

High Grade HREE + Nb Intercepts at Machinga

HIGHLIGHTS

- **High-grade HREE and Nb₂O₅ results** returned from <u>initial</u> 11 holes of 35-hole RC program at Machinga Main Northern Zone
- Multiple +2500ppm total rare earth oxide + yttrium ("TREO") and significant 1-2 wt% TREO assay values
- Hole MR011 intersected enriched REE mineralisation, returning a standout intercept of:
 - ★ 7m @ 1.42% TREO with 0.49% Nb₂O₅ and 546ppm Dy₂O₃ + Tb₄O₇ (3.8% DyTb:TREO) from 65m, plus 1m @ 1.17% TREO, 1.36% Nb₂O₅ from 119m at end of hole
- Drilling confirms Machinga Main Northern Zone is particularly enriched in valuable heavy rare earths dysprosium (Dy) and terbium (Tb)
- Results returned an average of 28% HREO:TREO and 3.5% DyTb:TREO at a cutoff grade of >2500ppm TREO
 - Widespread REE intersections with assays including:
 - MR001: 3m @ 5638 ppm TREO, 2102 ppm Nb₂O₅ from 7m; including 1m @ 1.31% TREO from 8m; and 4m @ 5405 ppm TREO, 2550 ppm NB₂O₅ from 81m
 - MR002: 5m @ 7196 ppm TREO, 2706 ppm Nb₂O₅ from 44m, including 1m @ 1.65% TREO from 45m; and 3m @ 4615 ppm TREO, 1553 ppm Nb₂O₅ from 66m, including 1m @ 1.05% TREO from 66m
 - MR005: 16m @ 5399 ppm TREO, 2106 ppm Nb₂O₅ (3.6% DyTb:TREO) from 78m, including 3m @ 1.63% TREO, 0.7% Nb₂O₅ from 87m
 - MR008: 5m @ 5186 ppm TREO, 1698 ppm Nb₂O₅ from 25m, including 1m @ 1.39% TREO from 26m
 - MR009: 5m @ 6175 ppm TREO, 2385 ppm Nb₂O₅ from 23m
 - MR010: 3m @ 6391 ppm TREO, 2334 ppm Nb₂O₅ from 40m and 10m @ 3919 ppm TREO, 1388 ppm Nb₂O₅ from 24m
 - MR011: 7m @ 1.42% TREO, 4928 ppm Nb2O5 (3.8% DyTb:TREO) from 65m; plus 1m @ 1.17% TREO, 1.36% Nb2O5 from 119m
 - Remaining assays from phase one Reverse Circulation ("RC") and Diamond Drilling ("DD") program at Machinga to be reported throughout Q4 2023

Heavy rare earths and niobium explorer DY6 Metals Ltd (ASX: DY6) ("DY6", "the Company") is pleased to announce the receipt of initial assay results for the RC drilling program completed at the Machinga Main Northern Anomaly, part of the Company's flagship Machinga project in southern Malawi (Figure 1).

The results received are from 1m and 3m composite intervals from the initial 11 holes (1320m) drilled as part of DY6's maiden 35-hole, 3,643m RC drill program at Machinga Main Northern Zone.

Registered Office Level 8, 99 St Georges Terrace Perth WA 6000

P: +61 8 9486 4036 **E**: info@dy6metals.com

dy6metals.com

Assays returned a series of significant intercepts based on a 2500 ppm total rare earth oxide + yittrium ("TREO") cut-off grade from the Machinga Main Northern Zone including 7m @ 1.42% TREO with 0.49% Nb₂O₅ (MR011) and 16m @ 0.54% TREO with 0.21% Nb₂O₅ (MR005)

The mineralisation at the Machinga alkaline complex contains a higher proportion of valuable dysprosium-terbium (DyTb) with results indicating an average 3.5% DyTb:TREO in samples greater than 2500ppm TREO.

Assays also identified significant critical Nb_2O_5 potential with grades of 0.28% Nb_2O_5 at a cutoff grade of 2500 ppm TREO and 0.64% Nb_2O_5 for samples at TREO grades greater than 1%.

A strongly mineralised hydrothermal breccia system striking NW-SE and dipping shallowly ~35° to the NE has been confirmed by the drilling. Pleasingly, very high-grade zones have been intersected, as well as the suggestion of the mineralised zones thickening at depth (Figure 3). Significant drill intercepts received from the first batch of assays from the drilling program are included in Table 2.

The breccia host was not recognised until the commencement of diamond drilling; with the RC chips then being reviewed, samples will be selected for petrography from both the core and RC drill material.

Cutting and sampling of the diamond drill core, installation of collar beacons on all RC and DD collars and survey of the drill collars along with approximately half the historic Globe Metals and Mining (ASX: GBE) ("GBE") collars has been completed. Results for the remaining 24 RC holes from Machinga Main Northern Zone are expected to be released progressively during October and the first batch of DD assays (from eight diamond holes drilled for 900m) are expected in the December quarter.

Drilling at the Machinga Main Northern target – one of six targets identified to date within the overall Machinga concession – aims to follow up on previous work undertaken by GBE during 2010/12. Exploration drilling by GBE intersected strong REE mineralisation alongside the holes drilled by DY6 at the northern end of the Machinga Main anomaly. Intercepts by GBE included **11m @ 1.0% TREO** with **330ppm dysprosium oxide (Dy₂O₃)** from 12m (MARC005), **5m @ 1.5% TREO** with **596ppm Dy₂O₃** from 26m (MARC015) and **3m @ 2.2% TREO with 295ppm dysprosium oxide (Dy₂O₃)** from 66m (MARC033).

