

ASX Announcement | ASX: TNC

7 November 2023

True North advanced grade control drilling hits up to 14.05% copper, 25.70g/t gold, exceeding resource modelling at Wallace North, Cloncurry

True North Copper Limited (ASX:TNC) (True North, TNC or the Company) is pleased to announce its advanced grade control drilling program at its copper-gold Wallace North project identified high grade zones of copper and gold mineralisation, which exceed the current updated resource model. Results are anticipated to have a positive impact on future resource estimates and open-pit designs.

HIGHLIGHTS

WNR0088

17.0m (13.60m*) @ 2.64% Cu, 2.70g/t Au from 47.00m

- inc. 3.0m (2.40m*) @ 10.31% Cu, 13.48g/t Au from 48.00m

WNR0118

14.0m (11.20m*) @ 3.57% Cu, 1.41g/t Au from 46.00m

WNR0121

12.0m (9.60m*) @ 1.99% Cu, 0.42g/t Au from 16.00m inc. 2.0m (1.60m*) @ 9.17% Cu, 1.98g/t Au from 20.00m

WNR0017

7.0m (5.60m*) @ 3.58% Cu, 3.96g/t Au from 29.00m

- inc. 2.0m (1.60m*) @ 10.23% Cu, 13.62g/t Au from 34.00m

WNR0019

- 2.0m (1.60m*) @ 8.24% Cu, 13.24g/t Au from 29.00m
- inc. 1.0m (0.80m*) @ 14.05% Cu, 25.70g/t Au from 29.00m

WNR0068

- 6.0m (4.80m*) @ 5.26% Cu, 3.26g/t Au from 30.00m
- inc. 3.0m (2.40m*) @ 8.36% Cu, 5.69g/t Au from 32.00m

WNR0116

- 10.0m (8.00m*) @ 4.01% Cu, 2.43g/t Au from 19.00m

Completed in September 2023, TNC's Wallace North advanced grade control drilling program included 142 Reverse Circulation (RC) drillholes across 7,594m. The Wallace North Resource (Indicated and Inferred of 1.59Mt @ 1.29% Cu and 0.93 g/t Au)¹ is on a fully permitted Mining Lease and is part of TNC's Cloncurry Project. It is a target for near-term production.

- Results are still in the process of being interpreted. Initial assessment highlights multiple zones of higher grade than predicted. The results are anticipated to have a positive impact on future resource estimation and open-pit designs.
- Assays are pending for intercepts that remain open up or downhole and for those requiring QAQC checks. Final assay
 results of the program will feed into optimisation studies and early mine planning.
- Copper-gold (Cu-Au) shoots remain open at depth and will be a target for future drilling.

^{*=} Estimated True Width

COMMENT

True North Copper's Managing Director, Marty Costello said:

Results from the advanced grade control program further confirm our position Wallace North has the potential to deliver significant near-term value to the company, in an early production scenario.

These initial results confirm and, in some cases, exceed expected grades from comparisons to the current resource model. Not only do they indicate the potential to increase grade within the existing block model but also the potential to increase the overall resource.

With the return of all assays by the end of November 2023, mine optimisation and metallurgical studies will commence. These studies will assess the possibility of producing a copper-gold concentrate and will be finalised Q1 2024.

Wallace North is on a fully permitted Mining Lease, which allows near term development options to be assessed during the optimisation study phase. The Wallace North resource is an important part of our Cloncurry Project mining plans, with its near-term value reinforced through recent infill drilling and resource upgrade work completed across the resource.

Figure 1. WNR0017; 7.0m (5.6m*) @ 3.58% Cu and 3.96 g/t Au from 29.0m including 2.0m (1.6m*) @ 10.23% Cu and 13.62g/t Au from 34.0m.

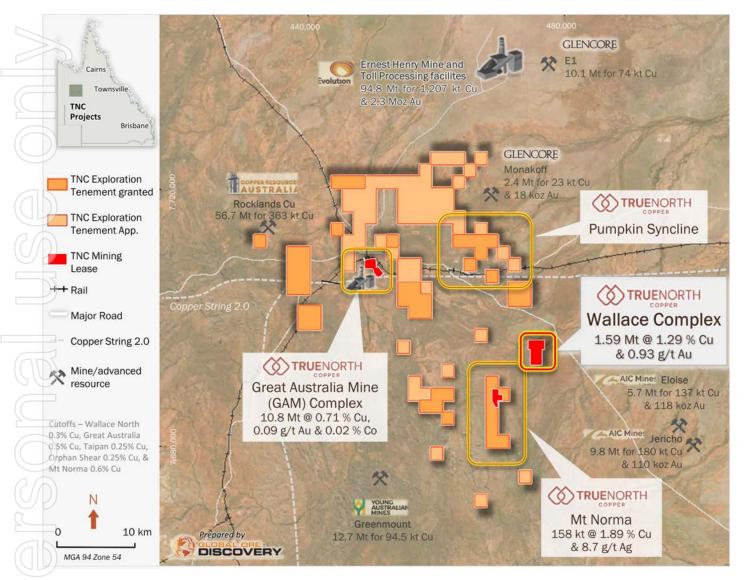


Figure 2. Location of the Wallace North Project (Wallace Complex) in relation to TNC's and other projects in the area.

Resource References: TNC GAM and Mt Norma: True North Copper. ASX (TNC): Release 16 June 2023, Prospectus; True North Copper. ASX (TNC): Release 28 February 2023, Acquisition of the True North Copper Assets. Rocklands: CuDECO. ASX: (CDU) Release 3 March 2016, Rocklands Feasibility Study. Greenmount: Moly Mines Ltd. ASX: (MOL) Release 28 May 2018, Annual General Meeting Presentation.

Jericho: AIC Mines Ltd. ASX: (AIC) Release 06 February 2023, Jericho Mineral Resource. Eloise: AIC Mines Ltd. ASX: (AIC) Release 30 March 2023, Significant Increase in Mineral Resources and Ore Reserves at Eloise Copper Mine. Monakoff and E1: Glencore PLC. LON: (GLEN) Resources & Reserves Report 31 January 2023, Last retrieved 27 September 2023. Ernest Henry: Evolution Mining Ltd. ASX: (EVN)

Release 16 February 2023, Annual Mineral Resources and Ore Reserves Statement. Copper String Project: Queensland Government. EIS document: Release September 2022, Copper String Project,

Coordinator General's evaluation report on the environmental Impact statement.

Wallace North - Advanced Grade Control Drilling

The Wallace North Advanced Grade control drilling was completed September 2023 and consisted of 142 RC holes for 7,594m drilled (Figure 3, Figure 4). These holes were drilled on a regular grid pattern on 15m centres at a nominal 60 degrees dip, orientated strike perpendicular and targeted the top ~55m of the Wallace North Au-Cu resource Resource (Ind. Inf. 1.59Mt @ 1.29% Cu and 0.93 g/t Au)¹. All meters were pulverised, with 4,577 samples selected for assay at the lab based on PXRF analysis of RC chips returning >500ppm Cu. Assays results have all been received and are reported in this release.

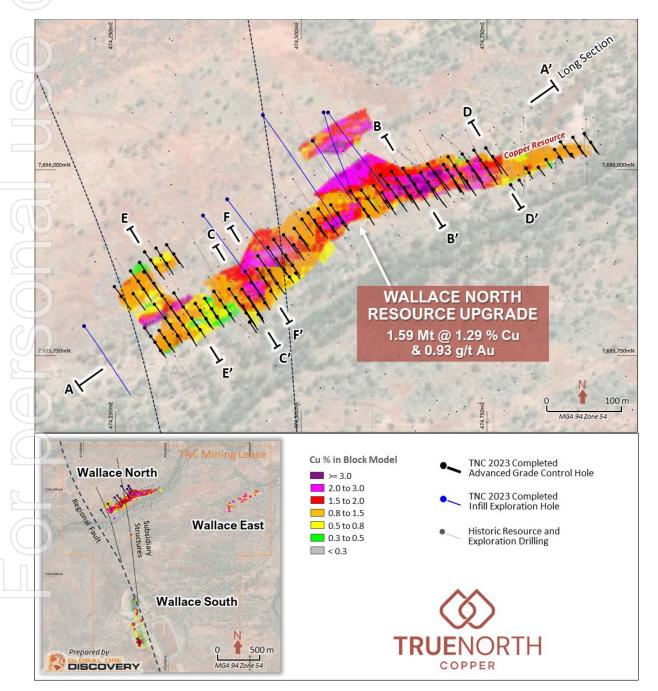


Figure 3. Plan view showing the collar location and drill traces of Advance Grade Control Holes, Copper Block model displayed at > 0.3% Cu. Resource Cutoff at Wallace North 0.3% Cu.

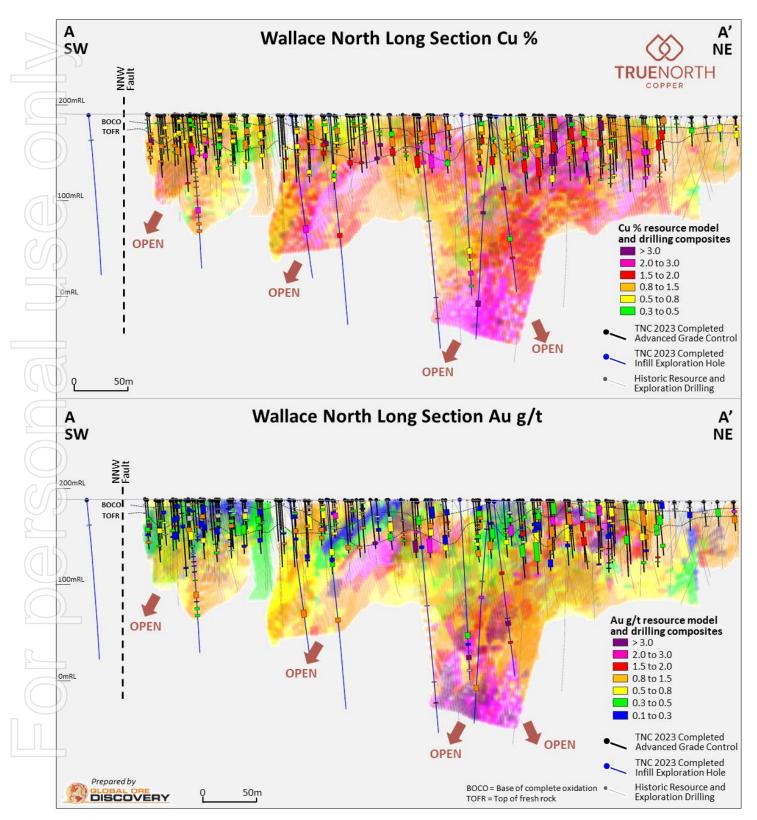


Figure 4. Wallace North Cu% and Au g/t long sections of resource estimate showing advanced grade control drillholes drilled to an average depth of 55m. Open shoots are highlighted. Block model displayed at > 0.3% Cu. Resource Cutoff at Wallace North 0.3% Cu.

Mineralisation intersected is as expected and generally of the same grade as defined in the resource model, however in multiple locations drillholes intersected Cu-Au grades significantly higher than expected (see Table 1., Figure 5., Figure 8., Figure 9). Multiple drill holes also intercepted new mineralisation in the hanging wall and footwall of the resource, as well extensions above and along strike of the resource (see Table 2., Figure 6., Figure 7., Figure 8., Figure 9).

Some intersections remain open up-hole and or downhole (see Appendix 1), and in some location's samples coincident with the resource model were not assayed by the lab as the RC chips did not return PXRF values above the trigger value of 500 ppm Cu. Additional samples have been submitted for assay to close these open intercepts or confirm grades of unassayed samples coincident with the resource.

Selected key intercepts that highlight potentially better grades than the current resource model is tabulated in Table 1, with those outside of the current resource highlighted in Table 2.

Table 1. Selected key intersections expected to have a positive impact on resource. (see Appendix 1 for full table).

Hole ID	From	То	DH Interval	ETW	Cu %	Au g/t	Cu% m (ETW)	Au g/t m (ETW)	Oxide
WNR0017	29	36	7	5.6	3.58	3.96	20.03	22.18	Transitiona
inc.	34	36	2	1.6	10.23	13.62	16.36	21.79	Transitiona
WNR0019	29	31	2	1.6	8.24	13.24	13.18	21.18	Transitiona
inc.	29	30	1	8.0	14.05	25.70	11.24	20.56	Transitiona
WNR0033	39	49	10	8	2.48	0.67	19.81	5.37	Transitiona
inc.	40	44	4	3.2	5.20	1.54	16.64	4. 93	Transitiona
WNR0068	30	36	6	4.8	5.26	3.26	25.24	15.65	Transitiona
inc.	32	35	3	2.4	8.36	5.69	20.06	13.66	Transitiona
WNR0085	49	63	14	11.2	1.61	3.78	18.04	42.34	Transitiona
inc.	53	62	9	7. 2	2.18	5.73	15.70	41.26	Transitiona
WNR0088	47	64	17	13.6	2.64	2.70	35.94	36.70	Transitiona
inc.	48	51	3	2.4	10.31	13.48	24.74	32.34	Transitiona
WNR0110	27	36	9	7. <mark>2</mark>	2.17	2.08	15.60	14.97	Transitiona
WNR0116	19	29	10	8	4.01	2.43	32.09	19.42	Transitiona
inc.	21	28	7	5.6	5.26	2.88	29.47	16.14	Transitiona
WNR0118	46	60	14	11.2	3.57	1.41	39.95	15.74	Fresh
inc.	47	55	8	6.4	4.51	1.58	28.86	10.10	Fresh
WNR0121	16	28	12	9.6	1.99	0.42	19.11	4.02	Transitiona
inc.	20	22	2	1.6	9.17	1.98	14.66	3.17	Transitiona
WNR0141	60	68	8	6.4	2.57	0.91	16.45	5.79	Fresh
Table 2. S	Selected From	key inters	sections outs	ide of curren ETW	t resource mod Cu %	el (see Appendi Au g/t	ix 1 for full table	e). Au g/t m (ETW)	Oxide
))						`		,	
Hole ID WNR0014	From	То	DH Interval	ETW	Cu %	Au g/t	Cu% m (ETW)	Au g/t m (ETW)	Transitiona
Hole ID	From 36	To 38	DH Interval	ETW 1.6	Cu %	Au g/t 0.63	Cu% m (ETW)	Au g/t m (ETW)	Transitiona Transitiona
Hole ID WNR0014 WNR0037	From 36 7	To 38 16	DH Interval 2 9	1.6 7.2	Cu % 7.72 0.60	Au g/t 0.63 0.14	Cu% m (ETW) 12.34 4.33	Au g/t m (ETW) 1.00 1.00	Transitiona Transitiona Transitiona
Hole ID WNR0014 WNR0037 WNR0038 inc.	From 36 7 26	To 38 16 34	DH Interval 2 9 8	1.6 7.2 6.4	Cu % 7.72 0.60 1.43	Au g/t 0.63 0.14 0.17	Cu% m (ETW) 12.34 4.33 9.15	Au g/t m (ETW) 1.00 1.00 1.06	Transitiona Transitiona Transitiona Transitiona
Hole ID WNR0014 WNR0037 WNR0038	From 36 7 26 27	To 38 16 34 33	DH Interval 2 9 8 6	1.6 7.2 6.4 4.8	Cu % 7.72 0.60 1.43 1.70	Au g/t 0.63 0.14 0.17 0.18	Cu% m (ETW) 12.34 4.33 9.15 8 17	1.00 1.00 1.06 0.86	Transitiona Transitiona Transitiona Transitiona Transitiona
Hole ID WNR0014 WNR0037 WNR0038 inc. WNR0059	From 36 7 26 27 14	To 38 16 34 33 17	DH Interval 2 9 8 6 3	1.6 7.2 6.4 4.8 2.4	Cu % 7.72 0.60 1.43 1.70 1.00	Au g/t 0.63 0.14 0.17 0.18 0.37	Cu% m (ETW) 12.34 4.33 9.15 8.17 2.40	1.00 1.00 1.06 0.86	Transitiona Transitiona Transitiona Transitiona Transitiona Transitiona
WNR0014 WNR0037 WNR0038 inc. WNR0059 WNR0060	From 36 7 26 27 14 17	To 38 16 34 33 17 22	DH Interval 2 9 8 6 6 3 5 5	1.6 7.2 6.4 4.8 2.4	Cu % 7.72 0.60 1.43 1.70 1.00 0.60	Au g/t 0.63 0.14 0.17 0.18 0.37 0.28	Cu% m (ETW) 12.34 4.33 9.15 8 17 2.40 2.41	1.00 1.00 1.00 1.06 0.86 0.89	Oxide Transitiona Transitiona Transitiona Transitiona Transitiona Transitiona Transitiona Transitiona Transitiona

Table 2. Selected key intersections outside of current resource model (see Appendix 1 for full table).

Hole ID	From	То	DH Interval	ETW	Cu %	Au g/t	Cu% m (ETW)	Au g/t m (ETW)	Oxide
WNR0014	36	38	2	1.6	7.72	0.63	12.34	1.00	Transitional
WNR0037	7	16	9	7.2	0.60	0.14	4.33	1.00	Transitional
WNR0038	26	34	8	6.4	1.43	0.17	9.15	1.06	Transitional
inc.	27	33	6	4.8	1.70	0.18	8.17	0.86	Transitional
WNR0059	14	17	3	2.4	1.00	0.37	2.40	0.89	Transitional
WNR0060	17	22	5	4	0.60	0.28	2.41	1.14	Transitional
WNR0060	35	38	3	2.4	0.59	0.21	1.41	0.51	Transitional
WNR0068	9	12	3	2.4	0.47	0.38	1.13	0.90	Transitional
WNR0082	34	38	4	3.2	4.06	0.16	13.00	0.50	Transitional
WNR0084	40	49	9	7.2	1.79	0.38	12.91	2.76	Transitional
inc.	44	47	3	2.4	3.98	0.79	9.54	1.90	Transitional
WNR0096	11	23	12	9.6	0.92	0.38	8.84	3.66	Transitional
WNR0122	28	41	13	10.4	1.68	0.45	17.44	4.73	Transitional
inc.	28	39	11	8.8	1.89	0.52	16.60	4 .56	Transitional
WNR0139	27	35	8	6.4	1.52	0.95	9.73	6.08	Fresh

Detailed QAQC analysis is in progress, however initial QAQC analysis has indicated that in some high-grade zones there has been potential instrument drift and/or contamination from proceeding samples. In 19 cases (8%) contamination of blanks is between 100 ppm and 300 ppm for Cu. Assays of quartz flushes also indicate potential for contamination with 12% returning >100 ppm Cu and up to 974 ppm Cu. These issues only effect a few of the intercepts reported in this release and are not considered to be material to the reporting of exploration results (see JORC Table in Appendix 3 for further information).

TNC's geological team submitted several samples for re-assay including additional QAQC to identify the significance of this issue and attempt to rectify it. The team is also working with future resource estimators on the potential of undertaking umpire check sampling prior to any future resource estimation and mining studies.

The full table of intercepts (see Appendix 1) has been attributed if they lie outside of the current resource and where there is the potential for assays within the intercept to be affected by contamination. It is expected that overall, the results will potentially have a positive impact on size, grade and confidence of the resources available for opencut mining.

Next steps include:

- continuation of the QAQC resampling and assaying program; and
- receipt of assays for open intercepts and non-sampled intervals.

Following completion of this work the following will commence to investigate the feasibility of the Wallace North project to support copper-gold mining:

- geological modelling;
- resource domain definition;
- geostatistics for re-estimation;
- metallurgical testwork; and
- mining studies.

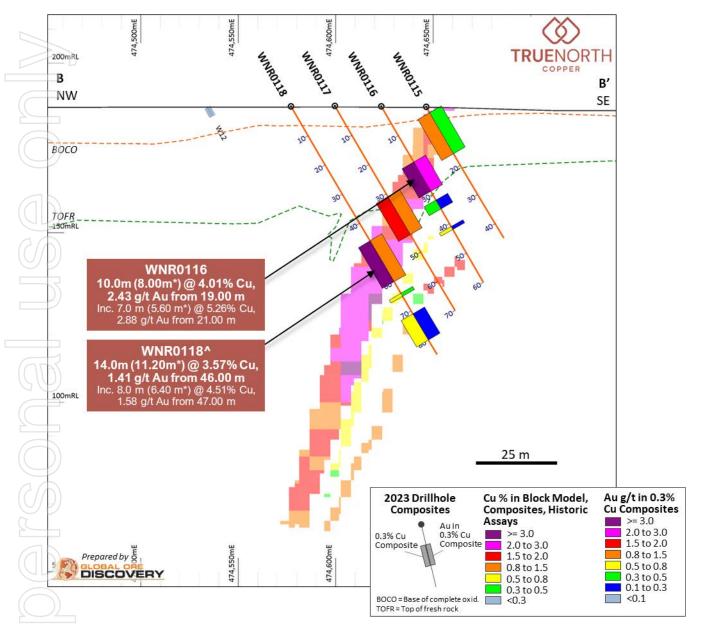


Figure 5. Cross Section B-B' through High Grade shoot in Wallace North highlighting potential for grade increases in the resource. Intervals with potential contamination issues are denoted by ^.

