

ASX ANNOUNCEMENT

31 October 2023

September 2023 Quarterly Activities Report

Lithium explorer Charger Metals NL (ASX: CHR, 'Charger' or 'the Company') is pleased to provide the following Activities Report for the period of July to September 2023, inclusive (the 'Quarter').

HIGHLIGHTS

Bynoe Lithium Project, Northern Territory

- Assay results confirmed lithium (Li) and tantalum (Ta) mineralisation in pegmatites at three of the seven prospects drilled in the maiden drill programme at the Bynoe Lithium Project in NT
- Ambient Noise Tomography (ANT) and ground gravity surveys were completed over a large area in the northeast of the Bynoe Project
 - Data from geophysical surveys are being processed and modelled with the aim of detecting any potentially large "blind" pegmatite systems that do not outcrop
- Additional infill surface geochemical sampling and mapping programmes were also completed in the northeast, and assays are pending

Lake Johnston Lithium Project, Western Australia

- Priority targets identified at Medcalf to test for extensions to the high-grade lithium mineralisation returned from drilling spodumene-bearing pegmatites in the maiden RC drill programme completed in Q2 2023
- Preparation and permitting commenced for upcoming exploration programmes including RC and diamond drilling at the Medcalf Spodumene Prospect and Mt Day Lithium Prospect

Corporate

- During the quarter the Company commenced a process to consider partnering with a strategic investor(s) to fund either its Bynoe or Lake Johnston Projects
- At the end of the September quarter, the Company held cash reserves of \$2.06M
- The Company has 62.1 million fully paid ordinary shares on issue and an undiluted market capitalisation of approximately \$9.9 million as at 30 October 2023
- The top 20 shareholders hold approximately 47.1% of the issued shares

BYNOE LITHIUM PROJECT, NORTHERN TERRITORY (CHARGER - 70% INTEREST)

The Bynoe Lithium Project is located approximately 35 km southwest of Darwin, Northern Territory, with excellent access and nearby infrastructure. Charger's Project is enclosed by Core Lithium Limited's (ASX:CXO; "Core") Finniss Lithium Project (Figure 1), which has a mineral resource of 30.6Mt at 1.31% Li₂O.¹ Core has commenced mining and beneficiation activities at its Finniss Project and announced the shipping of spodumene concentrate in the June 2023 quarter.

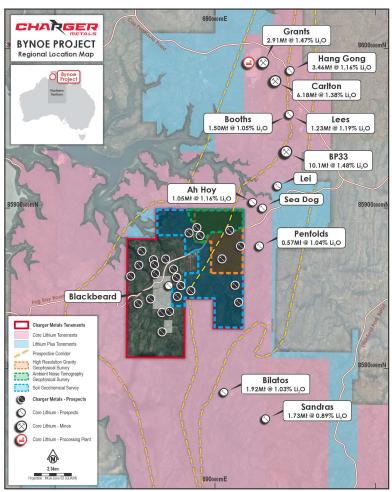


Figure 1. Location map of the Bynoe Lithium Project and Finniss Lithium Project and the areas covered by the current ANT, ground gravity and surface geochemistry surveys.

During the September quarter the Company announced that it had received the majority of the outstanding assay results from the drilling completed at the Bynoe Lithium Project, Northern Territory, adjacent to the Finniss Lithium Project owned by Core Lithium Ltd (ASX:CXO). The Company drilled 3 diamond drill-holes and 66 reverse circulation ("RC") drill-holes across seven prospective target areas at Bynoe, with the results confirming lithium and tantalum mineralisation at three of the prospects: Enterprise, Utopia and 7Up (Figures 2 – 4).

¹ Refer to Core Lithium Ltd's ASX Announcement 18 April 2023 - Finniss Mineral Resource increased by 62%.

Fractionation within the lithium-caesium-tantalum ("LCT") pegmatites is not homogeneous, with the spodumene content of the pegmatite intersections sporadic.