Previous trenching by GBE in 2010 included MATR001: 7m @ 1.26% TREO, MATR002: 33m @ 0.71% TREO (inc: 11m @ 1.00% TREO with 0.46% Nb_2O_5) and MATR003: 15m @ 0.45% with 0.75% Nb_2O_5 , incl: 5m @ 0.54% TREO and 1.34% Nb_2O_5 .

Figure 1: Machinga Project location in Southern Malawi (U radiometric)

DY6 Chief Executive Officer, Lloyd Kaiser said:

"We remain enthusiastic about the future for the Machinga project as we continue developing this exciting HREE and Nb opportunity. The phase one program, comprising 35 RC holes, forms part of a substantial, project-wide exploration campaign at Machinga and the surrounding anomaly zones. The initial results are showing the prospect is skewed towards abundant heavy rare earths critical to high temperature magnets used in EV traction motors.

Phase two drilling is expected to begin before the end of the year once all assays from the phase one program have been received and processed. On-ground exploration will continue to focus on the geophysical targets and in particular, those areas north and south of the Machinga Main prospect. We look forward to continuing to update the market as our exploration progresses."

Figure 2: Drill collar locations at Machinga North prospect - first 11 RC hole collar locations in red

The host rocks to the mineralisation are a complex mix of syenitic intrusives relating to the nearby Malosa pluton that have been emplaced in the basement metamorphic gneisses and migmatites. It appears the mineralisation is hosted within hydrothermal breccias dipping at approximately 35° to the NE.

The mineralised zones (as shown in Figure 3 cross-section below) demonstrate excellent continuity with radiometrics predicting the mineralised higher-grade zones with accuracy during drilling.

Figure 3: RC drill hole cross section at Machinga Main North Anomaly

-ENDS-

This announcement has been authorised by the Board of DY6.

More information

Mr Lloyd Kaiser	Mr John Kay	Mr Luke Forrestal
CEO	Director & Company Secretary	Investor Relations
lloyd.kaiser@dy6metals.com	john.kay@dy6metals.com	+61 411 479 144

Abbreviations

- **TREO** = Total Rare Earth Oxides La2O3, CeO2, Pr6O11, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3, Lu2O3, Y2O3
- **HREO** = Heavy Rare Earth Oxides –Tb4O7, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3, Lu2O3, Y2O3
- HREO% = HREO/TREO * 100
- DyTb:TREO = (Dy2O3 + Tb4O7)/TREO * 100

Competent Persons Statement

The Information in this announcement that relates to exploration results, mineral resources or ore reserves is based on information compiled by Mr Allan Younger, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Younger is a consultant of the Company. Mr Younger has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the `Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Younger consents to the inclusion of this information in the form and context in which it appears in this announcement. Mr Younger holds shares in the Company.

The exploration results contained in this announcement were first reported by the Company in its prospectus dated 3 April 2023 and announced to ASX on 27 June 2023. The results were reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". The Company confirms that it is not aware of any new information or data that materially affects the information included in the Prospectus.

Hole Id	Easting	Northing	Elevation	Azimuth	Dip	Total Depth
MR001	750120.3	8320756.9	761.7	214.3	-60.0	120
MR002	750128.0	8320862.7	751.4	217.4	-60.0	120
MR003	750173.6	8320819.7	756.1	222.6	-60.0	120
MR004	750179.6	8321045.6	739.1	228.1	-60.0	120
MR005	750151.7	8321030.3	739.8	221.5	-60.0	120
MR006	749997.2	8320760.5	764.5	228.0	-60.0	120
MR007	750031.5	8320791.8	759.8	228.2	-60.0	120
MR008	750083.3	8320853.2	751.8	230.1	-60.0	120
MR009	750033.9	8320909.0	754.0	225.7	-60.0	120
MR010	750061.4	8320940.6	750.8	225.7	-60.0	120
MR011	750116.8	8320995.6	744.3	223.9	-60.0	120
MR012	750041.4	8320854.4	755.2	224.3	-60.0	80
MR013	750182.5	8320702.3	764.6	223.9	-60.0	120
MR014	750144.6	8320683.0	768.8	226.7	-60.0	120
MR015	750044.3	8320684.8	768.1	227.7	-60.0	120
MR016	750096.3	8320612.6	771.6	225.7	-60.0	120
MR017	749918.6	8320827.1	764.4	215.3	-60.0	82.27
MR018	749982.0	8320880.1	760.9	227.4	-60.0	120
MR019	750088.5	8320786.7	759.1	217.7	-60.0	80
MR020	750177.5	8320462.6	765.0	233.6	-60.0	120
MR021	750007.7	8320938.0	754.2	228.6	-60.0	80
MR022	749939.5	8321059.3	743.9	221.6	-60.0	120

Table 1: Drill Collar Locations

Hole Id	Easting	Northing	Elevation	Azimuth	Dip	Total Depth
MR023	749905.8	8321021.2	751.1	223.3	-60.0	112
MR024	750056.1	8320825.6	756.2	224.4	-60.0	120
MR025	749834.1	8321078.0	742.0	226.2	-60.0	40
MR026	750051.6	8321014.4	745.6	221.6	-60.0	104
MR027	750087.2	8321088.3	743.3	225.6	-60.0	120
MR028	750054.5	8321128.9	748.1	226.3	-60.0	80
MR029	750121.2	8321116.8	745.5	225.3	-60.0	80
MR030	750149.3	8321144.2	746.6	230.7	-60.0	80
MR031	749893.3	8321136.8	745.8	231.2	-60.0	94
MR032	749656.5	8320862.1	764.4	222.4	-60.0	80
MR033	749696.0	8320941.8	752.9	202.7	-60.0	79
MR034	749723.1	8320971.5	750.4	227.5	-60.0	25
MR034B	749714.6	8320962.4	751.0	224.8	-60.0	67
MR035	749666.2	8320903.0	757.1	227.0	-60.0	80

