 3.0  | 2.0      | 2.1  |
|        | JT 1 V M  | GB2309  | 362019   | 6206934 | 46.5    | 10.0  | 4.0  | 2.0      | 3.4  |
|        | JT 1 V M  | GB2310  | 362011   | 6207005 | 47.3    | 9.0   | 3.0  | 3.0      | 3.9  |
| 7      | JT 1 V M  | GB2311  | 362002   | 6207080 | 48.2    | 10.0  | 3.0  | 2.0      | 2.7  |
| 5      | JT 1 V M  | GB2312  | 361704   | 6206882 | 45.9    | 10.0  | 4.0  | 2.0      | 3.9  |
|        | JT 1 V M  | GB2313  | 361772   | 6206938 | 46.6    | 10.0  | 4.0  | 2.0      | 1.8  |
| 7      | JT 1 V M  | GB2314  | 361797   | 6207015 | 47.4    | 10.0  | 3.0  | 2.0      | 1.8  |
|        | JT 1 V M  | GB2325  | 361432   | 6206826 | 45.3    | 8.0   | 4.0  | 2.0      | 2.8  |
|        | JT 1 V M  | GB2326  | 361446   | 6206746 | 44.4    | 10.0  | 4.0  | 2.0      | 4.0  |
| 7      | JT 1 V M  | GB2327  | 361365   | 6206713 | 44.0    | 10.0  | 4.0  | 2.0      | 1.6  |
|        | JT 1 V M  | GB2329  | 361303   | 6206660 | 43.4    | 10.0  | 4.0  | 2.0      | 1.3  |
| 707    | JT 1 V M  | GB2341  | 361668   | 6206743 | 44.4    | 8.0   | 6.0  | 2.0      | 1.9  |
|        | JT 1 V M  | GB2350  | 362107   | 6206789 | 44.9    | 10.0  | 5.0  | 4.0      | 5.2  |
| 6      | JT 1 V M  | GB2351  | 362063   | 6206719 | 44.1    | 10.0  | 6.0  | 3.0      | 6.7  |
| 9      | JT 1 V M  | GB2352  | 362029   | 6206647 | 43.3    | 10.0  | 7.0  | 2.0      | 4.0  |
|        | JT 1 V M  | GB2353  | 361986   | 6206583 | 42.6    | 10.0  | 6.0  | 2.0      | 1.4  |
| (      | JT 1 V M  | GB2354  | 362091   | 6206519 | 41.8    | 10.0  | 8.0  | 2.0      | 1.2  |
|        | JT 1 V M  | GB2436  | 362128   | 6206596 | 42.7    | 10.0  | 7.0  | 2.0      | 4.0  |
| 7      | JT 1 V M  | GB2437  | 362057   | 6206456 | 41.1    | 14.0  | 8.0  | 2.0      | 2.2  |
| 2      | JT 1 V M  | GB2439  | 362018   | 6206393 | 40.4    | 10.0  | 8.0  | 2.0      | 2.7  |
| 6      | JT 1 V M  | GB2440  | 362122   | 6206336 | 39.8    | 14.0  | 9.0  | 3.0      | 3.8  |
| S      | JT 1 V M  | GB2443  | 362122   | 6206123 | 37.4    | 12.0  | 8.0  | 3.0      | 4.0  |
|        | JT 1 V M  | GB2444  | 362087   | 6206024 | 36.3    | 14.0  | 10.0 | 2.0      | 3.6  |
|        | JT 1 V M  | GB2445  | 361982   | 6206095 | 37.1    | 12.0  | 7.0  | 2.0      | 3.7  |
|        | JT 1 V M  | GB2447  | 361910   | 6206012 | 36.1    | 10.0  | 7.0  | 3.0      | 4.0  |
|        | JT 1 V M  | W00230  | 362189   | 6207061 | 47.9    | 15.0  | 3.0  | 1.0      | 4.3  |
|        | JT 1 V M  | W00231  | 362220   | 6206854 | 45.6    | 15.0  | 4.0  | 2.0      | 8.5  |
|        | JT 1 V M  | W00232  | 362219   | 6206807 | 45.1    | 15.0  | 5.0  | 2.0      | 4.9  |
|        | JT 1 V M  | W00233  | 362219   | 6206756 | 44.5    | 15.0  | 3.0  | 5.0      | 3.8  |
|        | JT 1 V M  | W00234  | 362220   | 6206707 | 44.0    | 15.0  | 6.0  | 2.0      | 4.5  |
|        | JT 1 V M  | W00235  | 362221   | 6206656 | 43.4    | 15.0  | 5.0  | 3.0      | 5.7  |
|        | JT 1 V M  | W00236  | 362222   | 6206608 | 42.8    | 15.0  | 6.0  | 2.0      | 6.1  |
|        | JT 1 V M  | W00237  | 362224   | 6206545 | 42.1    | 15.0  | 6.0  | 2.0      | 3.2  |



|           |         | East   | North   | RL      | Depth | From | Interval | ым  |
|-----------|---------|--------|---------|---------|-------|------|----------|-----|
| Wireframe | Hole ID | (GDA94 | (GDA94  | (m ASL) | (m)   | (m)  | (m)      | (%) |
| JT 1 V M  | W00238  | 362224 | 6206508 | 41.7    | 15.0  | 7.0  | 2.0      | 2.8 |
| JT 1 V M  | W00239  | 362224 | 6206463 | 41.2    | 15.0  | 7.0  | 2.0      | 1.3 |
| JT 1 V M  | W00240  | 362224 | 6206412 | 40.6    | 15.0  | 8.0  | 2.0      | 1.3 |
| JT 1 V M  | W00241  | 362225 | 6206363 | 40.1    | 15.0  | 8.0  | 2.0      | 1.4 |
| JT 1 V M  | W00243  | 362227 | 6206269 | 39.0    | 15.0  | 9.0  | 3.0      | 4.4 |
|           |         |        |         |         |       |      |          |     |
| JT 2 M    | GB2373  | 362350 | 6205991 | 36.0    | 12.0  | 8    | 3        | 5.3 |
| JT 2 M    | GB2381  | 362546 | 6206190 | 38.1    | 12.0  | 4    | 2        | 3.1 |
| JT 2 M    | GB2382  | 362549 | 6206115 | 37.3    | 12.0  | 3    | 3        | 4.6 |
| JT 2 M    | GB2383  | 362550 | 6206040 | 36.5    | 12.0  | 4    | 2        | 6.5 |
| JT 2 M    | GB2384  | 362551 | 6205965 | 36.0    | 12.0  | 5    | 4        | 5.1 |
| JT 2 M    | GB2385  | 362553 | 6205890 | 35.8    | 12.0  | 6    | 5        | 6.9 |
| JT 2 M    | GB2386  | 362553 | 6205815 | 35.7    | 12.0  | 7    | 3        | 8   |
| JT 2 M    | GB2387  | 362555 | 6205739 | 35.6    | 12.0  | 8    | 3        | 6.9 |
| JT 2 M    | GB2388  | 362555 | 6205740 | 35.6    | 12.0  | 8    | 3        | 5.7 |
| JT 2 M    | GB2389  | 362559 | 6205664 | 35.5    | 14.0  | 10   | 2        | 3.9 |
| JT 2 M    | GB2409  | 363300 | 6205204 | 34.9    | 14.0  | 8    | 4        | 5.2 |
| JT 2 M    | GB2410  | 363255 | 6205137 | 34.8    | 16.0  | 10   | 2        | 6.8 |
| JT 2 M    | GB2411  | 363407 | 6205251 | 34.9    | 14.0  | 8    | 3        | 3.6 |
| JT 2 M    | GB2420  | 363803 | 6205248 | 34.9    | 16.0  | 2    | 4        | 2.6 |
| JT 2 M    | GB2421  | 363803 | 6205247 | 34.9    | 14.0  | 2    | 4        | 2.6 |
| JT 2 M    | GB2428  | 363618 | 6205271 | 35.0    | 14.0  | 5    | 4        | 2.5 |
| JT 2 M    | GB2429  | 363635 | 6205198 | 34.9    | 16.0  | 5    | 4        | 3.3 |
| JT 2 M    | GB2430  | 363456 | 6205184 | 34.8    | 14.0  | 7    | 1        | 2.2 |
| JT 2 M    | GB2431  | 363650 | 6205086 | 34.7    | 16.0  | 6    | 4        | 3.8 |
| JT 2 M    | GB2432  | 363513 | 6205072 | 34.7    | 16.0  | 9    | 1        | 2.3 |
| JT 2 M    | GB2454  | 362709 | 6206084 | 36.9    | 10.0  | 1    | 4        | 3.5 |
| JT 2 M    | GB2455  | 362709 | 6206085 | 37.0    | 10.0  | 1    | 2        | 2.6 |
| JT 2 M    | GB2456  | 362710 | 6206000 | 36.0    | 12.0  | 5    | 2        | 3.5 |
| JT 2 M    | GB2457  | 362711 | 6205925 | 35.9    | 12.0  | 7    | 1        | 4.2 |
| JT 2 M    | GB2458  | 362712 | 6205828 | 35.8    | 12.0  | 5    | 3        | 3.9 |
| JT 2 M    | GB2459  | 362706 | 6205750 | 35.6    | 12.0  | 6    | 3        | 4.4 |
| JT 2 M    | GB2460  | 362701 | 6205667 | 35.5    | 12.0  | 8    | 3        | 5   |
| JT 2 M    | GB2461  | 362701 | 6205584 | 35.4    | 12.0  | 9    | 3        | 4.2 |
| JT 2 M    | GB2474  | 362836 | 6205930 | 35.9    | 12.0  | 2    | 2        | 2.5 |
| JT 2 M    | GB2475  | 362838 | 6205854 | 35.8    | 10.9  | 3    | 2        | 3.6 |
| JT 2 M    | GB2476  | 362837 | 6205762 | 35.7    | 12.0  | 4    | 3        | 3.9 |
| JT 2 M    | GB2529  | 363109 | 6205772 | 35.7    | 12.0  | 1    | 2        | 2.6 |
| JT 2 M    | GB2535  | 363027 | 6205712 | 35.6    | 14.0  | 3    | 3        | 2.9 |
| JT 2 M    | GB2536  | 363023 | 6205759 | 35.7    | 12.0  | 2    | 3        | 2.7 |
| JT 2 M    | GB2538  | 362833 | 6205700 | 35.6    | 14.0  | 6    | 2        | 6.7 |
| JT 2 M    | GB2539  | 362833 | 6205622 | 35.5    | 14.0  | 7    | 4        | 5.3 |