Significant intersections from the initial drilling included:

- o 7m @ 0.96% Li₂O from 107m, including
- o 5m @ 1.13% Li₂O from 108m (CBYRC023);
- o 16m @ 0.65% Li₂O from 185m, including
- o 1m@1.91% Li₂O from 198m (CBYRC024);
- o 12m @ 0.49% Li₂O from 267m, including
- o 4m @ 0.84% Li₂O from 275m (CBYD003);
- o 5m @ 0.73% Li₂O from 104m, including
- 1m @ 1.05% Li₂O from 108m (CBYRC042);
- 6m @ 0.50% Li₂O from 53m (CBYRC051); and
- o 6.40m @ 0.78% Li₂O from 276m, including
- o 1.70m @ 1.36% Li₂O from 277m and
- o 2.10m @ 0.98% Li₂O from 280.3m (CBYD004).²

Refer to Table 1 included in this announcement and the ASX announcement released on 22 September 2023 for further details.

During the quarter the Company also completed an ANT geophysical survey in the northeastern portion of the Bynoe tenure (Figures 1 & 2). ANT is a form of passive seismic surveying that uses ambient sound waves to detect contrasting rock units, and has been used to successfully detect "blind" pegmatite systems that cannot be seen at surface. This is a particularly useful exploration tool at Bynoe to "see" below the strong weathering profile at surface to potentially detect large pegmatite systems that do not outcrop.

The Company also completed a ground gravity survey over the northeastern portion of the Bynoe Project (Figures 1 & 2). Petrophysical testwork completed on drill core from the Company's diamond drilling has shown a significant density contrast between the pegmatites and the metasedimentary country rock. As such, ground gravity has the potential to detect significant pegmatite systems at Bynoe, particularly when modelled in conjunction with the ANT survey results. Processing of the ANT and gravity data is underway with modelling and target generation expected to be finalised early in Q4.

Concurrent to the geophysical surveys, Charger has finalised infill surface geochemical surveys over key prospective areas at Bynoe (Figures 1 & 2). Areas of no previous sampling or wide-spaced (400m) sampling were infilled to 200m line spacing. Assays are pending with results expected in November.

² Not previously announced, refer to Table 1.

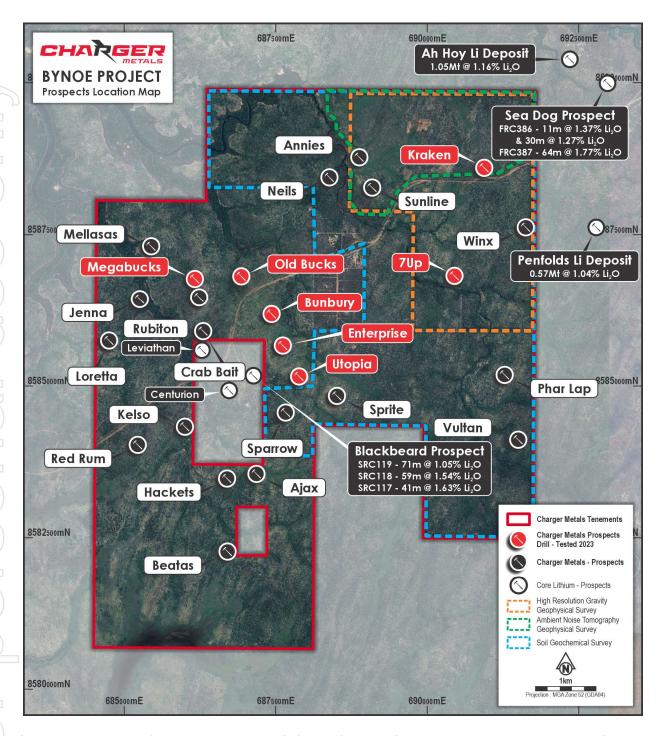


Figure 2. Prospect location map of the Bynoe Lithium Project showing the prospects that have been drill-tested to-date (in red). Core Lithium's nearby deposits and key prospects are shown for reference. ³

³ Refer to Core Lithium Ltd.'s ASX Announcement 18 April 2023 - Finniss Mineral Resource increased by 62%

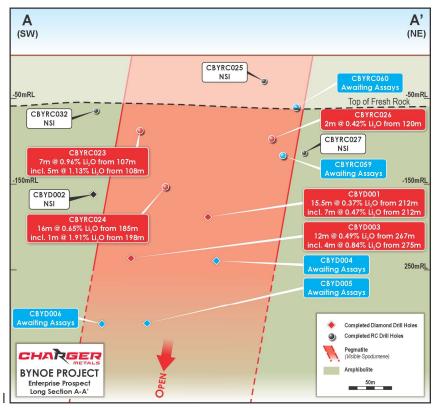


Figure 3. Long-section of the Enterprise Prospect showing the drill-hole pierce points and significant lithium intersections.