Grid System: Datum WGS 84 Zone 36 South

Hole ID		From	То	Length	TREO	MREO	MREO/TREO	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd_2O_3	Tb ₄ O ₇	Dy ₂ O ₃	Lu ₂ O ₃	Y_2O_3	NB2O5	Ta2O5	Nd ₂ O ₃ +Pr6O11	HREO
MR001		0	3	3	3472	457	13%	261	1438	77	239	16	124	16	818	1646	89	317	12
MR001		7	10	3	5637	1118	20%	698	2051	211	704	29	175	10	954	2102	106	914	14
	Including	8	9	1	13059	2554	20%	1599	4827	480	1592	67	415	25	2184	4990	267	2072	32
MR001		46	50	4	2972	600	20%	373	1062	114	384	14	87	5	516	985	43	499	7
	-																		
MR001		81	85	4	5405	1040	19%	682	1842	197	647	27	169	14	1033	2550	116	843	15
		4.4	40		7400	4004	100/	000	0450	047	004	20	044	47	1200	0700	440	1051	
MR002	Including	44	49	5	16522	1331	18%	923	2452	247	804 1760	30	244	17	1396	2706	148	1051	20
-	Including	40	40	1	10555	2970	1070	2000	0000	344	1709	02	575	40	3300	0437	3/0	2313	45
MP002		66	60	3	4615	885	10%	5/1	1563	168	554	22	142	0	969	1554	13	722	13
WILCOUZ	Including	66	67	1	10513	1993	19%	1220	3541	379	1249	48	317	22	2276	3514	43	1628	31
	molading	00	01		10010	1000	1070	1220	00-11	010	1240		017		2210	0014	01	1020	01
MR003		62	67	5	3728	722	19%	500	1296	141	453	17	111	8	661	1468	62	594	ç
MR004		96	101	5	2932	595	20%	374	1009	114	374	15	92	5	520	927	38	488	7
(f)																			
MR005		78	94	16	5399	1015	19%	707	1830	190	618	28	179	12	1029	2106	107	807	15
-7	Including	87	90	3	16289	2996	18%	2116	5480	556	1782	90	568	37	3190	6979	373	2338	47
MR006		117	120	3	3293	618	19%	415	1192	129	400	13	76	9	617	3235	150	529	8
MR007		0	7	7	2825	522	18%	322	1050	100	326	14	83	6	544	1649	78	426	7
IDI —	2																		
MR007	Composite	21	24	3	2782	516	19%	361	958	98	319	14	86	7	530	1423	73	417	7
	Composito				2.02	0.10					0.0								
MR008		24	27	3	7189	1332	19%	910	2443	246	806	40	240	16	1410	2340	117	1052	20
	including	26	27	1	13901	2559	18%	1761	4741	473	1542	77	467	30	2739	4288	220	2015	40
MR008		107	112	5	3608	671	19%	454	1298	129	423	16	103	9	658	1749	74	553	9
MR009		23	28	5	6175	1110	18%	674	1917	202	666	31	210	22	1511	2385	122	869	21
MR010		24	29	5	3568	681	19%	453	1257	131	428	16	105	7	671	1234	57	559	9
75																			
																dy6m	etals.c	om ASX:	DY

Hole ID		From	То	Length	TREO	MREO	MREO/TREO	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd_2O_3	Tb₄O ₇	Dy ₂ O ₃	Lu_2O_3	Y_2O_3	NB2O5	Ta2O5	Nd ₂ O ₃ +Pr6O11	HREO
MR010		40	43	3	6391	1262	20%	748	2250	243	808	30	181	10	1253	2334	83	1051	1714
MR010		99	102	3	3251	623	19%	391	1138	119	393	15	96	8	628	1404	58	512	895
MR011		65	72	7	14231	2631	18%	1796	4807	490	1595	72	474	34	2835	4928	276	2085	4126
	including	66	71	5	16950	3107	18%	2151	5715	579	1873	86	569	41	3392	5857	338	2452	4949

Above: Table 2: Significant Intersections, Holes MR001-011

Based on 2500 ppm TREO cutoff, minimum 3m width and maximum 2m internal dilution.