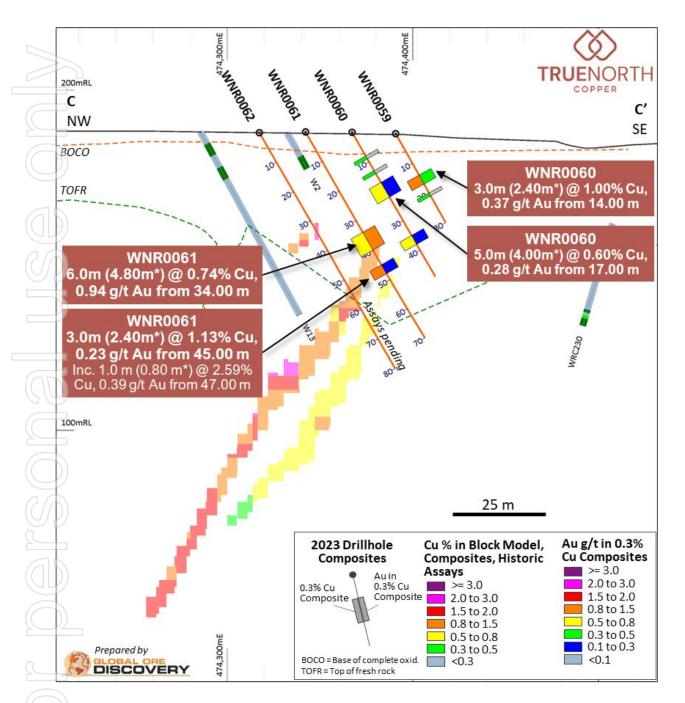


Figure 6. Cross Section C-C' through Wallace North Resource highlighting potential for new additions to the resource.

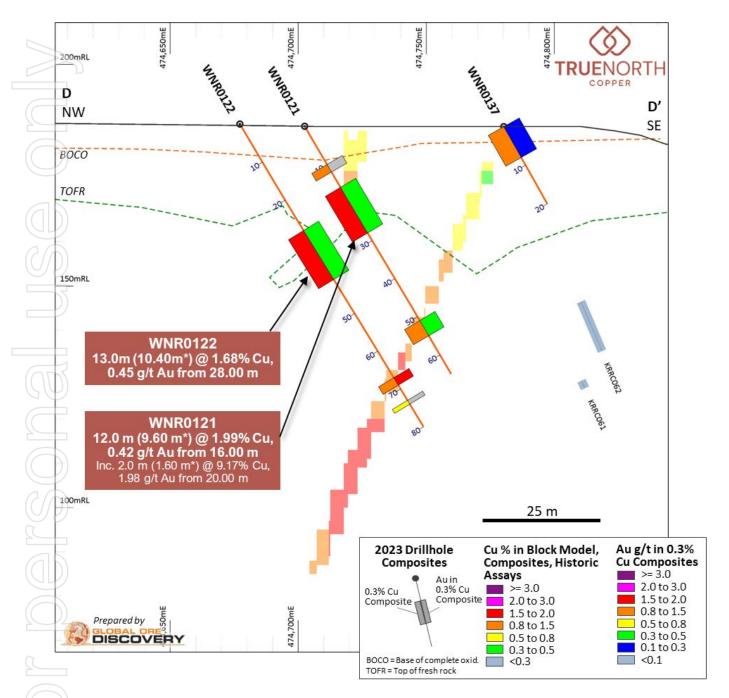


Figure 7. Cross Section D-D' through Wallace North Resource highlighting potential for new additions to the resource.

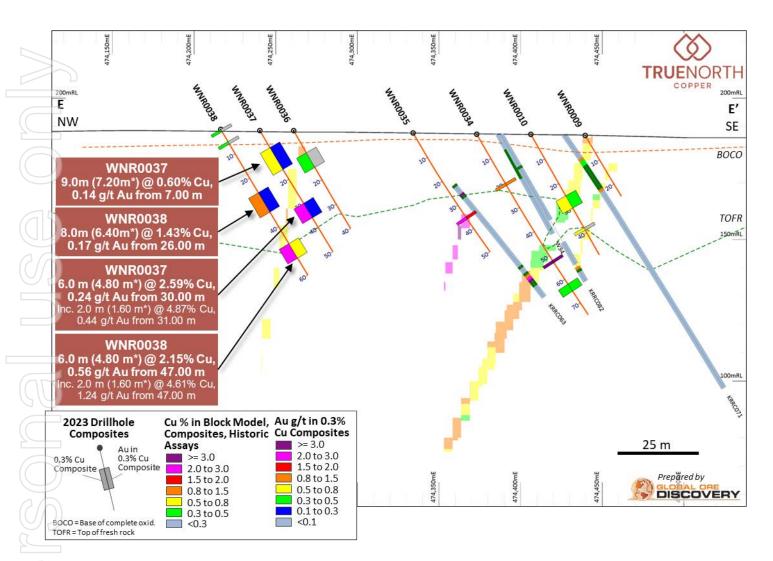


Figure 8. Cross Section E-E' through Wallace North Resource highlighting potential for new additions to the resource.

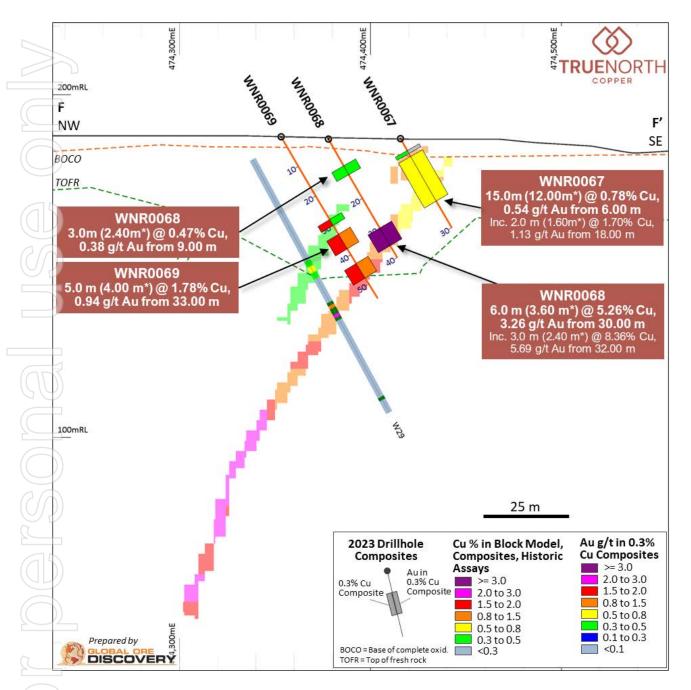


Figure 9. Cross Section F-F' through Wallace North Resource highlighting potential for new additions to the resource and higher-grade zones intersected that have the potential to increase the resource grades.

REFERENCES

1. True North Copper. ASX (TNC): Release 17 October 2023, Drilling increases Wallace North Resource by 14%.

AUTHORISATION

This announcement has been approved for issue by Marty Costello, Managing Director and the True North Copper Limited Board.

COMPETENT PERSON'S STATEMENT

Mr Daryl Nunn

The information in this announcement includes exploration results from drillholes WNR0009-WNR0150. Interpretation of these results is based on information compiled by Mr Daryl Nunn, who is a fulltime employee of Global Ore Discovery who provide geological consulting services to True North Copper Limited. Mr Nunn is a Fellow of the Australian Institute of Geoscientists, (FAIG): #7057. Mr Nunn has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for the Reporting of Exploration Results, Mineral Resources, and Ore Reserves (JORC Code). Mr Nunn and Global Ore Discovery hold shares in True North Copper Limited.

DISCLAIMER

This release has been prepared by True North Copper Limited ABN 28 119 421 868 ("TNC" "True North" or the "Company"). The information contained in this release is for information purposes only. This release may not be reproduced, disseminated, quoted or referred to, in whole or in part, without the express consent of TNC.

The information contained in this release is not investment or financial product advice and is not intended to be used as the basis for making an investment decision. Please note that, in providing this release, TNC has not considered the objectives, financial position or needs of any particular recipient. The information contained in this release is not a substitute for detailed investigation or analysis of any particular issue and does not purport to be all of the information that a person would need to make an assessment of the Company or its assets. Current and potential investors should seek independent advice before making any investment decisions in regard to the Company or its activities.

No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this news release. To the maximum extent permitted by law, none of TNC, its related bodies corporate, shareholders or respective directors, officers, employees, agents or advisors, nor any other person accepts any liability, including, without limitation, any liability arising out of fault or negligence for any loss arising from the use of information contained in this release.

This release includes "forward looking statements" within the meaning of securities laws of applicable jurisdictions. Forward looking statements can generally be identified by the use of the words "anticipate", "believe", "expect", "project", "forecast", "estimate", "likely", "intend", "should", "could", "may", "target", "plan" "guidance" and other similar expressions. Indications of, and guidance on, future earning or dividends and financial position and performance are also forward-looking statements. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of TNC and its officers, employees, agents or associates, that may cause actual results to differ materially from those expressed or implied in such statement. Actual results, performance or achievements may vary materially from any projections and forward looking statements and the assumptions on which those statements are based. Readers are cautioned not to place undue reliance on forward looking statements and TNC assumes no obligation to update such information. Specific regard (amongst other things) should be given to the risk factors outlined in this release.

This release is not, and does not constitute, an offer to sell or the solicitation, invitation or recommendation to purchase any securities and neither this release nor anything contained in it forms the basis of any contract or commitment.

JORC AND PREVIOUS DISCLOSURE

The information in this release that relates to Mineral Resource Estimates for Wallace North is based on information previously disclosed in the Company's 17 October 2023 release "Drilling increases Wallace North Resource by 14%".

The information in this release that relates to Exploration Results from drillholes WNR0001-WNR0008 at Wallace North is based on information previously disclosed in the Company's 3 October 2023 ASX release "TNC intercepts 6m @ 12.99g/t Au and 10m @ 2.22% at Wallace North, with multiple high-grade zones".

All of these ASX Announcements are available on the Company's website (www.truenorthcopper.com.au) and the ASX website (www.asx.com.au) under the Company's ticker code "TNC".

The Company confirms that it is not aware of any new information as at the date of this release that materially affects the information included in this release and that all material assumptions and technical parameters underpinning the estimates and results continue to apply and have not materially changed.

CONTACT DETAILS

For further information please contact:

True North Copper | Marty Costello, Managing Director | 07 4031 0644

Media Queries | Nathan Ryan | NWR Communications | 0420 582 887 nathan.ryan@nwrcommunications.com.au

Appendix 1

Intercepts from Advanced Grade Control Drilling (continued on following pages)

Table 3. 0.3, 1.0 and 3.0% Copper cut-off grade composites, with flags for in or outside current resource model, potential lab contamination issue and if interval is open or closed by assays

	Cutoff	Hole ID	From (m)	To (m)	Downhole Interval (m)	ETW (m)	Cu %	Au g/t	Cu % x ETW (m)	Au g/t x ETW (m)	Oxide	In Current Resource	Potentially Contaminated	Open or Closed
			_	_		0.3% C	opper cut-o	ff grade wit	h 2 m interr	al dilution				
	0.3% Cu	WNR0010	25	30	5	4	0.61	0.35	2.45	1.39	Transitional	Υ		Closed
	0.3% Cu	WNR0010	38	39	1	0.8	0.78	0.06	0.63	0.05	Transitional	Y		Closed
	0.3% Cu	WNR0011	9	12	3	2.4	0.40	0.14	0.96	0.33	Transitional	Υ		Closed
	0.3% Cu	WNR0012	14	15	1	0.8	0.33	0.01	0.26	0.01	Transitional	Υ		Closed
	0.3% Cu	WNR0014	23	25	2	1.6	0.68	0.40	1.09	0.64	Transitional	N		Closed
	0.3% Cu	WNR0014	36	38	2	1.6	7.72	0.63	12.34	1.00	Transitional	N		Closed
	0.3% Cu	WNR0015	31	32	1	0.8	0.36	0.27	0.29	0.22	Transitional	N		Closed
	0.3% Cu	WNR0015	33	39	6	4.8	1.04	0.54	5.01	2.58	Transitional	N		Closed
J	0.3% Cu	WNR0015	45	46	1	0.8	0.46	0.42	0.37	0.34	Transitional	N		Closed
	0.3% Cu	WNR0016	8	10	2	1.6	0.33	0.01	0.54	0.01	Oxide	N		Closed
1	0.3% Cu	WNR0016	54	56	2	1.6	1.25	0.47	2.01	0.75	Fresh	N		Closed
7	0.3% Cu	WNR0017	21	24	3	2.4	1.28	0.46	3.08	1.10	Transitional	٧		Closed
	0.3% Cu	WNR0017	27	28	1	0.8	1.19	0.68	0.95	0.54	Transitional	ý		Closed
	0.3% Cu	WNR0017	29	36	7	5.6	3.58	3.96	20.03	22.18	Transitional	ý		Closed
	0.3% Cu	WNR0018	6	7	1	0.8	1.17	0.05	0.93	0.04	Oxide	N		Closed
	0.3% Cu	WNR0018	16	17	1	0.8	0.33	0.05	0.26	0.04	Transitional	N		Closed
	0.3% Cu	WNR0018	34	39	5	4	1.35	0.37	5.41	1.46	Transitional	Y		Closed
	0.3% Cu	WNR0018	41	44	3	2.4	1.15	0.17	2.76	0.40	Transitional	Y		Closed
	0.3% Cu	WNR0018	50	53	3	2.4	1.29	1.18	3.10	2.83	Transitional	Y		Close
71	0.3% Cu	WNR0019	20	26	6	4.8	0.51	0.28	2.43	1.36	Transitional	Y		Closed
1	0.3% Cu	WNR0019	29	31	2	1.6	8.24	13.24	13.18	21.18	Transitional	Y		Closed
	0.3% Cu	WNR0020	34	37	3	2.4	0.99	0.48	2.38	1.14	Transitional	Y		Close
	0.3% Cu	WNR0020	42	44	2	1.6	0.42	0.48	0.67	0.28	Transitional	Y	2	Close
_	0.3% Cu	WNR0020	13	17	4	3.2	0.42	0.18	1.97	0.58	Transitional	Y		Close
	0.3% Cu	WNR0021	26	28	2	1.6	1.37	0.60	2.19	0.96		Y		71 SHU-VEY /
										-	Transitional			Close
	0.3% Cu	WNR0021	41	42	1	0.8	0.40	0.07	0.32	0.06	Fresh	N		Close
	0.3% Cu	WNR0022	32	38	6	4.8	1.78	0.84	8.56	4.05	Transitional	Y		Closed
Λ	0.3% Cu	WNR0024	15	16	1	0.8	0.32	0.11	0.26	0.09	Transitional	N		Closed
И	0.3% Cu	WNR0024	29	33	4	3.2	0.53	0.13	1.69	0.42	Transitional	Y		Closed
	0.3% Cu	WNR0024	79	81	2	1.6	1.52	0.20	2.43	0.31	Fresh	Y		Closed
_	0.3% Cu	WNR0025	5	10	5	4	0.78	0.24	3.12	0.96	Transitional	Y		Closed
	0.3% Cu	WNR0026	19	25	6	4.8	0.72	0.21	3.47	1.00	Transitional	Υ		Closed
1	0.3% Cu	WNR0027	39	48	9	7.2	0.91	0.29	6.53	2.08	Fresh	Υ		Close
	0.3% Cu	WNR0028	16	21	5	4	0.53	0.89	2.13	3.55	Transitional	Υ		Close
	0.3% Cu	WNR0028	22	30	8	6.4	0.70	0.52	4.50	3.35	Transitional	Υ		Close
	0.3% Cu	WNR0028	33	35	2	1.6	0.56	0.17	0.90	0.27	Transitional	N		Close
	0.3% Cu	WNR0031	3	4	1	0.8	1.38	0.10	1.10	0.08	Oxide	N		Close
	0.3% Cu	WNR0031	16	17	1	0.8	0.47	0.30	0.38	0.24	Transitional	N		Close
	0.3% Cu	WNR0031	31	33	2	1.6	0.35	0.84	0.56	1.34	Fresh	Y		Close
	0.3% Cu	WNR0031	42	43	1	0.8	0.34	0.07	0.27	0.06	Fresh	N		Close
	0.3% Cu	WNR0031	47	48	1	0.8	1.21	5.43	0.97	4.34	Fresh	N		Close
_	0.3% Cu	WNR0032	4	6	2	1.6	1.81	0.96	2.89	1.54	Oxide	Υ		Close
	0.3% Cu	WNR0032	13	15	2	1.6	0.34	0.15	0.54	0.23	Transitional	N	,	Close
	0.3% Cu	WNR0033	20	26	6	4.8	0.71	0.10	3.39	0.46	Transitional	Υ		Close
	0.3% Cu	WNR0033	39	49	10	8	2.48	0.67	19.81	5.37	Transitional	Υ		Close
П	0.3% Cu	WNR0034	20	21	1	0.8	0.99	1.19	0.79	0.95	Transitional	N		Close
Ш	0.3% Cu	WNR0034	52	53	1	0.8	6.08	3.06	4.86	2.45	Fresh	N		Close
	0.3% Cu	WNR0034	62	65	3	2.4	0.35	0.34	0.83	0.81	Fresh	Υ		Close
	0.3% Cu	WNR0035	35	36	1	0.8	2.30	1.94	1.84	1.55	Fresh	Υ		Close
	0.3% Cu	WNR0036	9	15	6	4.8	0.49	0.08	2.34	0.36	Transitional	N		Close
	0.3% Cu	WNR0037	7	16	9	7.2	0.60	0.14	4.33	1.00	Transitional	N		Close
	0.3% Cu	WNR0037	30	36	6	4.8	2.59	0.24	12.45	1.14	Transitional	Y		Close
	0.3% Cu	WNR0038	0	1	1	0.8	0.42	0.02	0.34	0.02	Oxide	N		Close
	0.3% Cu	WNR0038	5	6	1	0.8	0.39	0.01	0.31	0.00	Oxide	N		Close
	0.3% Cu	WNR0038	26	34	8	6.4	1.43	0.17	9.15	1.06	Transitional	N		Close
	0.3% Cu	WNR0038	47	53	6	4.8	2.15	0.56	10.31	2.69	Fresh	Y		Close
	0.3% Cu	WNR0038	9	19	10	8	0.77	0.36	6.17	2.09	Transitional	Y		Closed