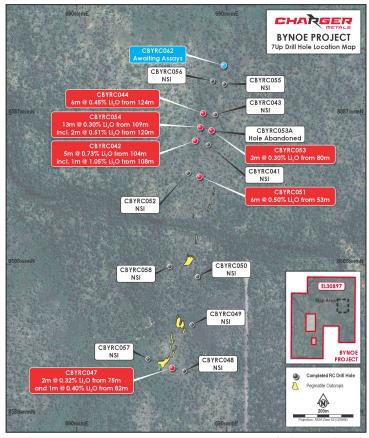


Figure 4. Location map of the 7Up Prospect of the Bynoe Lithium Project showing the completed drill-hole collars and significant lithium intersections to-date.

Table 1. Completed drill-holes of the Bynoe Lithium Project with logged down-hole pegmatite intersections and significant lithium (≥ 0.3% Li₂O cut-off) and tantalum (≥ 100ppm Ta₂O₅ cut-off) intersections.

Prospect	Hole ID	Easting (m)	Northing (m)	RL (m)	EOH Depth (m)	Dip	Azimuth	Significant Lithium Intersection (≥ 0.30% Li₂O; 2m min. width)	Significant Tantalum Intersection (≥ 100ppm Ta ₂ O ₅ ; 2m min. width)
	CBYRC041	690,438	8,586,900	24	142.00	- 60°	106	NSI	2m @ 163 ppm Ta_2O_5 from 64m, 7m @ 495 ppm Ta_2O_5 from 72m
	CBYRC042	690,394	8,586,913	23	160.00	- 60°	104	5m @ 0.73% <i>Li</i> ₂ O from 104m, incl. 1m @ 1.05% <i>Li</i> ₂ O from 108m	16m @ 320 ppm Ta ₂ O ₅ from 100m
	CBYRC043	690,462	8,586,999	25	158.00	- 62°	107	NSI	2m @ 191 ppm Ta ₂ O ₅ from 94m
	CBYRC044	690,420	8,587,005	23	160.00	- 62°	106	6m @ 0.45% Li₂O from 124m	17m @ 318 ppm Ta ₂ O ₅ from 122m
	CBYRC047	690,317	8,586,156	23	150.00	- 62°	330	2m @ 0.32% <i>Li₂O</i> from 75m and 1m @ 0.40% <i>Li₂O</i> from 82m	3m @ 433 ppm Ta ₂ O ₅ from 77m
	CBYRC048	690,357	8,586,145	24	180.00	- 64°	292	NSI	NSI
65	CBYRC049	690,383	8,586,298	19	150.00	- 66°	294	NSI	NSI
	CBYRC050	690,402	8,586,458	19	150.00	- 60°	296	NSI	NSI
	CBYRC051	690,408	8,586,793	23	126.00	- 62°	099	6m @ 0.50% <i>Li₂O</i> from 53m	2m @ 624 ppm Ta ₂ O ₅ from 46m, 2m @ 442 ppm Ta ₂ O ₅ from 52m, 2m @ 342 ppm Ta ₂ O ₅ from 59m
7Up	CBYRC052	690,371	8,586,805	22	180.00	- 64°	102	NSI	NSI
	CBYRC053	690,448	8,586,947	25	150.00	- 61°	102	2m @ 0.30% <i>Li₂O</i> from 80m	9m @ 424 ppm Ta ₂ O ₅ from 82m
	CBYRC053A	690,452	8,586,946	25	67.00	- 60°	105	Hole Abandoned	NSI
	CBYRC054	690,411	8,586,958	23	198.00	- 64°	105	13m @ 0.30% <i>Li₂O</i> from 109m, incl. 2m @ 0.51% <i>Li₂O</i> from 120m	13m @ 431 ppm Ta ₂ O₅ from 111m
	CBYRC055	690,491	8,587,102	25	150.00	- 66°	104	NSI	2m @ 304 ppm Ta ₂ O ₅ from 125m
