

DRILLING PROGRAM SUPPORTS ADDITIONAL GROWTH POTENTIAL AT MAKUUTU

- Phase 5 Rotary Air Blast (RAB) Tranche 2 assays received on Exploration Licence (EL) 00257 and Retention Licence (RL) 00007 reporting clay-hosted rare earth intersections achieved in 26 of 31 drill holes, including;
 - 8 metres at 975 ppm TREO from 7 metres in RRMRB117;
 - 20 metres at 865 ppm TREO from 6 metres in RRMRB115;
 - 20 metres at 789 ppm TREO from 4 metres in RRMRB116;
 - 24 metres at 781 ppm TREO from 4 metres in RRMRB129; and
 - 20 metres at 756 ppm TREO from 4 metres in RRMRB120
- Completed Phase 5 RAB assays confirming clay-hosted rare earth intersections in 69 of 76 drill holes across EL 00147, EL00257, and RL00007;
- Metallurgical test work initiated on RAB samples from drill program, feeding into revised Makuutu Exploration Target expected late 2023;
- Makuutu's basket contains 71% magnet and heavy rare earths content, and is one of the most advanced heavy rare earth projects globally available as a source for new supply chains emerging across Europe, the US, and Asia; and
- Diamond drilling is continuing infill drilling at Retention Licence (RL) 00007, aiming to increase resource classification to Indicated Resource, with 103 holes completed (2,032 metres) to date.

The Board of Ionic Rare Earths Limited ("IonicRE" or "The Company") (ASX: IXR) advises on progress at its 60 per cent owned Makuutu Heavy Rare Earths Project ("Makuutu" or "the Project") in Uganda.

The Company is progressing the development at the Makuutu Heavy Rare Earths Project through local Ugandan operating entity Rwenzori Rare Metals Limited ("RRM").

lonicRE's Managing Director Mr Tim Harrison said the Phase 5 RAB Tranche 2 assay results confirmed the expected potential of the northwest tenement to provide additional growth potential for a much larger Makuutu Project in years to come.

"EL00257 has now confirmed clay-hosted rare earth mineralisation in 21 of 26 RAB holes drilled in this program.

"The Project now moves to metallurgical test work on a selection of sample intervals to map the potential of this tenement and EL00147, expected to add significantly to the Makuutu Project development plan.

"Our focus on the delivery of the Makuutu Heavy Rare Earths Project in Uganda positions us to provide a secure, sustainable, and traceable supply of magnet rare earth oxides. Along with our Belfast recycling facility, Makuutu is key to us harnessing our technology to accelerate mining, refining, and recycling of magnets and heavy rare earths that are critical for the energy transition, advanced manufacturing, and defence," Mr Harrison said.

The Tranche 2 results are from drilling located on Exploration Licence EL00257 (26 holes) and Retention Licence (RL) 00007 (5 holes), located at the western end of the extensive licence holding at Makuutu (see Figure 1).

A total of 31 rotary air blast (RAB) holes were drilled across EL00257 and RL00007, with 26 holes recording intervals of regolith hosted rare earth mineralisation above the 2022 Mineral Resource Estimate (MRE) cut-off grade of 200 ppm Total Rare Earth Oxide minus Cerium oxide (TREO-CeO₂). (ASX: 3 May 2022). Table 1 lists the intersection compilations and Figure 2 shows the location of the drill results.

Figure 1: Makuutu project drill status plan showing location of RAB results and current core drilling program location (refer to Figure 2 area dashed outline).

Table 1: Makuutu Phase 5 Tranche 1 RAB results above MRE cut-off grade of 200ppm TREO-CeO₂.

Drill Hole ID	Depth From (metres)	Length (metres)	TREO (ppm)	TREO-CeO ₂ (ppm)	HREO (ppm)	CREO (ppm)
RRMRB113	4	25	605	392	148	203
RRMRB114				NSI		
RRMRB115	6	20	865	559	200	282
RRMRB116	4	20	789	470	114	200
RRMRB117	7	8	975	737	202	344
RRMRB118	3	13	465	282	94	135
RRMRB119	3	4	589	283	96	133
and	16	14	351	301	167	182
RRMRB120	4	20	756	415	97	177
RRMRB121	6	20	448	291	82	131
RRMRB122	5	17	401	237	84	117
RRMRB123	6	10	584	395	150	195
RRMRB124	5	2	574	254	94	123
and	11	10	451	266	94	133
RRMRB125	6	6	363	226	84	113
RRMRB126	3	23	423	243	78	111
RRMRB127	6	17	627	523	170	239
RRMRB128	5	16	587	432	167	217
RRMRB129	4	24	781	427	113	190
RRMRB130	3	16	719	401	109	183
RRMRB131	4	3	453	259	93	125
and	13	12	312	209	66	98
RRMRB132				NSI		
RRMRB133	5	4	367	210	76	100
RRMRB134				NSI		
RRMRB135				NSI		
RRMRB136	10	8	322	279	156	162
RRMRB137				NSI		
RRMRB138	4	5	469	240	91	116
RRMRB139	4	10	419	285	83	128
RRMRB140	2	6	352	226	132	132
RRMRB141	2	11	434	285	104	139
RRMRB142	6	18	612	494	186	243
RRMRB143	5	2	426	254	102	125
and	21	2	318	200	85	101

Note: NSI: No significant results in mottled, clay upper or lower saprolite zones of regolith.

EL00257 RAB Drilling

The RAB drilling on EL00257 is the first drilling to test this tenement. The aim of the drilling was to test the endowment of rare earth element (REE) in the regolith and determine the extent and thickness of mineralisation. This drilling has successfully confirmed zones of thick REE mineralisation on the northwestern half of the licence.