	Cutoff	Hole ID	From (m)	To (m)	Downhole Interval (m)	ETW (m)	Cu %	Au g/t	Cu % x ETW (m)	Au g/t x ETW (m)	Oxide	In Current Resource	Potentially Contaminated	Open or Closed
	0.3% Cu	WNR0039	30	31	1	0.8	0.93	0.67	0.74	0.54	Transitional	Υ		Closed
	0.3% Cu	WNR0040	12	16	4	3.2	0.38	0.11	1.21	0.34	Transitional	N		Closed
	0.3% Cu	WNR0040	28	34	6	4.8	0.54	1.38	2.59	6.62	Transitional	Υ		Closed
	0.3% Cu	WNR0041	9	11	2	1.6	0.61	0.11	0.98	0.18	Transitional	N		Closed
	0.3% Cu	WNR0041	47	48	1	0.8	0.41	0.12	0.33	0.10	Fresh	N		Closed
	0.3% Cu	WNR0041	55	56	1	0.8	0.36	0.15	0.28	0.12	Fresh	N		Closed
	0.3% Cu	WNR0041	60	61	1	0.8	0.53	0.04	0.42	0.03	Fresh	N		Closed
	0.3% Cu	WNR0042	17	18	1	0.8	1.14	0.11	0.91	0.09	Transitional	Υ		Closed
	0.3% Cu	WNR0043	11	12	1	0.8	0.43	0.03	0.34	0.02	Transitional	N		Closed
	0.3% Cu	WNR0043	17	22	5	4	0.58	0.09	2.34	0.36	Transitional	Υ		Closed
	0.3% Cu	WNR0043	26	27	1	0.8	0.33	0.12	0.26	0.10	Transitional	Y		Closed
	0.3% Cu	WNR0043	28	29	1	0.8	0.34	0.07	0.27	0.06	Transitional	Υ		Closed
	0.3% Cu	WNR0044	17	18	1	0.8	0.76	0.06	0.61	0.05	Transitional	N		Closed
	0.3% Cu	WNR0044	34	42	8	6.4	0.34	0.15	2.17	0.94	Transitional	Υ		Open
	0.3% Cu	WNR0045	10	14	4	3.2	0.31	0.01	1.01	0.03	Transitional	N		Closed
	0.3% Cu	WNR0045	23	25	2	1.6	0.99	0.34	1.58	0.54	Transitional	Υ		Closed
	0.3% Cu	WNR0046	15	22	7	5.6	1.17	0.52	6.54	2.94	Transitional	Υ		Closed
	0.3% Cu	WNR0046	37	38	1	0.8	0.52	0.71	0.41	0.57	Transitional	Y		Closed
	0.3% Cu	WNR0047	0	1	1	0.8	0.34	0.12	0.27	0.10	Oxide	N	2	Closed
	0.3% Cu	WNR0047	30	41	11	8.8	0.94	0.41	8.27	3.62	Fresh	Y		Closed
	0.3% Cu	WNR0047	54	57	3	2.4	0.71	0.28	1.70	0.66	Fresh	Y		Closed
	0.3% Cu	WNR0048	4	5	1	0.8	0.58	0.26	0.46	0.21	Oxide	N	2	Closed
	0.3% Cu	WNR0048	16	18	2	1.6	0.40	0.07	0.65	0.10	Transitional	N		Closed
	0.3% Cu	WNR0049	6	7	1	0.8	0.44	0.01	0.35	0.01	Oxide	N		Closed
	0.3% Cu	WNR0049	13	15	2	1.6	0.35	0.01	0.56	0.01	Transitional	N	-	Closed
	0.3% Cu	WNR0049	24	28 35	4	3.2	1.05	0.44	3.34	1.39	Transitional	N		Closed
7	0.3% Cu	WNR0049 WNR0051	34 10	11	1 1	0.8	0.37	0.12	0.29	0.10	Transitional	N Y		Closed
	0.3% Cu 0.3% Cu	WNR0051	24	25	1	0.8	3.20	6.17	2.56	4.94	Transitional Transitional	Y		Closed
	0.3% Cu	WNR0051	9	10	1	0.8	0.42	0.02	0.33	0.02	Transitional	Y		Closed
	0.3% Cu	WNR0052	11	18	7	5.6	1.43	0.16	8.02	0.88	Transitional	Y	1	Closed
	0.3% Cu	WNR0052	27	29	2	1.6	0.62	0.10	0.99	0.50	Transitional	Y	*	Closed
	0.3% Cu	WNR0053	20	28	8	6.4	0.64	0.47	4.10	3.00	Transitional	Y		Closed
	0.3% Cu	WNR0053	31	36	5	4	1.02	0.34	4.07	1.37	Transitional	Y		Closed
	0.3% Cu	WNR0053	46	51	5	4	0.55	0.18	2.22	0.73	Transitional	Y		Closed
	0.3% Cu	WNR0054	34	35	1	0.8	0.52	0.05	0.42	0.04	Transitional	N		Open
	0.3% Cu	WNR0055	38	40	2	1.6	0.71	0.41	1.13	0.66	Transitional	Y		Open
	0.3% Cu	WNR0056	39	41	2	1.6	0.56	0.19	0.89	0.30	Transitional	N		Closed
	0.3% Cu	WNR0056	51	53	2	1.6	1.86	1.38	2.97	2.21	Transitional	Υ		Closed
	0.3% Cu	WNR0059	14	17	3	2.4	1.00	0.37	2.40	0.89	Transitional	N		Closed
	0.3% Cu	WNR0059	20	21	1	0.8	0.32	0.06	0.26	0.05	Transitional	N		Closed
	0.3% Cu	WNR0060	8	9	1	0.8	0.34	0.04	0.27	0.03	Transitional	N		Closed
	0.3% Cu	WNR0060	13	14	1	0.8	0.40	0.01	0.32	0.01	Transitional	N		Closed
	0.3% Cu	WNR0060	17	22	5	4	0.60	0.28	2.41	1.14	Transitional	N		Closed
	0.3% Cu	WNR0060	35	38	3	2.4	0.59	0.21	1.41	0.51	Transitional	N		Closed
	0.3% Cu	WNR0061	34	40	6	4.8	0.74	0.94	3.53	4.50	Transitional	Υ		Closed
	0.3% Cu	WNR0061	45	48	3	2.4	1.13	0.23	2.72	0.54	Transitional	Υ		Closed
	0.3% Cu	WNR0063	5	9	4	3.2	0.38	0.10	1.23	0.31	Transitional	Υ		Open
	0.3% Cu	WNR0063	12	16	4	3.2	0.40	0.10	1.27	0.30	Transitional	Y		Closed
	0.3% Cu	WNR0064	6	7	1	0.8	0.34	0.03	0.27	0.02	Transitional	N		Closed
	0.3% Cu	WNR0064	17	34	17	13.6	0.97	0.66	13.22	8.91	Transitional	Y		Closed
	0.3% Cu	WNR0065	29	32	3	2.4	1.11	1.23	2.65	2.96	Transitional	Y		Closed
	0.3% Cu	WNR0066	65	70	5	4	0.50	0.22	2.01	0.87	Fresh	Υ		Closed
	0.3% Cu	WNR0066	71	73	2	1.6	1.13	0.17	1.81	0.26	Fresh	Y		Closed
	0.3% Cu	WNR0067	4	5	1	0.8	0.38	0.01	0.30	0.01	Transitional	Y		Closed
	0.3% Cu	WNR0067	6	21	15	12	0.78	0.54	9.37	6.47	Transitional	Y		Closed
	0.3% Cu	WNR0068	9	12	3	2.4	0.47	0.38	1.13	0.90	Transitional	N		Closed
	0.3% Cu	WNR0068	30	36	6	4.8	5.26	3.26	25.24	15.65	Transitional	Y		Closed

Cutoff	Hole ID	From (m)	To (m)	Downhole Interval (m)	ETW (m)	Cu %	Au g/t	Cu % x ETW (m)	Au g/t x ETW (m)	Oxide	In Current Resource	Potentially Contaminated	Open or Closed
0.3% Cu	WNR0069	28	30	2	1.6	1.84	0.37	2.95	0.59	Transitional	Υ		Closed
0.3% Cu	WNR0069	33	38	5	4	1.78	0.94	7.11	3.75	Transitional	N		Closed
0.3% Cu	WNR0069	43	48	5	4	1.53	0.87	6.13	3.48	Transitional	Υ		Closed
0.3% Cu	WNR0070	13	17	4	3.2	0.45	0.16	1.44	0.50	Transitional	Υ		Closed
0.3% Cu	WNR0070	31	34	3	2.4	0.56	0.01	1.34	0.03	Transitional	Υ		Closed
0.3% Cu	WNR0070	38	41	3	2.4	1.04	0.52	2.50	1.24	Transitional	Υ		Closed
0.3% Cu	WNR0071	11	14	3	2.4	0.96	0.44	2.31	1.06	Transitional	Υ		Closed
0.3% Cu	WNR0072	5	7	2	1.6	0.41	0.02	0.65	0.02	Oxide	N		Closed
0.3% Cu	WNR0072	12	13	1	0.8	0.36	0.02	0.28	0.02	Transitional	N		Closed
0.3% Cu	WNR0072	26	27	1	0.8	2.28	1.46	1.82	1.17	Transitional	Υ		Closed
0.3% Cu	WNR0073	40	42	2	1.6	7.70	4.32	12.32	6.90	Transitional	Y		Closed
0.3% Cu	WNR0074	55	61	6	4.8	1.66	1.36	7.96	6.53	Transitional	Υ		Closed
0.3% Cu	WNR0075	10	11	1	0.8	0.35	0.01	0.28	0.01	Oxide	N		Closed
0.3% Cu	WNR0075	14	15	1	0.8	0.37	0.01	0.29	0.01	Oxide	N		Closed
0.3% Cu	WNR0075	17	18	1	0.8	0.38	0.01	0.30	0.01	Oxide	Y		Closed
0.3% Cu 0.3% Cu	WNR0075 WNR0076	32 56	35 59	3	2.4	2.75	1.16 0.99	6.60 3.92	2.79	Transitional	Y	-	Closed Closed
0.3% Cu	WNR0076 WNR0077	59	67	8	6.4	0.61	0.99	3.89	4.76	Transitional Fresh	Y	•	Closed
0.3% Cu	WNR0077	70	75	5	4	0.40	0.74	1.62	1.05	Fresh	N		Closed
0.3% Cu	WNR0077	76	81	5	4	0.48	0.30	2.72	1.22	Fresh	N		Closed
0.3% Cu	WNR0078	2	3	1	0.8	0.32	0.01	0.25	0.01	Oxide	N		Closed
0.3% Cu	WNR0078	8	10	2	1.6	0.33	0.08	0.53	0.12	Transitional	N		Closed
0.3% Cu	WNR0078	14	21	7	5.6	1.15	2.09	6.41	11.69	Transitional	Y		Closed
0.3% Cu	WNR0078	26	27	1	0.8	0.36	0.06	0.29	0.05	Transitional	N		Open
0.3% Cu	WNR0079	9	11	2	1.6	1.20	0.26	1.92	0.41	Oxide	Υ		Closed
0.3% Cu	WNR0079	14	15	1	0.8	0.36	0.02	0.29	0.02	Transitional	Y		Closed
0.3% Cu	WNR0080	2	4	2	1.6	0.39	0.01	0.62	0.02	Transitional	Υ		Closed
0.3% Cu	WNR0082	19	21	2	1.6	0.33	0.01	0.52	0.01	Transitional	N		Closed
0.3% Cu	WNR0082	24	25	1	0.8	0.35	0.01	0.28	0.00	Transitional	Υ		Closed
0.3% Cu	WNR0082	34	38	4	3.2	4.06	0.16	13.00	0.50	Transitional	N	0 0	Closed
0.3% Cu	WNR0083	51	55	4	3.2	3.81	6.23	12.20	19.92	Transitional	Υ		Closed
0.3% Cu	WNR0084	40	49	9	7.2	1.79	0.38	12.91	2.76	Transitional	N		Closed
0.3% Cu	WNR0085	49	63	14	11.2	1.61	3.78	18.04	42.34	Transitional	Υ	6	Closed
0.3% Cu	WNR0086	8	22	14	11.2	1.01	0.29	11.34	3.27	Transitional	Y		Closed
0.3% Cu	WNR0087	28	34	6	4.8	1.63	1.49	7.83	7.14	Transitional	Y		Closed
0.3% Cu	WNR0087	35	43	8	6.4	0.87	0.67	5.56	4.30	Transitional	Y	ė į	Closed
0.3% Cu	WNR0088	0 47	1	17	0.8	0.58	0.25	0.46	0.20	Oxide	N Y	-	Closed
0.3% Cu 0.3% Cu	WNR0088 WNR0089	11	64 18	7	13.6	0.98	2.70 0.24	35.94 5.51	36.70 1.36	Transitional Transitional	N		Closed
0.3% Cu	WNR0099	26	27	1	0.8	1.25	1.89	1.00	1.51	Transitional	Y		Closed
0.3% Cu	WNR0090	36	38	2	1.6	0.64	0.08	1.00	0.13	Transitional	Y		Closed
0.3% Cu	WNR0091	42	53	11	8.8	0.86	0.22	7.56	1.94	Transitional	Y	Y	Closed
0.3% Cu	WNR0091	54	61	7	5.6	0.38	0.55	2.12	3.06	Transitional	N	Y	Closed
0.3% Cu	WNR0092	13	17	4	3.2	0.34	0.07	1.10	0.22	Transitional	Y		Closed
0.3% Cu	WNR0092	21	26	5	4	0.87	0.35	3.49	1.39	Transitional	N		Closed
0.3% Cu	WNR0093	34	35	1	0.8	1.45	4.13	1.16	3.30	Transitional	Υ		Closed
0.3% Cu	WNR0093	38	40	2	1.6	1.47	1.09	2.35	1.74	Transitional	N		Closed
0.3% Cu	WNR0093	48	54	6	4.8	1.48	0.68	7.08	3.26	Fresh	Υ		Closed
0.3% Cu	WNR0094	35	36	1	0.8	0.42	0.06	0.33	0.05	Transitional	N		Closed
0.3% Cu	WNR0094	41	45	4	3.2	0.48	0.22	1.55	0.69	Fresh	Υ	Υ	Closed
0.3% Cu	WNR0094	54	69	15	12	1.76	0.46	21.09	5.54	Fresh	Y	Y	Closed
0.3% Cu	WNR0095	6	15	9	7.2	0.34	0.02	2.46	0.14	Transitional	N	Y	CLOSED
0.3% Cu	WNR0096	9	10	1	0.8	0.30	0.01	0.24	0.01	Transitional	N		Closed
0.3% Cu	WNR0096	11	23	12	9.6	0.92	0.38	8.84	3.66	Transitional	N		Closed
0.3% Cu	WNR0096	26	28	2	1.6	0.87	0.30	1.39	0.47	Transitional	Y		Open
0.3% Cu	WNR0096	29	36	7	5.6	0.65	0.28	3.62	1.55	Transitional	N		Open
0.3% Cu	WNR0097	9	15	6	4.8	0.50	0.13	2.38	0.62	Transitional	N		Closed
0.3% Cu	WNR0097	39	45	6	4.8	2.27	1.16	10.91	5.57	Fresh	Y		Closed

Cutoff	Hole ID	From (m)	To (m)	Downhole Interval (m)	ETW (m)	Cu %	Au g/t	Cu % x ETW (m)	Au g/t x ETW (m)	Oxide	In Current Resource	Potentially Contaminated	Open or Closed
0.3% Cu	WNR0098	9	29	20	16	1.12	1.41	17.85	22.50	Transitional	Υ		Closed
0.3% Cu	WNR0098	57	60	3	2.4	2.17	0.25	5.22	0.61	Fresh	Y		Closed
0.3% Cu	WNR0099	38	47	9	7.2	2.09	0.76	15.05	5.45	Fresh	Υ	Υ	Closed
0.3% Cu	WNR0099	72	75	3	2.4	2.28	0.50	5.48	1.19	Fresh	Υ		Closed
0.3% Cu	WNR0102	41	51	10	8	0.96	0.37	7.70	2.98	Fresh	Υ		Closed
0.3% Cu	WNR0103	6	8	2	1.6	0.56	0.17	0.90	0.26	Transitional	Υ		Closed
0.3% Cu	WNR0103	15	16	1	0.8	0.30	0.07	0.24	0.06	Transitional	N		Closed
0.3% Cu	WNR0104	7	18	11	8.8	1.10	0.56	9.72	4.93	Transitional	Y		Closed
0.3% Cu	WNR0104	25	27	2	1.6	0.52	0.52	0.83	0.83	Transitional	N		Closed
0.3% Cu	WNR0105	22	25	3	2.4	1.45	0.75	3.48	1.80	Transitional	Y	9	Closed
0.3% Cu	WNR0105	28	31	3	2.4	0.48	0.16	1.14	0.38	Transitional	N	-	Closed
0.3% Cu	WNR0105	37	41	4	3.2	0.96	0.21	3.06	0.66	Fresh	N	-	Closed
0.3% Cu	WNR0105	44	45	1	0.8	0.68	0.38	0.54	0.30	Fresh	N	2	Closed
0.3% Cu 0.3% Cu	WNR0105 WNR0106	70	72 47	6	1.6	0.72	0.58	1.15	0.93	Fresh Transitional	N Y		Closed
0.3% Cu	WNR0106	59	60	1	0.8	0.76	0.26	0.29	0.14	Fresh	N	Y	Closed
0.3% Cu	WNR0106	66	67	1	0.8	0.30	0.17	0.29	0.14	Fresh	N	Y	Closed
0.3% Cu	WNR0106	77	78	1	0.8	0.49	0.13	0.39	0.10	Fresh	N		Closed
0.3% Cu	WNR0106	84	85	1	0.8	1.10	0.23	0.88	0.18	Fresh	N		Closed
0.3% Cu	WNR0107	5	17	12	9.6	3.65	2.23	35.02	21.42	Transitional	Y		Closed
0.3% Cu	WNR0107	33	34	1	0.8	0.46	0.25	0.37	0.20	Fresh	N N		Closed
0.3% Cu	WNR0107	56	58	2	1.6	0.91	0.61	1.45	0.98	Fresh	N		Closed
0.3% Cu	WNR0109	30	37	7	5.6	1.69	0.98	9.45	5.47	Transitional	Y		Closed
0.3% Cu	WNR0109	63	64	1	0.8	0.54	0.07	0.43	0.06	Fresh	N		Open
0.3% Cu	WNR0109	78	80	2	1.6	0.39	0.14	0.62	0.22	Fresh	N		Closed
0.3% Cu	WNR0110	0	2	2	1.6	0.41	0.11	0.66	0.18	Oxide	N		Closed
0.3% Cu	WNR0110	18	24	6	4.8	0.40	0.05	1.91	0.23	Transitional	Υ		Closed
0.3% Cu	WNR0110	26	37	11	8.8	1.86	1.72	16.39	15.13	Transitional	Y		Closed
0.3% Cu	WNR0110	44	45	1	0.8	0.35	0.35	0.28	0.28	Fresh	N		Closed
0.3% Cu	WNR0111	45	55	10	8	2.23	1.95	17.83	15.62	Fresh	Υ		Closed
0.3% Cu	WNR0111	75	76	1	0.8	1.99	0.34	1.59	0.27	Fresh	Y		Closed
0.3% Cu	WNR0112	7	12	5	4	0.46	0.07	1.83	0.27	Transitional	N	Y	Closed
0.3% Cu	WNR0112	15	17	2	1.6	1.01	0.09	1.62	0.14	Oxide	N		Closed
0.3% Cu	WNR0113	10	12	2	1.6	0.37	0.38	0.59	0.60	Transitional	Υ		Closed
0.3% Cu	WNR0113	15	29	14	11.2	1.94	1.33	21.73	14.90	Transitional	Υ		Closed
0.3% Cu	WNR0113	31	34	3	2.4	0.41	0.14	0.97	0.34	Transitional	N	å j	Closed
0.3% Cu	WNR0113	38	39	1	0.8	0.54	0.09	0.43	0.07	Fresh	N		Closed
0.3% Cu	WNR0114	29	50	21	16.8	1.35	0.58	22.65	9.69	Transitional	Υ		Closed
0.3% Cu	WNR0114	53	57	4	3.2	1.38	0.30	4.42	0.95	Fresh	N		Closed
0.3% Cu	WNR0115	2	16	14	11.2	1.22	0.34	13.67	3.82	Transitional	Ý		Closed
0.3% Cu	WNR0116	19	29	10	8	4.01	2.43	32.09	19.42	Transitional	Y		Closed
0.3% Cu	WNR0116	32	35	3	2.4	0.39	0.16	0.94	0.38	Fresh	N		Closed
0.3% Cu	WNR0116	41	42	1	0.8	0.57	0.16	0.46	0.13	Fresh	N		Closed
0.3% Cu	WNR0117	31	44	13	10.4	1.89	1.02	19.65	10.58	Transitional	Y		Closed
0.3% Cu	WNR0118	46	60	14	11.2	3.57	1.41	39.95	15.74	Fresh	Y	Y	Closed
0.3% Cu	WNR0118	64	65	1	0.8	0.69	0.43	0.55	0.34	Fresh	Y	Y	Closed
0.3% Cu	WNR0118	71	80	9	7.2	0.55	0.22	3.98	1.61	Fresh	Y		Closed
0.3% Cu	WNR0119	0	1	1	0.8	0.82	0.24	0.66	0.19	Oxide	N		Closed
0.3% Cu	WNR0119	15	16	1	0.8	0.59	0.16	0.47	0.13	Transitional	N		Closed
0.3% Cu	WNR0119	32	35	3	2.4	0.74	0.23	1.77	0.54	Transitional	Y		Closed
0.3% Cu	WNR0119	37	51	14	3.2	0.94	0.52	10.56	5.80 0.95	Fresh Transitional			Closed
0.3% Cu 0.3% Cu	WNR0120	27 35	31 39	4	3.2	1.22	0.30	3.92			N N		
0.3% Cu	WNR0120 WNR0120				18.4	0.45	0.14	1.43	0.44 8.54	Transitional	Y		Closed
0.3% Cu	WNR0120 WNR0121	51 10	74 12	23	1.6	1.50	0.46	27.61	0.03	Fresh Transitional	Y		Closed
0.3% Cu	WNR0121 WNR0121	16	28	12	9.6	1.32	0.02	19.11	4.02	Transitional	Y		Closed
0.3% Cu	WNR0121 WNR0121	51	55	4	3.2	1.48	0.42	4.72	1.48	Fresh	Y		Closed
0.3% Cu	WNR0121 WNR0122	28	41	13	10.4	1.68	0.45	17.44	4.73	Transitional	N		Closed
0.570 Ca	11110122	20	71		20.7	1.00	0.43	27,144	1.75	/ unsidenal			Ciosca