| JT 2 M    | GB2540  | 362833 | 6205542 | 35.3    | 14.0  | 8    | 2        | 8.3 |
| JT 2 M    | GB2573  | 363223 | 6205594 | 35.4    | 12.0  | 2    | 4        | 3.1 |
| JT 2 M    | GB2574  | 363165 | 6205536 | 35.3    | 12.0  | 4    | 4        | 4   |



|                |           |         | East   | North   | RL      | Depth | Бкоро | Intowal |     |
|----------------|-----------|---------|--------|---------|---------|-------|-------|---------|-----|
|                | Wireframe | Hole ID | (GDA94 | (GDA94  | (m ASI) | (m)   | (m)   | (m)     | (%) |
|                |           |         | Z50)   | Z50)    |         | (11)  |       | (III)   | (%) |
| 2              | JT 2 M    | GB2575  | 363118 | 6205474 | 35.2    | 12.0  | 6     | 3       | 6.6 |
| 2              | JT 2 M    | GB2580  | 363533 | 6205390 | 35.1    | 14.0  | 3     | 3       | 2.7 |
| (              | JT 2 M    | GB2581  | 363479 | 6205328 | 35.0    | 14.0  | 5     | 4       | 3.2 |
|                | JT 2 M    | GB2590  | 363355 | 6205471 | 35.2    | 14.0  | 4     | 2       | 2.7 |
| (              | JT 2 M    | GB2595  | 363661 | 6205342 | 35.1    | 14.0  | 2     | 2       | 2.2 |
| 6              | JT 2 M    | GB2596  | 363001 | 6205376 | 35.1    | 14.0  | 9     | 2       | 5   |
|                | JT 2 M    | GB2597  | 362961 | 6205315 | 35.0    | 14.0  | 10    | 1       | 9.6 |
| (              | JT 2 M    | W00179  | 363800 | 6205340 | 35.1    | 18.0  | 1     | 2       | 2.2 |
|                | JT 2 M    | W00180  | 363801 | 6205291 | 35.0    | 18.0  | 3     | 2       | 2.2 |
| $\overline{a}$ | JT 2 M    | W00181  | 363802 | 6205241 | 34.9    | 18.0  | 2     | 4       | 3   |
|                | JT 2 M    | W00182  | 363802 | 6205205 | 34.9    | 18.0  | 2     | 4       | 2.3 |
|                | JT 2 M    | W00216  | 363011 | 6205860 | 35.8    | 15.0  | 1     | 1       | 2   |
|                | JT 2 M    | W00217  | 363018 | 6205807 | 35.7    | 15.0  | 1     | 3       | 2.8 |
|                | JT 2 M    | W00218  | 363024 | 6205758 | 35.7    | 15.0  | 2     | 2       | 3   |
|                | JT 2 M    | W00219  | 363030 | 6205711 | 35.6    | 15.0  | 3     | 2       | 5.6 |
|                | JT 2 M    | W00220  | 363037 | 6205659 | 35.5    | 15.0  | 3     | 4       | 4.9 |
| F              | JT 2 M    | W00221  | 363044 | 6205609 | 35.4    | 15.0  | 4     | 4       | 3.4 |
| 9              | JT 2 M    | W00222  | 363050 | 6205565 | 35.4    | 15.0  | 5     | 3       | 6.2 |
| 6              | JT 2 M    | W00223  | 363056 | 6205513 | 35.3    | 15.0  | 6     | 3       | 5.2 |
| 7              | JT 2 M    | W00224  | 363063 | 6205462 | 35.2    | 15.0  | 7     | 3       | 7.2 |
| /              | JT 2 M    | W00225  | 363071 | 6205412 | 35.2    | 15.0  | 8     | 2       | 8   |
|                | JT 2 M    | W00229  | 363117 | 6205348 | 35.1    | 15.0  | 8     | 2       | 6   |
|                |           |         |        |         |         |       |       |         |     |
| 7              | JT 3 V M  | GB1150  | 361830 | 6206636 | 43.2    | 12.0  | 2.0   | 2.0     | 5.4 |
| 2              | JT 3 V M  | GB1151  | 361676 | 6206592 | 42.7    | 12.0  | 3.0   | 4.0     | 4.9 |
| 2              | JT 3 V M  | GB1152  | 361626 | 6206527 | 41.9    | 6.0   | 4.0   | 2.0     | 4.9 |
| (              | JT 3 V M  | GB1153  | 361561 | 6206466 | 41.2    | 12.0  | 3.0   | 3.0     | 5.8 |
| C              | ЈТ З V М  | GB1154  | 361512 | 6206370 | 40.2    | 6.0   | 3.0   | 2.0     | 1.5 |
| 6              | JT 3 V M  | GB1165  | 361859 | 6206223 | 38.5    | 7.0   | 5.0   | 2.0     | 2.5 |
|                | )T 3 V M  | GB1166  | 361890 | 6206299 | 39.4    | 12.0  | 6.0   | 2.0     | 6.3 |
|                | JT 3 V M  | GB1167  | 361919 | 6206371 | 40.2    | 12.0  | 6.0   | 2.0     | 5.3 |
| 7              | JT 3 V M  | GB1168  | 361938 | 6206457 | 41.1    | 12.0  | 3.0   | 5.0     | 3.7 |
|                | JT 3 V M  | GB1169  | 361963 | 6206539 | 42.1    | 9.0   | 4.0   | 2.0     | 4.0 |
| (              | JT 3 V M  | GB2328  | 361442 | 6206575 | 42.5    | 10.0  | 3.0   | 2.0     | 2.8 |
| l              | JT 3 V M  | GB2340  | 361566 | 6206693 | 43.8    | 4.1   | 2.1   | 2.0     | 1.9 |
|                | JT 3 V M  | GB2342  | 361817 | 6206595 | 42.7    | 8.0   | 2.0   | 4.0     | 4.1 |
|                | JT 3 V M  | GB2343  | 361801 | 6206518 | 41.8    | 8.0   | 4.0   | 3.0     | 5.4 |
|                | JT 3 V M  | GB2344  | 361780 | 6206444 | 41.0    | 10.0  | 5.0   | 3.0     | 7.0 |
|                | JT 3 V M  | GB2345  | 361717 | 6206383 | 40.3    | 10.0  | 6.0   | 2.0     | 6.1 |
|                | JT 3 V M  | GB2346  | 361683 | 6206310 | 39.5    | 10.0  | 5.0   | 2.0     | 2.6 |
|                | JT 3 V M  | GB2438  | 361941 | 6206467 | 41.3    | 10.0  | 6.0   | 3.0     | 2.8 |
|                | JT 3 V M  | GB2441  | 362076 | 6206257 | 38.9    | 12.0  | 7.0   | 3.0     | 3.7 |
|                | JT 3 V M  | GB2442  | 362002 | 6206207 | 38.3    | 12.0  | 6.0   | 5.0     | 5.2 |
|                | JT 3 V M  | W00239  | 362224 | 6206463 | 41.2    | 15.0  | 3.0   | 2.0     | 1.2 |
|                | JT 3 V M  | W00240  | 362224 | 6206412 | 40.6    | 15.0  | 3.0   | 3.0     | 3.1 |
|                | JT 3 V M  | W00241  | 362225 | 6206363 | 40.1    | 15.0  | 6.0   | 2.0     | 2.6 |



|           |         | East   | North   | RL      | Depth | From | Interval | НМ   |
|-----------|---------|--------|---------|---------|-------|------|----------|------|
| Wireframe | Hole ID | (GDA94 | (GDA94  | (m ASL) | (m)   | (m)  | (m)      | (%)  |
|           |         | Z50)   | Z50)    |         | × ź   | ()   | ()       | (//) |
| JT 3 V M  | W00242  | 362226 | 6206313 | 39.5    | 15.0  | 7.0  | 4.0      | 3.3  |
| JT 3 V M  | W00243  | 362227 | 6206269 | 39.0    | 15.0  | 6.0  | 3.0      | 3.4  |
| JT 3 V M  | W00244  | 362225 | 6206268 | 39.0    | 15.0  | 6.0  | 6.0      | 3.0  |
| JT 3 V M  | W00245  | 362228 | 6206220 | 38.5    | 15.0  | 8.0  | 2.0      | 4.5  |
| JT 3 V M  | W00246  | 362228 | 6206170 | 37.9    | 15.0  | 8.0  | 3.0      | 3.2  |
| JT 3 V M  | W00247  | 362229 | 6206120 | 37.4    | 15.0  | 8.0  | 3.0      | 5.2  |
| JT 3 V M  | W00248  | 362230 | 6206068 | 36.8    | 15.0  | 8.0  | 3.0      | 6.3  |
| JT 3 V M  | W00249  | 362231 | 6206018 | 36.2    | 15.0  | 7.0  | 4.0      | 4.7  |
| JT 3 V M  | W00250  | 362232 | 6205968 | 36.0    | 15.0  | 8.0  | 3.0      | 4.9  |
| JT 3 V M  | W00251  | 362233 | 6205916 | 35.9    | 15.0  | 8.0  | 3.0      | 3.4  |
|           |         |        |         |         |       |      |          |      |
| JT SW N   | GB1171  | 362127 | 6205578 | 35.4    | 12.0  | 3.0  | 2.0      | 2.6  |
| JT SW N   | GB1172  | 361972 | 6205521 | 35.3    | 12.0  | 5.0  | 4.0      | 3.6  |
| JT SW N   | GB1173  | 361852 | 6205404 | 35.1    | 12.0  | 6.0  | 5.0      | 3.6  |
| JT SW N   | GB1174  | 361759 | 6205343 | 35.1    | 12.0  | 6.0  | 3.0      | 2.7  |