Results from the drilling (Figure 2) show the northwestern half of the area contains greater thickness of regolith under hardcap with significant intersections including;

- 8 metres at 975 ppm TREO from 7 metres in RRMRB117;
- 20 metres at 865 ppm TREO from 6 metres in RRMRB115;
- 20 metres at 789 ppm TREO from 4 metres in RRMRB116;
- 24 metres at 781 ppm TREO from 4 metres in RRMRB129; and
- 20 metres at 756 ppm TREO from 4 metres in RRMRB120.

This area is interpreted to be underlain by the Iganga Suite granite basement rocks, an older and different protolith from the Makuutu deposit hosted in a Karoo age sedimentary basin.

RL00007 RAB Drilling

Five (5) RAB holes (RRMRB139 to 143) tested exploration target B1 which had produced significant intersections above a granite host from 2 broad spaced holes drilled in 2021 (RRMRB063 10 metres at 698 ppm TREO and RRMRB064 8 metres 512) (ASX: 20 July 2021). These 2 holes were used to identify exploration target B1 with a target range of 15Mt to 45Mt with a grade range of 500 ppm TREO to 700 ppm TREO (see Table 2).

The results of these Phase 5 RAB holes have shown the mineralisation to be variable in thickness and grade with a best intersection in RRMRB142 of 18 metres at 612 ppm TREO from 6 metres. As a result, the exploration Target is not expected to change.

Figure 2: RAB drilling results EL00257 and RL00007 (bold intersection grades 2023 drilling, faded 2021 drilling) and Areas A and B resource infill drilling (green points results pending, red points awaiting drilling).

Resource Infill Area A and B

Resource infill drilling is ongoing on Mineral Resource Estimate (MRE) areas A and B (refer Figure 2 green points results pending, red points awaiting drilling), with the drilling designed to increase resource confidence from inferred to indicated status. To date 103 holes (2,032 metres) have been drilled and it is expected that the program will be completed later this month.

Exploration Target Drilling

As detailed earlier, the existing Makuutu Exploration Target (ASX: 1 June 2022), which is additional to the current Makuutu MRE, indicated a range for additional potential mineralisation at Makuutu estimated at;

216 – 535 million tonnes grading 400 – 600 ppm TREO*

*This Exploration Target is conceptual in nature but is based on reasonable grounds and assumptions. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

The 2021 Phase 3 RAB reconnaissance drilling campaign tested multiple targets in the Makuutu area and identified clay hosted REE mineralisation within, and outside, the sedimentary basin that contains the Makuutu resource^{1,2}.

The success of that program allowed a revision of the Exploration Target. The revised Exploration Target was separated into target areas within the sedimentary basin, and those outside the basin with clay hosted REE mineralisation derived from a mixture of rock types including granite, granodiorite and some mafic rocks.

The Exploration Target ranges are listed in Table 2 and locations shown on Figure 1.

The aim of the exploration program in the target areas is to establish further input ahead of the next phase to progress to Inferred level resources in accordance with the guidelines of the JORC code.

Pending drill assays are aimed to initially determine the endowment of REE in the area with the goal of generating additions to an updated Exploration Target following indicative extraction test work of new areas.

Metallurgical Testwork

Extraction test work has been initiated to evaluate the economic potential of this mineralisation drilled across EL00147, EL00257 and RL00007.

¹ ASX Announcement 14 July 2021: "Phase 3 Drilling Results Confirm Major Extension Potential At Makuutu"

² ASX Announcement 20 July 2021: "Phase 3 Drilling Results Indicate Potential Extension to Northwest at Makuutu"

Table 2: Makuutu Exploration Target (ASX : 1 June 2022)

		Tonnes Ran	ige (millions)	TREO pp	om Range
Zone	Target ID	Minimum	Maximum	Minimum	Maximum
	A1	14	28	400	600
	A2	2	5	600	800
Inside Basin	A3	2	5	600	800
	A4	2	4	500	700
F	A5	4	8	400	600
	A6	90	180	400	600
	B1	15	45	500	700
Outside	B2	4	12	400	600
Basin	B3	2	6,	600	800
24011	B4	73	220	400	600
	B5	8	28	400	600
Total		216	535	400	600

Authorised for release by the Board.

For enquiries, contact:

For Company	For Media	For Investor Relations
Tim Harrison	Nigel Kassulke	Peter Taylor
Ionic Rare Earths Limited	Teneo	NWR Communications
investors@ionicre.com	Nigel.Kassulke@Teneo.com	peter@nwrcommunications.com.au
+61 (3) 9776 3434	+61 (0) 407 904 874	+61 (0) 412 036 231

Table 3: Makuutu Rare Earth Project Resource Tabulation of REO Reporting Groups at 200ppm TREO-CeO₂ Cut-off Grade (ASX: 3 May 2022).

Resource Classification	Tonnes (millions)	TREO (ppm)	TREO- CeO₂ (ppm)	LREO (ppm)	HREO (ppm)	CREO (ppm)	Sc₂O₃ (ppm)
Indicated	404	670	450	500	170	230	30
Inferred	127	540	360	400	140	180	30
Total	532	640	430	480	160	220	30

Notes; Tonnes are dry tonnes rounded to the nearest 1.0Mt.

All ppm rounded from original estimate to the nearest 10 ppm which may lead to differences in averages. TREO = Total Rare Earth Oxide

Classification	Indica	ited Res	ource	
Area	Tonnes (millions)	TREO (ppm)	TREO- CeO₂ (ppm)	To (mil
Α				
В				
С	31	580	400	
D				
E				
Central Zone	151	780	540	
Central Zone East	59	750	490	
F	18	630	420	
G	9	750	500	
Н	6	800	550	
I	129	540	350	
Total Resource	404	670	450	
About Ionic Rare Ionic Rare Earths sustainable and t technologies.	Limited (A	SX: IXI		,
The flagship Maku existing tier-one i sustainable suppli lonicRE announce tenements to prog Makuutu Stage 1 I	nfrastructu er of high ed a posit gress to a	ure and -value ive stag Mining	is on tra magnet a ge 1 Defin Licence	ack f nd h nitive App

Table 4: Mineral Resources by Area (ASX: 3 May 2022), RL00007 Resource Areas shaded blue.