Cutoff	Hole ID	From (m)	To (m)	Downhole Interval (m)	ETW (m)	Cu %	Au g/t	Cu % x ETW (m)	Au g/t x ETW (m)	Oxide	In Current Resource	Potentially Contaminated	Open or Closed
0.3% Cu	WNR0122	67	69	2	1.6	0.96	1.53	1.53	2.45	Fresh	Y		Closed
0.3% Cu	WNR0122	73	74	1	0.8	0.51	0.07	0.40	0.06	Fresh	N		Closed
0.3% Cu	WNR0125	16	18	2	1.6	0.36	0.07	0.57	0.10	Transitional	N		Closed
0.3% Cu	WNR0128	7	15	8	6.4	0.41	0.17	2.65	1.09	Transitional	N		Open
0.3% Cu	WNR0128	21	22	1	0.8	0.68	0.24	0.55	0.19	Transitional	Υ		Closed
0.3% Cu	WNR0129	32	34	2	1.6	2.68	0.49	4.29	0.78	Transitional	Υ		Closed
0.3% Cu	WNR0129	38	39	1	0.8	1.31	0.25	1.04	0.20	Transitional	N		Closed
0.3% Cu	WNR0130	10	13	3	2.4	0.50	2.44	1.21	5.85	Transitional	N		CLOSED
0.3% Cu	WNR0131	16	25	9	7.2	0.76	1.22	5.45	8.80	Transitional	Υ		Closed
0.3% Cu	WNR0132	8	18	10	8	0.65	0.32	5.18	2.53	Transitional	Υ		Closed
0.3% Cu	WNR0133	11	14	3	2.4	0.34	0.04	0.83	0.09	Transitional	N		Closed
0.3% Cu	WNR0133	29	30	1	0.8	1.21	0.01	0.96	0.01	Transitional	N		Open
0.3% Cu	WNR0135	6	7	7	0.8	0.33	0.02	0.27	0.02	Oxide	N Y		Closed
0.3% Cu 0.3% Cu	WNR0135 WNR0136	12	19 3	1	0.8	0.46	0.19	2.56 0.29	1.06 0.02	Transitional Oxide	N N		Closed Open
0.3% Cu	WNR0136	8	9	1	0.8	0.31	0.03	0.25	0.02	Transitional	N		Closed
0.3% Cu	WNR0137	0	8	8	6.4	0.86	0.11	5.51	0.71	Oxide	N		Closed
0.3% Cu	WNR0138	7	12	5	4	0.37	0.11	1.48	0.42	Transitional	N		Closed
0.3% Cu	WNR0138	13	23	10	8	1.03	0.81	8.20	6.50	Transitional	N		Closed
0.3% Cu	WNR0139	13	20	7	5.6	0.68	0.35	3.81	1.98	Transitional	Y		Closed
0.3% Cu	WNR0139	27	35	8	6.4	1.52	0.95	9.73	6.08	Fresh	N		Closed
0.3% Cu	WNR0140	29	30	1	0.8	0.42	0.28	0.34	0.22	Transitional	Υ		Closed
0.3% Cu	WNR0140	32	33	1	0.8	0.30	0.07	0.24	0.06	Transitional	N		Closed
0.3% Cu	WNR0140	35	36	1	0.8	0.36	0.23	0.29	0.18	Transitional	N		Closed
0.3% Cu	WNR0140	41	46	5	4	0.85	0.42	3.41	1.70	Fresh	Υ		Open
0.3% Cu	WNR0141	46	47	1	0.8	0.63	0.25	0.51	0.20	Fresh	Υ		Closed
0.3% Cu	WNR0141	51	55	4	3.2	1.27	0.54	4.07	1.71	Fresh	N	2	Closed
0.3% Cu	WNR0141	60	68	8	6.4	2.57	0.91	16.45	5.79	Fresh	Υ		Closed
0.3% Cu	WNR0142	26	29	3	2.4	0.38	0.21	0.92	0.50	Transitional	N		Closed
0.3% Cu	WNR0142	34	46	12	9.6	1.09	0.48	10.47	4.57	Fresh	Υ	-	Closed
0.3% Cu	WNR0143	49	59	10	8	1.87	1.34	14.95	10.70	Fresh	Y		Closed
0.3% Cu	WNR0144	16	17	1	0.8	0.48	0.11	0.38	0.09	Transitional	N		Closed
0.3% Cu	WNR0144	30 4	43 5	13	0.8	1.19	2.44	12.43	25.34 0.30	Transitional Oxide	Y	6	Closed
0.3% Cu 0.3% Cu	WNR0145 WNR0145	11	12	1	0.8	0.30	0.38	0.24	0.30	Transitional	Y	-	Closed Closed
0.3% Cu	WNR0145	18	22	4	3.2	0.30	0.33	2.32	1.06	Transitional	N		Closed
0.3% Cu	WNR0146	26	28	2	1.6	2.35	0.93	3.76	1.49	Transitional	Y	2	Closed
0.3% Cu	WNR0146	37	43	6	4.8	2.28	1.85	10.96	8.90	Fresh	Y	•	Closed
0.3% Cu	WNR0146	48	51	3	2.4	0.40	0.08	0.96	0.20	Fresh	N		Closed
0.3% Cu	WNR0147	19	30	11	8.8	0.93	0.31	8.18	2.77	Transitional	Y		Closed
0.3% Cu	WNR0147	33	34	1	0.8	0.48	0.08	0.38	0.06	Transitional	N		Closed
0.3% Cu	WNR0148	20	21	1	0.8	0.51	0.03	0.41	0.02	Transitional	Υ		Closed
0.3% Cu	WNR0148	37	40	3	2.4	2.98	2.72	7.15	6.53	Transitional	Υ		Closed
0.3% Cu	WNR0148	45	46	1	0.8	0.47	0.08	0.38	0.06	Fresh	Υ		Closed
0.3% Cu	WNR0149	24	25	1	0.8	0.35	0.04	0.28	0.03	Transitional	N		Closed
0.3% Cu	WNR0149	38	40	2	1.6	1.04	0.80	1.66	1.28	Transitional	Υ		Closed
0.3% Cu	WNR0149	43	45	2	1.6	1.11	0.88	1.78	1.41	Transitional	Υ		Closed
0.3% Cu	WNR0149	48	50	2	1.6	0.49	0.35	0.78	0.55	Transitional	Υ		Closed
0.3% Cu	WNR0150	20	26	6	4.8	0.34	0.10	1.61	0.46	Transitional	Y		Closed
0.3% Cu	WNR0150	27	38	11	8.8	1.37	0.56	12.02	4.95	Transitional	Υ		Closed
10/ 6:-	W/NIDOO40	25	26	4		The second second		h 2 m intern	-	Transitions	V	v .	Class
1% Cu	WNR0010	25	26	1	0.8	1.43	0.30	1.14	0.24	Transitional	Y		Closed
1% Cu	WNR0010	29	30	1 2	0.8	1.15 7.72	0.43	0.92	0.34	Transitional	Y		Closed
1% Cu 1% Cu	WNR0014 WNR0015	36 33	38 34	1	1.6 0.8	1.32	0.63	12.34	1.00 0.22	Transitional Fresh	N N		Closed Closed
1% Cu	WNR0015 WNR0015	38	39	1	0.8	2.81	2.49	2.25	1.99	Transitional	N		Closed
1% Cu	WNR0015	55	56	1	0.8	2.12	0.76	1.70	0.61	Fresh	N		Closed
1% Cu	WNR0017	21	22	1	0.8	2.26	0.15	1.81	0.12	Transitional	y		Closed
_,,,				-			J						5.5366

	Cutoff	Hole ID	From (m)	To (m)	Downhole Interval (m)	ETW (m)	Cu %	Au g/t	Cu % x ETW (m)	Au g/t x ETW (m)	Oxide	In Current Resource	Potentially Contaminated	Open or Closed
	1% Cu	WNR0017	27	30	3	2.4	1.59	0.34	3.82	0.81	Transitional	у		Closed
	1% Cu	WNR0017	34	36	2	1.6	10.23	13.62	16.36	21.79	Transitional	у		Closed
	1% Cu	WNR0018	6	7	1	0.8	1.17	0.05	0.93	0.04	Oxide	N		Closed
	1% Cu	WNR0018	35	36	1	0.8	5.44	1.57	4.35	1.26	Transitional	Υ		Closed
	1% Cu	WNR0018	41	42	1	0.8	2.18	0.20	1.74	0.16	Transitional	Υ		Closed
	1% Cu	WNR0018	51	52	1	0.8	2.61	3.14	2.09	2.51	Transitional	Υ		Closed
	1% Cu	WNR0019	22	23	1	0.8	1.38	1.42	1.10	1.14	Transitional	Υ		Closed
	1% Cu	WNR0019	29	31	2	1.6	8.24	13.24	13.18	21.18	Transitional	Υ		Closed
	1% Cu	WNR0020	35	36	1	0.8	1.66	0.18	1.32	0.14	Transitional	Υ		Closed
	1% Cu	WNR0021	26	28	2	1.6	1.37	0.60	2.19	0.96	Transitional	Υ		Closed
	1% Cu	WNR0022	33	38	5	4	1.98	0.97	7.92	3.90	Transitional	Y		Closed
	1% Cu	WNR0024	29	30	1	0.8	1.06	0.15	0.85	0.12	Transitional	Υ		Closed
	1% Cu	WNR0024	80	81	1	0.8	2.56	0.35	2.05	0.28	Fresh	Y		Closed
	1% Cu	WNR0025	8	9	1	0.8	1.52	0.44	1.22	0.35	Transitional	Υ		Closed
	1% Cu	WNR0026	21	22	1	0.8	1.80	0.34	1.44	0.27	Transitional	Υ		Closed
	1% Cu	WNR0027	39	42	3	2.4	1.69	0.39	4.06	0.94	Fresh	Y		Closed
	1% Cu	WNR0028	27	28	1	0.8	2.97	2.75	2.38	2.20	Transitional	Υ		Closed
	1% Cu	WNR0031	3	4	1	0.8	1.38	0.10	1.10	0.08	Oxide	N		Closed
	1% Cu	WNR0031	47	48	1	0.8	1.21	5.43	0.97	4.34	Fresh	N	ý	Closed
	1% Cu	WNR0032	4	6	2	1.6	1.81	0.96	2.89	1.54	Oxide	Y		Closed
	1% Cu	WNR0033	23	25	2	1.6	1.59	0.20	2.54	0.31	Transitional	Y		Closed
	1% Cu	WNR0033	40	48	8	6.4	2.97	0.82	19.03	5.26	Transitional	Y		Closed
	1% Cu	WNR0034	52	53	1	0.8	6.08	3.06	4.86	2.45	Fresh	N		Closed
	1% Cu	WNR0035	35	36	1 1	0.8	2.30	1.94	1.84	1.55	Fresh	Y		Closed
	1% Cu	WNR0036	14	15	5	0.8	1.18	0.30	0.94	0.24	Transitional	Y		Closed
	1% Cu	WNR0037	30 27	35 33		4.8	3.03	0.28	12.10	1.13	Transitional	_		Closed
7	1% Cu 1% Cu	WNR0038 WNR0038	47	52	5	4.8	1.70	0.18	8.17 9.88	0.86 2.60	Transitional Fresh	N Y		Closed Closed
	1% Cu	WNR0039	11	12	1	0.8	1.07	1.56	0.85	1.25	Transitional	Y	-	Closed
	1% Cu	WNR0039	15	16	1	0.8	1.24	1.10	0.99	0.88	Transitional	Y	9	Closed
	1% Cu	WNR0040	28	29	1	0.8	1.28	0.45	1.02	0.36	Transitional	Y		Closed
	1% Cu	WNR0042	17	18	1	0.8	1.14	0.11	0.91	0.09	Transitional	Y		Closed
	1% Cu	WNR0043	18	19	1	0.8	1.01	0.10	0.81	0.08	Transitional	Y		Closed
	1% Cu	WNR0045	23	24	1	0.8	1.53	0.04	1.22	0.03	Transitional	Y		Closed
	1% Cu	WNR0046	16	20	4	3.2	1.61	0.82	5.14	2.62	Transitional	Y		Closed
	1% Cu	WNR0047	30	32	2	1.6	1.29	0.20	2.06	0.31	Fresh	Υ		Closed
	1% Cu	WNR0047	35	39	4	3.2	1.42	0.79	4.54	2.54	Fresh	Υ		Closed
	1% Cu	WNR0047	55	56	1	0.8	1.02	0.52	0.82	0.42	Fresh	N		Closed
	1% Cu	WNR0049	24	27	3	2.4	1.23	0.50	2.94	1.19	Transitional	N		Closed
	1% Cu	WNR0051	24	25	1	0.8	3.20	6.17	2.56	4.94	Transitional	Y		Closed
	1% Cu	WNR0052	15	17	2	1.6	4.09	0.36	6.54	0.58	Transitional	Υ		Closed
	1% Cu	WNR0053	26	27	1	0.8	1.33	2.08	1.06	1.66	Transitional	Υ		Closed
	1% Cu	WNR0053	31	35	4	3.2	1.16	0.34	3.71	1.07	Transitional	Υ		Closed
	1% Cu	WNR0053	46	47	1	0.8	1.69	0.61	1.35	0.49	Transitional	Υ		Closed
	1% Cu	WNR0056	51	53	2	1.6	1.86	1.38	2.97	2.21	Transitional	Υ		Closed
	1% Cu	WNR0059	14	16	2	1.6	1.24	0.10	1.98	0.16	Transitional	N		Closed
	1% Cu	WNR0060	21	22	1	0.8	1.16	1.10	0.93	0.88	Transitional	N		Closed
	1% Cu	WNR0061	36	37	1	0.8	1.44	0.91	1.15	0.73	Transitional	Υ		Closed
	1% Cu	WNR0061	47	48	1	0.8	2.59	0.39	2.07	0.31	Transitional	Y		Closed
	1% Cu	WNR0064	22	23	1	0.8	1.97	3.57	1.57	2.86	Transitional	Y		Closed
	1% Cu	WNR0064	27	33	6	4.8	1.64	1.03	7.87	4.95	Transitional	Y		Closed
	1% Cu	WNR0065	30	31	1	0.8	2.33	3.53	1.86	2.82	Transitional	Y		Closed
	1% Cu	WNR0066	69	72	3	2.4	1.10	0.24	2.64	0.58	Fresh	Y		Closed
	1% Cu	WNR0067	11	12	1	0.8	1.33	0.09	1.06	0.07	Transitional	Y		Closed
	1% Cu	WNR0067	14	15	1	0.8	1.28	0.66	1.02	0.53	Transitional	Y		Closed
	1% Cu	WNR0067	18	20	2	1.6	1.70	1.13	2.72	1.81	Transitional	Y		Closed
	1% Cu	WNR0068	30	36	6	4.8	5.26	3.26	25.24	15.65	Transitional	Y		Closed
	1% Cu	WNR0069	29	30	1	0.8	3.02	0.61	2.42	0.49	Transitional	Y		Closed