Hole Id	From	To m	Length	Sample	Ce ppm	Dy ppm	Er ppm	Eu ppm	Gd ppm	Ho ppm	La ppm	Lu ppm	Nb ppm	Nd ppm	Pr ppm	Sm ppm	Ta ppm	Tb ppm	Tm ppm	Y ppm	Yb ppm	TREO ppm
MR0)1 () 1	1	MD00001	1173.1	112.7	95.8	4.4	54.2	26.9	315.2	15.1	1209.4	220.9	68.1	48.5	76.4	13.8	15.7	673.7	102.5	3568
MR0)1	2	1	MD00002	1407.7	144.7	127.5	4.1	66.4	35.7	370.3	19.8	1553.8	229.4	72.2	52.9	100.1	17.2	21.5	875.5	141.1	4353
MR0)1	, 8	1	MD00008	727.4	64.5	38.8	4.3	59.0	13.0	368.4	3.7	661.0	290.3	82.7	57.0	30.7	10.4	5.0	345.3	29.1	2530
MR0)1 8	9	1	MD00009	3929.6	361.8	222.1	18.1	283.7	72.7	1875.5	21.6	3488.2	1364.6	397.3	293.5	218.4	57.0	30.1	1720.0	184.4	13059
MR0)1 40	47	1	MD00052	1878.6	143.4	86.6	8.4	125.3	29.3	953.8	8.3	1194.5	688.5	202.5	131.0	59.9	22.5	12.1	765.4	69.4	6178
MR0)1 49	50	1	MD00055	1313.8	131.5	78.4	7.7	109.4	26.8	661.4	7.9	1379.6	517.6	144.7	110.7	73.1	20.8	10.3	700.8	68.8	4716
MR0)1 8	82	1	MD00093	827.0	71.8	47.2	4.1	59.0	14.8	416.7	6.0	1158.8	314.2	91.8	65.8	62.6	12.0	7.1	416.4	43.5	2892
MR0)1 83	83	1	MD00094	1689.4	156.8	98.2	7.7	130.2	31.6	874.8	10.4	1844.7	623.1	183.0	128.7	85.7	24.8	13.0	833.1	82.4	5893
MR0)1 8	84	1	MD00095	1759.2	178.3	126.5	8.3	128.5	38.7	956.3	17.3	2226.8	638.5	185.4	130.2	124.9	27.5	18.7	999.8	124.0	6438
MR0)1 84	85	1	MD00096	1721.9	182.6	127.1	8.5	141.0	38.6	951.2	15.0	1900.6	642.7	190.5	131.3	108.0	28.3	18.2	1004.3	103.2	6398
MR0)1 10	101	1	MD00115	1241.2	128.0	99.4	6.2	87.6	28.3	660.4	15.2	1878.8	443.3	134.7	93.2	106.0	18.6	15.0	766.7	104.7	4637
MR0)2 44	45	1	MD00190	1748.6	201.1	135.6	8.6	145.0	42.8	986.0	12.9	1762.3	615.3	183.8	129.6	117.0	28.2	18.4	996.5	107.4	6463
MR0)2 4	46	1	MD00191	4545.1	500.6	343.1	21.0	349.0	107.8	2425.6	40.0	4499.7	1516.7	450.6	323.9	309.7	69.5	51.8	2652.3	302.9	16533
MR0	02 4	48	1	MD00193	1464.1	139.0	87.5	7.1	104.6	28.3	793.4	9.4	1250.3	520.5	154.3	104.8	63.0	22.3	12.1	712.5	68.6	5098
MR0	02 48	49	1	MD00194	2025.0	203.7	139.5	9.2	158.1	44.4	1102.0	13.6	1793.8	720.6	212.5	151.0	111.4	32.2	19.1	1050.5	108.4	7222
MR0	02 62	63	1	MD00211	868.9	84.6	55.0	4.2	66.4	16.8	462.9	5.6	1029.9	311.0	92.6	62.4	56.7	13.3	7.4	428.1	45.3	3044
MR0	02 60	67	1	MD00215	2882.7	275.8	182.9	13.9	220.5	58.0	1431.0	19.2	2456.3	1070.8	314.0	223.3	71.3	40.9	25.5	1792.4	148.0	10513
MR0	02 68	69	1	MD00217	825.2	83.6	50.8	4.7	66.1	17.2	415.3	5.1	/42.0	308.0	91.2	66.7	31.9	13.6	6.8	434.4	40.8	2931
MR0	02 102	103	1	MD00257	653.4	72.9	63.9	4.1	48.9	17.7	349.3	11.9	1582.1	246.4	73.7	47.9	79.4	9.2	9.7	477.2	79.0	2614
MRO	03 12	13	1	MD00293	838.1	50.1	27.0	4.9	60.9	9.9	400.1	2.5	783.2	380.2	106.4	72.9	38.3	9.0	3.4	258.6	19.2	2699
MR0	$\frac{33}{3}$	32	1	MD00315	1042.3	86.9	58.4	5.3	72.1	18.6	568.0	11.0	756.3	401.2	116.7	100.1	35.2	13.3	8.1	511.8	57.0	3671
MPO		65	1	MD00352	916.0	67.2	110.7	0.1	135.1 51.4	37.9	007.7 465.4	5.2	795.2	276.0	96.4	50.6	92.7	20.0	14.9	930.3	99.0 20.6	2770
MRO		66	1	MD00355	066.3	78.5	42.0	4.1 5.3	62.5	14.5	403.4 550.1	5.4	035.6	3/8/	105.5	67.7	13.0	9.0	6.0	127.3	<u> </u>	3308
MR0	13 61	67	1	MD00356	1293.4	126.9	81.4	7 1	102.5	27.0	703.6	8.0	1108.0	496.0	145.6	103.7	43.9 56.7	19.2	10.4	673.1	67.2	4659
MR0)3 7(77	1	MD00369	1006.7	72.4	44.9	5.8	58.7	15.3	595.0	5.4	1161.7	334.5	105.3	60.8	48.9	10.2	6.3	395.7	41.3	3324
MR0)3 8	82	1	MD00374	1598.7	132.5	84.3	8.7	115.1	27.5	733.2	10.0	1219.1	750.4	200.4	138.0	46.7	20.4	11.4	890.8	75.7	5790
MR0)4 90	97	1	MD00533	976.8	102.4	63.4	5.5	85.2	20.7	525.1	6.1	717.1	382.3	110.5	82.0	40.6	15.8	8.2	514.8	53.2	3558
MR0)4 9	98	1	MD00534	747.5	78.6	47.3	4.2	60.5	15.6	416.8	4.6	606.3	282.4	83.7	59.5	30.7	11.7	6.3	383.9	36.5	2699
MR0)4 98	99	1	MD00535	982.0	75.0	40.8	5.8	69.3	14.8	512.8	4.1	639.0	384.3	115.0	76.3	22.9	11.1	5.6	391.4	35.5	3281
MR0	04 100	101	1	MD00537	1042.8	115.8	69.1	6.8	95.3	23.6	554.8	7.1	1014.3	407.9	122.0	95.9	52.4	18.9	9.1	602.8	58.7	3896
MR0)5 78	79	1	MD00653	1930.4	195.1	119.0	10.3	154.9	40.2	1099.7	11.4	1618.2	713.8	207.1	142.5	96.8	29.6	15.2	1031.9	97.2	6992
MR0)5 8	82	1	MD00656	763.9	71.7	43.9	4.4	58.6	14.8	424.6	4.2	757.1	287.3	86.0	59.7	45.0	11.2	6.0	372.6	34.2	2703