TREO-TREOonnes TREO Tonnes TREO CeO₂ CeO₂ (millions) illions) (ppm) (ppm) (ppm) (ppm)

Inferred Resource

nay influence averaging calculations.

is set to become a miner, refiner and recycler of rare earths needed to develop net-zero carbon

inda, 60% owned by IonicRE, is well-supported by to become a long-life, low Capex, scalable and heavy rare earths oxides (REO). In March 2023, re Feasibility Study (DFS) for the first of six (6) plication (MLA) which is pending in Uganda. The al project producing a 71% rich magnet and heavy the potential for significant potential and scale up through additional tenements.

Ionic Technologies International Limited ("Ionic Technologies"), a 100% owned UK subsidiary acquired in 2022, has developed processes for the separation and recovery of rare earth elements (REE) from mining ore concentrates and recycled permanent magnets. Ionic Technologies is focusing on the commercialisation of the technology to achieve near complete extraction from end of life / spent magnets and waste (swarf) to high value, separated and traceable magnet rare earth products with grades exceeding 99.9% rare earth oxide (REO). In June 2023, Ionic Technologies announced initial production of high purity magnet REOs from its newly commissioned Demonstration Plant. This technology and operating Demonstration Plant provides first mover advantage in the industrial elemental extraction of REEs from recycling, enabling near term magnet REO production capability to support demand for early-stage alternative supply chains.

As part of an integrated strategy to create downstream supply chain value, lonicRE is also evaluating the development of its own magnet and heavy rare earth refinery, or hub, to separate the unique and

Total Resource

high value magnet and heavy rare earths dominant Makuutu basket into the full spectrum of REOs plus scandium.

This three-pillar strategy completes the circular economy of sustainable and traceable magnet and heavy rare earth products needed to supply applications critical to electric vehicles, offshore wind turbines, communication, and key defence initiatives.

lonicRE is a Participant of the UN Global Compact and adheres to its principles-based approach to responsible business.

Competent Persons Statement

The information in this Report that relates to Exploration Results for the Makuutu Project is based on information compiled by Mr. Geoff Chapman, who is a Fellow of the Australian Institute of Mining and Metallurgy (AusIMM). Mr. Chapman is a Director of geological consultancy GJ Exploration Pty Ltd that is engaged by Ionic Rare Earths Ltd. Mr. Chapman has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Chapman consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Information in this report that relates to previously reported Exploration Targets and Exploration Results has been cross-referenced in this report to the date that it was originally reported to ASX. Ionic Rare Earths Limited confirms that it is not aware of any new information or data that materially affects information included in the relevant market announcements.

The information in this report that relates to Mineral Resources for the Makuutu Rare Earths deposit was first released to the ASX on 20 March 2022 and is available to view on <u>www.asx.com.au</u>. Ionic Rare Earths Limited confirms that it is not aware of any new information or data that materially affects information included in the relevant market announcement, and that all material assumptions and technical parameters underpinning the estimates in the announcement continue to apply and have not materially changed.

The information in this report that relates to Ore Reserves for the Makuutu Rare Earths deposit was first released to the ASX on 20 March 2023 and is available to view on <u>www.asx.com.au</u>. Ionic Rare Earths Limited confirms that it is not aware of any new information or data that materially affects information included in the relevant market announcement, and that all material assumptions and technical parameters underpinning the estimates in the announcement continue to apply and have not materially changed.

The information in this report that relates to Production Targets or forecast financial information derived from production the production target for the Makuutu Rare Earths deposit was first released to the ASX on 20 March 2023 and is available to view on <u>www.asx.com.au</u>. Ionic Rare Earths Limited confirms that all material assumptions and technical parameters underpinning the Production Targets or forecast financial estimates in the announcement continue to apply and have not materially changed.

Forward Looking Statements

This announcement has been prepared by lonic Rare Earths Limited and may include forward-looking statements. Forward-looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of lonic Rare Earths Limited. Actual values, results or events may be materially different to those expressed or implied in this document. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this document speak only at the date of issue of this document. Subject to any continuing obligations under applicable law and the ASX Listing Rules, lonic Rare Earths Limited does not undertake any obligation to update or revise any information or any of the forward-looking statements in this document or any changes in events, conditions, or circumstances on which any such forward looking statement is based.