| JT SW N   | GB1196  | 362230 | 6205120 | 34.7    | 18.0  | 8.0  | 4.0      | 3.3  |
| JT SW N   | GB2393  | 362562 | 6205213 | 34.9    | 18.0  | 6.0  | 5.0      | 3.6  |
| JT SW N   | GB2394  | 362857 | 6205062 | 34.7    | 16.0  | 7.0  | 8.0      | 2.6  |
| JT SW N   | GB2395  | 362828 | 6204994 | 34.6    | 16.0  | 6.0  | 5.0      | 3.2  |
| JT SW N   | GB2396  | 362788 | 6204933 | 34.5    | 16.0  | 7.0  | 6.0      | 2.6  |
| JT SW N   | GB2397  | 362745 | 6204874 | 34.4    | 14.0  | 5.0  | 7.0      | 2.7  |
| JT SW N   | GB2398  | 362708 | 6204818 | 34.3    | 18.0  | 6.0  | 6.0      | 3.3  |
| JT SW N   | GB2399  | 362631 | 6204725 | 34.2    | 18.0  | 8.0  | 6.0      | 3.2  |
| JT SW N   | GB2400  | 362702 | 6204664 | 34.1    | 16.0  | 10.0 | 5.0      | 3.1  |
| JT SW N   | GB2401  | 362490 | 6204770 | 35.2    | 20.0  | 14.0 | 5.0      | 3.6  |
| JT SW N   | GB2403  | 362236 | 6205051 | 34.6    | 16.0  | 10.0 | 2.0      | 3.4  |
| JT SW N   | GB2404  | 362234 | 6205207 | 34.9    | 12.0  | 6.0  | 4.0      | 2.5  |
| JT SW N   | GB2415  | 363004 | 6204927 | 34.5    | 16.0  | 9.0  | 7.0      | 2.7  |
| JT SW N   | GB2426  | 363091 | 6205103 | 34.7    | 16.0  | 11.0 | 4.0      | 5.1  |
| JT SW N   | GB2477  | 362536 | 6204829 | 33.3    | 14.0  | 6.0  | 6.0      | 3.0  |
| JT SW N   | GB2478  | 362534 | 6204902 | 34.4    | 14.0  | 4.0  | 9.0      | 2.8  |
| JT SW N   | GB2479  | 362533 | 6204981 | 34.5    | 14.0  | 5.0  | 8.0      | 2.6  |
| JT SW N   | GB2480  | 362532 | 6205056 | 34.7    | 14.0  | 5.0  | 9.0      | 2.3  |
| JT SW N   | GB2481  | 362529 | 6205127 | 34.8    | 16.5  | 8.0  | 5.0      | 3.4  |
| JT SW N   | GB2482  | 362406 | 6204874 | 34.4    | 16.0  | 10.0 | 4.0      | 2.9  |
| JT SW N   | GB2483  | 362404 | 6204950 | 34.5    | 16.0  | 7.0  | 7.0      | 2.6  |
| JT SW N   | GB2484  | 362404 | 6205029 | 34.6    | 16.0  | 10.0 | 4.0      | 2.4  |
| JT SW N   | GB2485  | 362403 | 6205117 | 34.2    | 14.0  | 4.0  | 8.0      | 2.8  |
| JT SW N   | GB2486  | 362399 | 6205198 | 34.9    | 14.0  | 10.0 | 3.0      | 2.9  |
| JT SW N   | GB2487  | 361872 | 6205730 | 35.6    | 14.0  | 4.2  | 4.0      | 3.6  |
| JT SW N   | GB2488  | 361811 | 6205686 | 35.6    | 8.0   | 4.0  | 3.0      | 3.1  |
| JT SW N   | GB2489  | 361708 | 6205740 | 35.6    | 10.0  | 5.0  | 3.0      | 3.6  |
| JT SW N   | GB2490  | 362049 | 6205403 | 35.1    | 8.0   | 5.0  | 3.0      | 2.9  |
| JT SW N   | GB2491  | 361942 | 6205486 | 35.3    | 12.0  | 5.0  | 2.0      | 2.6  |
| JT SW N   | GB2492  | 361810 | 6205570 | 35.4    | 8.0   | 4.0  | 2.0      | 2.2  |
| JT SW N   | GB2493  | 361693 | 6205644 | 35.5    | 10.0  | 6.0  | 3.0      | 3.2  |
| JT SW N   | GB2494  | 361720 | 6205514 | 35.3    | 8.0   | 4.0  | 4.0      | 3.5  |



|                  |            |         | East   | North   | RL      | Depth  | From | Interval | ЦМ   |
|------------------|------------|---------|--------|---------|---------|--------|------|----------|------|
|                  | Wireframe  | Hole ID | (GDA94 | (GDA94  | (m ASI) | (m)    | (m)  | (m)      | (%)  |
|                  |            |         | Z50)   | Z50)    |         | (,,,,) |      |          | (70) |
| 1                | JT SW N    | GB2495  | 361766 | 6205412 | 35.2    | 10.0   | 7.0  | 2.0      | 3.2  |
| $\geq$           | JT SW N    | GB2496  | 361917 | 6205404 | 35.1    | 10.0   | 6.0  | 2.0      | 4.1  |
|                  | JT SW N    | GB2497  | 362206 | 6205305 | 35.0    | 10.0   | 5.0  | 4.0      | 2.3  |
| $\left( \right)$ | JT SW N    | GB2498  | 362207 | 6205306 | 35.0    | 10.0   | 5.0  | 4.0      | 2.1  |
|                  | JT SW N    | GB2499  | 362148 | 6205245 | 34.9    | 12.0   | 4.0  | 7.0      | 2.4  |
| 6                | JT SW N    | GB2500  | 362083 | 6205192 | 34.8    | 12.0   | 7.0  | 5.0      | 3.1  |
| 6                | JT SW N    | GB2501  | 361945 | 6205257 | 34.9    | 10.0   | 5.0  | 5.0      | 3.5  |
|                  | JT SW N    | GB2502  | 361742 | 6205279 | 35.0    | 12.0   | 7.0  | 3.0      | 3.3  |
|                  | JT SW N    | GB2503  | 362012 | 6205331 | 35.0    | 12.0   | 6.0  | 4.0      | 3.2  |
|                  | JT SW N    | GB2913  | 362129 | 6205514 | 38.1    | 8.0    | 3.0  | 2.0      | 2.7  |
| 7                | JT SW N    | GB2941  | 362567 | 6205286 | 41.7    | 8.0    | 7.0  | 4.0      | 2.6  |
|                  | JT SW N    | GB2943  | 362866 | 6204807 | 40.0    | 8.0    | 6.0  | 8.0      | 2.2  |
|                  | JT SW N    | GB2945  | 362653 | 6205176 | 38.5    | 10.0   | 11.0 | 2.0      | 3.4  |
|                  | JT SW N    | GB2946  | 362654 | 6205107 | 37.9    | 10.0   | 9.0  | 7.0      | 2.4  |
|                  | JT SW N    | GB2948  | 362659 | 6204946 | 41.6    | 8.0    | 6.0  | 8.0      | 3.2  |
|                  | JT SW N    | W00228  | 362929 | 6205136 | 34.8    | 18.0   | 6.0  | 9.0      | 1.7  |
|                  | JT SW N    | W00257  | 362238 | 6205613 | 35.5    | 15.0   | 3.0  | 2.0      | 2.1  |
| 6                | JT SW N    | W00258  | 362238 | 6205562 | 35.4    | 15.0   | 5.0  | 5.0      | 2.3  |
| 9                | JT SW N    | W00259  | 362239 | 6205513 | 35.3    | 15.0   | 5.0  | 5.0      | 1.8  |
|                  | JT SW N    | W00260  | 362240 | 6205458 | 35.2    | 15.0   | 3.0  | 5.0      | 2.0  |
| 2                | JT SW N    | W00261  | 362242 | 6205410 | 35.2    | 18.0   | 4.0  | 3.0      | 2.4  |
|                  | JT SW N    | W00262  | 362244 | 6205358 | 35.1    | 18.0   | 4.0  | 4.0      | 2.2  |
| (                | JT SW N    | W00263  | 362244 | 6205309 | 35.0    | 18.0   | 5.0  | 4.0      | 2.3  |
|                  | JT SW N    | W00264  | 362245 | 6205244 | 34.9    | 18.0   | 6.0  | 5.0      | 2.6  |
| 7                | $\bigcirc$ |         |        |         |         |        |      |          |      |
| 100              | JJTE       | GB2949  | 364759 | 6205150 | 35.3    | 12.0   | 4.0  | 5.0      | 3.1  |
| 2                | JT E       | GB2950  | 364727 | 6205077 | 36.0    | 12.0   | 6.0  | 4.0      | 3.3  |
| (                | JT E       | GB2951  | 364682 | 6205008 | 35.2    | 12.0   | 6.0  | 4.0      | 3.4  |
|                  | JT E       | GB2952  | 364642 | 6204957 | 35.1    | 12.0   | 7.0  | 4.0      | 4.2  |
|                  | JIE        | GB2953  | 364856 | 6204984 | 35.3    | 14.0   | 6.0  | 3.0      | 4.4  |
| (                | JIE        | GB2954  | 364811 | 6204924 | 35.2    | 14.0   | 7.0  | 3.0      | 4.9  |
|                  | JIE        | GB2955  | 364596 | 6204878 | 35.0    | 14.0   | 8.0  | 4.0      | 4.5  |
|                  | JT E       | GB2956  | 364554 | 6204814 | 34.8    | 14.0   | 9.0  | 4.0      | 3.3  |
| 2                | JT E       | GB2957  | 364771 | 6204854 | 35.1    | 14.0   | 6.0  | 4.0      | 4.9  |
| 0                | JT E       | GB2958  | 364723 | 6204785 | 34.9    | 14.0   | 8.0  | 3.0      | 4.7  |
|                  | JT E       | GB2959  | 364680 | 6204726 | 34.8    | 14.0   | 9.0  | 2.0      | 2.4  |