Table 3: Assay Results for Samples with Total Rare Earth Oxide >2500 ppm

Hole	From	То			Ce	Dy	Er	Eu	Gd	Но	La	Lu	Nb	Nd	Pr	Sm	Та	Tb	Tm		Yb	TREO
ld	m	m	Length	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Y ppm	ppm	ppm
MR005	84	85	1	MD00659	850.9	88.7	52.8	4.3	71.6	17.4	481.7	5.3	748.5	322.6	92.3	66.9	45.8	13.4	7.6	450.8	45.8	3100
MR005	86	87	1	MD00664	1538.8	151.2	95.2	8.0	126.5	31.0	823.0	9.1	1250.3	601.1	172.8	124.4	63.3	24.8	12.2	799.1	80.4	5542
MR005	87	88	1	MD00665	4478.3	528.4	338.9	22.3	384.4	112.2	2506.4	34.0	4313.9	1591.2	467.9	351.4	278.0	81.6	45.0	2622.6	284.5	16701
MR005	88	89	1	MD00666	3837.2	405.3	267.0	17.2	301.5	84.9	2130.7	26.4	4489.1	1294.7	392.7	269.8	274.0	61.1	36.5	2047.0	215.5	13734
MR005	89	90	1	MD00667	5066.7	551.0	365.6	22.8	416.5	118.6	2807.9	36.3	5834.1	1698.1	519.6	368.7	363.4	86.4	48.4	2865.4	307.3	18433
MR005	90	91	1	MD00668	1314.4	129.4	84.8	6.5	102.4	29.3	728.0	9.1	1315.9	463.8	138.5	97.5	74.7	21.5	11.4	699.8	76.0	4718
MR005	91	92	1	MD00669	981.8	67.1	46.3	4.6	57.3	14.2	601.0	4.8	586.3	329.1	99.2	57.7	31.3	11.2	5.9	372.5	41.5	3245
MR005	93	94	1	MD00671	688.8	80.6	57.2	4.2	59.7	17.4	378.2	7.2	657.1	250.6	72.7	51.6	36.6	11.9	8.4	461.6	58.1	2665
MR005	119	120	1	MD00700	1904.4	145.5	75.4	9.6	136.9	27.8	1018.7	7.5	1371.2	762.0	219.7	153.5	51.0	25.5	9.8	737.9	59.8	6375
MR006	1	2	1	MD00705	2043.9	53.8	38.0	3.5	39.5	11.8	241.1	4.4	969.2	196.4	57.6	41.4	52.0	7.8	5.3	293.6	34.4	3741
MR006	26	27	1	MD00733	828.8	85.8	56.6	4.5	66.0	18.2	458.3	7.2	852.0	296.9	87.9	66.6	52.1	12.8	8.4	487.9	53.0	3063
MR006	54	55	1	MD00767	860.0	59.5	42.0	5.5	49.8	12.4	494.2	6.6	1888.9	292.3	90.7	55.8	118.0	8.3	6.2	349.2	44.3	2864
MR006	72	73	1	MD00788	714.8	60.1	42.4	4.0	50.9	12.7	379.2	6.2	656.7	268.2	78.8	55.8	28.4	8.7	6.4	364.3	43.7	2528
MR006	118	119	1	MD00840	1303.6	71.6	53.1	4.5	59.5	15.6	663.0	9.3	4913.4	439.3	142.0	72.8	266.6	11.9	8.9	492.6	62.5	4113
MR006	119	120	1	MD00844	1237.3	105.2	80.2	6.1	84.9	24.0	612.1	13.2	1388.9	453.3	136.6	91.1	75.0	17.4	12.6	826.7	89.2	4583
MR007	0	1	1	MD00845	1492.7	142.5	105.1	4.8	71.1	32.1	362.4	12.6	2302.7	250.0	78.3	53.7	127.7	19.9	15.7	869.9	96.6	4385
MR007	2	3	1	MD00847	929.5	65.3	41.5	4.1	51.5	14.1	356.2	4.0	711.9	276.0	82.9	52.5	41.1	10.5	6.0	379.8	33.5	2789
MR007	5	6	1	MD00850	1883.4	165.2	112.0	9.2	129.1	35.9	982.5	11.7	2700.1	717.7	211.2	142.5	143.6	27.7	16.0	971.4	90.7	6643
MR007	6	7	1	MD00851	823.1	66.1	44.8	5.2	57.6	13.9	407.1	5.3	1266.3	324.4	92.8	66.0	74.3	11.4	6.7	387.8	39.7	2836
MR007	21	24	3	MC0145	780.0	74.6	53.7	3.6	59.6	16.3	422.8	5.9	994.6	273.3	81.4	57.5	59.4	11.5	7.0	417.4	41.6	2782
MR007	46	47	1	MD00897	951.3	72.2	53.1	4.1	59.9	15.9	470.9	7.9	1381.0	344.1	102.9	65.6	73.8	11.6	8.9	468.8	54.9	3249
MR007	82	83	1	MD00939	688.1	83.0	78.9	4.0	51.0	20.5	354.0	15.9	1600.6	254.0	75.5	50.6	102.9	10.6	13.6	587.0	105.6	2891
MR008	0	1	1	MD00986	1075.6	66.8	47.5	4.1	50.5	14.4	345.3	5.8	973.7	256.3	76.9	52.1	38.0	10.4	7.0	387.0	43.4	2957
MR008	11	12	1	MD00997	1194.5	112.7	74.9	5.8	83.2	24.7	632.0	7.9	1357.5	400.6	118.7	82.5	82.5	17.3	9.7	576.1	65.4	4107
MR008	25	26	1	MD01014	1888.4	202.2	135.8	9.3	152.5	43.5	1020.1	14.5	1765.1	668.8	196.1	144.6	102.8	32.6	19.4	1068.8	127.1	6903
MR008	26	27	1	MD01015	3859.7	407.1	265.8	17.7	303.4	88.6	2065.0	26.1	2997.9	1322.3	391.1	280.4	180.4	65.3	35.5	2156.6	236.8	13901
MR008	47	48	1	MD01039	1204.4	120.2	75.7	6.4	93.9	25.4	618.2	7.1	1036.3	440.6	125.4	96.1	58.9	19.7	10.1	618.3	61.1	4248
MR008	55	56	1	MD01050	3031.1	221.0	105.7	17.0	253.3	40.4	1218.5	7.6	2677.2	1370.1	364.9	294.5	81.5	43.4	13.2	1140.2	74.3	9873
MR008	85	86	1	MD01086	1582.8	185.6	137.8	11.2	149.2	41.1	743.7	21.4	2551.0	598.4	168.1	142.2	138.5	29.4	20.6	1228.7	155.9	6305
MR008	107	108	1	MD01111	929.4	91.1	76.5	4.1	63.2	22.2	481.6	12.6	1694.9	316.8	94.8	62.2	91.4	13.5	12.4	586.3	92.2	3452
MR008	108	109	1	MD01112	795.7	75.7	57.9	4.0	55.9	17.2	400.8	7.6	824.2	279.3	81.9	58.2	45.7	11.5	8.3	453.3	58.9	2856
MR008	110	111	1	MD01114	1480.8	119.6	71.1	7.7	97.4	24.2	708.1	6.9	1241.0	540.0	154.5	107.8	49.3	17.5	9.8	639.8	60.1	4879
MR008	111	112	1	MD01115	1747.1	139.9	99.0	7.5	108.3	30.3	900.2	12.2	2128.5	566.1	171.0	108.4	102.2	21.4	14.1	789.2	98.9	5806
MR009	23	24	1	MD01153	1240.6	123.5	75.9	6.1	103.2	24.4	639.8	7.9	1084.8	443.2	132.5	94.5	69.8	19.0	10.6	704.4	62.2	4452
MR009	24	25	1	MD01154	1547.8	180.2	127.3	8.5	136.8	40.4	762.1	17.3	1444.4	575.8	167.6	133.0	78.1	25.8	20.0	1184.1	120.3	6103