Drill Hole ID	UTM East (m.)	UTM North (m.)	Elevation (m.a.s.l.)	Drill Type	Hole Length EOH (m.)	Azimuth	Inclination
RRMRB113	549831	61294	1157	RAB	29.0	000	-90
RRMRB114	549375	61526	1153	RAB	32.0	000	-90
RRMRB115	551789	61875	1154	RAB	26.0	000	-90
RRMRB116	549297	62214	1164	RAB	26.0	000	-90
RRMRB117	552697	61851	1154	RAB	18.0	000	-90
RRMRB118	552069	62713	1150	RAB	16.0	000	-90
RRMRB119	550944	63515	1155	RAB	30.0	000	-90
RRMRB120	552103	63436	1155	RAB	24.0	000	-90
RRMRB121	552740	63483	1156	RAB	26.0	000	-90
RRMRB122	551547	61199	1175	RAB	22.0	000	-90
RRMRB123	551585	60194	1161	RAB	27.0	000	-90
RRMRB124	554377	60682	1158	RAB	21.0	000	-90
RRMRB125	554537	61959	1159	RAB	26.0	000	-90
RRMRB126	555052	60421	1171	RAB	28.0	000	-90
RRMRB127	554608	62783	1135	RAB	23.0	000	-90
RRMRB128	554532	63409	1155	RAB	21.0	000	-90
RRMRB129	555119	63250	1136	RAB	28.0	000	-90
RRMRB130	555893	63573	1142	RAB	19.0	000	-90
RRMRB131	556303	62823	1132	RAB	25.0	000	-90
RRMRB132	556816	62724	1127	RAB	25.0	000	-90
RRMRB133	555965	61081	1157	RAB	25.0	000	-90
RRMRB134	558078	61370	1141	RAB	21.0	000	-90
RRMRB135	557727	60575	1143	RAB	20.0	000	-90
RRMRB136	559414	61428	1141	RAB	22.0	000	-90
RRMRB137	560712	61313	1148	RAB	24.0	000	-90
RRMRB138	551634	59726	1172	RAB	24.0	000	-90
RRMRB139	551058	58514	1168	RAB	18.0	000	-90
RRMRB140	551101	59287	1172	RAB	18.0	000	-90
RRMRB141	550399	59126	1156	RAB	20.0	000	-90
RRMRB142	549502	58869	1152	RAB	24.0	000	-90
RRMRB143	549287	59244	1167	RAB	24.0	000	-90

Appendix 1: Drill Hole Details This Announcement (Datum UTM WGS84 Zone 36N)

Appendix 2: RAB Drilling Analytical Results RRMRB113 to RRMRB143including highlighted Intersections >200 ppm TREO-CeO2.

(Note: Rounding will cause minor value differences)