| 1                | JTE        | GB2960  | 364908 | 6204771 | 35.1    | 14.0   | 10.0 | 2.0      | 3.8  |
|                  | JT E       | GB2961  | 364861 | 6204700 | 34.9    | 14.0   | 10.0 | 2.0      | 2.8  |
|                  | JT E       | GB2962  | 364637 | 6204657 | 34.7    | 14.0   | 10.0 | 3.0      | 2.5  |
|                  | JT E       | GB2963  | 364783 | 6204568 | 34.7    | 14.0   | 10.0 | 4.0      | 3.1  |
|                  | JT E       | GB2964  | 364818 | 6204637 | 34.8    | 14.0   | 10.0 | 3.0      | 2.9  |
|                  | JT E       | GB2965  | 364951 | 6204537 | 34.7    | 14.0   | 10.0 | 4.0      | 3.1  |
|                  | JT E       | GB2966  | 364917 | 6204482 | 34.6    | 14.0   | 11.0 | 3.0      | 3.5  |
|                  | JT E       | GB2967  | 364589 | 6204589 | 34.5    | 16.0   | 11.0 | 3.0      | 5.2  |
|                  | JT E       | GB2968  | 364570 | 6204509 | 34.4    | 16.0   | 12.0 | 2.0      | 4.6  |
|                  | JT E       | GB2969  | 364554 | 6204426 | 34.3    | 16.0   | 12.0 | 4.0      | 3.9  |
|                  | JT E       | GB2970  | 364504 | 6204359 | 34.1    | 18.0   | 12.0 | 4.0      | 5.7  |



|           |         | East   | North   | RL      | Depth | Гиото | Intonial |                     |
|-----------|---------|--------|---------|---------|-------|-------|----------|---------------------|
| Wireframe | Hole ID | (GDA94 | (GDA94  | (m ASL) | (m)   | (m)   | (m)      | нм<br>(%)           |
| ITE       | GB2972  | 364736 | 6204498 | 34.5    | 16.0  | 10.0  | 5.0      | 3.6                 |
| UT E      | GB2974  | 365038 | 6204668 | 35.0    | 14.0  | 8.0   | 4.0      | 4.2                 |
| JTE       | GB2975  | 365083 | 6204732 | 35.1    | 13.0  | 8.0   | 4.0      | 2.7                 |
| JTE       | GB2976  | 365120 | 6204794 | 35.3    | 12.0  | 7.0   | 4.0      | 3.4                 |
| JTE       | GB2977  | 365121 | 6204795 | 35.3    | 12.0  | 9.0   | 3.0      | 3.8                 |
| ЛЕ        | GB2978  | 365163 | 6204861 | 35.4    | 12.0  | 7.0   | 3.0      | 4.8                 |
| JTE       | GB2979  | 364952 | 6204833 | 35.2    | 12.0  | 8.0   | 3.0      | 3.3                 |
| JTE       | GB2980  | 365203 | 6204921 | 35.5    | 12.0  | 5.0   | 4.0      | 4.2                 |
| JTE       | GB2981  | 364995 | 6204902 | 35.3    | 12.0  | 6.0   | 5.0      | 3.9                 |
| JTE       | GB2982  | 365040 | 6204968 | 35.5    | 10.0  | 7.0   | 3.0      | 3.3                 |
| JTE       | GB2983  | 365093 | 6205036 | 35.6    | 10.0  | 5.0   | 4.0      | 4.7                 |
|           | GB2984  | 365157 | 6205052 | 35.7    | 10.0  | 4.0   | 4.0      | 4.1                 |
| JTE       | GB2985  | 365085 | 6205144 | 35.8    | 8.0   | 4.0   | 3.0      | 3.8                 |
|           | GB2986  | 364899 | 6205053 | 35.5    | 10.0  | 5.0   | 4.0      | 3.8                 |
|           | GB2987  | 364946 | 6205119 | 35.6    | 8.0   | 5.0   | 3.0      | 5.4                 |
| ITE       | GB2988  | 364986 | 6205184 | 35.7    | 8.0   | 4.0   | 2.0      | 3.7                 |
| ITE       | GB2989  | 365195 | 6205101 | 35.8    | 10.0  | 4.0   | 2.0      | 2.9                 |
|           | GB2990  | 365093 | 6205182 | 35.9    | 10.0  | 4.0   | 2.0      | 3.2                 |
| ITE       | GB2991  | 365032 | 6205255 | 35.9    | 6.0   | 3.9   | 2.0      | 3.2                 |
| ITF       | GB2992  | 365056 | 6205324 | 36.0    | 6.0   | 3.0   | 2.0      | 2.6                 |
| ITE       | GB2993  | 364826 | 6205314 | 35.8    | 8.0   | 4.0   | 4.0      | 4.1                 |
|           | GB2994  | 364907 | 6205352 | 35.0    | 5.9   | 2.0   | 3.9      | 3.8                 |
|           | GB2995  | 364956 | 6205414 | 36.1    | 6.0   | 3.0   | 2.0      | 3.5                 |
|           | GB2999  | 364818 | 6205446 | 36.0    | 6.0   | 3.0   | 3.0      | <u> </u>            |
|           | GB3000  | 364813 | 6205516 | 35.0    | 6.0   | 1.0   | 3.0      | 33                  |
|           | GB3003  | 364556 | 6205645 | 36.1    | 8.0   | 5.0   | 2.0      | 2.4                 |
|           | GB3004  | 364399 | 6205747 | 36.2    | 6.0   | 3.0   | 2.0      | 3.6                 |
| ITE       | GB3006  | 364265 | 6205747 | 36.0    | 8.0   | 3.0   | 3.0      | 2.7                 |
| ITE       | GB3007  | 364127 | 6205701 | 35.9    | 8.0   | 2.0   | 5.0      | 2.7                 |
| ITE       | GB3008  | 364025 | 6205638 | 35.5    | 8.0   | 6.0   | 2.0      | <i>J</i> . <i>J</i> |
|           | GB3009  | 363971 | 6205556 | 35.5    | 10.0  | 4.0   | 5.0      |                     |
|           | GB3010  | 363915 | 6205478 | 35.5    | 12.0  | 5.0   | 5.0      | <u> </u>            |
| ITF       | GB3011  | 363861 | 6205381 | 35.4    | 12.0  | 7.0   | 5.0      | 3.7                 |
| ITF       | GB3012  | 364013 | 6205143 | 34.9    | 14.0  | 8.0   | 5.0      | 4.1                 |
|           | GB3013  | 364069 | 6205182 | 35.1    | 14.0  | 11.0  | 2.0      | 4.8                 |
| ITE       | GB3014  | 364116 | 6205241 | 35.2    | 12.0  | 8.0   | 4.0      | 5.0                 |
|           | 000017  | 201110 | 6205241 | 05.2    | 40.0  | 0.0   |          | 0.0                 |
| JTE       | GB3015  | 364167 | 6205310 | 35.3    | 12.0  | 8.0   | 3.0      | 3.2                 |
| JT E      | GB3016  | 364221 | 6205387 | 35.5    | 10.0  | 7.0   | 3.0      | 2.8                 |
| JTE       | GB3017  | 364123 | 6205042 | 34.9    | 14.0  | 10.0  | 2.0      | 2.3                 |
| JTE       | GB3018  | 364175 | 6205098 | 35.0    | 14.0  | 10.0  | 2.0      | 5.1                 |
| JT E      | GB3019  | 364216 | 6205161 | 35.1    | 12.0  | 8.0   | 4.0      | 4.5                 |
| JT E      | GB3020  | 364268 | 6205240 | 35.3    | 12.0  | 7.0   | 4.0      | 3.9                 |
| JT E      | GB3021  | 364324 | 6205321 | 35.5    | 10.0  | 6.0   | 4.0      | 4.4                 |
| JT É      | GB3022  | 364293 | 6205024 | 35.0    | 14.0  | 9.0   | 5.0      | 4.9                 |
| JT E      | GB3023  | 364344 | 6205089 | 35.1    | 12.0  | 9.0   | 3.0      | 3.6                 |
| JT E      | GB3024  | 364385 | 6205153 | 35.2    | 12.0  | 9.0   | 3.0      | 3.6                 |
|           | GB3025  | 364235 | 6204958 | 34 8    | 14.0  | 10.0  | 40       | 4 8                 |



|           |           |         | East   | North   | RL           | Depth       | From     | Intorval |            |
|-----------|-----------|---------|--------|---------|--------------|-------------|----------|----------|------------|
|           | Wireframe | Hole ID | (GDA94 | (GDA94  | (m ASL)      | (m)         | (m)      | (m)      | ∩™<br>(%)  |
|           |           |         | Z50)   | Z50)    | (            |             | (11)     | (11)     | (/0)       |
|           | JT E      | GB3026  | 364151 | 6204962 | 34.8         | 14.0        | 11.0     | 3.0      | 4.1        |