Curoff Mole ID From To Downhole TRW (n) Cury Au g/t Cury Au g/t Cury Au g/t Cury Au g/t Cury Cury Au g/t C	Open or
1% CU	Closed
196.CQ	Closed
196.CQ	Closed
196.CL WNR0072 26 27 1	Closed
19/5 CU WNR0073 40 41 1 0.8 95.00 8.55 12.00 6.94 Transitional Y 19/5 CU WNR0075 32 34 2 1.6 9.90 1.74 6.23 2.78 Transitional Y 19/5 CU WNR0075 32 34 2 1.6 9.90 1.74 6.23 2.78 Transitional Y 19/5 CU WNR0077 80 61 1 0.8 1.31 0.45 1.05 0.36 Fresh Y 19/5 CU WNR0077 80 61 1 0.8 1.31 0.45 1.05 0.36 Fresh Y 19/5 CU WNR0077 80 81 1 0.8 1.26 0.56 1.01 0.45 Fresh Y 19/5 CU WNR0077 80 81 1 0.8 1.93 0.68 1.54 0.54 Fresh Y 19/5 CU WNR0077 80 81 1 0.8 1.93 0.68 1.54 0.54 Fresh Y 19/5 CU WNR0079 9 11 2 1.6 1.20 0.46 1.52 0.41 Transitional Y 19/5 CU WNR0079 9 11 2 1.6 1.20 0.46 1.92 0.41 Transitional Y 19/5 CU WNR0079 9 11 2 1.6 1.20 0.46 1.92 0.41 Transitional Y 19/5 CU WNR0082 35 37 2 1.6 7.53 0.30 12.05 0.48 Transitional Y 19/5 CU WNR0083 52 55 3 2.4 4.77 8.15 11.45 19.57 Transitional Y 19/5 CU WNR0085 53 62 9 7.2 2.18 5.73 15.70 41.26 1.00 2.7 Transitional Y 19/5 CU WNR0085 53 62 9 7.2 2.18 5.73 15.70 41.26 Transitional Y 19/5 CU WNR0085 53 62 9 7.2 2.18 5.73 15.70 41.26 Transitional Y 19/5 CU WNR0085 8 9 1 0.8 1.31 0.40 1.34 0.34	Closed
196.00 NNR0074 55 58 3	Closed
196 CU	Closed
195 CU	Closed
1%Cu	Closed
1%Cu	Closed
1% Cu	Closed
195 CU	Closed
1% Cu	Closed
1% Cu	Closed
13% CU	Closed
1% Cu WNR0084 44 47 3 3 2.4 3.98 0.79 9.54 1.90 Transitional N 1% Cu WNR0085 50 51 1 0.8 1.31 0.40 1.04 0.32 Transitional Y 1% Cu WNR0085 53 62 9 7.72 2.18 5.73 15.70 41.26 Transitional Y 1% Cu WNR0086 10 18 8 8 9 1 0.8 1.26 0.17 1.00 0.14 0.32 Transitional Y 1% Cu WNR0086 10 18 8 8 6.4 1.38 0.46 8.81 2.91 Transitional Y 1% Cu WNR0087 28 30 2 1.6 4.29 3.34 6.86 6.14 Transitional Y 1% Cu WNR0087 28 30 2 1.6 4.29 3.34 6.86 6.14 Transitional Y 1% Cu WNR0087 38 42 4 4 3.2 1.24 1.20 3.99 3.44 Transitional Y 1% Cu WNR0088 48 53 5 4 6.91 8.52 27.65 34.06 Transitional Y 1% Cu WNR0088 48 53 5 4 6.91 8.52 27.65 34.06 Transitional Y 1% Cu WNR0089 13 16 3 2.4 1.39 0.30 3.34 0.73 Transitional N 1% Cu WNR0099 26 27 1 0.8 1.25 1.89 1.00 1.51 Transitional N 1% Cu WNR0099 15 1 52 1 0.8 3.48 0.42 2.78 0.19 Transitional N 1% Cu WNR0099 15 1 52 1 0.8 3.48 0.24 2.78 0.19 Transitional N 1% Cu WNR0099 34 35 1 0.8 3.17 1.42 2.54 1.14 Transitional N 1.50 U WNR0099 38 40 2 1.6 1.47 1.09 2.35 1.74 Transitional N 1.50 U WNR0099 45 65 10 8 3.145 4.13 1.16 3.30 Transitional N 1.50 U WNR0099 5 1 52 1 0.8 3.48 0.24 2.78 0.19 Transitional N 1.50 U WNR0099 5 1 52 1 0.8 3.48 0.24 2.78 0.19 Transitional N 1.50 U WNR0099 5 1 52 1 0.8 3.48 0.24 2.78 0.19 Transitional N 1.50 U WNR0099 5 1 52 1 0.8 3.145 4.13 1.16 3.30 Transitional N 1.50 U WNR0099 5 1 52 1 0.8 3.145 4.13 1.16 3.30 Transitional N 1.50 U WNR0099 5 1 52 1 0.8 1.45 4.13 1.16 3.30 Transitional N 1.50 U WNR0099 5 1 52 1 0.8 1.45 4.13 1.16 3.30 Transitional N 1.50 U WNR0099 5 1 52 1 0.8 1.47 1.09 2.35 1.74 Transitional N 1.50 U WNR0099 5 1 52 1 0.8 1.45 4.13 1.16 3.30 Transitional N 1.50 U WNR0099 5 1 52 1 0.8 1.47 1.09 2.35 1.74 Transitional N 1.50 U WNR0099 5 7 28 1 1 0.8 1.47 1.09 2.35 1.74 Transitional N 1.50 U WNR0099 5 7 28 1 1 0.8 1.04 0.52 0.83 0.42 Transitional N 1.50 U WNR0099 7 2 7 28 1 1 0.8 1.04 0.52 0.83 0.42 Transitional N 1.50 U WNR0099 7 2 7 2 8 1 1 0.8 1.04 0.52 0.83 0.84 1.19 Fresh Y 1.50 U WNR0009 7 2 7 7 1 0.8 1.10 0.8 1.10 0.2 1.10 0.10 0.10 0.10 0.10 0.10	Closed
1% Cu WNR0085 50 51 1 0.8 1.31 0.40 1.04 0.32 Transitional Y 1% Cu WNR0085 53 62 9 7.2 2.18 5.73 15.70 41.26 Transitional Y 1% Cu WNR0086 8 9 1 0.8 1.26 0.17 1.00 0.14 Oxide Y 1% Cu WNR0086 8 9 1 0.8 1.26 0.17 1.00 0.14 Oxide Y 1% Cu WNR0087 10 18 8 8 6.4 1.38 0.46 8.81 2.91 Transitional Y 1% Cu WNR0087 28 30 2 1.6 4.29 3.84 6.86 6.14 Transitional Y 1% Cu WNR0087 38 42 4 3.2 1.24 1.20 3.99 3.84 Transitional Y 1% Cu WNR0088 58 63 5 4 6.59 8.52 27.65 34.06 Transitional Y 1.50 WNR0088 58 63 5 4 1.56 0.47 6.23 1.88 Transitional Y 1.50 WNR0089 13 16 3 2.4 1.39 0.30 3.34 0.73 Transitional Y 1.50 WNR0089 13 16 3 2.4 1.39 0.30 3.34 0.73 Transitional Y 1.50 WNR0089 15 15 2 1 0.8 1.25 1.89 1.00 1.51 Transitional Y 1.50 WNR0091 51 52 1 0.8 1.45 4.13 1.16 3.30 Transitional Y 1.50 WNR0091 51 52 1 0.8 1.45 4.13 1.16 3.30 Transitional Y 1.50 WNR0099 24 25 1 0.8 3.17 1.42 2.54 1.14 Transitional N 1.50 WNR0099 38 40 2 1.6 1.47 1.09 2.35 1.74 Transitional Y 1.50 WNR0099 38 40 2 1.6 1.47 1.09 2.35 1.74 Transitional Y 1.50 WNR0099 38 40 2 1.6 1.47 1.09 2.35 1.74 Transitional Y 1.50 WNR0099 19 23 4 3 2 5 4 1.68 0.99 6.72 3.14 Fresh Y 1.50 WNR0096 29 31 2 1.6 1.47 1.09 2.35 1.74 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.47 1.09 2.35 1.74 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.47 1.09 2.35 1.74 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.6 1.47 1.09 2.35 1.74 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.16 0.41 1.85 0.66 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.16 0.41 1.85 0.66 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.16 0.41 1.85 0.66 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.16 0.41 1.85 0.66 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.16 0.41 1.85 0.66 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.16 0.41 1.85 0.66 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.16 0.41 1.85 0.66 Transitional Y 1.50 WNR0096 29 31 2 1.6 1.16 0.41 1.85 0.66 Transitional Y 1.50 WNR0096 29 31 2 2 1.6 1.16 0.40 0.52 0.83 0.42 Transitional Y 1.50 WNR0096 29 31 2 2 1.6 1.16 0.41 1.85 0.66 Transitional Y 1.50 WNR0096 29 31 2 2 1.6 1.10 0.40 0.52 0.83 0.42 Transition	Closed
1% CU	Closed
1% Cu	Closed
195 Cu	Closed
1% Cu WNR0087 28 30 2 1.6 4.29 3.84 6.86 6.14 Transitional Y 1% Cu WNR0088 48 53 5 4 6.91 8.52 27.65 34.06 Transitional Y 1% Cu WNR0088 48 53 5 4 1.56 0.47 6.23 1.88 Transitional Y 1% Cu WNR0089 13 16 3 2.4 1.39 0.30 3.34 0.73 Transitional Y 1% Cu WNR0090 26 27 1 0.8 1.25 1.89 1.00 1.51 Transitional Y 1% Cu WNR0091 51 52 1 0.8 3.17 1.42 2.54 0.19 Transitional N 1% Cu WNR0093 34 35 1 0.8 3.17 1.42 2.54 0.11 1.77 1.78 1.77 1.78 1.77	Closed
1% Cu WNR0087 38 42 4 3.2 1.24 1.20 3.98 3.84 Transitional Y WNR0088 38 63 5 4 1.56 0.47 6.23 1.88 Transitional Y WNR0088 58 63 5 4 1.56 0.47 6.23 1.88 Transitional Y WNR0089 13 16 3 2.4 1.39 0.30 3.34 0.73 Transitional N WNR0090 26 27 1 0.8 1.25 1.89 1.00 1.51 Transitional N WNR0091 51 52 1 0.8 3.48 0.24 2.78 0.19 Transitional N Y WNR0091 51 52 1 0.8 3.48 0.24 2.78 0.19 Transitional N Y WNR0093 34 35 1 0.8 1.45 4.13 1.16 3.30 Transitional N WNR0093 34 35 1 0.8 1.45 4.13 1.16 3.30 Transitional N WNR0093 34 35 1 0.8 1.45 4.13 1.16 3.30 Transitional N WNR0093 38 40 2 1.6 1.47 1.09 2.35 1.74 Transitional N WNR0093 38 40 2 1.6 1.47 1.09 2.35 1.74 Transitional N WNR0094 55 65 10 8 2.243 0.58 1.944 4.63 Fresh Y Y WNR0095 57 65 10 8 2.243 0.58 1.944 4.63 Fresh Y Y WNR0096 29 23 1 2 1.6 1.16 0.41 1.85 0.66 Transitional Y WNR0096 29 31 2 1.6 1.16 0.44 1.85 0.66 Transitional Y WNR0096 29 31 2 1.6 1.16 0.44 1.85 0.66 Transitional Y WNR0096 16 26 10 8 1.77 1.50 14.17 1.202 Transitional Y WNR0096 16 26 10 8 1.77 1.50 14.17 1.202 Transitional Y WNR0096 16 26 10 8 1.77 1.50 14.17 1.202 Transitional Y WNR0096 16 26 10 8 1.77 1.50 14.17 1.202 Transitional Y WNR0096 16 26 10 8 1.77 1.50 14.17 1.202 Transitional Y WNR0096 16 26 10 8 1.77 1.50 14.17 1.202 Transitional Y WNR0096 16 26 10 8 1.77 1.50 14.17 1.202 Transitional Y WNR0096 10 26 10 8 1.77 1.50 14.17 1.202 Transitional Y WNR0096 10 26 10 8 1.77 1.50 14.17 1.202 Transitional Y WNR0096 10 26 1	Closed
1% Cu	Closed
1%Cu WNR0088 S8 63 S 4 1.56 0.47 6.23 1.88 Transitional Y	Closed
1% Cu	Closed
1% Cu	Closed
1% Cu	Closed
1% Cu WNR0093 34 35 1 0.8 1.45 4.13 1.16 3.30 Transitional Y 1% Cu WNR0093 38 40 2 1.6 1.47 1.09 2.35 1.74 Transitional N 1% Cu WNR0094 48 53 5 4 1.68 0.79 6.72 3.14 Fresh Y 1% Cu WNR0096 19 23 4 3.2 1.83 0.58 1.94 4.63 Fresh Y Y 1% Cu WNR0096 19 23 4 3.2 1.83 0.58 5.85 1.86 Transitional Y 1% Cu WNR0096 29 31 2 1.66 1.16 0.41 1.85 0.66 Transitional N 1% Cu WNR0098 16 26 10 8 1.77 1.50 14.17 12.02 Transitional Y 1% Cu WNR0098	Closed
1% Cu WNR0093 38 40 2 1.66 1.47 1.09 2.35 1.74 Transitional N 1% Cu WNR0094 48 53 5 4 1.68 0.79 6.72 3.14 Fresh Y 1% Cu WNR0094 55 65 10 8 2.43 0.58 1.941 4.63 Fresh Y 1% Cu WNR0096 19 23 4 3.2 1.83 0.58 5.85 1.86 Transitional Y 1% Cu WNR0096 27 28 1 0.8 1.04 0.52 0.83 0.42 Transitional Y 1% Cu WNR0096 29 31 2 1.6 1.16 0.41 1.85 0.66 Transitional N 1% Cu WNR0097 40 43 3 2.4 3.70 1.77 8.88 4.26 Fresh Y 1% Cu WNR0098 16 26 10 8 1.77 1.50 14.17 12.02 Transitional Y 1% Cu WNR0098 57 60 3 2.4 2.17 0.25 5.22 0.61 Fresh Y 1% Cu WNR0099 40 45 5 4 3.21 1.21 12.84 4.86 Fresh Y 1% Cu WNR0099 40 45 5 4 3.21 1.21 12.84 4.86 Fresh Y 1% Cu WNR0099 72 75 3 2.4 2.28 0.50 6.29 2.35 Fresh Y 1% Cu WNR0099 72 75 3 2.4 2.28 0.50 6.29 2.35 Fresh Y 1% Cu WNR0102 42 48 6 4.8 1.31 0.49 6.29 2.35 Fresh Y 1% Cu WNR0105 22 24 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0105 38 40 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0105 38 40 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0105 38 40 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0105 75 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 5 16 11 0.8 1.91 1.13 9.15 5.43 Transitional Y 1% Cu WNR0101 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional Y 1% Cu WNR0101 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional Y 1% Cu WNR0101 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0111 15 54 3 2.4 1.69 0.67 4.06 1.62 Fresh Y 1% Cu WNR0111 15 54 3 2.4 1.69 0.67 4.06 1	Closed
1% Cu	Closed
1% Cu WNR0096 29 31 2 1.6 1.16 0.41 1.85 0.66 Transitional N 1% Cu WNR0097 40 43 3 2.4 3.70 1.77 8.88 4.26 Fresh Y 1% Cu WNR0098 16 26 10 8 1.77 1.50 14.17 12.02 Transitional Y 1% Cu WNR0098 57 60 3 2.4 2.17 0.25 5.22 0.61 Fresh Y 1% Cu WNR0099 40 45 5 4 3.21 1.21 12.84 4.86 Fresh Y Y 1% Cu WNR0102 42 48 6 4.8 1.31 0.49 6.29 2.35 Fresh Y 1% Cu WNR0105 22 24 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0105	Closed
1% Cu WNR0097 40 43 3 2.4 3.70 1.77 8.88 4.26 Fresh Y 1% Cu WNR0098 16 26 10 8 1.77 1.50 14.17 12.02 Transitional Y 1% Cu WNR0098 57 60 3 2.4 2.17 0.25 5.22 0.61 Fresh Y 1% Cu WNR0099 40 45 5 4 3.21 1.21 12.84 4.86 Fresh Y Y 1% Cu WNR01092 72 75 3 2.4 2.28 0.50 5.48 1.19 Fresh Y 1% Cu WNR0104 8 14 6 4.8 1.31 0.49 6.29 2.35 Fresh Y 1% Cu WNR0105 32 24 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0105 38<	Open
1% Cu WNR0098 16 26 10 8 1.77 1.50 14.17 12.02 Transitional Y 1% Cu WNR0098 57 60 3 2.4 2.17 0.25 5.22 0.61 Fresh Y 1% Cu WNR0099 40 45 5 4 3.21 1.21 12.84 4.86 Fresh Y Y 1% Cu WNR0102 42 48 6 4.8 1.31 0.49 6.29 2.35 Fresh Y 1% Cu WNR0104 8 14 6 4.8 1.70 0.96 8.15 4.62 Transitional Y 1% Cu WNR0105 22 24 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0106 42 44 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0107	Open
1% Cu WNR0098 57 60 3 2.4 2.17 0.25 5.22 0.61 Fresh Y 1% Cu WNR0099 40 45 5 4 3.21 1.21 12.84 4.86 Fresh Y Y 1% Cu WNR0099 72 75 3 2.4 2.28 0.50 5.48 1.19 Fresh Y 1% Cu WNR0102 42 48 6 4.8 1.31 0.49 6.29 2.35 Fresh Y 1% Cu WNR0104 8 14 6 4.8 1.70 0.96 8.15 4.62 Transitional Y 1% Cu WNR0105 22 24 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0105 38 40 2 1.6 1.34 0.30 2.15 0.47 Fresh N 1% Cu WNR0106 42 44 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0106 84 85 1 0.8 1.10 0.23 0.88 0.18 Fresh N 1% Cu WNR0107 56 57 1 0.8 1.02 1.01 0.81 0.81 Fresh N 1% Cu WNR0109 31 37 6 4.8 1.91 1.13 9.15 5.43 Transitional Y 1% Cu WNR0109 31 37 6 4.8 1.91 1.13 9.15 5.43 Transitional Y 1% Cu WNR0110 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional Y 1% Cu WNR0111 51 54 3 2.4 4.67 5.39 11.21 12.94 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0112 15 16 1 0.8 1.25 0.12 1.00 0.10 Transitional N	Closed
1% Cu WNR0099 40 45 5 4 3.21 1.21 12.84 4.86 Fresh Y Y 1% Cu WNR0099 72 75 3 2.4 2.28 0.50 5.48 1.19 Fresh Y 1% Cu WNR0102 42 48 6 4.8 1.31 0.49 6.29 2.35 Fresh Y 1% Cu WNR0104 8 14 6 4.8 1.70 0.96 8.15 4.62 Transitional Y 1% Cu WNR0105 22 24 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0105 38 40 2 1.6 1.34 0.30 2.15 0.47 Fresh N 1% Cu WNR0106 42 44 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0107 <t< td=""><td>Closed</td></t<>	Closed
1% Cu WNR0099 72 75 3 2.4 2.28 0.50 5.48 1.19 Fresh Y 1% Cu WNR0102 42 48 6 4.8 1.31 0.49 6.29 2.35 Fresh Y 1% Cu WNR0104 8 14 6 4.8 1.70 0.96 8.15 4.62 Transitional Y 1% Cu WNR0105 22 24 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0105 38 40 2 1.6 1.34 0.30 2.15 0.47 Fresh N 1% Cu WNR0106 42 44 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 56	Closed
1% Cu WNR0102 42 48 6 4.8 1.31 0.49 6.29 2.35 Fresh Y 1% Cu WNR0104 8 14 6 4.8 1.70 0.96 8.15 4.62 Transitional Y 1% Cu WNR0105 22 24 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0105 38 40 2 1.6 1.34 0.30 2.15 0.47 Fresh N 1% Cu WNR0106 42 44 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0106 84 85 1 0.8 1.10 0.23 0.88 0.18 Fresh N 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 56 57 1 0.8 1.02 1.01 0.81 Fresh N	Closed
1% Cu WNR0104 8 14 6 4.8 1.70 0.96 8.15 4.62 Transitional Y 1% Cu WNR0105 22 24 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0105 38 40 2 1.6 1.34 0.30 2.15 0.47 Fresh N 1% Cu WNR0106 42 44 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0106 84 85 1 0.8 1.10 0.23 0.88 0.18 Fresh N 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 56 57 1 0.8 1.02 1.01 0.81 0.81 Fresh N 1% Cu WNR0110 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional	Closed
1% Cu WNR0105 22 24 2 1.6 1.90 1.06 3.03 1.70 Transitional Y 1% Cu WNR0105 38 40 2 1.6 1.34 0.30 2.15 0.47 Fresh N 1% Cu WNR0106 42 44 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0106 84 85 1 0.8 1.10 0.23 0.88 0.18 Fresh N 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 56 57 1 0.8 1.02 1.01 0.81 Fresh N 1% Cu WNR0109 31 37 6 4.8 1.91 1.13 9.15 5.43 Transitional Y 1% Cu WNR0111 45 48	Closed
1% Cu WNR0105 38 40 2 1.6 1.34 0.30 2.15 0.47 Fresh N 1% Cu WNR0106 42 44 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0106 84 85 1 0.8 1.10 0.23 0.88 0.18 Fresh N 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 56 57 1 0.8 1.02 1.01 0.81 Fresh N 1% Cu WNR0109 31 37 6 4.8 1.91 1.13 9.15 5.43 Transitional Y 1% Cu WNR0110 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional Y 1% Cu WNR0111 45 48 <td>Closed</td>	Closed
1% Cu WNR0106 42 44 2 1.6 1.27 0.55 2.03 0.87 Transitional Y 1% Cu WNR0106 84 85 1 0.8 1.10 0.23 0.88 0.18 Fresh N 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 56 57 1 0.8 1.02 1.01 0.81 0.81 Fresh N 1% Cu WNR0109 31 37 6 4.8 1.91 1.13 9.15 5.43 Transitional Y 1% Cu WNR0110 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional Y 1% Cu WNR0111 45 48 3 2.4 4.67 5.39 11.21 12.94 Fresh Y 1% Cu WNR0111 51	Closed
1% Cu WNR0106 84 85 1 0.8 1.10 0.23 0.88 0.18 Fresh N 1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 56 57 1 0.8 1.02 1.01 0.81 0.81 Fresh N 1% Cu WNR0109 31 37 6 4.8 1.91 1.13 9.15 5.43 Transitional Y 1% Cu WNR0110 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional Y 1% Cu WNR0111 45 48 3 2.4 4.67 5.39 11.21 12.94 Fresh Y 1% Cu WNR0111 51 54 3 2.4 1.69 0.67 4.06 1.62 Fresh Y 1% Cu WNR0112 15	Closed
1% Cu WNR0107 5 16 11 8.8 3.95 2.39 34.74 21.06 Transitional Y 1% Cu WNR0107 56 57 1 0.8 1.02 1.01 0.81 0.81 Fresh N 1% Cu WNR0109 31 37 6 4.8 1.91 1.13 9.15 5.43 Transitional Y 1% Cu WNR0110 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional Y 1% Cu WNR0111 45 48 3 2.4 4.67 5.39 11.21 12.94 Fresh Y 1% Cu WNR0111 51 54 3 2.4 1.69 0.67 4.06 1.62 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0112 15	Closed
1% Cu WNR0107 56 57 1 0.8 1.02 1.01 0.81 0.81 Fresh N 1% Cu WNR0109 31 37 6 4.8 1.91 1.13 9.15 5.43 Transitional Y 1% Cu WNR0110 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional Y 1% Cu WNR0111 45 48 3 2.4 4.67 5.39 11.21 12.94 Fresh Y 1% Cu WNR0111 51 54 3 2.4 1.69 0.67 4.06 1.62 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0112 15 16 1 0.8 1.25 0.12 1.00 0.10 Transitional N	Closed
1% Cu WNR0109 31 37 6 4.8 1.91 1.13 9.15 5.43 Transitional Y 1% Cu WNR0110 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional Y 1% Cu WNR0111 45 48 3 2.4 4.67 5.39 11.21 12.94 Fresh Y 1% Cu WNR0111 51 54 3 2.4 1.69 0.67 4.06 1.62 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0112 15 16 1 0.8 1.25 0.12 1.00 0.10 Transitional N	Closed
1% Cu WNR0110 27 36 9 7.2 2.17 2.08 15.60 14.97 Transitional Y 1% Cu WNR0111 45 48 3 2.4 4.67 5.39 11.21 12.94 Fresh Y 1% Cu WNR0111 51 54 3 2.4 1.69 0.67 4.06 1.62 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0112 15 16 1 0.8 1.25 0.12 1.00 0.10 Transitional N	Closed
1% Cu WNR0111 45 48 3 2.4 4.67 5.39 11.21 12.94 Fresh Y 1% Cu WNR0111 51 54 3 2.4 1.69 0.67 4.06 1.62 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0112 15 16 1 0.8 1.25 0.12 1.00 0.10 Transitional N	Closed
1% Cu WNR0111 51 54 3 2.4 1.69 0.67 4.06 1.62 Fresh Y 1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0112 15 16 1 0.8 1.25 0.12 1.00 0.10 Transitional N	Closed
1% Cu WNR0111 75 76 1 0.8 1.99 0.34 1.59 0.27 Fresh Y 1% Cu WNR0112 15 16 1 0.8 1.25 0.12 1.00 0.10 Transitional N	Closed
1% Cu WNR0112 15 16 1 0.8 1.25 0.12 1.00 0.10 Transitional N	Closed
	Closed
	Closed
1% Cu WNR0113 26 28 2 1.6 2.05 2.35 3.28 3.75 Transitional N	Closed
1% Cu WNR0114 30 39 9 7.2 2.11 0.88 15.22 6.33 Transitional Y	Closed