																					TREO	
	From	То	Int.	La ₂ O ₃	CeO ₂	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb₂O₃	Dy ₂ O ₃	Ho₂O₃	Er ₂ O ₃	Tm₂O₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	TREO	Regolith	Inter Length	rval TREO
Hole ID	m	m	m		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Zone	(m)	ppm
RRMRB113	0	2	2	33.9	335.4	6.9	23.6	4.2	0.6	3.5	0.6	3.3	0.7	1.9	0.3	2.2	0.4	19.3	436.6	Hardcap	()	, pp
RRMRB113	2	4	2	66.4	506.1	14.4	52.1	8.6	1.3	6.5	1.0	5.5	1.1	3.5	0.5	3.6	0.6	33.9	705.2	Hardcap	-	
RRMRB113	4	6	2	104.5	384.5	24.4	85.6	13.8	1.9	10.7	1.6	9.3	1.9	5.6	0.9	5.5	0.9	54.9	706.0	Clay	1	
RRMRB113	6	8	2	115.2	273.9	27.7	97.4	15.4	2.5	12.5	1.9	10.8	2.2	6.1	1.0	6.5	1.0	62.4	636.3	Clay	i	
RRMRB113	8	9	1	57.7	87.0	14.1	49.2	8.2	1.3	6.7	1.1	6.7	1.3	3.8	0.6	3.9	0.5	37.0	279.2	Clay	1	
RRMRB113	9	11	2	184.7	163.4	53.5	185.5	29.5	4.5	18.9	2.6	12.7	2.2	6.0	0.8	4.8	0.7	62.1	731.7	Upper Saprolite	1	
RRMRB113	11	13	2	140.1	248.1	37.1	129.5	20.2	3.2	13.8	1.8	9.4	1.7	4.6	0.7	4.2	0.6	49.4	664.4	Upper Saprolite	1	
RRMRB113	13	15	2	83.5	208.2	20.9	76.9	12.1	2.6	10.5	1.5	8.2	1.6	4.4	0.7	4.3	0.6	46.9	482.9	Upper Saprolite	1	
RRMRB113	15	17	2	90.5	227.3	22.4	83.2	13.9	2.8	12.5	1.7	9.5	1.9	5.0	0.7	4.8	0.7	58.4	535.2	Upper Saprolite	1	
RRMRB113	17	19	2	147.2	192.2	34.6	145.2	24.5	6.0	28.4	4.0	22.7	4.5	12.5	1.8	9.9	1.5	165.7	800.6	Upper Saprolite	1	
RRMRB113	19	21	2	110.5	199.6	26.9	111.3	18.7	4.3	21.2	2.8	16.2	3.5	10.1	1.3	8.2	1.2	140.3	676.3	Upper Saprolite	1	
RRMRB113	21	23	2	91.2	164.6	23.1	90.6	16.2	3.6	14.8	2.0	11.5	2.2	5.9	0.9	5.7	0.9	79.9	513.1	Upper Saprolite	1	
RRMRB113	23	25	2	88.8	192.2	22.1	86.2	14.4	3.4	14.2	2.0	11.0	2.4	6.7	0.9	5.6	0.8	79.1	529.9	Upper Saprolite]	
RRMRB113	25	27	2	101.9	184.3	24.9	98.3	17.6	4.1	18.4	2.5	13.4	2.8	7.5	1.2	6.7	1.0	101.1	585.8	Upper Saprolite]	
RRMRB113	27	29	2	98.3	184.9	24.5	94.8	16.8	3.6	16.5	2.3	12.9	2.6	7.1	1.1	6.4	1.0	91.7	564.5	Upper Saprolite	25	60
RRMRB114	0	2	2	65.6	1719.8	14.7	49.6	9.2	1.3	7.0	1.2	5.9	1.3	3.9	0.6	4.3	0.6	32.3	1917.2	Hardcap		
RRMRB114	2	4	2	67.8	1277.5	13.7	45.0	8.0	1.2	6.1	1.0	5.4	1.2	3.4	0.5	3.7	0.5	27.7	1462.7	Gravel	1	
RRMRB114	4	6	2	64.5	363.6	13.8	46.9	7.6	1.0	5.5	0.9	4.7	1.0	2.8	0.4	3.0	0.4	27.4	543.6	Gravel	1	
RRMRB114	6	8	2	205.8	404.1	46.8	154.0	22.3	2.2	14.1	1.8	9.0	1.7	3.9	0.6	3.5	0.5	41.5	911.7	Gravel	1	
RRMRB114	8	10	2	222.2	385.7	49.1	158.6	22.3	2.0	14.1	1.7	8.7	1.5	3.7	0.5	3.0	0.5	39.4	913.1	Gravel	1	
RRMRB114	10	12	2	265.1	410.3	59.3	196.5	28.3	2.7	18.2	2.4	11.8	2.1	4.9	0.7	3.9	0.6	52.6	1059.3	Gravel	1	
RRMRB114	12	14	2	205.8	357.5	44.1	146.4	20.8	1.6	13.5	1.6	7.8	1.5	3.6	0.5	3.0	0.5	41.7	849.8	Gravel		
RRMRB114	14	16	2	194.1	374.7	42.3	137.1	19.2	1.5	12.0	1.5	7.4	1.4	3.2	0.4	2.9	0.4	37.0	835.1	Gravel	1	
RRMRB114	16	18	2	224.6	425.0	48.6	158.6	21.8	1.7	13.3	1.7	8.5	1.5	3.5	0.5	3.3	0.5	43.6	956.7	Gravel	1	
RRMRB114	18	20	2	189.4	357.5	41.6	135.3	18.6	1.5	11.8	1.5	6.8	1.3	3.1	0.5	2.7	0.4	37.3	809.2	Gravel		
RRMRB114	20	22	2	248.6	452.1	53.9	175.0	25.3	1.9	15.0	1.9	9.6	1.7	4.4	0.5	3.5	0.6	45.8	1039.7	Gravel	1	
RRMRB114	22	24	2	241.6	457.0	51.8	171.5	24.6	1.9	15.2	1.9	9.6	1.8	4.2	0.6	3.5	0.6	47.5	1033.2	Gravel]	
RRMRB114	24	26	2	242.8	428.7	52.0	173.8	22.9	1.9	15.3	1.9	9.6	1.7	4.3	0.6	3.7	0.5	48.6	1008.3	Gravel]	
RRMRB114	26	28	2	261.5	416.4	58.1	188.4	25.9	2.4	17.5	2.1	10.2	1.8	4.4	0.6	3.8	0.5	52.3	1046.0	Gravel]	
RRMRB114	28	30	2	249.8	436.1	54.6	181.4	25.9	2.2	15.8	2.0	10.1	1.7	4.5	0.6	3.6	0.6	47.4	1036.2	Gravel]	
RRMRB114	30	32	2	246.3	443.5	54.0	179.6	26.4	2.1	16.4	2.1	9.7	1.7	4.2	0.6	3.8	0.6	47.2	1038.3	Gravel]	
RRMRB115	0	2	2	110.0	728.4	21.6	74.1	11.7	1.5	8.6	1.3	7.1	1.3	4.2	0.6	4.1	0.6	36.1	1011.2	Hardcap	Ţ	-
RRMRB115	2	4	2	103.7	952.0	19.1	63.8	11.5	1.8	8.5	1.4	8.3	1.6	4.9	0.8	5.3	0.8	40.0	1223.4	Hardcap]	
RRMRB115	4	6	2	101.6	1437.2	22.4	74.4	13.5	2.1	9.8	1.5	8.9	1.7	5.0	0.8	5.2	0.8	45.6	1730.4	Transition]	
RRMRB115	6	8	2	82.9	584.7	19.2	64.6	10.3	1.7	8.8	1.3	7.8	1.5	4.3	0.7	4.6	0.7	43.2	836.4	Clay]	
RRMRB115	8	10	2	71.2	264.1	15.5	53.2	8.7	1.3	7.2	1.2	7.0	1.5	4.6	0.7	5.3	0.7	44.1	486.3	Upper Saprolite]	
RRMRB115	10	11	1	103.7	286.2	26.5	91.1	15.0	2.3	11.2	1.5	8.5	1.7	4.6	0.8	5.2	0.8	48.8	607.8	Upper Saprolite]	
RRMRB115	11	13	2	295.5	463.1	82.2	290.4	48.9	6.1	33.7	4.5	22.5	4.2	10.7	1.5	9.6	1.4	112.3	1386.5	Upper Saprolite		
RRMRB115	13	15	2	357.7	508.6	99.3	355.8	62.2	8.6	46.7	6.4	34.1	6.4	16.6	2.4	14.8	2.1	193.0	1714.6	Upper Saprolite		
RRMRB115	15	17	2	283.8	242.6	70.0	264.8	47.4	8.3	46.6	6.9	38.3	7.8	21.0	3.0	17.5	2.5	267.9	1328.5	Upper Saprolite	ļ	
RRMRB115	17	19	2	101.4	122.8	20.8	80.6	14.1	2.9	16.5	2.3	13.1	3.0	8.5	1.2	6.5	1.0	126.4	521.2	Upper Saprolite		
RRMRB115	19	21	2	136.6	249.4	30.8	113.6	17.9	3.1	16.1	2.0	11.5	2.2	5.6	0.8	4.6	0.7	75.3	670.3	Upper Saprolite	ļ	
RRMRB115	21	23	2	95.5	152.9	23.0	86.3	14.4	2.4	12.7	1.8	9.9	2.0	5.3	0.8	4.7	0.7	67.4	479.8	Lower Saprolite		
RRMRB115	23	25	2	118.5	202.7	29.4	106.7	18.4	3.0	15.3	2.1	11.5	2.2	6.1	0.9	5.6	0.8	74.7	597.8	Lower Saprolite		
RRMRB115	25	26	1	122.6	253.1	28.9	105.8	18.0	2.9	15.0	2.1	11.7	2.2	6.3	0.9	5.2	0.9	71.5	647.1	Lower Saprolite	20	86
RRMRB116	0	2	2	128.4	357.5	30.1	107.2	19.2	2.6	14.8	2.2	12.2	2.4	7.1	1.0	6.3	1.0	67.4	759.2	Soil		