| $\square$ | JT E      | GB3027  | 364053 | 6204935 | 34.7         | 14.0        | 11.0     | 3.0      | 5.0        |
|           | JT E      | GB3028  | 363954 | 6204821 | 34.4         | 16.0        | 12.0     | 3.0      | 3.9        |
| (         | JT E      | GB3031  | 364086 | 6204715 | 34.4         | 18.0        | 12.0     | 4.0      | 5.6        |
| 2         | JT E      | GB3032  | 364119 | 6204773 | 34.5         | 16.0        | 10.0     | 6.0      | 5.0        |
| 6         | JT E      | GB3033  | 364119 | 6204774 | 34.5         | 16.0        | 11.0     | 5.0      | 4.3        |
| Y         | JT E      | GB3034  | 364198 | 6204890 | 34.8         | 16.0        | 10.0     | 4.0      | 3.4        |
|           | JT E      | GB3036  | 364284 | 6204708 | 34.5         | 16.0        | 11.0     | 4.0      | 3.8        |
|           | JT E      | GB3037  | 364267 | 6204855 | 34.7         | 16.0        | 11.0     | 3.0      | 4.2        |
| ((        | ) JT E    | GB3064  | 365999 | 6204594 | 35.7         | 8.0         | 4.0      | 3.0      | 2.8        |
| A         | JT E      | GB3068  | 365659 | 6204741 | 35.6         | 10.0        | 4.0      | 5.0      | 2.6        |
| (C        | JTE       | GB3076  | 364651 | 6205500 | 37.0         | 10.0        | 5.0      | 2.0      | 2.7        |
| Д         | JTE       | GB3077  | 364699 | 6205366 | 35.8         | 10.0        | 5.0      | 3.0      | 4.2        |
| Т         | JT E      | GB3078  | 364692 | 6205283 | 35.7         | 10.0        | 5.0      | 4.0      | 3.9        |
|           | JTE       | GB3079  | 364670 | 6205207 | 35.5         | 10.0        | 6.0      | 4.0      | 2.7        |
|           | JT E      | GB3080  | 364615 | 6205174 | 35.5         | 12.0        | 7.0      | 3.0      | 2.8        |
|           | JT E      | GB3081  | 364616 | 6205174 | 35.5         | 12.0        | 8.0      | 2.0      | 4.9        |
| A         | JTE       | GB3082  | 365829 | 6204702 | 35.7         | 8.0         | 5.0      | 2.0      | 2.2        |
| Y         | JT E      | GB3083  | 365827 | 6204765 | 35.8         | 8.0         | 3.0      | 3.0      | 3.4        |
| a         | JT E      | GB3088  | 365583 | 6204801 | 35.7         | 8.0         | 5.0      | 2.0      | 2.2        |
| 22        | JT E      | GB3092  | 365472 | 6204815 | 35.6         | 10.0        | 6.0      | 2.0      | 3.8        |
| 7         | JTE       | GB3095  | 365364 | 6204886 | 35.6         | 8.0         | 5.0      | 3.0      | 3.7        |
| ((        | JTE       | GB3096  | 365378 | 6204960 | 35.7         | 8.0         | 4.0      | 2.0      | 2.6        |
| М         | JTE       | GB3099  | 364600 | 6205083 | 35.3         | 12.0        | 7.0      | 4.0      | 3.4        |
| (         | JTE       | GB3100  | 364528 | 6205057 | 35.2         | 12.0        | 8.0      | 3.0      | 3.2        |
| 2         | JIE       | GB3101  | 364464 | 6205015 | 35.1         | 12.0        | 10.0     | 2.0      | 2.5        |
| 2         | JIE       | GB3102  | 364395 | 6204986 | 35.0         | 12.0        | 10.0     | 2.0      | 2.3        |
|           | JIE       | GB3103  | 364316 | 6204974 | 34.9         | 14.0        | 9.0      | 5.0      | 3.8        |
| Q         | JIE       | GB3104  | 364542 | 6205181 | 35.4         | 10.0        | 8.0      | 2.0      | 2.9        |
| A         | JIE       | GB3105  | 364541 | 6205181 | 35.4         | 12.0        | 9.0      | 2.0      | 2.9        |
| ((        | JIE       | GB3106  | 364564 | 6205222 | 36.0         | 10.0        | 8.0      | 2.0      | 3.6        |
| ۲         | JIE       | GB3107  | 364601 | 6205302 | 35.7         | 10.0        | 6.0      | 3.0      | 4.8        |
| ~         | JIE       | GB3108  | 364593 | 6205404 | 35.8         | 10.0        | 5.0      | 2.0      | 4.6        |
| 2         | JIE       | GB3109  | 364607 | 6205462 | 37.4         | 10.0        | 6.0      | 2.0      | 3.1        |
|           |           | 083110  | 265265 | 6203520 | 35.9<br>25 5 | 8.U<br>1E 0 | 4.0      | 3.0      | 5.L<br>1 0 |
| Q         |           | W00290  | 305205 | 6204880 | 33.3<br>25 5 | 12.0        | 6.0      | 2.0      | 4.0        |
|           |           | W00297  | 305257 | 6204927 | 35.5         | 12.0        | <u> </u> | 2.0      | 3.4        |
|           |           | W00298  | 265227 | 6205021 | 25.0         | 12.0        | 5.0      | 2.0      | 2.9        |
|           |           | W/00299 | 365210 | 6205021 | 25 0         | 12.0        | 1.0      | 2.0      | 5.0        |
|           |           | W00300  | 265104 | 6205072 | 33.0<br>25.0 | 12.0        | 4.0      | 4.0      | 2.9        |
|           |           | W/00202 | 365202 | 6205110 | 25.0         | 12.0        | 4.0      | 2.0      | 3.2        |
|           | ITE       | W/00302 | 365170 | 6205174 | 36.0         | 9.0         | 2.0      | 2.0      | 2.7        |
|           | JIE       | 000000  | 2021/0 | 0203209 | 30.0         | 9.0         | 2.0      | 2.0      | 5.7        |
|           | JTEU      | GB2955  | 364596 | 6204878 | 35.0         | 14.0        | 4.0      | 2.0      | 2.3        |
|           | JT E U    | GB2956  | 364554 | 6204814 | 34.8         | 14.0        | 4.0      | 5.0      | 2.1        |
|           | JT E U    | GB2963  | 364783 | 6204568 | 34.7         | 14.0        | 6.0      | 4.0      | 3.2        |
|           | JT E U    | GB2964  | 364818 | 6204637 | 34.8         | 14.0        | 5.0      | 3.0      | 2.8        |



|    |            |         | East   | North   | RL      | Depth | Гкоро | Intonial |           |
|----|------------|---------|--------|---------|---------|-------|-------|----------|-----------|
|    | Wireframe  | Hole ID | (GDA94 | (GDA94  | (m ASL) | (m)   | (m)   | (m)      | нм<br>(%) |
|    | ITFU       | GB2965  | 364951 | 6204537 | 34 7    | 14.0  | 5.0   | 3.0      | 2.5       |
| 1  | HEU        | GB2966  | 364917 | 6204482 | 34.6    | 14.0  | 6.0   | 5.0      | 3.5       |
| ľ  | JTEU       | GB2967  | 364589 | 6204589 | 34.5    | 16.0  | 7.0   | 4.0      | 2.8       |
| 7  | JTEU       | GB2968  | 364570 | 6204509 | 34.4    | 16.0  | 9.0   | 3.0      | 2.9       |
| 4  | JTEU       | GB3022  | 364293 | 6205024 | 35.0    | 14.0  | 4.0   | 2.0      | 2.3       |
|    | JTEU       | GB3025  | 364235 | 6204958 | 34.8    | 14.0  | 5.0   | 5.0      | 2.4       |
| ſ  | JTEU       | GB3026  | 364151 | 6204962 | 34.8    | 14.0  | 5.0   | 4.0      | 3.3       |
|    | JTEU       | GB3027  | 364053 | 6204935 | 34.7    | 14.0  | 6.0   | 5.0      | 5.2       |
| 1  | JTEU       | GB3034  | 364198 | 6204890 | 34.8    | 16.0  | 7.0   | 3.0      | 3.1       |
| 1  | JT E U     | GB3037  | 364267 | 6204855 | 34.7    | 16.0  | 7.0   | 4.0      | 2.4       |
| Ľ  | JTEU       | GB3103  | 364316 | 6204974 | 34.9    | 14.0  | 3.0   | 3.0      | 3.6       |
| 2  | $\bigcirc$ |         |        |         |         |       |       |          |           |