Hole	From	То	1	0	Се	Dy	Er	Eu	Gd	Но	La	Lu	Nb	Nd	Pr	Sm	Та	Tb	Tm	X	Yb	TREO
	m	m	Length	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Y ppm	ppm	ppm
MR009	25	26	1	MD01155	1113.3	138.7	113.9	5.4	98.3	33.3	579.0	18.9	1585.5	396.1	117.6	85.1	98.9	19.5	19.1	967.3	128.8	4638
MR009	26	27	1	MD01156	1621.1	219.2	176.9	8.2	151.8	52.3	809.3	32.0	1890.4	599.6	1/4.1	130.7	107.5	29.7	30.4	1581.2	213.2	/05/
MR009	27	28	1	MD01157	2279.8	254.4	169.4	11.6	194.6	55.3	1162.6	20.7	2330.4	841.7	246.0	1/4.4	146.0	37.7	25.3	1513.6	155.0	8627
MR009	104	105	1	MD01249	825.7	111.2	96.9	4.2	72.3	27.9	404.3	20.2	1054.0	309.3	90.5	65.9	52.3	15.2	17.4	885.0	126.4	3722
MR009	114	115	1	MD01259	986.2	87.3	64.8	5.0	69.6	19.8	489.4	11.4	1518.7	359.9	106.2	70.1	78.0	13.0	10.7	599.7	72.7	3583
MR009	117	118	1	MD01265	1150.6	92.3	68.6	5.1	75.9	21.2	564.9	12.5	2460.3	394.9	119.5	75.4	138.1	14.0	11.7	670.3	80.8	4058
MR010	1	2	1	MD01269	983.4	50.6	30.7	4.3	44.3	10.0	387.6	4.4	1074.0	246.7	76.6	46.8	57.4	7.6	4.6	290.5	29.9	2680
MR010	24	25	1	MD01295	1011.3	73.1	41.6	5.7	71.1	14.7	489.7	3.9	888.4	383.5	112.5	74.2	34.8	11.7	5.9	429.6	34.3	3332
MR010	27	28	1	MD01298	2201.3	212.6	134.0	9.9	166.3	45.6	1187.2	14.8	2180.6	760.7	228.3	153.2	120.8	31.3	20.4	1228.6	115.6	7859
MR010	28	29	1	MD01299	1341.3	141.7	90.4	7.1	110.2	29.6	694.7	9.7	995.5	480.8	142.0	101.1	67.2	21.1	12.7	785.4	77.0	4883
MR010	40	41	1	MD01314	1859.4	171.2	100.7	9.1	142.3	34.5	923.5	10.7	1644.0	680.0	197.9	142.9	91.8	26.0	14.5	981.2	86.3	6495
MR010	41	42	1	MD01315	1389.3	119.6	66.7	7.4	115.6	23.9	634.3	6.8	1245.5	538.6	154.8	115.5	37.3	19.6	9.6	807.7	53.9	4911
MR010	42	43	1	MD01316	2246.4	182.2	106.8	11.5	172.0	37.3	1075.7	10.1	2005.3	858.4	251.9	180.9	74.6	30.2	14.8	1171.0	82.4	7767
MR010	83	84	1	MD01366	1203.8	124.2	92.5	5.4	92.7	28.7	616.1	14.5	1902.7	428.8	126.4	88.0	94.9	17.7	15.2	803.1	100.7	4540
MR010	99	100	1	MD01385	1021.0	95.4	59.7	5.1	85.5	20.1	508.8	6.8	856.9	374.6	108.2	75.8	43.0	14.5	9.0	550.2	55.4	3609
MR010	100	101	1	MD01386	760.1	60.8	36.7	4.0	59.0	12.3	366.0	4.0	607.4	281.9	82.5	55.5	27.0	9.7	5.5	372.7	32.0	2586
MR010	101	102	1	MD01387	997.4	94.0	65.6	4.5	76.5	20.7	502.4	9.3	1479.2	353.1	105.8	69.6	73.2	13.7	10.1	560.1	65.3	3559
MR011	65	66	1	MD01486	1504.0	120.5	62.7	7.6	125.4	23.5	710.4	6.3	1181.3	619.5	171.8	127.4	47.6	19.7	8.8	661.9	50.3	5087
MR011	66	67	1	MD01487	5863.8	569.6	361.8	25.5	473.5	122.9	3204.5	40.4	5358.9	1992.9	596.3	409.5	340.9	85.0	52.6	3128.4	312.9	20800
MR011	67	68	1	MD01488	4519.4	444.2	286.7	19.8	366.9	96.0	2468.7	31.9	3748.1	1541.7	466.3	317.6	252.0	66.5	42.2	2440.3	251.5	16118
MR011	68	69	1	MD01489	2852.1	315.4	198.8	14.3	251.3	66.6	1553.8	22.8	2508.5	990.7	292.7	210.4	173.1	46.3	29.4	1664.4	171.8	10474
MR011	69	70	1	MD01490	3254.5	368.8	242.3	16.1	289.1	79.9	1747.5	26.6	2841.4	1155.6	340.1	250.0	190.6	54.9	35.0	1957.4	205.6	12094
MR011	70	71	1	MD01491	6771.2	781.0	518.5	32.0	604.8	171.5	3639.1	57.7	6015.7	2346.5	701.3	509.4	426.0	113.9	75.5	4164.8	448.8	25266
MR011	71	72	1	MD01492	2627.7	290.4	189.9	12.4	235.8	63.4	1416.9	21.3	2462.5	923.5	270.6	199.1	154.4	42.6	27.6	1611.0	166.1	9775
MR011	108	109	1	MD01535	1141.7	101.0	69.9	5.2	81.2	22.2	620.2	9.9	1178.2	393.8	117.9	80.8	60.1	14.5	11.2	629.3	72.8	4069
MR011	114	115	1	MD01544	1433.3	139.4	91.5	7.4	113.9	30.1	741.1	12.0	1364.7	521.4	151.4	105.3	61.0	20.5	13.6	861.9	89.7	5232
MR011	119	120	1	MD01549	3392.7	286.8	213.6	12.9	216.7	64.9	1710.5	34.9	9532.2	1111.4	343.0	211.4	541.9	41.8	35.0	1768.1	237.4	11687