	4													
	Cutoff	Hole ID	From (m)	To (m)	Downhole Interval (m)	ETW (m)	Cu %	Au g/t	Cu % x ETW (m)	Au g/t x ETW (m)	Oxide	In Current Resource	Potentially Contaminated	Open or Closed
		I I I I I I I I I I I I I I I I I I I	*				0.04	4.04	- Constitution of the Cons	AND DESCRIPTION OF THE PARTY OF		Company of the Company		TABLE OF THE PARTY
	1% Cu	WNR0114	42	43	1	0.8	2.84	1.91	2.27	1.53	Transitional	Y	3	Closed
	1% Cu 1% Cu	WNR0114 WNR0114	54	48 56	2	0.8	1.31	0.35	3.73	0.28	Fresh Transitional	N N		Closed
	1% Cu	WNR0114 WNR0115	3	11	8	6.4	1.78	0.43	11.40	3.50	Transitional	Y	-	Closed
7	1% Cu	WNR0116	19	28	9	7.2	4.37	2.52	31.49	18.12	Transitional	Y		Closed
	1% Cu	WNR0117	31	43	12	9.6	2.02	1.07	19.38	10.31	Transitional	Y		Closed
	1% Cu	WNR0118	46	60	14	11.2	3.57	1.41	39.95	15.74	Fresh	Υ	Y	Closed
	1% Cu	WNR0118	72	74	2	1.6	1.19	0.32	1.90	0.51	Fresh	Υ		Closed
	1% Cu	WNR0119	41	42	1	0.8	1.10	2.57	0.88	2.06	Fresh	Υ		Closed
	1% Cu	WNR0119	43	48	5	4	1.69	0.66	6.77	2.62	Fresh	Υ		Closed
	1% Cu	WNR0120	29	31	2	1.6	2.16	0.50	3.46	0.80	Transitional	N		Closed
	1% Cu	WNR0120	53	63	10	8	2.78	0.76	22.28	6.08	Fresh	Υ		Closed
	1% Cu	WNR0121	10	11	1	0.8	2.31	0.02	1.85	0.02	Transitional	Y		Closed
	1% Cu	WNR0121	19	23	4	3.2	5.11	1.10	16.36	3.53	Transitional	Υ		Closed
	1% Cu	WNR0121	52	54	2	1.6	2.21	0.69	3.54	1.10	Fresh	Y		Closed
	1% Cu	WNR0122	28	39	11	8.8	1.89	0.52	16.60	4.56	Transitional	N		Closed
	1% Cu	WNR0122 WNR0129	68	69	1	0.8	1.20	0.26	0.96	0.21	Fresh	Y		Closed
	1% Cu		33	34 39	1 1	0.8	4.90	0.96	3.92 1.04	0.77	Transitional	N N		Closed
	1% Cu 1% Cu	WNR0129 WNR0131	18	20	2	1.6	1.31	1.00	2.28	0.20 1.60	Transitional Transitional	Y	2 2	Closed Closed
	1% Cu	WNR0131	22	23	1	0.8	1.40	8.47	1.12	6.78	Transitional	N		Closed
	1% Cu	WNR0131	15	16	1	0.8	1.27	0.72	1.01	0.58	Transitional	Y		Closed
	1% Cu	WNR0132	29	30	1	0.8	1.21	0.01	0.96	0.01	Transitional	N		Open
	1% Cu	WNR0135	16	17	1	0.8	1.10	0.06	0.88	0.05	Transitional	Y		Closed
	1% Cu	WNR0137	1	5	4	3.2	1.11	0.11	3.56	0.34	Oxide	N		Closed
	1% Cu	WNR0138	13	14	1	0.8	3.19	0.84	2.55	0.67	Transitional	N		Closed
	1% Cu	WNR0138	16	21	5	4	1.13	0.89	4.53	3.56	Transitional	N		Closed
	1% Cu	WNR0139	14	15	1	0.8	1.78	0.60	1.42	0.48	Transitional	Υ		Closed
	1% Cu	WNR0139	31	35	4	3.2	2.67	1.79	8.56	5.71	Fresh	N		Closed
	1% Cu	WNR0140	42	43	1	0.8	2.17	0.77	1.74	0.62	Fresh	Υ		Closed
	1% Cu	WNR0141	53	55	2	1.6	2.32	0.61	3.70	0.97	Fresh	N		Closed
	1% Cu	WNR0141	61	68	7	5.6	2.85	1.01	15.97	5.64	Fresh	Y		Closed
	1% Cu	WNR0142	38	45	7	5.6	1.56	0.76	8.73	4.24	Fresh	Υ		Closed
	1% Cu	WNR0143	51	59	8	6.4	2.14	1.54	13.70	9.87	Fresh	Υ		Closed
	1% Cu	WNR0144	32	39	7	5.6	1.76	4.16	9.83	23.31	Transitional	Υ		Closed
	1% Cu	WNR0145	4	5	1	0.8	1.30	0.38	1.04	0.30	Oxide	Y		Closed
	1% Cu	WNR0146	26	28	2	1.6	2.35	0.93	3.76	1.49	Transitional	Y		Closed
	1% Cu	WNR0146 WNR0147	40	43	3	2.4	4.23	3.21	10.14	7.71	Fresh	Y		Closed
	1% Cu		25 38	28 40	2	2.4	2.13 4.24	0.83 4.01	5.11	1.98 6.41	Transitional Transitional	Y		Closed Closed
	1% Cu	WNR0148 WNR0149	38	40	2	1.6	1.04	0.80	1.66	1.28	Transitional	Y		Closed
	1% Cu	WNR0149	43	44	1	0.8	1.40	0.69	1.12	0.55	Transitional	Y	7	Closed
	1% Cu	WNR0150	35	37	2	1.6	5.03	2.03	8.04	3.24	Transitional	Y		Closed
			a.	E .	A.	W			h 2 m intern				(2) (4)	
	3% Cu	WNR0014	36	38	2	1.6	7.72	0.63	12.34	1.00	Transitional	N		Closed
	3% Cu	WNR0017	29	30	1	0.8	3.31	0.22	2.65	0.18	Transitional	У		Closed
	3% Cu	WNR0017	34	36	2	1.6	10.23	13.62	16.36	21.79	Transitional	у		Closed
	3% Cu	WNR0018	35	36	1	0.8	5.44	1.57	4.35	1.26	Transitional	Υ		Closed
	3% Cu	WNR0019	29	30	1	0.8	14.05	25.70	11.24	20.56	Transitional	Y		Closed
	3% Cu	WNR0022	34	35	1	0.8	5.54	2.87	4.43	2.30	Transitional	Υ		Closed
	3% Cu	WNR0033	40	44	4	3.2	5.20	1.54	16.64	4.93	Transitional	Y		Closed
	3% Cu	WNR0034	52	53	1	0.8	6.08	3.06	4.86	2.45	Fresh	N		Closed
	3% Cu	WNR0037	31	33	2	1.6	4.87	0.44	7.79	0.70	Transitional	Υ		Closed
	3% Cu	WNR0038	47	49	2	1.6	4.61	1.24	7.38	1.98	Fresh	Y		Closed
	3% Cu	WNR0051	24	25	1	0.8	3.20	6.17	2.56	4.94	Transitional	Y		Closed
	3% Cu	WNR0052	15	17	2	1.6	4.09	0.36	6.54	0.58	Transitional	Y		Closed
	3% Cu	WNR0064	32	33	1	0.8	4.63	2.37	3.70	1.90	Transitional	Y		Closed
	3% Cu	WNR0068	32	35	3	2.4	8.36	5.69	20.06	13.66	Transitional	Y		Closed

3% C	CCU	WNR0069 WNR0069 WNR0073 WNR0074 WNR0075 WNR0082 WNR0083 WNR0084 WNR0085 WNR0087 WNR0087 WNR0087 WNR0091 WNR0092 WNR0094 WNR0099 WNR0099 WNR0099 WNR0107	29 46 40 55 32 36 52 45 56 61 28 41 48 51 24 56 22 40 74	30 47 41 57 33 37 58 62 29 42 51 52 25 59 23 42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.8 0.8 0.8 1.6 0.8 0.8 0.8 1.6 1.6 0.8 0.8 0.8 0.8	3.02 4.46 15.00 3.55 4.94 12.50 10.65 4.92 3.52 3.42 5.89 3.02 10.31 3.48	0.61 2.93 8.55 3.30 3.22 0.01 22.30 1.10 19.97 2.59 5.24 4.33	2.42 3.57 12.00 5.68 3.95 10.00 8.52 7.86 5.62 2.74 4.71 2.42	0.49 2.34 6.84 5.28 2.58 0.00 17.84 1.76 31.94 2.07 4.19	Transitional	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		Closed Closed Closed Closed Closed Closed Closed Closed Closed Closed Closed Closed
3% CC	CCU	WNR0073 WNR0074 WNR0075 WNR0082 WNR0083 WNR0085 WNR0085 WNR0087 WNR0087 WNR0088 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0099 WNR0099 WNR0099	40 55 32 36 52 45 56 61 28 41 48 51 24 56 22 40 74	41 57 33 37 53 47 58 62 29 42 51 52 25 59 23 42 23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.8 1.6 0.8 0.8 1.6 1.6 1.6 0.8 0.8 0.8 0.8	15.00 3.55 4.94 12.50 10.65 4.92 3.52 3.42 5.89 3.02 10.31	8.55 3.30 3.22 0.01 22.30 1.10 19.97 2.59 5.24 4.33	12.00 5.68 3.95 10.00 8.52 7.86 5.62 2.74 4.71	6.84 5.28 2.58 0.00 17.84 1.76 31.94 2.07 4.19	Transitional Transitional Transitional Transitional Transitional Transitional Transitional Transitional Transitional	Y Y Y Y Y Y		Closed Closed Closed Closed Closed Closed Closed
3% CC	CCU	WNR0074 WNR0075 WNR0082 WNR0084 WNR0085 WNR0087 WNR0087 WNR0087 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0099 WNR0099 WNR0099	55 32 36 52 45 56 61 28 41 48 51 24 56 22 40 22 40 74	57 33 37 53 47 58 62 29 42 51 52 25 59 23 42 23	2	1.6 0.8 0.8 0.8 1.6 1.6 0.8 0.8 0.8 0.8	3.55 4.94 12.50 10.65 4.92 3.52 3.42 5.89 3.02 10.31	3.30 3.22 0.01 22.30 1.10 19.97 2.59 5.24 4.33	5.68 3.95 10.00 8.52 7.86 5.62 2.74 4.71	5.28 2.58 0.00 17.84 1.76 31.94 2.07 4.19	Transitional Transitional Transitional Transitional Transitional Transitional	Y Y Y Y Y Y		Closed Closed Closed Closed Closed Closed Closed
3% CC	CU C	WNR0075 WNR0082 WNR0083 WNR0084 WNR0085 WNR0087 WNR0087 WNR0087 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099 WNR0099	32 36 52 45 56 61 28 41 48 51 24 56 22 40 22 40 74	33 37 53 47 58 62 29 42 51 52 25 59 23 42 23	1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.8 0.8 0.8 1.6 1.6 0.8 0.8 0.8 0.8	4.94 12.50 10.65 4.92 3.52 3.42 5.89 3.02 10.31	3.22 0.01 22.30 1.10 19.97 2.59 5.24 4.33	3.95 10.00 8.52 7.86 5.62 2.74 4.71	2.58 0.00 17.84 1.76 31.94 2.07 4.19	Transitional Transitional Transitional Transitional Transitional	Y Y Y Y Y		Closed Closed Closed Closed Closed
3% CC 3%	CU C	WNR0082 WNR0083 WNR0084 WNR0085 WNR0087 WNR0087 WNR0088 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099 WNR0097	36 52 45 56 61 28 41 48 51 24 56 22 40 22 40 74	37 53 47 58 62 29 42 51 52 25 59 23 42 23	1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.8 0.8 1.6 1.6 0.8 0.8 0.8 2.4 0.8	12.50 10.65 4.92 3.52 3.42 5.89 3.02 10.31	0.01 22.30 1.10 19.97 2.59 5.24 4.33	10.00 8.52 7.86 5.62 2.74 4.71	0.00 17.84 1.76 31.94 2.07 4.19	Transitional Transitional Transitional Transitional Transitional	Y Y Y Y		Close Close Close Close
3% CC 3%	CU C	WNR0082 WNR0083 WNR0084 WNR0085 WNR0087 WNR0087 WNR0088 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099 WNR0097	36 52 45 56 61 28 41 48 51 24 56 22 40 22 40 74	37 53 47 58 62 29 42 51 52 25 59 23 42 23	1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.8 0.8 1.6 1.6 0.8 0.8 0.8 2.4 0.8	12.50 10.65 4.92 3.52 3.42 5.89 3.02 10.31	22.30 1.10 19.97 2.59 5.24 4.33	10.00 8.52 7.86 5.62 2.74 4.71	0.00 17.84 1.76 31.94 2.07 4.19	Transitional Transitional Transitional Transitional Transitional	Y Y Y		Closed Closed Closed Closed
3% CC 3%	Cu C	WNR0084 WNR0085 WNR0087 WNR0087 WNR0088 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099	45 56 61 28 41 48 51 24 56 22 40 22 40 74	47 58 62 29 42 51 52 25 59 23 42 23	2 2 1 1 1 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1	1.6 1.6 0.8 0.8 0.8 2.4 0.8	3.52 3.42 5.89 3.02 10.31	1.10 19.97 2.59 5.24 4.33	7.86 5.62 2.74 4.71	1.76 31.94 2.07 4.19	Transitional Transitional Transitional	Y		Close
3% CC 3%	Cu C	WNR0084 WNR0085 WNR0087 WNR0087 WNR0088 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099	45 56 61 28 41 48 51 24 56 22 40 22 40 74	47 58 62 29 42 51 52 25 59 23 42 23	2 2 1 1 1 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1	1.6 1.6 0.8 0.8 0.8 2.4 0.8	3.52 3.42 5.89 3.02 10.31	1.10 19.97 2.59 5.24 4.33	7.86 5.62 2.74 4.71	1.76 31.94 2.07 4.19	Transitional Transitional Transitional	Y		Close
3% CC 3%	Cu C	WNR0085 WNR0087 WNR0087 WNR0088 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099	61 28 41 48 51 24 56 22 40 22 40 74	62 29 42 51 52 25 59 23 42 23	2 1 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1 3 3 1	0.8 0.8 0.8 2.4 0.8	3.52 3.42 5.89 3.02 10.31	2.59 5.24 4.33	5.62 2.74 4.71	31.94 2.07 4.19	Transitional	Y		Close
3% CC	Cu C	WNR0085 WNR0087 WNR0087 WNR0088 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099	61 28 41 48 51 24 56 22 40 22 40 74	62 29 42 51 52 25 59 23 42 23	1 1 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1	0.8 0.8 0.8 2.4 0.8	3.42 5.89 3.02 10.31	2.59 5.24 4.33	2.74	2.07 4.19	Transitional	Y		Close
3% C	Cu C	WNR0087 WNR0088 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099 WNR0099	41 48 51 24 56 22 40 22 40 74	42 51 52 25 59 23 42 23	1 3 1 1 1 3	0.8 2.4 0.8	3.02 10.31	4.33	4.71			Y		Close
3% CC 3%	Cu C	WNR0088 WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099 WNR0107	48 51 24 56 22 40 22 40 74	51 52 25 59 23 42 23	3 1 1 1 3	2.4	10.31		2.42	2.46				
3% CC 3% CC	Cu C	WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099 WNR0107	51 24 56 22 40 22 40 74	52 25 59 23 42 23	1 1 3	0.8	10.31	12.40		3.46	Transitional	Y		Close
3% CC 3%	Cu C	WNR0091 WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099 WNR0107	24 56 22 40 22 40 74	52 25 59 23 42 23	1 1 3			13.48	24.74	32.34	Transitional	Υ		Closed
3% CC 3%	Cu Cu Cu Cu Cu Cu Cu Cu	WNR0092 WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0099 WNR0107	24 56 22 40 22 40 74	25 59 23 42 23	3	0.8		0.24	2.78	0.19	Transitional	N	Υ	Closed
3% CC 3%	Cu Cu Cu Cu Cu Cu Cu	WNR0094 WNR0096 WNR0097 WNR0098 WNR0099 WNR0107	56 22 40 22 40 74	59 23 42 23	3		3.17	1.42	2.54	1.14	Transitional	N		Closed
3% CC 3% CC	Cu Cu Cu Cu Cu Cu	WNR0096 WNR0097 WNR0098 WNR0099 WNR0107	40 22 40 74	23 42 23		2.4	4.02	0.51	9.64	1.23	Fresh	Y	Y	Closed
3% CC 3% CC	Cu Cu Cu Cu Cu	WNR0098 WNR0099 WNR0099 WNR0107	40 22 40 74	42 23		0.8	3.14	1.00	2.51	0.80	Transitional	Y	***	Close
3% CC 3% CC	Cu Cu Cu Cu	WNR0098 WNR0099 WNR0099 WNR0107	22 40 74	23	2	1.6	4.60	1.53	7.36	2.44	Fresh	Υ		Close
3% CC 3% CC	Cu Cu Cu	WNR0099 WNR0099 WNR0107	40 74		1	0.8	4.27	2.91	3.42	2.33	Transitional	Y		Close
3% CC 3% CC	Cu Cu	WNR0099 WNR0107	74	43	3	2.4	4.29	1.74	10.30	4.18	Fresh	Y	Y	Close
3% CC 3% CC	Cu Cu	WNR0107		75	1	0.8	3.47	0.73	2.78	0.58	Fresh	Υ		Close
3% CC 3% CC	Cu		6	15	9	7.2	4.53	2.74	32.60	19.75	Transitional	Y		Close
3% CC 3% CC	_		33	34	1	0.8	3.67	1.39	2.94	1.11	Transitional	Υ		Close
3% C 3% C 3% C 3% C 3% C 3% C 3% C 3% C	LUI	WNR0110	27	28	1	0.8	4.31	0.83	3.45	0.66	Transitional	Y		Close
3% CC 3% CC	_	WNR0110	33	34	1	0.8	3.04	5.31	2.43	4.25	Transitional	Y		Close
3% C 3% C 3% C 3% C 3% C 3% C 3% C 3% C	_	WNR0111	45	47	2	1.6	5.81	7.13	9.30	11.40	Fresh	Y		Closed
3% CC 3% CC 3% CC 3% CC 3% CC 3% CC 3% CC 3% CC 3% CC	-	WNR0113	15	19	4	3.2	3.23	1.55	10.34	4.96	Transitional	Y		Close
3% C 3% C 3% C 3% C 3% C 3% C 3% C	_	WNR0114	34	37	3	2.4	3.22	1.28	7.72	3.06	Fresh	Y		Closed
3% C 3% C 3% C 3% C 3% C 3% C 3% C	_	WNR0114	54	55	1	0.8	3.61	0.60	2.89	0.48	Transitional	Y		Close
3% C 3% C 3% C 3% C 3% C 3% C		WNR0116	21	28	7	5.6	5.26	2.88	29.47	16.14	Transitional	Y		Close
3% C 3% C 3% C 3% C 3% C	_	WNR0117	32	33	1	0.8	4.18	1.30	3.34	1.04	Transitional	Y		Close
3% C 3% C 3% C 3% C	$\overline{}$	WNR0117	39	40	1	0.8	4.50	1.97	3.60	1.58	Fresh	Ÿ		Closed
3% C 3% C 3% C		WNR0118	47	55	8	6.4	4.51	1.58	28.86	10.10	Fresh	Y	Y	Close
3% C	_	WNR0118	58	59	1	0.8	4.85	1.38	3.88	1.10	Fresh	Y	Ÿ	Close
3% C	_	WNR0119	47	48	1	0.8	4.34	1.39	3.47	1.11	Fresh	Y	· ·	Closed
3% C	_	WNR0120	55	58	3	2.4	4.59	1.03	11.02	2.48	Fresh	Y		Closed
$\overline{}$	_	WNR0121	20	22	2	1.6	9.17	1.98	14.66	3.17	Transitional	Y		Close
3% C	_	WNR0129	33	34	1	0.8	4.90	0.96	3.92	0.77	Transitional	Y	-	Close
3% C		WNR0138	13	14	1	0.8	3.19	0.84	2.55	0.67	Transitional	N	3. 3	Close
3% C	_	WNR0139	32	34	2	1.6	3.65	3.15	5.83	5.04	Fresh	N		Close
3% C	_	WNR0141	65	67	2	1.6	5.45	1.35	8.71	2.15	Fresh	N		Close
3% C	_	WNR0141	43	44	1	0.8	3.14	2.80	2.51	2.24	Fresh	N		Close
3% C	_	WNR0143	57	58	1	0.8	4.08	4.27	3.26	3.42	Fresh	Y		Close
3% C	-	WNR0143	36	37	1	0.8	3.63	14.50	2.90	11.60	Transitional	Y	-	Close
3% C	_	WNR0144	26	27	1	0.8	3.55	1.73	2.84	1.38	Transitional	Y		Close
3% C	cu I	WNR0146 WNR0146	40	43	3	2.4	4.23	3.21	10.14	7.71	Fresh	Y		Close
3% C	_	WNR0146 WNR0147	26	27	1	0.8	3.93	1.45	3.14	1.16		Y	-	Close
3% C	Cu		38		2	_	4.24	4.01			Transitional	Y		
3% C	Cu Cu		36	40 37	1	0.8	8.40	3.96	6.78	6.41 3.17	Transitional	Y		Close
3% C	Cu Cu Cu	WNR0148 WNR0150	20	37	1	0.8	8.40	3.96	6.72	3.17	Transitional Transitional	Y		Close

Appendix 2 Collar Location Map and Collar Table

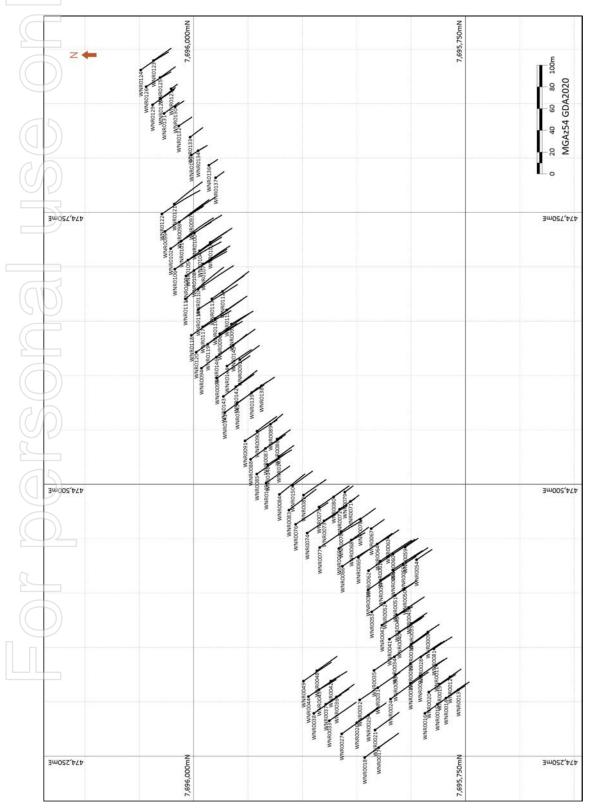


Figure 10. Plan map showing location of Wallace North Advanced Grade Control Drilling

Table 41. Details of Wallace North Advanced Grade Control Drilling.