| 9  | JT SW E    | GB1190  | 361602 | 6204841 | 34.3    | 18.0  | 9.0   | 10.0     | 6.0       |
|    | JT SW E    | GB1191  | 361761 | 6204843 | 34.3    | 15.0  | 9.0   | 10.0     | 4.0       |
|    | JT SW E    | GB1192  | 361922 | 6204844 | 34.3    | 18.0  | 9.0   | 10.0     | 6.0       |
|    | JT SW E    | GB1193  | 362081 | 6204847 | 34.4    | 18.0  | 10.0  | 11.0     | 5.0       |
|    | JT SW E    | GB1194  | 362235 | 6204851 | 34.4    | 21.0  | 12.0  | 13.0     | 6.0       |
|    | JT SW E    | GB2399  | 362631 | 6204725 | 34.2    | 18.0  | 8.0   | 9.0      | 6.0       |
|    | JT SW E    | GB2402  | 362358 | 6204806 | 34.3    | 18.0  | 13.0  | 14.0     | 3.0       |
|    | JT SW E    | GB2406  | 362363 | 6204744 | 34.2    | 18.0  | 12.0  | 13.0     | 5.0       |
|    | JT SW E    | GB2914  | 362363 | 6204581 | 36.0    | 17.0  | 12.0  | 13.0     | 5.0       |
|    | JT SW E    | GB2915  | 362134 | 6204630 | 35.2    | 18.0  | 12.0  | 13.0     | 5.0       |
| 7  | JT SW E    | GB2916  | 362066 | 6204717 | 35.1    | 16.0  | 12.0  | 13.0     | 4.0       |
| Ч  | JT SW E    | GB2917  | 362036 | 6204813 | 35.2    | 16.0  | 10.0  | 11.0     | 6.0       |
| 2  | JT SW E    | GB2919  | 361772 | 6204640 | 34.9    | 16.0  | 8.0   | 9.0      | 7.0       |
| Y  | JT SW E    | GB2920  | 361917 | 6204614 | 34.9    | 16.0  | 11.0  | 12.0     | 5.0       |
| 7  | JT SW E    | GB2921  | 361905 | 6204670 | 35.0    | 16.0  | 9.0   | 10.0     | 7.0       |
| 7  | JT SW E    | GB2922  | 361826 | 6204703 | 34.6    | 16.0  | 9.0   | 10.0     | 7.0       |
| (] | JT SW E    | GB2923  | 361971 | 6204726 | 35.1    | 16.0  | 11.0  | 12.0     | 5.0       |
| Y  | JT SW E    | GB2924  | 362088 | 6204651 | 35.1    | 16.0  | 9.0   | 10.0     | 6.0       |
| 2  | JT SW E    | GB2925  | 362266 | 6204540 | 35.9    | 18.0  | 14.0  | 15.0     | 3.0       |
| 1  | JT SW E    | GB2926  | 362075 | 6204588 | 34.9    | 16.0  | 12.0  | 13.0     | 4.0       |
|    | JT SW E    | GB2931  | 362049 | 6204781 | 35.2    | 16.0  | 10.0  | 11.0     | 4.0       |
| 7  | JT SW E    | GB2932  | 362049 | 6204780 | 35.2    | 16.0  | 12.0  | 13.0     | 4.0       |
|    | JT SW E    | GB2933  | 361770 | 6204793 | 34.3    | 16.0  | 7.0   | 8.0      | 8.0       |
|    | JT SW E    | GB2934  | 361820 | 6204797 | 35.2    | 16.0  | 9.0   | 10.0     | 7.0       |
| 4  | 2          |         |        |         |         |       |       |          |           |
|    | JT SW S    | GB1179  | 361398 | 6204938 | 35.5    | 19.0  | 7.0   | 9.0      | 3.0       |
|    | JT SW S    | GB1198  | 361220 | 6205104 | 34.7    | 18.0  | 9.0   | 8.0      | 2.8       |
|    | JT SW S    | GB1199  | 361370 | 6204899 | 33.4    | 18.0  | 6.0   | 8.0      | 2.8       |
|    | JT SW S    | GB2838  | 360904 | 6205085 | 29.5    | 12.0  | 7.0   | 5.0      | 2.6       |
|    | JT SW S    | GB2839  | 361082 | 6205078 | 31.0    | 13.0  | 10.5  | 2.0      | 2.8       |
|    | JT E       | W00300  | 365219 | 6205072 | 35.8    | 12.0  | 4.0   | 4.0      | 5.9       |
|    | JT E       | W00301  | 365194 | 6205118 | 35.8    | 12.0  | 4.0   | 3.0      | 3.2       |
|    | JT E       | W00302  | 365202 | 6205174 | 35.9    | 9.0   | 3.0   | 3.0      | 3.7       |
|    | JT E       | W00303  | 365170 | 6205269 | 36.0    | 9.0   | 2.0   | 2.0      | 3.7       |
|    | JT E       | GB3020  | 364268 | 6205240 | 35.3    | 12.0  | 7.0   | 4.0      | 3.9       |



|                  |           |         | East   | North   | RL      | Depth | From | Interval | нм   |
|------------------|-----------|---------|--------|---------|---------|-------|------|----------|------|
|                  | Wireframe | Hole ID | (GDA94 | (GDA94  | (m ASL) | (m)   | (m)  | (m)      | (%)  |
|                  |           |         | Z50)   | Z50)    |         | (,    | ()   | (''')    | (70) |
|                  | JT E U    | GB2955  | 364596 | 6204878 | 35.0    | 14.0  | 4.0  | 5.0      | 2.0  |
| 20               | JT E U    | GB2956  | 364554 | 6204814 | 34.8    | 14.0  | 4.0  | 5.0      | 4.0  |
| 7                | JT E U    | GB2963  | 364783 | 6204568 | 34.7    | 14.0  | 6.0  | 7.0      | 4.0  |
| ((               | JT E U    | GB2964  | 364818 | 6204637 | 34.8    | 14.0  | 5.0  | 6.0      | 3.0  |
| V                | JTEU      | GB2967  | 364589 | 6204589 | 34.5    | 16.0  | 7.0  | 8.0      | 4.0  |
|                  | JT E U    | GB2968  | 364570 | 6204509 | 34.4    | 16.0  | 9.0  | 10.0     | 2.0  |
| 6                | JT E U    | GB3022  | 364293 | 6205024 | 35.0    | 14.0  | 4.0  | 5.0      | 2.0  |
| Y                | JT E U    | GB3025  | 364235 | 6204958 | 34.8    | 14.0  | 5.0  | 6.0      | 4.0  |
| 0                | JT E U    | GB3026  | 364151 | 6204962 | 34.8    | 14.0  | 5.0  | 6.0      | 4.0  |
| $(\mathbf{Q})$   | JT E U    | GB3027  | 364053 | 6204935 | 34.7    | 14.0  | 6.0  | 7.0      | 5.0  |
|                  | JT E U    | GB3034  | 364198 | 6204890 | 34.8    | 16.0  | 7.0  | 8.0      | 3.0  |
|                  | JT E U    | GB3037  | 364267 | 6204855 | 34.7    | 16.0  | 7.0  | 8.0      | 3.0  |
| Ч                | JT E U    | GB3103  | 364316 | 6204974 | 34.9    | 14.0  | 3.0  | 4.0      | 3.0  |
|                  |           |         |        |         |         |       |      |          |      |
|                  | JT SW E   | GB1190  | 361602 | 6204841 | 34.3    | 18.0  | 9.0  | 10.0     | 6.0  |
| $\left( \right)$ | JT SW E   | GB1191  | 361761 | 6204843 | 34.3    | 15.0  | 9.0  | 10.0     | 4.0  |
| 9                | JT SW E   | GB1192  | 361922 | 6204844 | 34.3    | 18.0  | 9.0  | 10.0     | 6.0  |
| A                | JT SW E   | GB1193  | 362081 | 6204847 | 34.4    | 18.0  | 10.0 | 11.0     | 5.0  |
| $\mathbb{Z}$     | JT SW E   | GB1194  | 362235 | 6204851 | 34.4    | 21.0  | 12.0 | 13.0     | 6.0  |
|                  | JT SW E   | GB2399  | 362631 | 6204725 | 34.2    | 18.0  | 8.0  | 9.0      | 6.0  |
| ((               | JT SW E   | GB2402  | 362358 | 6204806 | 34.3    | 18.0  | 13.0 | 14.0     | 3.0  |
| A                | JT SW E   | GB2406  | 362363 | 6204744 | 34.2    | 18.0  | 12.0 | 13.0     | 5.0  |
| (C               | JT SW E   | GB2914  | 362363 | 6204581 | 36.0    | 17.0  | 12.0 | 13.0     | 5.0  |
| 7                | JT SW E   | GB2915  | 362134 | 6204630 | 35.2    | 18.0  | 12.0 | 13.0     | 5.0  |
| 2                | JT SW E   | GB2916  | 362066 | 6204717 | 35.1    | 16.0  | 12.0 | 13.0     | 4.0  |
| 6                | JT SW E   | GB2917  | 362036 | 6204813 | 35.2    | 16.0  | 10.0 | 11.0     | 6.0  |
| U                | JT SW E   | GB2919  | 361772 | 6204640 | 34.9    | 16.0  | 8.0  | 9.0      | 7.0  |
| 2                | JT SW E   | GB2920  | 361917 | 6204614 | 34.9    | 16.0  | 11.0 | 12.0     | 5.0  |
| ((               | JT SW E   | GB2921  | 361905 | 6204670 | 35.0    | 16.0  | 9.0  | 10.0     | 7.0  |
|                  | JT SW E   | GB2922  | 361826 | 6204703 | 34.6    | 16.0  | 9.0  | 10.0     | 7.0  |