653	CBYRC056	690,451	8,587,112	23	186.00	- 65°	103	NSI	2m @ 189 ppm Ta ₂ O ₅ from 87m, 14m @ 333 ppm Ta ₂ O ₅ from 151m
$(\setminus \setminus \cup)$	CBYRC057	690,236	8,586,185	19	150.00	- 64°	100	NSI	NSI
	CBYRC058	690,309	8,586,492	19	120.00	- 66°	112	NSI	3m @ 1323 ppm Ta ₂ O ₅ from 22m, 6m @ 379 ppm Ta ₂ O ₅ from 61m
	CBYRC062 *	690,489	8,587,164	24	172.00	- 61°	112	1m @ 0.30% <i>Li₂O</i> from 104m	7m @ 342 ppm Ta ₂ O ₅ from 103m and 3m @ 231 ppm Ta ₂ O ₅ from 143m
	CBYRC028	687,445	8,586,353	17	178.00	- 61°	122	NSI	3m @ 458 ppm Ta₂O₅ from 121m
Bunbury	CBYRC029	687,406	8,586,353	17	208.00	- 62°	123	NSI	NSI
20	CBYRC030	687,459	8,586,396	16	148.00	- 62°	110	NSI	NSI
	CBYD001	687,784	8,585,876	13	267.23	- 60°	344	15.5m @ 0.37% Li₂O from 212m, incl. 7.0m @ 0.47% Li₂O from 212m	NSI
	CBYD002	687,753	8,585,850	14	249.19	- 61°	301	NSI	NSI
	CBYD003	687,807	8,585,863	13	300.18	- 67°	327	12m @ 0.49% <i>Li₂O</i> from 267m, incl. 4m @ 0.84% <i>Li₂O</i> from 275m	NSI
	CBYD004 *	687,810	8,585,864	13	312.35	- 61°	340	6.4m @ 0.78% Li₂O from 276m, incl. 1.70m @ 1.36% Li₂O from 277m and 2.10m @ 0.98% Li₂O from 280.3m	2m @ 228 ppm Ta₂O₅ from 275m
	CBYD005 *	687,810	8,585,832	14	399.39	- 64°	314	NSI	NSI
	CBYD006 *	687,810	8,585,831	14	384.36	- 65°	296	1.80m @ 0.34% <i>Li</i> ₂ O from 351m	NSI
	CBYRC015	687,671	8,585,726	19	114.00	- 62°	124	NSI	NSI
	CBYRC016	687,607	8,585,760	18	166.00	- 61°	109	NSI	NSI
Enterprise	CBYRC017	687,403	8,585,422	23	142.00	- 89°	090	NSI	NSI
	CBYRC018	687,331	8,585,462	23	179.00	- 90°	090	NSI	NSI
	CBYRC019	687,328	8,585,306	27	179.00	- 68°	150	NSI	NSI
	CBYRC023	687,760	8,585,891	13	149.00	- 60°	300	7m @ 0.96% <i>Li</i> ₂ O from 107m, incl. 5m @ 1.13% <i>Li</i> ₂ O from 108m	NSI
	CBYRC024	687,794	8,585,870	13	215.00	- 60°	300	16m @ 0.65% <i>Li₂O</i> from 185m, incl. 1m @ 1.91% <i>Li₂O</i> from 198m	NSI
	CBYRC025	687,824	8,586,032	15	112.00	- 61°	303	NSI	NSI
	CBYRC026	687,857	8,586,012	15	136.00	- 61°	304	2m @ 0.42% Li₂O from 120m	NSI
	CBYRC027	687,883	8,586,047	16	160.00	- 61°	302	NSI	NSI
	CBYRC031	687,365	8,585,259	28	178.00	- 62°	333	NSI	NSI
	CBYRC032	687,723	8,585,870	13	142.00	- 61°	301	NSI	NSI