APPENDIX 1. JORC Code, 2012 Edition Table 1 – Machinga HREE-Nb-Ta Project

Section 1: Sampling Techniques and Data

(Criteria in this sec	tion applies to all succeeding sections)
Criteria	Commentary
Sampling techniques	 RC drilling at Machinga was to test mineralisation identified in trenching and validate historical drill results. This drilling was sampled at one metre in from which a 2-4kg sub sample was collected for laboratory multi-element analysis including: Be, Ca, Ce, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Li, Lu, P, Pr, Sm, Sn, Ta, Tb, Th, Tm, U, W, Y, Yb, Zr Samples were tested for radioactive content using a hand-held scintillometer; based on these results, zones of apparently low grade mineralisati manually composited from the analytical sample split. A scoop portion was combined into a representative 3m sample with the balance of the analytical split sample available for follow-up analysis if results.
Drilling techniques	 A total of 3543m of RC drilling has been completed at Machinga in 2023, with a maximum hole depth of 120m. The PR54R RC drilling rig was supplied by Thompson Drilling of Tete, Mozambique. The Diamond drill rig was supplied by Thompson Drilling of Tete. Both types of drilling were surveyed downhole using REFLEX GYRO SPRINTIQ north seeking gyroscopic units at 5m intervals.
Drill sample recovery	 Sample recoveries were monitored by the geologist in the field during logging and sampling. If poor recoveries were encountered, the geologist and driller endeavor to rectify the problem to ensure maximum sample recovery. Visual assessments are made for recovery, moisture and possible contamination. Samples were split through a rig mounted static cone splitter to obtain a representative sample, which was inspected and cleaned as required. Samples were predominately dry, four RC holes were terminated early short of full depth due to excessive water inflows. Insufficient data exists to determine whether a relationship exists between grade and recovery. This will be assessed when sufficient statistical available.
Logging	 Drill samples were geologically logged over 1m lengths intervals to an appropriate level of detail to correlate specifically with sampling. Geological logging of drilling was quantitative in nature. All RC drill holes were logged in full. All diamond drill holes are being geologically logged in detail.
Sub-sampling techniques and sample preparation	 The RC drill ~30kg samples were riffle split in the field to obtain a representative sub-sample of 2-4kg. All portions of the samples were weighted.