>200ppm

_																						>200p TREO- Inter	-CeO ₂
	Hole ID	From m	To m	Int. m	La₂O₃ ppm	CeO₂ ppm	Pr₂O₃ ppm	Nd₂O₃ ppm	Sm₂O₃ ppm	Eu₂O₃ ppm	Gd₂O₃ ppm	Tb₂O₃ ppm	Dy₂O₃ ppm	Ho ₂ O ₃ ppm	Er₂O₃ ppm	Tm₂O₃ ppm	Yb₂O₃ ppm	Lu₂O₃ ppm	Y₂O₃ ppm	TREO ppm	Regolith Zone	Length (m)	TREO ppm
- [RRMRB116	2	4	2	120.2	389.4	26.7	94.1	16.5	2.1	12.2	1.9	9.9	2.0	5.9	0.8	5.8	0.9	56.6	745.1	Transition		
	RRMRB116	4	6	2	106.0	324.3	23.4	79.3	13.7	1.8	9.7	1.5	8.2	1.8	4.5	0.7	5.1	0.7	44.2	625.0	Clay		
	RRMRB116	6	7	1	134.3	355.0	27.9	90.5	14.1	1.9	10.8	1.6	8.9	1.7	4.7	0.7	4.5	0.8	46.9	704.3	Clay		
	RRMRB116	7	9	2	268.6	237.1	47.7	140.6	20.0	2.4	12.0	1.7	8.9	1.6	4.2	0.7	4.3	0.6	43.9	794.3	Clay		
- 4	RRMRB116	9	11	2	159.5	261.6	33.1	109.5	16.5	2.0	11.6	1.6	8.6	1.6	4.4	0.7	4.2	0.6	44.3	659.7	Upper Saprolite		
- H	RRMRB116	11	13	2	198.8	296.0	48.2	164.5	24.5	2.8	16.1	2.1	10.1	1.8	4.9	0.7	4.2	0.6	48.1	823.4	Upper Saprolite		
	RRMRB116	13	15	2	197.6	312.0	48.8	168.5	26.0	2.6	17.1	2.3	11.1	1.9	5.4	0.7	4.4	0.6	54.0	853.0	Upper Saprolite		
- 6	RRMRB116	15	17	2	229.9	385.7	50.1	175.5	28.2	2.8	21.3	2.8	14.9	2.7	7.7	1.1	6.5	0.9	90.3	1020.4	Upper Saprolite		
	RRMRB116	17	18	1	175.9	353.8	39.1	134.1	21.0	2.0	15.7	2.2	11.3	2.1	6.1	0.8	5.2	0.8	69.2	839.5	Upper Saprolite		
- 1	RRMRB116	18	20 22	2	203.5	405.4 329.2	45.5 38.2	150.5	22.6	2.0 1.9	14.9 13.5	2.0	10.7	1.9	5.4	0.7	4.6	0.7	61.7	932.1	Upper Saprolite		
- 6	RRMRB116	20		2	175.3	277.6	30.2	128.3	19.1	1.9		1.8	9.2 7.2	1.6	4.6	0.6	4.2	0.6	51.0	779.1	Lower Saprolite	20	700
- 6	RRMRB116	22 24	24 26	2	136.6 147.8	288.7	30.2	101.8 110.0	15.1 16.4	1.5	10.1	1.4 1.5	7.2	1.2 1.3	3.6 3.7	0.5 0.5	3.1 3.6	0.5	38.0 41.1	628.4 667.4	Lower Saprolite	20	789
	RRMRB116										11.2										Saprock		
- 6	RRMRB117 RRMRB117	0	2	2	110.2 79.2	203.9 170.1	25.9 17.5	93.0 60.9	16.4 10.4	2.4 1.8	13.3 8.6	1.9 1.3	10.8 7.4	2.2 1.6	6.3 4.6	1.0 0.7	6.1 4.9	1.0 0.8	62.6 43.3	556.9 413.1	Soil Gravel		
	RRMRB117	4	4 5	<u> </u>	64.2	500.0	17.5	49.9	9.6	1.0	6.5	1.3	6.5	1.0	4.6	0.7	4.9	0.6	43.3	694.5	Gravel		
-	RRMRB117	4 5	7	2	90.7	721.1	22.5	77.8	9.0 14.7	2.6	11.0	2.0	11.2	2.1	6.3	1.0	6.9	1.1	48.8	1019.6	Hardcap		
ŀ	RRMRB117	7	9	2	126.7	281.3	22.5	101.1	17.0	2.0	13.0	1.9	10.5	2.0	6.1	0.9	6.1	1.0	58.0	657.3	Upper Saprolite		
	RRMRB117	9	11	2	336.6	226.0	88.2	309.1	47.9	8.3	33.2	4.3	23.3	3.7	10.0	1.4	9.4	1.3	104.0	1206.8	Upper Saprolite		
- (RRMRB117	11	13	2	295.5	176.3	80.9	293.9	47.7	8.5	33.5	4.6	23.1	3.8	10.5	1.4	9.3	1.3	105.8	1096.1	Upper Saprolite		
- 1	RRMRB117	13	15	2	214.0	267.8	57.5	208.2	35.6	6.4	24.8	3.5	18.0	2.8	8.5	1.2	7.4	1.1	82.0	938.8	Upper Saprolite	8	975
Ē	RRMRB117	15	17	2	181.8	254.3	46.8	165.6	27.4	5.0	19.6	2.9	14.6	2.6	7.7	1.0	6.9	1.1	72.9	810.2	Saprock	0	0.0
- (RRMRB117	17	18	1	214.0	425.0	54.9	195.4	31.7	5.4	22.3	3.1	16.0	2.7	7.9	1.1	7.1	1.1	77.6	1065.0	Saprock		
- 1	RRMRB118	0	2	2	45.7	518.4	11.6	42.8	9.2	1.5	7.2	1.2	7.2	1.3	4.2	0.6	4.5	0.6	31.2	687	Hardcap		,