	CBYRC059 *	687,874	8,585,995	16	220.00	- 61°	302	3m @ 0.53% Li₂O from 133m	NSI
	CBYRC060 *	687,848	8,586,068	17	124.00	- 72°	281	NSI	NSI
	CBYRC038	690,907	8,588,548	27	178.00	- 61°	308	NSI	7m @ 292 ppm Ta ₂ O ₅ from 61m
Kraken	CBYRC039	690,931	8,588,523	26	148.00	- 61°	311	NSI	7m @ 278 ppm Ta ₂ O ₅ from 111m
	CBYRC040	690,811	8,588,616	29	142.00	- 62°	122	NSI	6m @ 316 ppm Ta ₂ O ₅ from 124m
	CBYRC001	686,318	8,587,004	18	168.00	- 62°	275	NSI	4m @ 140 ppm Ta₂O₅ from 89m
	CBYRC002	686,201	8,587,002	22	168.00	- 62°	093	NSI	NSI
	CBYRC003	686,163	8,587,003	22	126.00	- 61°	090	NSI	NSI
Megabucks	CBYRC004	686,202	8,586,845	22	162.00	- 61°	090	NSI	NSI
	CBYRC005	686,281	8,586,845	21	17.00	- 60°	270	NSI	NSI
	CBYRC006	686,320	8,586,845	20	138.00	- 61°	317	NSI	NSI
	CBYRC007	686,361	8,586,849	19	186.00	- 61°	271	NSI	NSI
	CBYRC008	686,919	8,586,610	16	168.00	- 61°	276	NSI	NSI
	CBYRC009	686,841	8,586,609	15	102.00	- 61°	269	NSI	NSI
	CBYRC010	686,952	8,586,704	15	162.00	- 62°	265	NSI	2m @ 206 ppm Ta ₂ O ₅ from 55m
Old Bucks	CBYRC011	686,715	8,586,704	15	162.00	- 62°	261	NSI	NSI
7	CBYRC012	686,794	8,586,705	14	162.00	- 62°	264	NSI	NSI
	CBYRC013	686,879	8,586,703	15	162.00	- 62°	272	NSI	NSI
	CBYRC014	687,039	8,586,708	16	162.00	- 62°	270	NSI	NSI
	CBYRC020	687,938	8,585,099	26	119.00	- 57°	300	NSI	4m @ 393 ppm Ta ₂ O ₅ from 95m
	CBYRC021	687,967	8,585,087	24	197.00	- 65°	300	NSI	6m @ 222 ppm Ta ₂ O ₅ from 182m
	CBYRC022	687,784	8,585,147	27	203.00	- 65°	120	NSI	11m @ 270 ppm Ta ₂ O ₅ from 132m
	CBYRC033	687,902	8,585,031	26	166.00	- 62°	303	2m @ 0.40% Li₂O from 122m and 4m @ 0.37% Li₂O from 128m	21m @ 225 ppm Ta ₂ O ₅ from 122m
	CBYRC034	687,950	8,585,186	25	140.00	- 62°	300	NSI	NSI
Utopia	CBYRC035	687,714	8,584,957	28	178.00	- 61°	276	NSI	NSI
	CBYRC036	687,932	8,585,017	25	250.00	- 58°	302	3m @ 0.32% <i>Li₂O</i> from 166m	10m @ 263 ppm Ta ₂ O ₅ from 165m
	CBYRC037	687,866	8,585,000	27	178.00	- 60°	323	1m @ 0.53% <i>Li₂O</i> from 139m	11m @ 273 ppm Ta ₂ O ₅ from 101m, 39m @ 170 ppm Ta ₂ O ₅ from 128m
	CBYRC045	687,854	8,584,966	27	196.00	- 61°	321	NSI	11m @ 328 ppm Ta ₂ O ₅ from 160m
12	CBYRC046	687,734	8,585,041	29	178.00	- 62°	277	NSI	NSI
	CBYRC061	687,801	8,584,974	28	178.00	- 62°	328	NSI	NSI

^{*} Results not previously announced

Bynoe Lithium Project Outlook

Approximately 20 lithium prospects identified by the Company to-date at Bynoe remain untested, and the results from the coincident geochemical and geophysical surveys are expected to generate even more target areas. The Company will review all the new data over the coming "wet season" in order to prioritise drill targets ready for the next "dry season" field campaign to commence in Q2 calendar 2024.

LAKE JOHNSTON LITHIUM PROJECT, WESTERN AUSTRALIA (CHARGER 70% -100% INTEREST)

A programme of 41 RC drill holes was completed during the March 2023 quarter with final assays received early in the June 2023 quarter. The programme was designed to test the extent of spodumene-bearing lithium-caesium-tantalum enriched ('**LCT**') pegmatites at the Medcalf Prospect, part of the Lake Johnston Project near Norseman, Western Australia (Figure 5).

The programme tested pegmatites over a strike length of 700 metres at surface and up to 280 metres down dip of mapped spodumene-bearing pegmatite outcrops. Assays confirmed high-

grade lithium was intersected on nearly every drill section, correlating well with the logged intervals of spodumene-bearing pegmatites.