Ciliteria	Commentary
	 Samples were mostly dry. The field sample size of approximately 2kg or greater is appropriate to the grain size of material sampled. Appropriate industry standard quality control procedures were adopted at each stage of sub-sampling to maximise representivity of samples, wit reference standards inserted during drilling, nominally every 20 samples. Field duplicates were used at a rate of 5% and analyzed to ensure representivity of in situ material, nominally every 20 samples. Diamond drill is being halved for analysis with the sample being weighted. Sample intervals are nominally 1m intervals and varied based on lithological or mineralisation contacts as required.
Quality of assay data and laboratory tests	 Samples from the RC and DDH drilling were submitted to Intertek Minerals Laboratory Services in Kitwe, Zambia for sample preparation prior to export to Perth, Western Australia for analysis sodium peroxide fusion (DX) with hydrochloric acid digest ICP/OES or MS finish as appropriate. At Intertek, samples were dried, then crushed to either -2mm or -10mm as appropriate. Large samples were riffle split and the excess stored. Sample were pulverized in an enclosed unit to 85% -75micron. A 120-150gm analytical split was taken for export to Australia and the pulp residue was retaine and stored. Elements analysed for the drill samples were: Ce, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sm, Sn, Ta, Tb, Th, Tm, U, Y, Yb, Zr. A field duplicate, blank (silica sand) and a CRM (certified reference material) were inserted approximately every 20 samples for the drilling samples CRM codes were recorded to maintain on-going quality assurance and acceptable levels of accuracy and precision. Three separate CRM were utilised of low, medium and high REE content in a rolling sequence during drilling.
Verification of sampling and assaying	 Assay results are reviewed by 2 company personnel. No adjustments to data were considered necessary.
Verification of sampling and assaying	Not reported
Location of data points	 Drillhole collars were surveyed using DGPS on completion of the program by a licensed surveyor. The grid system used is UTM Zone 36S, WGS 84. Approximately 50% of the historical drill collars were located and re-surveyed to ensure coherency between both phases of drilling.
Data spacing and distribution	 Current drillhole spacing is irregular as the program was first pass evaluation. Drill samples were collected on 1m intervals on site and composited to 3m samples in zones indicated by the scintillometer to be only weakly mineralized or barren. All other drill samples were submitted on as collected on a 1m basis.
Orientation of data in relation to geological structure	Drilling has been undertaken and orientated perpendicular to the inferred orientation of the mineralised structures based on the trench mapping ar previous drilling results.
Sample security	 Samples were collected from the drill site, and delivered by secure transport to Intertek Commodities preparation facility in Kitwe, Zambia. Chain of custody was overseen by the Geology Manager.

Criteria	Commentary
Audits or reviews	Data was reviewed and audited on a regular basis, along with QAQC checks, no problematic issues were identified.

Section 2: Reporting of Exploration Results

Criteria listed in the preceding section also apply to this section)

	Commentary
Mineral tenement and land tenure status	 Exploration is conducted within several licenses in Malawi, being: Machinga EL0529 which is held 100% by Green Exploration Limited covering an area of 42.9km². Application Machinga South APL0251 of 157.5km² is held by Green Exploration Limited. All licenses are in good standing and no known impediments area known to exist.
Exploration done by other parties	 Machinga was first identified by the American Smelting and Refining Company and the Atomic Energy Division of the Geological Survey of Britain in 1955 completed preliminary geological work (Scintillometer survey, mapping trenching and drilling). Radiometric anomalies were found but none of the factual dravailable. Detailed geological mapping of the Malosa-Zomba mountains was completed by Bloomfield et al in 1965. In 1986, the United Nation Development Program sponsored an airborne magnetic and radiometric survey was undertaken by Huntington Geology Geophysics Limited. Interpretation was completed by Paterson, Grant & Watson Limited in 1987. The survey located Uranium channel anomalies in the reference in 2009 Resource Star Limited completed an orientation soil sampling program over the Machinga Main Anomaly, 149 samples were collected. Globe Metals then joint ventured into the property and completed a trenching and follow-up drilling programs in 2010 and 2102 with 1635m of trenching 4045m of RC drilling completed. (See DY6 ASX release July 6th 2023.) A total of 281 samples were submitted from the trench sampling and 2130 samples were submitted from the RC drilling.
Geology	The area of the Machinga licence is dominated by rocks of the Mesozoic Chilwa Alkaline Province; consisting of granite, syenite, nepheline-syenite plutons associated volcanic vents characterized by carbonatite and agglomerate. The Malosa Pluton consists of a heterogeneous mixture of syenitic and granitic units. The REE-Nb-Ta mineralisation at Machinga is associated with the ear margin of the Malosa Pluton of the Chilwa Alkaline Province. Uranium and thorium anomalies are associated with the REE-Nb-Ta mineralisation.
Drill hole Information	Drill hole positions located in the field during using hand held GPS units prior to a full survey being undertaken.

Criteria	Commentary
Data aggregation methods	Other than compositing of samples on lower radiometric responses no data aggregation has been applied. No metal equivalent values are being used.
Relationship between mineralisation widths and intercept lengths	Insufficient drilling has been completed to determine true widths of mineralisation. Due to the low to moderate dips identified in the trenching and drilling to date, it is expected true widths will be less than reported downhole thicknesses.
Diagrams	Location maps of projects within the release with relevant exploration information contained.
Balanced reporting	The reporting of exploration results is considered balanced by the competent person. All results have been reported.
Other substantive exploration data	No other exploration to report.
Further work	Mineralisation has been identified at the project area; with the worldwide focus transition to renewal energy requiring major new sources of elements critical to this transition. This project has been shown to host potentially economic grades of mineralisation but has not been fully explored to define the extent of this mineralisation.