- 6	RRMRB118	2	3	1	58.2	1234.5	14.0	47.2	10.2	1.8	7.5	1.3	6.9	1.3	4.1	0.6	4.3	0.6	28.6	1421	Hardcap		
- 1	RRMRB118	3	5	2	103.1	400.5	24.6	84.3	13.9	2.2	11.2	1.6	9.1	1.8	5.0	0.8	5.6	0.8	53.1	718	Clay		
1	RRMRB118	5	7	2	94.3	189.8	22.8	78.3	13.3	2.3	10.3	1.5	7.9	1.5	4.6	0.7	5.0	0.7	44.4	477	Upper Saprolite		
- Ĩ	RRMRB118	7	9	2	93.7	133.9	22.0	76.7	12.8	2.2	10.4	1.5	7.4	1.5	4.3	0.7	4.7	0.7	48.6	421	Upper Saprolite		
	RRMRB118	9	11	2	85.0	180.6	20.5	72.2	11.8	1.9	9.3	1.3	7.5	1.5	4.3	0.6	4.5	0.7	47.6	450	Upper Saprolite		
	RRMRB118	11	13	2	84.2	124.7	20.3	70.7	11.2	2.0	9.8	1.3	7.6	1.6	4.2	0.6	4.5	0.6	46.6	390	Upper Saprolite		
	RRMRB118	13	15	2	88.4	105.5	20.7	72.4	12.0	2.2	9.7	1.4	8.2	1.5	4.4	0.6	4.5	0.6	48.6	381	Upper Saprolite		
- [RRMRB118	15	16	1	84.1	108.3	19.9	71.5	11.4	2.1	9.8	1.4	8.1	1.5	4.4	0.6	4.4	0.6	46.4	374	Upper Saprolite	13	465
- 1	RRMRB119	0	2	2	112.6	606.8	20.7	64.7	10.7	1.9	7.9	1.4	8.0	1.4	4.4	0.6	4.6	0.7	38.4	885	Hardcap		
	RRMRB119	2	3	1	153.1	791.1	24.6	70.5	11.7	2.0	8.0	1.3	7.0	1.4	4.1	0.6	4.1	0.6	33.1	1113	Transition		
	RRMRB119	3	5	2	100.6	318.2	22.1	76.5	12.1	2.2	10.2	1.5	8.2	1.7	4.9	0.8	5.1	0.7	49.4	614	Clay		
- 1	RRMRB119	5	7	2	87.5	293.6	19.6	68.1	11.2	2.1	9.8	1.4	8.8	1.7	5.1	0.7	5.1	0.8	48.4	564	Clay	4	589
- 6	RRMRB119	7	9	2	54.8	85.7	13.4	49.0	8.8	1.6	7.6	1.1	6.7	1.3	3.6	0.6	4.0	0.6	38.1	277	Clay		
	RRMRB119	9	11	2	38.6	54.4	10.0	36.7	7.0	1.3	6.3	0.9	5.8	1.2	3.4	0.5	3.8	0.6	33.4	204	Clay		
- (RRMRB119	11	12	1	26.9	44.7	7.2	27.4	4.6	1.1	5.2	0.8	5.1	0.9	2.8	0.5	3.3	0.4	27.8	159	Clay		
- 1	RRMRB119	12	14	2	19.8	28.1	5.6	21.7	4.6	1.2	4.5	0.7	4.3	0.9	2.4	0.4	2.8	0.4	24.6	122	Upper Saprolite		
- 1	RRMRB119	14	16	2	21.5	34.6	6.2	25.7	5.0	1.3	5.4	0.8	5.6	1.1	2.9	0.4	3.4	0.5	30.5	145	Upper Saprolite		
- (-	RRMRB119	16	18	2	45.3	36.6	14.1	55.3	11.1	2.9	11.1	1.8	11.2	2.2	6.4	0.9	6.1	0.9	74.3	280	Upper Saprolite		
	RRMRB119	18	20	2	42.2	49.5	11.5	45.5	9.5	2.4	10.2	1.7	10.1	2.2	6.4	0.9	6.2	0.9	77.2		Upper Saprolite		
- (RRMRB119	20	22	2	38.0	60.2	10.5	41.6	8.5	2.3	9.8	1.6	10.0	2.0	5.5	0.8	6.0	0.8	66.5	264	Upper Saprolite		
- F	RRMRB119	22	24	2	54.7	52.8	15.5	67.2	14.4	4.0	16.7	2.6	14.7	3.2	8.8	1.2	7.9	1.0	102.7	367	Upper Saprolite		
	RRMRB119	24	26	2	68.0	50.9	19.6	81.6	17.2	4.7	19.1	3.0	18.1	3.5	9.8	1.3	9.3	1.3	119.4	427	Upper Saprolite		
- (RRMRB119 RRMRB119	26 28	28 29	2 1	77.4 53.2	54.2 44.3	23.8 15.1	99.5 61.9	21.1 13.9	5.7 3.9	24.2 15.7	3.7 2.4	20.9 14.8	4.2 3.2	11.8 9.0	1.6 1.1	10.6 7.8	1.4 1.1	138.4 108.8	499 356	Upper Saprolite		
- F	RRMRB119	20	29 30	1	48.0	44.3	15.1	58.1	13.9	3.9	15.7	2.4	14.6	3.2 2.8	9.0 7.7	1.1	7.8	1.1	94.2	326	Upper Saprolite Lower Saprolite	14	351
ŀ	RRMRB120	29	30 2	2	46.0	43.1	24.5	85.0	13.2	2.8	15.2	2.4	10.0	2.0	5.9	0.8	5.9	0.9	94.2 49.5	1799	Hardcap	14	301
- 6	RRMRB120	2	4	2	77.5	1474.1	24.5 16.8	85.0 56.9	14.6	2.0	7.5	1.0	6.9	1.0	5.9 4.3	0.8	5.9 4.4	0.9	49.5 34.0	1692	Transition		
_ <u>k</u>	ARIVIND 120	۷	4	۷	11.5	1407.3	10.0	50.9	10.7	1.1	1.0	1.2	0.9	1.3	4.3	0.0	4.4	0.0	34.0	1092	TansiuUII	l	I