The drill programme increased the known extent of the swarm of spodumene-bearing pegmatites, which occur within a 100m zone, and demonstrated that these extend under transported cover and at depth.

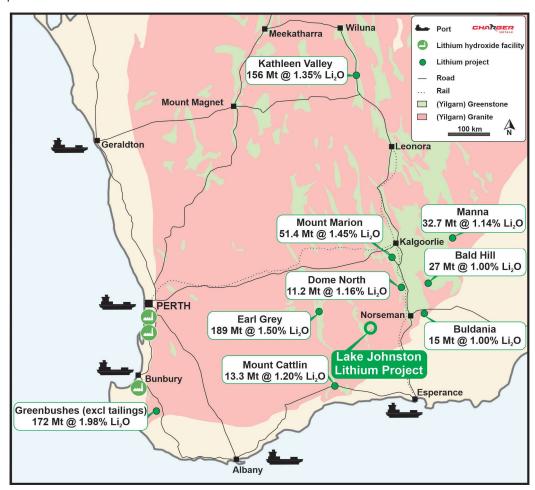


Figure 5. Location of the Lake Johnston Lithium Project relative to other spodumene deposits of southern Western Australia.

Significant intersections from the drill programme included: 4

- o 4m @ 1.21% Li₂O from 208m (23CRC017)
- o 3m @ 1.44% Li₂O from 168m (23CRC018)
- o 4m @ 2.06% Li₂O from 145m (23CRC013)
- o 6m @ 1.56% Li₂O from 19m (23CRC006)
- o 5m @ 1.41% Li₂O from 83m (23CRC007)

 $^{^4}$ Intersections are reported as down-hole widths using a cut-off of 0.5% Li₂O and a maximum of 2m internal dilution. See Table 2 in the ASX announcement released on 18 April 2023 for a full table of results.

- o 6m @ 1.34% Li₂O from 24m (23CRC003)
- o 5m @ 2.55% Li₂O from 68m (22CRC002)
- o 6m @ 1.52% Li₂O from 26m (22CRC005)
- o 5m @ 1.86% Li₂O from 24m (22CRC007) and
- o 4m @ 1.83% Li₂O from 56m (22CRC007). ⁵

The lithium mineralisation at the Medcalf Prospect is hosted within a swarm of anastomosing to tabular stacked pegmatites hosted within sheared amphibolite. The pegmatites are members of the LCT pegmatite family (albite-spodumene type) and spodumene has been logged in both the drill chips and in many outcrops. Spodumene is the preferred mineral for the commercial production of lithium, which is one component of modern lithium batteries.

During the quarter preparation began for upcoming exploration programmes at the Lake Johnston Project. Programme of Works (PoW) applications have been submitted for both RC and diamond drill programmes, initially at Medcalf to test for strike and depth extensions to the existing spodumene mineralisation, and then maiden drill programmes at the Mt Day Prospect. The Company's geologists have undertaken further mapping and surface sampling in order to generate further target areas for lithium mineralisation.

Lake Johnston Project Outlook

Preparation will continue this quarter for the upcoming exploration and drill programmes. Permitting of key target areas will continue, including environmental management and proposed Aboriginal Heritage surveys. Modelling of results from recent surface sampling will be undertaken with the intention of generating new priority lithium drill targets.

COATES NI-CU-CO-PGE PROJECT, WESTERN AUSTRALIA (CHARGER 70%-85% INTEREST)

No further work was undertaken at the Coates Project during the reporting period.

CORPORATE

Strategic Process

During the quarter Charger was approached by several large strategic companies showing interest in the Company and its lithium project portfolio. As such, the Company commenced a process to investigate whether it could obtain better funding terms than available in equity markets due to the sharp decrease in lithium prices this calendar year. The Company agreed to share its technical data under NDA with some of the interested parties with the required financial capability to fund a significant exploration strategy at either Bynoe and/or Lake Johnston Lithium Projects. Todate the Company has not received binding terms on a funding proposal and negotiations are ongoing. The Company will advise the market if and when a binding agreement is reached.

⁵ Initial assays were received during the March quarter, with the remaining outstanding assays received in April.