Hole ID	Easting MGA2020	Northing MGA2020	RL AHD	Dip	Azimuth MGA2020	Total Depth (m)	Hole Type	Drilling Status	Survey Method
WNR0001	474369	7695940	188	-55	143	220	RC	Complete	DGPS
WNR0002	474290	7695864	188	-60	144	180	RC	Complete	DGPS
WNR0003	474209	7695791	188	-57	144	200	RC	Complete	DGPS
WNR0004	474401	7695962	188	-64	143	246	RC	Complete	DGPS
WNR0005	474516	7696041	188	-62	144	210	RC	Complete	DGPS
WNR0006	474537	7696079	186	-56	144	223	RC	Complete	DGPS
WNR0007	474531	7696079	186	-65	163	260	RC	Complete	DGPS
WNR0008	474449	7696075	186	-59	144	299	RC	Complete	DGPS
WNR0009	474365	7695786	187	-60	145	25	RC	Complete	DGPS
WNR0010	474354	7695802	187	-60	144	49	RC	Complete	DGPS
WNR0011	474334	7695778	187	-61	146	25	RC	Complete	DGPS
WNR0012	474324	7695766	187	-60	144	25	RC	Complete	DGPS
WNR0013	474312	7695758	187	-60	143	25	RC	Complete	DGPS
WNR0014	474304	7695769	187	-60	144	45	RC	Complete	DGPS
WNR0015	474299	7695777	187	-60	145	60	RC	Complete	DGPS
WNR0016	474290	7695789	188	-60	144	75	RC	Complete	DGPS
WNR0017	474259	7695831	188	-60	143	45	RC	Complete	DGPS
WNR0018	474249	7695844	189	-60	144	60	RC	Complete	DGPS
WNR0019	474317	7695776	187	-60	144	40	RC	Complete	DGPS
WNR0020	474310	7695785	187	-60	145	60	RC	Complete	DGPS
WNR0021	474275	7695835	188	-60	143	55	RC	Complete	DGPS
WNR0022	474325	7695793	187	-61	144	55	RC	Complete	DGPS
WNR0023	474318	7695802	188	-61	143	70	RC	Complete	DGPS
WNR0024	474303	7695820	187	-60	144	90	RC	Complete	DGPS
WNR0025	474288	7695841	188	-60	144	40	RC	Complete	DGPS
WNR0026	474282	7695852	188	-60	144	50	RC	Complete	DGPS
WNR0027	474271	7695865	189	-60	144	60	RC	Complete	DGPS
WNR0028	474342	7695793	187	-61	145	54	RC	Complete	DGPS
WNR0029	474336	7695802	187	-60	144	70	RC	Complete	DGPS
WNR0030	474325	7695816	187	-60	144	34	RC	Complete	DGPS
WNR0031	474314	7695832	188	-59	145	50	RC	Complete	DGPS
WNR0032	474302	7695849	188	-60	146	40	RC	Complete	DGPS
WNR0033	474283	7695877	189	-60	145	60	RC	Complete	DGPS
WNR0034	474342	7695817	187	-60	144	75	RC	Complete	DGPS
WNR0035	474330	7695836	188	-60	146	50	RC	Complete	DGPS
WNR0036	474305	7695870	188	-60	144	40	RC	Complete	DGPS
WNR0037	474299	7695880	188	-60	146	50	RC	Complete	DGPS
WNR0038	474290	7695891	189	-60	145	60	RC	Complete	DGPS
WNR0039	474373	7695801	187	-60	144	35	RC	Complete	DGPS

	Hole ID	Easting MGA2020	Northing MGA2020	RL AHD	Dip	Azimuth MGA2020	Total Depth (m)	Hole Type	Drilling Status	Survey Method
	WNR0040	474365	7695812	187	-60	146	55	RC	Complete	DGPS
	WNR0041	474358	7695821	188	-60	146	70	RC	Complete	DGPS
	WNR0042	474320	7695875	188	-60	149	35	RC	Complete	DGPS
	WNR0043	474312	7695886	189	-59	145	45	RC	Complete	DGPS
	WNR0044	474306	7695896	189	-60	146	60	RC	Complete	DGPS
	WNR0045	474387	7695804	187	-60	145	35	RC	Complete	DGPS
	WNR0046	474380	7695815	187	-60	145	55	RC	Complete	DGPS
	WNR0047	474371	7695828	188	-60	147	65	RC	Complete	DGPS
	WNR0048	474329	7695888	188	-60	144	45	RC	Complete	DGPS
	WNR0049	474320	7695901	188	-60	145	60	RC	Complete	DGPS
	WNR0050	474405	7695807	187	-60	147	25	RC	Complete	DGPS
	WNR0051	474399	7695816	187	-60	146	40	RC	Complete	DGPS
	WNR0052	474392	7695826	188	-60	144	50	RC	Complete	DGPS
	WNR0053	474383	7695838	188	-60	144	65	RC	Complete	DGPS
	WNR0054	474431	7695797	187	-61	146	35	RC	Complete	DGPS
	WNR0055	474427	7695809	187	-60	145	55	RC	Complete	DGPS
	WNR0056	474422	7695818	188	-60	145	65	RC	Complete	DGPS
	WNR0057	474413	7695829	188	-61	144	80	RC	Complete	DGPS
	WNR0058	474404	7695841	188	-60	145	50	RC	Complete	DGPS
	WNR0059	474443	7695807	187	-61	145	30	RC	Complete	DGPS
	WNR0060	474437	7695818	188	-60	145	49	RC	Complete	DGPS
	WNR0061	474430	7695830	188	-61	144	70	RC	Complete	DGPS
	WNR0062	474421	7695841	187	-60	144	80	RC	Complete	DGPS
	WNR0063	474452	7695823	187	-61	145	25	RC	Complete	DGPS
7	WNR0064	474446	7695833	187	-61	143	35	RC	Complete	DGPS
	WNR0065	474434	7695850	187	-61	142	70	RC	Complete	DGPS
	WNR0066	474425	7695865	187	-60	145	80	RC	Complete	DGPS
7	WNR0067	474460	7695838	187	-61	145	30	RC	Complete	DGPS
	WNR0068	474449	7695857	187	-60	143	40	RC	Complete	DGPS
	WNR0069	474442	7695868	188	-60	145	55	RC	Complete	DGPS
	WNR0070	474457	7695866	187	-60	144	45	RC	Complete	DGPS
Пп	WNR0071	474485	7695857	187	-61	144	20	RC	Complete	DGPS
	WNR0072	474478	7695867	187	-61	144	35	RC	Complete	DGPS
	WNR0073	474467	7695882	187	-60	144	50	RC	Complete	DGPS
-	WNR0074	474456	7695897	188	-60	145	65	RC	Complete	DGPS
-	WNR0075	474480	7695886	188	-60	144	65	RC	Complete	DGPS
-	WNR0076	474464	7695908	188	-60	146	70	RC	Complete	DGPS
-	WNR0077	474443	7695886	188	-60	145	90	RC	Complete	DGPS
-	WNR0078	474469	7695848	187	-61	143	35	RC	Complete	DGPS
-	WNR0079	474494	7695863	187	-61	143	20	RC	Complete	DGPS

	Hole ID	Easting MGA2020	Northing MGA2020	RL AHD	Dip	Azimuth MGA2020	Total Depth (m)	Hole Type	Drilling Status	Survey Method
	WNR0080	474489	7695873	188	-61	144	35	RC	Complete	DGPS
	WNR0081	474349	7695781	187	-60	145	40	RC	Complete	DGPS
	WNR0082	474491	7695900	188	-61	144	50	RC	Complete	DGPS
	WNR0083	474477	7695914	188	-60	142	60	RC	Complete	DGPS
	WNR0084	474491	7695923	188	-61	141	60	RC	Complete	DGPS
	WNR0085	474510	7695943	188	-61	144	70	RC	Complete	DGPS
	WNR0086	474542	7695925	188	-61	145	30	RC	Complete	DGPS
	WNR0087	474534	7695935	188	-61	144	45	RC	Complete	DGPS
	WNR0088	474524	7695949	188	-60	144	70	RC	Complete	DGPS
	WNR0089	474556	7695931	188	-61	140	30	RC	Complete	DGPS
	WNR0090	474550	7695943	188	-61	142	45	RC	Complete	DGPS
	WNR0091	474541	7695954	188	-60	146	70	RC	Complete	DGPS
	WNR0092	474615	7695959	188	-60	144	45	RC	Complete	DGPS
	WNR0093	474598	7695980	188	-60	145	70	RC	Complete	DGPS
	WNR0094	474608	7695994	187	-60	143	95	RC	Complete	DGPS
7	WNR0095	474648	7695967	187	-60	147	45	RC	Complete	DGPS
	WNR0096	474639	7695978	188	-61	144	65	RC	Complete	DGPS
	WNR0097	474750	7696004	186	-60	145	55	RC	Complete	DGPS
	WNR0098	474742	7696015	186	-60	141	70	RC	Complete	DGPS
	WNR0099	474733	7696028	186	-60	144	85	RC	Complete	DGPS
	WNR0100	474732	7696001	186	-60	145	60	RC	Complete	DGPS
	WNR0101	474724	7696013	186	-60	141	75	RC	Complete	DGPS
	WNR0102	474717	7696023	186	-61	144	90	RC	Complete	DGPS
	WNR0103	474723	7695986	186	-61	146	50	RC	Complete	DGPS
	WNR0104	474715	7695996	186	-61	144	65	RC	Complete	DGPS
	WNR0105	474707	7696007	187	-60	143	75	RC	Complete	DGPS
	WNR0106	474699	7696019	187	-60	145	90	RC	Complete	DGPS
~	WNR0107	474703	7695993	186	-60	145	60	RC	Complete	DGPS
2	WNR0108	474697	7696001	187	-60	145	70	RC	Complete	DGPS
	WNR0109	474692	7696009	187	-60	145	80	RC	Complete	DGPS
	WNR0110	474680	7695997	187	-60	145	75	RC	Complete	DGPS
Пп	WNR0111	474671	7696009	187	-60	140	85	RC	Complete	DGPS
	WNR0112	474678	7695975	187	-60	142	60	RC	Complete	DGPS
-	WNR0113	474671	7695985	187	-60	144	70	RC	Complete	DGPS
-	WNR0114	474661	7695997	187	-60	145	80	RC	Complete	DGPS
-	WNR0115	474661	7695971	187	-60	145	45	RC	Complete	DGPS
•	WNR0116	474653	7695982	187	-60	146	60	RC	Complete	DGPS
•	WNR0117	474646	7695993	187	-60	144	70	RC	Complete	DGPS
-	WNR0118	474638	7696004	187	-60	145	85	RC	Complete	DGPS
-	WNR0119	474630	7695989	187	-60	145	75	RC	Complete	DGPS

Hole ID	Easting MGA2020	Northing MGA2020	RL AHD	Dip	Azimuth MGA2020	Total Depth (m)	Hole Type	Drilling Status	Survey Method
WNR0120	474622	7695999	188	-60	144	90	RC	Complete	DGPS
WNR0121	474758	7696019	186	-60	139	65	RC	Complete	DGPS
WNR0122	474749	7696031	186	-59	144	80	RC	Complete	DGPS
WNR0123	474890	7696038	186	-60	145	40	RC	Complete	DGPS
WNR0124	474882	7696050	186	-60	144	60	RC	Complete	DGPS
WNR0125	474875	7696032	186	-60	145	35	RC	Complete	DGPS
WNR0126	474866	7696045	186	-60	148	55	RC	Complete	DGPS
WNR0127	474864	7696022	186	-60	145	15	RC	Complete	DGPS
WNR0128	474855	7696032	186	-61	143	35	RC	Complete	DGPS
WNR0129	474850	7696039	185	-60	144	50	RC	Complete	DGPS
WNR0130	474848	7696018	186	-60	146	20	RC	Complete	DGPS
WNR0131	474842	7696029	186	-60	143	35	RC	Complete	DGPS
WNR0132	474830	7696015	186	-61	145	30	RC	Complete	DGPS
WNR0133	474820	7696005	186	-60	142	30	RC	Complete	DGPS
WNR0134	474807	7695997	186	-60	149	15	RC	Complete	DGPS
WNR0135	474803	7696004	186	-61	148	35	RC	Complete	DGPS
WNR0136	474794	7695987	186	-61	146	20	RC	Complete	DGPS
WNR0137	474783	7695981	186	-61	144	20	RC	Complete	DGPS
WNR0138	474591	7695939	188	-61	147	30	RC	Complete	DGPS
WNR0139	474585	7695948	188	-60	144	35	RC	Complete	DGPS
WNR0140	474576	7695961	188	-61	145	60	RC	Complete	DGPS
WNR0141	474567	7695973	188	-61	143	75	RC	Complete	DGPS
WNR0142	474591	7695963	188	-61	142	50	RC	Complete	DGPS
WNR0143	474582	7695974	187	-61	144	70	RC	Complete	DGPS
WNR0144	474609	7695971	187	-61	145	55	RC	Complete	DGPS
WNR0145	474629	7695965	188	-60	143	50	RC	Complete	DGPS
WNR0146	474618	7695981	188	-60	145	75	RC	Complete	DGPS
WNR0147	474526	7695923	188	-60	144	35	RC	Complete	DGPS
WNR0148	474519	7695934	188	-61	147	53	RC	Complete	DGPS
WNR0149	474502	7695935	188	-60	144	55	RC	Complete	DGPS
WNR0150	474499	7695911	188	-60	143	46	RC	Complete	DGPS

JORC CODE 2012 EDITION - TABLE 1

Section 1. Sampling Techniques and Data

(This Table 1 refers to 2023 Advanced Grade Control Drilling results completed at the Wallace North)

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The company conducted an Advanced Grade Control RC drilling program at its Wallace North resource. The program includes 142 holes for a total of 7,594m of drilling. The drilling was completed by Associated Exploration Drillers Pty Ltd. The program was undertaken to infill and define mineralisation to an increased resource category and allow for optimisation for future open-pit designs. Sample Representivity Most holes are oriented appropriately to give optimal sample representivity, drilled mostly perpendicular to the interpreted strike and dip of the mineralised body and oriented towards the target mineralised horizon/structure; however downhole widths will in most instances not represent true widths. Estimated true widths are report for all intersections. RC drilling techniques returned samples through a fully enclosed cyclone setup. 1m interval RC samples were homogenized and collected by a rotary splitter to produce a representative 3-4kg sub-sample and collected in a pre-numbered calico bag. The remaining portion of sample (15-20kg) is also retained in a green sample bag on drill site. RC duplicate sub-samples were rifle split from the bulk bag and are not considered an exact field duplicate of the samples from the cone splitter on the rig. All duplicate sub-samples were noted as dry. Assaying All samples are submitted to Australian Laboratory Services (ALS) an ISO certified contract laboratory in Mount Isa. Dependent on production capacity, selected batches may be forwarded to other ALS sites (including Townsville or Brisbane) to ensure adequate turnaround times are achieved. Sample preparation varies between ALS Mt Isa and Townsville. Mt Isa sample preparation is via SPL-21 (split sample using riffle splitter – standard splitting procedure) and pulverized via PUL-32m (Pulverise 500g split to better than 85% passing 75um). Townsville sample preparation is also via SPL-21 (split
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The drilling was completed using a SCHRAMM 660 drill rig 350psi/1150cfm onboard compressor, 350-500psi/900-1150cfm Auxiliary combi and 8V Booster (1000psi/1800cfm). Drilling diameter is 5.5 inch RC hammer (face sampling bits are used). Drillhole depths ranged from 15m to 95m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No significant recovery issues for samples were observed. Drill chips collected in chip trays are considered a reasonable representation for logging of the entire 1 m interval. Best practice methods were used for RC to ensure the return of high-quality samples. As no significant recovery issues were observed, sample bias is assumed to be within acceptable limits.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC chips were geologically logged in full. All RC holes have been logged by geologists to industry standard for lithology, mineralisation, alteration, and other geological features as appropriate to the style of deposit. Logging of RC chips has been completed to the level of detail required to support future Mineral Resource Estimation. However, no Mineral Resource Estimation is reported in this release. Observations were recorded in a field laptop, appropriate to the drilling and sample return method and is qualitative and quantitative, based on visual field estimates. Logs were validated through use of excel macros and drillhole validation methods in Micromine Origin 2023. Observations were recorded appropriate to the sample type based on visual field estimates of sulphide content and sulphide mineral species. All chips have been stored in chip trays on 1m intervals.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All RC samples are rotary split at the cyclone to create a 1m sample of 3-4 kg. Samples are collected in prenumbered calico bags via the rotary splitter underneath the cyclone on the drill rig. All samples were noted as dry. RC duplicate sub-samples were rifle split from the bulk bag and are not considered an exact field duplicate of the samples from the cone splitter on the rig. All duplicate sub-samples were noted as dry. The remaining sample is retained in green plastic bags at the drill site and laid out in sequence from the top of the hole to the end of the hole until assay results are received. A sample is sieved from the reject material and retained in chip trays for geological logging and future reference and stored at the company's offices in Cloncurry. All samples are submitted to ALS Mount Isa; dependent on production capacity, selected batches may be forwarded to other ALS laboratories (including Townsville or Brisbane) to ensure adequate turnaround times are achieved. Sample preparation varies between ALS Mt Isa and Townsville. Mt Isa sample preparation is via SPL-21 (split sample using riffle splitter – standard splitting procedure) and pulverized via PUL-32m (Pulverise 500g split to better than 85% passing 75um). Townsville sample preparation is also via SPL-21 (split sample using riffle splitter – standard splitting procedure) and pulverized via PUL-32 (Pulverise up to 3kg of raw sample. QC specification of 85% <75um. Samples greater than 3kg are split to pulverizing and the remainder retained). All RC samples are submitted to the lab for pulverization however samples are selected for assaying using the Vanta Series Portable XRF reporting greater than 500ppm Cu/ds or across lithological ontacts. No pXRF results are reported in this release. Field duplicates were taken from a rifle split from the calico bag. The comparison of the original cone split, and rifle split duplicates have
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples are dried, crushed and pulverized prior to digestion and assaying as appropriate. ALS is engaged to complete laboratory analysis via ME-ICP49 (Aqua Regia sample digestion based on ME-ICP41s methodology but with upper reporting limits specific to various OR and MI lab client requirements, reporting 11 element full suite Ag, As, Ca, Cu, Fe, Mg, Mo, Pb, S, Co, Zn). Gold assays are completed via AA25, 30g Fire Assay. The Lab utilises industry standard internal quality control measures including the use of internal Standards, Control Blanks and duplicates/repeats. QAQC quantities relating to each lab batch are detailed in the Table below. Analytical standards are inserted at a minimum rate of 6 for every 100 samples, using 10-60g, certified reference material ("CRM") of sulphide or oxide material sourced from OREAS with known gold and copper values. The location of the standards in the sampling sequence was at the discretion of the logging geologist. Standards were selected to match the anticipated assay grade of the samples on either side of the standard in the sampling sequence. Coarse blanks were inserted at a rate of ~5 for every 100 samples. The location of the blanks in the sampling sequence was at the discretion of the logging geologist. No pulp blanks were inserted into any of the batches. Given the additional coarse blanks inserted by the company this is not considered an issue. ALS internal pulp blanks returned acceptable results. Field duplicates are completed at a rate of 3 for every 100 samples from the bulk reject. Standards, blanks, and duplicates were reviewed for each batch. Most batches as detailed in table below met the recommended insertion rate for all standards, blanks, and duplicates. Several batches had a slightly lower insertion rate for standards, while 8 of the 85 batches contained no field duplicates. Insertion rates will increase with additional samples and reanalysis, however the overall rate of insertion of

CRITERIA JORC CODE EXPLANATION COMMENTARY

- Of the 250 standards reviewed for gold, seven fell outside of 3SD. Six of these were the same standard (CRMO4), five returning lower than 3SDs and one significantly higher than 3SD is being investigated as potentially being mis-reported. A sole sample of CRM22 also returned slight lower than 3SDs.
- Sample intervals either side of the failed standards (pass-to-pass) have been requested for pulps to be re-assayed, including re-assaying of the failed standard (more CRM material provided). Where there has been an overlap and blanks have failed within the same dispatch, those assays have been requested that the coarse reject be re-assayed instead. In all instances, original sample bulkabags have been retained if re-sampling is required.
- Of the 227 blanks reviewed for gold, majority returned BDL, but the expected value was close to detection limit. Overall, the results are considered adequate for the reporting of exploration results.
- Certified blanks for reported results were also checked against expected values. Where native copper was observed in RC Chips, insertion and analysis of laboratory quartz flushes were also requested as an additional measure of cleaning instrumentation after high leading samples, and to ascertain any potential for contamination during pulverization.
- Of 227 blanks reviewed for Cu, 19 reported above 100ppm Cu and 4 above 300 ppm Cu, indicating low order copper contamination from previous higher-grade samples. Samples either side of these blanks (pass-to-pass) have been requested for coarse rejects to be re-assayed.
- 86 of the 1096 Quartz flushes (12%) returned high Cu values (up to 974 ppm Cu), all with high leading assays and likely a result of the laboratory preparation methods, less cleaning being done prior to doing the quartz flushes. The quartz flushes also represent as an added measure to cleaning of instrumentation after high leading samples.
- Although these issues are considered generally insignificant to the reporting of exploration results and only effect a few of the intercepts, sample intervals between failed quartz flush's have been requested for coarse rejects to be re-assayed, where all have high leading assays.
- Field duplicate copper values all fell within the expected range (less than 30% difference). Gold was mostly less than 30% difference with five having higher variability. Two mostly at lower levels attributed to analytical precision at lower concentrations and three higher grade samples likely attributed to the presence of coarse nuggety gold.
- The 5 samples will be re-sampled from the retained bulka meter bag and submitted for screen fire assay to determine the nugget effect of Au.