| ~                | JT SW E   | GB2923  | 361971 | 6204726 | 35.1    | 16.0  | 11.0 | 12.0     | 5.0  |
| 2                | JT SW E   | GB2924  | 362088 | 6204651 | 35.1    | 16.0  | 9.0  | 10.0     | 6.0  |
|                  | JT SW E   | GB2925  | 362266 | 6204540 | 35.9    | 18.0  | 14.0 | 15.0     | 3.0  |
| ((               | JT SW E   | GB2926  | 362075 | 6204588 | 34.9    | 16.0  | 12.0 | 13.0     | 4.0  |
|                  | JT SW E   | GB2931  | 362049 | 6204781 | 35.2    | 16.0  | 10.0 | 11.0     | 4.0  |
|                  | JT SW E   | GB2932  | 362049 | 6204780 | 35.2    | 16.0  | 12.0 | 13.0     | 4.0  |
|                  | JT SW E   | GB2933  | 361770 | 6204793 | 34.3    | 16.0  | 7.0  | 8.0      | 8.0  |
|                  | JT SW E   | GB2934  | 361820 | 6204797 | 35.2    | 16.0  | 9.0  | 10.0     | 7.0  |
|                  |           |         |        |         |         |       |      |          |      |
|                  | JT SW S   | GB1179  | 361398 | 6204938 | 35.5    | 19.0  | 7.0  | 9.0      | 3.0  |
|                  | JT SW S   | GB1198  | 361220 | 6205104 | 34.7    | 18.0  | 9.0  | 8.0      | 2.8  |
|                  | JT SW S   | GB1199  | 361370 | 6204899 | 33.4    | 18.0  | 6.0  | 8.0      | 2.8  |
|                  | JT SW S   | GB2838  | 360904 | 6205085 | 29.5    | 12.0  | 7.0  | 5.0      | 2.6  |
|                  | JT SW S   | GB2839  | 361082 | 6205078 | 31.0    | 13.0  | 10.5 | 2.0      | 2.8  |
|                  | JT SW S   | GB2840  | 361252 | 6205010 | 32.5    | 16.0  | 7.0  | 8.0      | 2.6  |



|   |           |         | East     | North   | RL      | Depth       | From  | Intorval   |     |
|---|-----------|---------|----------|---------|---------|-------------|-------|------------|-----|
|   | Wireframe | Hole ID | (GDA94   | (GDA94  | (m ASI) | (m)         | (m)   | (m)        | (%) |
|   |           |         | Z50)     | Z50)    |         | ()          | (11)  |            | (%) |
|   | JT SW S   | GB2841  | 361303   | 6204965 | 32.0    | 16.0        | 8.0   | 7.0        | 2.3 |
| 2 | JT SW S   | GB2842  | 361306   | 6204843 | 32.0    | 18.0        | 4.0   | 10.0       | 2.2 |
|   | JT SW S   | GB2843  | 361179   | 6204967 | 31.0    | 16.0        | 6.0   | 8.0        | 2.5 |
|   | JT SW S   | GB2844  | 361180   | 6204967 | 31.0    | 14.0        | 6.0   | 7.0        | 2.2 |
|   | JT SW S   | GB2845  | 361052   | 6205000 | 30.5    | 13.0        | 4.0   | 2.0        | 3.5 |
| 1 | JT SW S   | GB2846  | 360960   | 6205000 | 29.9    | 14.0        | 5.0   | 2.0        | 4.4 |
| Y | JT SW S   | GB2847  | 360981   | 6204921 | 30.0    | 14.0        | 7.0   | 6.0        | 2.5 |
|   | JT SW S   | GB2848  | 361124   | 6204891 | 29.5    | 14.0        | 5.0   | 8.0        | 2.1 |
|   | JT SW S   | GB2849  | 361233   | 6204862 | 30.0    | 15.0        | 5.0   | 9.0        | 2.3 |
|   | JT SW S   | GB2850  | 361089   | 6204834 | 30.0    | 14.0        | 6.0   | 7.0        | 2.4 |
|   |           |         |          |         |         |             |       |            |     |
|   | JT NW     | GB1265  | 358741.7 | 6208394 | 28.0    | 9.0         | 2.92  | 4.0        | 2.0 |
| 9 | JT NW     | GB1266  | 358798.1 | 6208449 | 28.6    | 9.0         | 2.18  | 4.0        | 3.0 |
|   | JT NW     | GB1267  | 358855.8 | 6208508 | 30.2    | 9.0         | 2     | 6.0        | 2.0 |
|   | JT NW     | GB1268  | 358910.5 | 6208564 | 29.2    | 9.0         | 3.83  | 5.0        | 2.0 |
|   | JT NW     | GB1269  | 358966.9 | 6208623 | 29.1    | 9.0         | 4.14  | 4.0        | 3.0 |
|   | JT NW     | GB1270  | 359021.6 | 6208685 | 28.9    | 6.0         | 1.39  | 3.0        | 2.0 |
| 7 | JT NW     | GB1277  | 358572.1 | 6208901 | 29.0    | 6.0         | 2.39  | 3.0        | 2.0 |
| 5 | JT NW     | GB1278  | 358457.6 | 6208791 | 28.9    | 6.0         | 2.52  | 3.0        | 2.0 |
|   | JT NW     | GB1279  | 358119   | 6209125 | 29.5    | 6.0         | 2.48  | 4.0        | 2.0 |
| Q | JT NW     | GB1301  | 358001.4 | 6209009 | 28.3    | 7.0         | 5.1   | 4.0        | 2.0 |
|   | JT NW     | GB1302  | 358062.3 | 6209071 | 28.6    | 7.0         | 4.55  | 4.0        | 2.0 |
| ( | JT NW     | GB1303  | 358335.9 | 6208662 | 28.4    | 11.0        | 3.11  | 5.0        | 3.0 |
| 9 | JT NW     | GB1304  | 358287.5 | 6208617 | 27.8    | 8.0         | 2.02  | 4.0        | 3.0 |
| 2 | JT NW     | GB1305  | 358240.6 | 6208578 | 27.7    | 9.0         | 3.32  | 4.0        | 2.0 |
| Ч | JT NW     | GB1306  | 358186   | 6208508 | 27.4    | 7.0         | 2.85  | 5.0        | 2.0 |
| 5 | JINW      | GB2624  | 358231   | 6209041 | 28.5    | 6.0         | 0.72  | 3.0        | 2.0 |
|   | JINW      | GB2625  | 358174   | 6208971 | 30.8    | 8.0         | 0.37  | 5.0        | 2.0 |
| Y | JINW      | GB2626  | 358105   | 6208914 | 29.2    | 7.0         | 1.13  | 4.3        | 2.0 |
| A |           | GB2632  | 358192   | 6208730 | 29.0    | 8.0         | 4.86  | 6.0        | 2.0 |
|   |           | GB2633  | 358136   | 6208686 | 28.0    | 8.0         | 3.21  | 6.0        | 2.0 |
|   |           | GB2634  | 358222   | 6208789 | 31.0    | 9.0         | 1.32  | 7.0        | 2.0 |
| - |           | GB2035  | 358297   | 6208856 | 30.0    | 8.0         | 2.03  | 4.0        | 3.0 |
| 5 |           | GB2030  | 250320   | 6208919 | 29.5    | 6.0         | 2.07  | 3.7        | 2.0 |
|   |           | GB2037  | 250411   | 6206975 | 21.0    | 0.0         | 2.07  | 4.0        | 2.0 |
| Y |           | GB2036  | 259500   | 6209038 | 21.0    | 0.0         | 1 01  | 5.0        | 2.0 |
|   |           | GB2039  | 220720   | 6208780 | 28.0    | 9.0         | 0.25  | 0.0        | 2.0 |
|   |           | GB2040  | 259402   | 6208785 | 20.9    | 0.0         | 2 / 2 | 5.7        | 2.0 |
|   |           | GB2041  | 350402   | 6200755 | 20 E    | 5.0         | 0.71  | 2 /        | 2.0 |
|   |           | GB2042  | 258522   | 6208645 | 28.3    | 6.0         | 2 21  | 2.4        | 2.0 |
| ┨ |           | GB2045  | 350322   | 620043  | 20.0    | 7.0         | 0.21  | 2.4        | 2.0 |
|   |           | GR2645  | 358/12   | 6208447 | 20.0    | 5.0         | 0.31  | 3.0<br>2.7 | 2.0 |
| ┨ |           | GR2643  | 358536   | 6208430 | 20.0    | 9.0<br>8.0  | 2.76  | 1.2        | 2.0 |
| - |           | GP2640  | 350520   | 6200357 | 27.5    | 0.0<br>Q () | 2.70  | 4.5        | 2.0 |
| ┟ |           | GB2049  | 358675   | 6208433 | 30.5    | 10.0        | 5 52  | 5.0        | 3.6 |
| ╞ |           | GR2651  | 3586//   | 6208520 | 30.5    | 9.0         | Δ 7Λ  | 5.0        | 2.0 |
| ł | JT NW     | GB2652  | 358643   | 6208530 | 30.0    | 9.0         | 2.9   | 5.0        | 3.0 |



|            |         | East             | North   | RL           | Depth | <b>E</b> ve <b>e</b> | Interval   |           |
|------------|---------|------------------|---------|--------------|-------|----------------------|------------|-----------|