Cash at Bank

Charger had cash at bank at 30 September 2023 of \$2.06 million. The Company has 62.1 million fully paid ordinary shares on issue and an undiluted market capitalisation of approximately \$9.9 million as at 30 October 2023. Charger has a tightly held capital structure with the top 20 shareholders holding approximately 47.1% of the issued shares.

ASX Listing Rule 5.3.2 Disclosure

There were no substantive mining production and development activities conducted during the quarter.

ASX Listing Rule 5.3.5 Disclosure

Payments to related parties during the quarter as outlined in Sections 6.1 and 6.2 of the Appendix 5B consisted of \$125,862 in directors' fees and fees to the Managing Director under his executive services agreement.

Annual General Meeting

The Company's Annual General Meeting will be held on Wednesday 29 November 2023. For further details refer to the Notice of Meeting lodged on ASX on 20 October 2023.

Authorised for release by the Board.

Aidan Platel

Managing Director & CEO Charger Metals NL aidan@chargermetals.com.au

Jonathan Whyte

Company Secretary
Charger Metals NL
jdw@chargermetals.com.au

Alex Cowie

NWR Communications +61 412 952 610 alexc@nwrcommunications.com.au

Tenement Schedule as at 30 September 2023

Table 2: Schedule of tenements.

Tenement	Project	% Interest
E70/5198	Coates Project, Western Australia	70%
EL70/5437	Coates Project, Western Australia	70%
P70/1752	Coates Project, Western Australia	70%
P70/1753	Coates Project, Western Australia	70%
R70/59	Coates Project, Western Australia	85% - subject to Yankuang Bauxite Interest
EL30897	Bynoe Lithium and Gold Project, Northern Territory	70%
E63/1809	Lake Johnston Lithium and Gold Project, Western Australia	70%
E63/1903	Lake Johnston Lithium and Gold Project, Western Australia	100%
E63/1883	Lake Johnston Lithium and Gold Project, Western Australia	100%
E63/1722	Lake Johnston Lithium Project, Western Australia	70% interest in lithium rights under the Lithium Rights Agreement with Lefroy Exploration Limited
E63/1723	Lake Johnston Lithium Project, Western Australia	70% interest in lithium rights under the Lithium Rights Agreement with Lefroy Exploration Limited
E63/1777	Lake Johnston Lithium Project, Western Australia	70% interest in lithium rights under the Lithium Rights Agreement with Lefroy Exploration Limited

JORC Table 1 Statement

JORC Table 1 was included in the following announcements released to the ASX:

Coates Project

5 September 2022: "Drilling update for Charger's Coates Nickel-Copper-PGE Project, Western Australia"

Bynoe Project

13 December 2021: "Lithium Pegmatite Trends Highlighted at Bynoe"

17 January 2022: "Charger's targeting suggests large lithium system at its Bynoe Lithium Project"

8 June 2023: "Drilling Update for the Bynoe Lithium Project"

3 July 2023: "Spodumene Pegmatites Intersected at Bynoe Lithium Project"

11 July 2023: "Assays up to 1.9% **Li₂O** Confirm Spodumene Discovery at Bynoe"

27 July 2023 "New Spodumene Pegmatite Intersections at Bynoe"

22 September 2023: "Drilling Results for the Bynoe Lithium Project"

Lake Johnston Project

18 April 2023 "Lake Johnston Project Update"

Charger confirms that it is not aware of any new information or data that materially affects the information included in this announcement and that all material assumptions and technical parameters underpinning the exploration results continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Competent Person Statement

The information in this announcement that relates to exploration strategy and results is based on information provided to and compiled by geologist David Crook BSc who is a Member of The Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Crook is a Non-Executive Director of Charger Metals NL.

Mr Crook has sufficient experience which is relevant to the style of mineralisation and exploration processes as reported herein to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Crook consents to the inclusion in this announcement of the information contained herein, in the form and context in which it appears.

Forward Looking Statements

This announcement may contain certain "forward looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis.

However, forward looking statements are subject to risks, uncertainties, assumptions, and other factors which could cause actual results to differ materially from future results expressed, projected or implied by such forward looking statements. Such risks include, but are not limited to exploration risk, Resource risk, metal price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which we sell our product to, and government regulation and judicial outcomes.

For more detailed discussion of such risks and other factors, see the Company's Prospectus, as well as the Company's other filings. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward looking statement" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.