				Inse	tion rate per 100 sa	mples	
Hole ID	Dispatch No	Batch No	Analytical standards (CRMs)	Coarse Blank	Field duplicates	#orig	#Orig+QC
WNR0001	335701	TV23174969	8.70	4.35	8.70	23	28
WNR0001	335801	TV23174977	4.00	8.00	2.00	50	57
WNR0001, 0002, 0003	335901	TV23175017	6.12	6.12	4.08	49	57
WNR0003	336001	MI23181196	5.13	5.13	5.13	39	45
WNR0003	336101	MI23181200	7.89	5.26	5.26	38	45
WNR0003, 0004	336201	MI23181203	8.16	6.12	2.04	49	57
WNR0004	336301	MI23181236	5.36	5.36	3.57	56	64
WNR0004	336401	MI23181242	4.17	6.25	2.08	48	54
WNR0002, 0006, 0007	336501	TV23191498	9.09	6.06	6.06	33	40
WNR0002	336601	TV23191500	6.15	3.08	3.08	65	73
WNR0002	336701	TV23191501	7.41	3.70	3.70	27	31

CRITERIA	JORC CODE EXPLANATION				СОММЕ	NTARY			
		WNR0005	336801	TV23191503	7.32	4.88	2.44	41	47
		WNR0005	336901	TV23191504	6.06	6.06	Nil	33	37
		WNR0007	337001	TV23191506	5.41	5.41	2.70	37	42
		WNR0007	337101	TV23191507	4.88	4.88	2.44	41	46
		WNR0006	337201	TV23191508	6.25	6.25	3.13	32	37
		WNR0006	337301	TV23200198	5.88	5.88	1.96	51	58
		WNR0008	337401	TV23200203	9.09	9.09	Nil	11	13
		WNR0008	337501	TV23200207	7.14	7.14	3.57	28	33
		WNR0008	337601	TV23200210	6.56	4.92	3.28	61	70
		WNR0008	337701	TV23200215	4.76	4.76	Nil	21	23
		WNR0008, WNR0009, WNR0010	337701	TV23200215	3.03	4.55	3.03	66	73
		WNR0010, WNR0011, WNR0012, WNR0013	337801	TV23200223	3.53	4.71	2.35	85	94
		WNR0013, WNR0014, WNR0015	337901	TV23200229	5.48	4.11	2.74	73	82
		WNR0018, WNR0019, WNR0020	338001	TV23200247	4.44	4.44	2.22	90	100
		WNR0020, WNR0021, WNR0022	338101	TV23200257	4.44	4.44	2.22	90	100
		WNR0022, WNR0023	338201	TV23202265	4.35	6.52	4.35	46	53
		WNR0023, WNR0024	338301	TV23216001	4.88	7.32	2.44	41	47
		WNR0024, WNR0025, WNR0026	338401	TV23216034	6.98	4.65	4.65	43	50
		WNR0026, WNR0027	338501	TV23216043	5.45	7.27	1.82	55	63
		WNR0028, WNR0029	338601	TV23216070	5.13	5.13	5.13	39	45
		WNR0029, WNR0030, WNR0031	338701	TV23216081	2.08	4.17	4.17	48	53

CRITERIA	JORC CODE EXPLANATION				СОММЕ	NTARY			
		WNR0031, WNR0032, WNR0033	338801	TV23216097	6.15	4.62	3.08	65	74
		WNR0033, WNR0034	338901	TV23216101	5.45	5.45	3.64	55	63
		WNR0034, WNR0035, WNR0036	339001	TV23216119	6.06	4.55	3.03	66	75
		WNR0036, WNR0037, WNR0038	339101	TV23216124	4.35	5.80	2.90	69	78
		WNR0038, WNR0039, WNR0040	339201	TV23216137	6.25	6.25	1.56	64	73
		WNR0040, WNR0041	339301	MI23213154	5.00	5.00	3.33	60	68
		WNR0041, WNR0042, WNR0043	339401	MI23213181	5.17	3.45	3.45	58	65
		WNR0015, WNR0016	TNR000001	TV23200235	5.88	5.88	1.96	51	58
		WNR0016, WNR0017, WNR0018	TNR000101	TV23200241	5.26	5.26	3.51	57	65
		WNR0043, WNR0044, WNR0045	TNR000201	MI23213189	5.97	2.99	2.99	67	75
		WNR0045, WNR0046, WNR0047	TNR000301	MI23213192	5.17	5.17	1.72	58	65
		WNR0047, WNR0048	TNR000401	MI23213196	5.56	5.56	Nil	54	60
		WNR0048, WNR0049, WNR0050	TNR000501	MI23213202	3.51	5.26	3.51	57	64
		WNR0051, WNR0052, WNR0053	TNR000601	MI23213204	3.70	5.56	1.85	54	60
		WNR0053, WNR0054	TNR000701	MI23213213	4.11	5.48	2.74	73	82
		WNR0054, WNR0055, WNR0056	TNR000801	MI23213224	6.25	3.13	3.13	32	36
		WNR0056, WNR0057	TNR000901	MI23230816	6.25	6.25	2.08	48	55
		WNR0057, WNR0058, WNR0059	TNR001001	MI23230828	6.67	Nil	6.67	15	17

CRITERIA	JORC CODE EXPLANATION				СОММЕ	NTARY			
ח		WNR0059, WNR0060, WNR0061	TNR001101	MI23230832	5.26	5.26	3.51	57	65
		WNR0061, WNR0062	TNR001201	TV23243814	5.88	5.88	Nil	34	38
		WNR0062, WNR0063, WNR0064	TNR001301	TV23243843	4.23	5.63	1.41	71	79
		WNR0064, WNR0065, WNR0066	TNR001401	TV23243855	2.70	5.41	2.70	37	41
		WNR0066, WNR0067	TNR001501	TV23244017	4.35	4.35	4.35	46	52
		WNR0067, WNR0068, WNR0069	TNR001601	TV23244041	5.26	5.26	2.63	76	86
		WNR0069, WNR0070, WNR0071, WNR0072	TNR001701	TV23244050	4.71	3.53	2.35	85	94
		WNR0072, WNR0073, WNR0074	TNR001801	TV23244057	7.89	5.26	2.63	38	44
		WNR0074, WNR0075	TNR001901	TV23242434	6.15	3.08	3.08	65	73
		WNR0075, WNR0076, WNR0077	TNR002001	TV23242490	6.90	3.45	3.45	29	33
		WNR0077, WNR0078	TNR002101	TV23244073	6.67	4.44	2.22	45	51
		WNR0078, WNR0079, WNR0080, WNR0081	TNR002201	TV23244085	6.82	4.55	2.27	44	50
		WNR0081, WNR0082, WNR0083	TNR002301	TV23244089	6.06	3.03	3.03	33	37
		WNR0083, WNR0084	TNR002401	TV23244092	4.76	4.76	2.38	84	94
		WNR0084, WNR0085, WNR0086	TNR002501	TV23244102	4.35	4.35	4.35	46	52
		WNR0086, WNR0087, WNR0088	TNR002601	TV23244106	5.19	3.90	2.60	77	86
		WNR0088, WNR0089, WNR0090	TNR002701	TV23244120	4.82	4.82	2.41	83	93
		WNR0090, WNR0091	TNR002801	TV23244125	6.67	6.67	3.33	60	70

CRITERIA	JORC CODE EXPLANATION				СОММЕ	NTARY			
		WNR0077, WNR0091, WNR0092, WNR0093	TNR002901	TV23244129	6.35	3.17	3.17	63	71
		WNR0093, WNR0094	TNR003001	TV23244133	5.56	4.17	2.78	72	81
		WNR0094, WNR0095	TNR003101	TV23244141	5.56	5.56	2.22	90	102
		WNR0095, WNR0096, WNR0097	TNR003201	TV23244146	6.78	1.69	3.39	59	66
		WNR0097, WNR0098	TNR003301	TV23242505	8.00	4.00	4.00	50	58
		WNR0098, WNR0099	TNR003401	TV23242515	7.84	3.92	3.92	51	59
		WNR0099, WNR0100, WNR0101	TNR003501	TV23242524	3.92	5.88	Nil	51	56
		WNR0101, WNR0102	TNR003601	TV23242561	4.00	4.00	4.00	25	28
		WNR0102, WNR0103	TNR003701	TV23242604	3.57	7.14	1.79	56	63
		WNR0103, WNR0104, WNR0105	TNR003801	TV23242611	6.82	6.82	2.27	44	51
		WNR0105, WNR0106	TNR003901	TV23242613	5.17	6.90	Nil	58	65
		WNR0106, WNR0107	TNR004001	TV23242618	4.82	4.82	2.41	83	93
		WNR0107, WNR0108	TNR004101	TV23242627	5.45	7.27	Nil	55	62
		WNR0108, WNR0109	TNR004201	TV23242634	6.06	3.03	6.06	33	38
		WNR0109, WNR0110, WNR0111	TNR004301	TV23244152	3.92	7.84	1.96	51	58
		WNR0111, WNR0112	TNR004401	TV23252725	6.25	6.25	4.17	48	56
		WNR0112, WNR0113	TNR004501	TV23252757	5.80	5.80	1.45	69	78
		WNR0113, WNR0114	TNR004601	TV23252772	2.70	8.11	2.70	37	42
		WNR0114, WNR0115, WNR0116	TNR004701	TV23252788	6.35	3.17	3.17	63	71
		WNR0116, WNR0117	TNR004801	TV23252799	4.44	6.67	2.22	45	51
		WNR0117, WNR0118	TNR004901	TV23252807	6.67	2.22	4.44	45	51

CRITERIA	JORC CODE EXPLANATION				СОММЕ	ENTARY			
)		WNR0118, WNR0119	TNR005001	TV23252819	5.63	5.63	1.41	71	80
		WNR0119, WNR0120	TNR005101	TV23252822	5.26	5.26	1.32	76	85
		WNR0120, WNR0121, WNR0122	TNR005201	TV23252824	5.66	5.66	Nil	53	59
		WNR0122, WNR0123	TNR005301	TV23252828	6.06	6.06	Nil	33	37
		WNR0123, WNR0124, WNR0125	TNR005401	TV23252831	Nil	Nil	Nil	Nil	Nil
		WNR0125, WNR0126, WNR0127	TNR005501	TV23252833	6.25	4.17	2.08	48	54
		WNR0127, WNR0128, WNR0129, WNR0130	TNR005601	TV23252840	5.41	4.05	1.35	74	82
		WNR0130, WNR0131, WNR0132, WNR0133	TNR005701	TV23252848	4.41	5.88	2.94	68	77
		WNR0133, WNR0134, WNR0135, WNR0136	TNR005801	TV23253785	4.44	4.44	2.22	90	100
		WNR0136, WNR0137, WNR0138, WNR0139, WNR0140	TNR005901	TV23253802	4.44	4.44	2.22	90	100
		WNR0140, WNR0141	TNR006001	MI23244044	4.48	4.48	2.99	67	75
		WNR0141, WNR0142	TNR006101	MI23244056	4.44	4.44	2.22	90	100
1		WNR0142, WNR0143, WNR0144	TNR006201	MI23244066	4.84	4.84	3.23	62	70
		WNR0144, WNR0145	TNR006301	MI23244078	4.17	5.56	1.39	72	80
		WNR0146, WNR0147	TNR006401	MI23245151	5.56	5.56	3.70	54	62
		WNR0147, WNR0148, WNR0149	TNR006501	MI23245164	4.94	4.94	1.23	81	90
		WNR0149, WNR0150	TNR006601	MI23245182	5.48	5.48	1.37	73	82

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Field sample logs were collected using laptops and captured in validated excel entries, and uploaded into the company Access Database, validated by company personnel. Digital Assay results have been retained, uploaded into the company Access Database and validated by company personnel. No adjustments have been applied to the results. No twin holes have been completed.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar location of the data samples collected via a Trimble DGPS (MGA2020), accurate to within 10cm. Downhole surveys completed using a Reflex North-seeking Gyro, completed as 30m interval single shots and/or continuous measurements at end of hole.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing is sufficient for the reporting of results. No Mineral Resource or Ore Reserve estimations are being reported. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drilling orientations were generally in line with the historical drilling data. There are numerous structures which have been identified to date which are moderately dipping. The drilling orientation is considered appropriate and is expected to have introduce minor bias in intercept width based on the current geological information. Estimated True widths are presented in this release with the aim to give a reflection of the mineralised widths.
Sample security	The measures taken to ensure sample security.	Samples were secured by staff from collection to submittal at ALS Mt Isa.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No review or audits have taken place of the data being reported.

Section 2. Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Wallace North (formerly Kangaroo Rat) lies on ML 2695 and ML 90236 and lies approximately 1 km to the north of the Wallace South Au deposit and old Wallace copper mine. The project is centred at approximately 474534mE 7695886mN (MGA Zone 54, GDA94 datum). The project is in west central Queensland, Australia, approximately 30km Southeast of Cloncurry. Access is by aircraft via an all-weather airstrip into Cloncurry or Mount Isa. The area is well serviced by sealed Barkly Highway from Mount Isa to Cloncurry and then the Flinders and Landsborough Highways from Cloncurry to the project area. Existing station and exploration tracks provide good access to the tenements. Movement is very limited during the wet season due to flooded watercourses and wet tracks. The Wallace North deposit is located on Mining Lease – ML2695, that covers an area of 2.136 hectares and expires on 31/03/2026, and ML90236, that covers 318.30 hectares and expires on 31/05/2026 owned by True North Copper Pty Ltd.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Modern exploration commenced at Wallace North in 1990 by Union Oil Development Company (UODC) when the prospect was known as Wallace. Exploration has subsequently been carried out by Ashton Gold Limited (Ashton), Cloncurry Mining Company (CMC), Haddington Resources Limited (Haddington), and most recently by Exoc. In 1990 UODC aimed to define new geological targets for further follow-up work with a focus on gold and copper mineralisation. They identified Wallace North as a prospective area due to the various small historical workings in the immediate area. UODC explored the area between 1990 and 1992. 21 RC holes were drilled for 1,366m. 441 soil samples taken and a 60 m long trench that cut across the shear zone was dug, geologically mapped and sampled. Detailed geological mapping at a scale of 1:25,000 was completed over the area in 1991. 1992 - 1996 Ashton Gold - After purchasing the project from UODC in early 1992, Ashton Gold completed 8 RC holes for 603 metres and four diamond tails (NQ core size) for 239.25 metres. 1996 - 2001 Cloncurry Mining Company NL (CMC) and its subsidiary Great Australian Mining Company NL acquired the mining lease in 1996. All the exploration work they subsequently conducted was not well documented and there appears to be no Mines Department Reports available for this period. CMC drilled two RC holes for 102 metres in August 1996 and 24 RAB holes. Prior to CMC going into liquidation in 2001, several joint ventures were entered into including Mount Isa Exploration (MIMEX) and Eagle Mining Corporation (EMC) who drilled 23 RAB holes in the area. 2001 - 2002 Wedgetail Exploration NL (WTE) made a successful bid for the package of tenements which passed into its control in December 2001. The tenement package was transferred to Haddington Gold Pty Ltd (Haddington) in August 2003. 2003 - 2006 Haddington - In 2003 Haddington reviewed the resource and attempted to verify the assay results by resampling RC chips st
Geology	Deposit type, geological setting and style of mineralisation.	 The Wallace North project is located in a structurally complex area where mafic volcanic (metabasalt) and sedimentary (calcareous siltstone and mudstone, black shale) rocks of the Toole Creek Volcanics (upper Soldiers Cap Group) are folded about an E-W-trending, regional-scale anticline (possibly the Mountain Home Anticline) and cut by a NW-SE-striking fault that is connected to a more substantial, >20 km-long, N-S-striking fault. Much of the project area is covered by Quaternary sediments of the Elder Creek drainage system. Wallace North Cu-Au mineralisation is contained within a poorly exposed shear zone that trends ENE-WSW with a steep WNW to vertical dip. The mineralised structure is semi-exposed over about 100 m in old workings, however drilling indicates that the structure extends in both directions under cover. The shear zone appears to demarcate the general contact between a mafic volcanic dominant sequence and a sediment dominant sequence. Within the shear zone, the rocks have been mylonitised and variably altered. The main rock types include metadolerite-basalt, shale, siltstone and quartzite. Alteration ranges from propylitic-argillic to silification along fracture and vein salvages. Disseminated to massive, dull to metallic chalcocite mineralisation dominates in the partially oxidised transitional weathered zone. Chalcopyrite is the dominant Cu species within fresh rock, disseminated or present as small segregations. Gangue minerals include carbonate, quartz, and pyrite. A minor malachite dominant oxide Cu zone is present close to surface.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		 Mineralisation is often seen at the contact between intercalated shale and volcanic lithologies. Primary chalcopyrite mineralisation is associated with quartz-carbonate veins along basalt/black shale contacts. The series of NW trending structures that intersect/cross-cut the strata at an oblique angle may have provided a pathway for the mineralising fluids to cross the stratigraphy. It is likely that the higher grade and more consistent mineralisation occurs where oblique structures intersect the shale/basalt contacts creating small flexures. This is supported by common anomalous Cu/Au grades where the NW trending structures intersect strata-form mineralisation. Mineralisation comprises two main sub-vertical ENE-WSW approximately parallel tabular zones of mineralisation. Several additional minor zones of mineralisation occur in the footwall and hanging wall, and along strike to the WSW and ENE, which may constitute faulted offsets of the adjacent main zone(s).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Information on drillholes featured in the announcement are provided in the main body of this announcement, Figure , Table 41.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intercept calculations used a cut-off grade of 0.3% Cu. The maximum consecutive waste (below 0.3% Cu) does not exceed 2m however there is no limit to included waste. Significant downhole intercepts are over 1% Cu & 3% Cu, length weighted average. The maximum consecutive waste (below 1% Cu & 3% Cu) does not exceed 2m however there is no limit to included waste. Gold is reported as a length weighted average within the copper intercepts. No metal equivalent values are used. All intervals have been length weighted averaged. All significant new drillhole assay data of a material nature are reported in this release.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Both currently reported and historical drillholes have been primarily oriented between [143 - 162 degrees] at moderate dips in order to provide the most orthogonal intersection of the moderately north-northeast dipping mineralized structures. Confidence in the geometry of main zones mineralisation intersections is good and consequently, estimated true widths are provided in this release within this zone.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Please refer to the accompanying document for figures and maps.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Representative reporting of low and high grades has been delivered within this report. Intersection lengths and grades are reported as down-hole, length weighted averages. Refer to the list of significant drill hole results in the accompanying report. All significant results using the criteria described above.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Refer to: True North Copper. ASX (TNC): Release 4 May 2023, Prospectus to raise a minimum of \$35m fully underwritten. Resource figures provided are based on the previously announced mineral resource estimates disclosed in the company's ASX Release dated 28 February 2023: Acquisition of True North Copper assets, and its Prospectus, dated 3 May 2023 (see section 7.1, page 51) announced on the ASX on 4 May 2023. True North Copper Limited. ASX (TNC): Release 17 October, Drilling increases Wallace North Resource by 14%. True North Copper Limited. ASX (TNC): Release 3 October 2023, TNC intercepts 6m @ 12.99g/t Au and 10m @ 2.22% at Wallace North, with multiple high-grade zones.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Continuation of the QAQC resampling and assaying program, receipt of assays for open intercepts and non-sampled intervals. Following completion of this work, geological modelling, resource domain definition, geostatistics for re-estimation and metallurgical and mining studies will commence to progress the Wallace North project to copper-gold production.