| Wireframe  | Hole ID | (GDA94           | (GDA94  | (m ASI)      | (m)   | (m)                  | (m)        | нм<br>(«) |
| When arrie |         | Z50)             | Z50)    |              | ()    |                      | (III)      | (%)       |
| JT NW      | GB2655  | 358909           | 6208330 | 29.1         | 8.0   | 3.28                 | 5.0        | 2.0       |
| JT NW      | GB2656  | 358966           | 6208397 | 29.1         | 8.0   | 3.81                 | 5.0        | 2.0       |
| JT NW      | GB2657  | 358964           | 6208266 | 29.5         | 8.0   | 4.28                 | 5.0        | 2.0       |
| JT NW      | GB2665  | 359214           | 6208428 | 28.8         | 10.0  | 2.8                  | 3.0        | 4.0       |
| JT NW      | GB2666  | 359159           | 6208356 | 28.6         | 10.0  | 3.38                 | 5.0        | 2.0       |
| JT NW      | GB2667  | 359158           | 6208357 | 28.6         | 10.0  | 4.09                 | 5.0        | 2.0       |
| JT NW      | GB2670  | 359072           | 6208504 | 28.8         | 7.0   | 2.25                 | 4.0        | 2.0       |
| JT NW      | GB2672  | 359015           | 6208439 | 28.6         | 7.0   | 4.35                 | 4.5        | 2.0       |
| JT NW      | GB2673  | 358912           | 6208568 | 29.2         | 8.0   | 3.04                 | 5.0        | 2.4       |
| JT NW      | GB2674  | 358903           | 6208699 | 28.5         | 6.0   | 19.4                 | 4.0        | 2.0       |
| JT NW      | GB2675  | 358879           | 6208751 | 28.5         | 6.0   | 5.34                 | 3.8        | 2.0       |
| JT NW      | GB2679  | 358746           | 6208838 | 29.5         | 7.0   | 2.4                  | 4.0        | 2.0       |
| JT NW      | GB2680  | 358582           | 6208705 | 29.5         | 7.0   | 2.76                 | 4.0        | 2.6       |
| JT NW      | GB2681  | 358632           | 6208760 | 29.5         | 8.0   | 1.35                 | 4.3        | 2.0       |
| JT NW      | GB2682  | 358508           | 6208852 | 31.0         | 8.0   | 1.38                 | 5.7        | 2.0       |
|            |         |                  |         |              |       |                      |            |           |
| JT W       | GB1227  | 358626           | 6207596 | 25.8         | 8.0   | 3.0                  | 3.0        | 2.9       |
| W TL       | GB1228  | 358571.4         | 6207544 | 25.9         | 12.0  | 4.0                  | 3.0        | 4.4       |
| W TL       | GB1229  | 358515.4         | 6207486 | 24.7         | 12.0  | 3.0                  | 4.0        | 2.9       |
| JT W       | GB1242  | 358856.8         | 6207149 | 24.2         | 9.0   | 4.0                  | 3.0        | 3.9       |
| JT W       | GB1243  | 358905.7         | 6207201 | 24.2         | 9.0   | 3.0                  | 3.0        | 6.1       |
| JT W       | GB1244  | 358967.5         | 6207265 | 24.6         | 7.0   | 3.0                  | 3.0        | 3.1       |
| JTW        | GB1255  | 358128.1         | 6207772 | 25.4         | 9.0   | 4.0                  | 3.0        | 4.1       |
| JT W       | GB1256  | 358169           | 6207831 | 25.6         | 9.0   | 4.0                  | 3.0        | 4.1       |
| JT W       | GB1257  | 358230.5         | 6207885 | 25.7         | 9.0   | 4.0                  | 3.0        | 2.2       |
| W TL       | GB1309  | 357831.7         | 6208161 | 21.5         | 9.0   | 4.0                  | 5.0        | 3.3       |
| JT W       | GB1310  | 357780.3         | 6208109 | 20.4         | 8.0   | 5.0                  | 3.0        | 3.8       |
| JT W       | GB2711  | 358640           | 6207440 | 24.8         | 8.0   | 4.0                  | 3.9        | 3.9       |
| JT W       | GB2717  | 358849           | 6207396 | 23.5         | 6.0   | 3.0                  | 2.2        | 3.3       |
| JIW        | GB2/18  | 358723           | 6207479 | 25.0         | 9.0   | 5.0                  | 3.6        | 3.2       |
| JT W       | GB2720  | 358349           | 6207530 | 24.7         | 7.0   | 4.0                  | 2.6        | 3.1       |
|            | GB2722  | 358401           | 6207595 | 24.9         | 9.0   | 5.5                  | 2.0        | 3.4       |
|            | GB2723  | 358518           | 6207687 | 25.5         | 8.0   | 3.0                  | 4.9        | 2.8       |
|            | GB2724  | 358481           | 6207601 | 27.0         | 10.0  | 6.0                  | 3.8        | 4.3       |
|            | GB2728  | 358356           | 6207722 | 25.6         | 8.0   | 4.0                  | 3.7        | 2.9       |
|            | GB2729  | 358312           | 6207733 | 26.1         | 9.0   | 6.0                  | 4.0        | 4.8       |
|            | GB2738  | 358247           | 6207669 | 25.0         | 7.0   | 4.7                  | 2.0        | 3.Z       |
|            | GB2739  | 358008           | 6207885 | 25.0         | 9.0   | 0.0                  | 2.0        | 5         |
|            | GB2740  | 250U01           | 6207941 | 25.8<br>26.9 | 12.0  | 7.0                  | 5.0        | 4.9       |
|            | GB2741  | 338133           | 620/994 | 20.8         | 12.0  | 4.0                  | 0.U        | 2.8       |
|            | GB2742  | 25730/           | 6208103 | 25.0         | 0.0   | 3.0                  | 5.4        | 3         |
|            | GD2745  | 357745           | 6200297 | 20.1         | 9.0   | 2.0                  | 4.0        | 5<br>2 7  |
|            | GB2740  | 257093           | 6208242 | 20.0         | 12.0  | 5.0                  | 0.5<br>6.0 | 3./       |
|            |         | 257/38<br>25700C | 6208012 | 20.7         | 10.0  | 0.0                  | 0.0        | 2.0       |
|            | GB2749  | 257015           | 6207928 | 27.0         | 10.0  | /.4                  | 2.0        | 2.8       |
| JIVV       | 062751  | 22/212           | 0207632 | 24.5         | 7.0   | 4./                  | 2.0        | 5.9       |
| Southeast  | GB0991  | 356875           | 6208564 | 26.0         | 15.0  | 9.0                  | 4.0        | 3.8       |



| Wireframe | Hole ID | East<br>(GDA94<br>Z50) | North<br>(GDA94<br>Z50) | RL<br>(m ASL) | Depth<br>(m) | From<br>(m) | Interval<br>(m) | HM<br>(%) |
|-----------|---------|------------------------|-------------------------|---------------|--------------|-------------|-----------------|-----------|
| Southeast | GB0992  | 356933                 | 6208616                 | 26.2          | 15.0         | 8.0         | 4.0             | 4.3       |
| Southeast | GB0993  | 356989                 | 6208675                 | 27.2          | 15.0         | 7.0         | 6.0             | 4.1       |
| Southeast | GB0997  | 357385                 | 6208401                 | 26.2          | 14.0         | 7.0         | 5.0             | 3.3       |
| Southeast | GB0998  | 357329                 | 6208338                 | 26.2          | 15.0         | 8.0         | 4.0             | 4.0       |