																						>200) TREO- Inter	CeO₂ ∙val
	Hole ID	From m	To m	Int. m	La ₂ O ₃	CeO ₂	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃		Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	TREO	Regolith Zone	Length	TREO
	RRMRB120	4	6	2	ppm 141.3	ppm 399.2	ррт 30.1	ррт 99.5	ррт 14.5	ррт 2.6	ppm 11.7	ррт 1.6	ррт 9.2	ррт 1.9	ррт 5.8	ррт 0.9	ррт 6.4	ррт 0.9	ррт 58.4	ppm 784	Clay	(m)	ppm
	RRMRB120	6	8	2	146.0	321.8	30.1	99.8	13.3	2.3	10.1	1.4	8.4	1.5	4.6	0.0	5.2	0.0	50.7	697	Clay		
	RRMRB120	8	10	2	107.9	171.4	22.7	75.3	10.8	1.8	8.1	1.0	5.7	1.0	3.1	0.5	3.2	0.5	35.0	448	Clay		
	RRMRB120	10	11	1	191.2	265.3	41.8	142.9	18.9	3.1	13.0	1.6	8.8	1.7	4.5	0.6	4.6	0.7	52.2	751	Clay		
	RRMRB120	11	13	2	150.7	351.3	33.2	110.7	14.7	2.5	10.8	1.5	7.7	1.4	4.2	0.6	4.4	0.7	46.5	741	Upper Saprolite		
- 1	RRMRB120	13	15	2	160.7	341.5	36.6	119.0	15.7	2.2	10.4	1.2	6.9	1.3	3.6	0.5	4.2	0.5	42.8	747	Upper Saprolite		
Ī	RRMRB120	15	17	2	180.0	412.7	40.4	134.1	17.3	2.7	11.3	1.4	7.9	1.4	3.8	0.5	4.4	0.6	46.7	865	Upper Saprolite		
1	RRMRB120	17	19	2	185.9	384.5	41.7	135.9	18.3	2.6	11.6	1.5	7.9	1.5	4.2	0.5	4.0	0.7	47.6	848	Upper Saprolite		
	RRMRB120	19	21	2	188.2	362.4	41.8	136.5	18.0	2.7	12.4	1.6	7.7	1.5	4.1	0.6	4.3	0.6	47.4	830	Upper Saprolite		
	RRMRB120	21	23	2	187.1	352.6	40.5	135.9	18.7	2.8	11.7	1.5	7.5	1.4	3.9	0.6	4.3	0.6	46.5	816	Lower Saprolite		
(RRMRB120	23	24	1	188.2	358.7	41.3	137.6	19.3	2.6	12.2	1.5	7.4	1.4	4.2	0.6	3.9	0.6	46.1	826	Lower Saprolite	20	756
	RRMRB121	0	2	2	91.9	152.9	21.1	75.6	12.1	2.3	10.1	1.6	8.9	1.7	5.1	0.8	5.3	0.8	49.0	439	Soil		
	RRMRB121	2	4	2	53.6	355.0	12.6	42.9	7.5	1.4	6.2	1.1	6.0	1.2	3.5	0.6	4.3	0.6	30.7	527	Hardcap		
	RRMRB121	4	5	1	60.3	630.2	15.2	50.4	9.1	1.6	6.8	1.2	6.6	1.3	3.9	0.6	4.3	0.6	33.0	825	Hardcap		
	RRMRB121	5	6	1	73.8	547.9	16.7	58.3	9.6	1.8	7.6	1.3	6.9	1.5	4.3	0.7	4.5	0.8	39.9	775	Transition		
	RRMRB121	6	8	2	90.5	186.7	19.9	68.2	10.6	2.0	8.0	1.2	6.4	1.3	3.6	0.6	3.9	0.6	41.5	445	Upper Saprolite		
	RRMRB121	8	10	2	107.5	165.2	24.6	83.2	13.2	2.2	9.5	1.3	7.0	1.4	3.8	0.6	3.5	0.5	41.9	466	Upper Saprolite		
	RRMRB121	10	12	2	106.0	157.8	23.9	82.2	12.4	2.4	9.4	1.2	6.4	1.3	3.4	0.6	3.5	0.5	42.0	453	Upper Saprolite		
	RRMRB121	12	14	2	99.9	124.7	22.2	75.7	11.8	2.4	8.8	1.1	6.0	1.2	3.4	0.5	3.1	0.5	39.0	400	Upper Saprolite		
	RRMRB121	14	16	2	111.2	162.8	24.9	84.2	13.7	2.6	9.5	1.4	7.0	1.4	3.7	0.6	3.8	0.6	43.6	471	Upper Saprolite		
	RRMRB121	16	18	2	110.7	152.3	23.9	81.6	12.8	2.5	9.4	1.2	6.5	1.2	3.3	0.5	3.6	0.5	40.8	451	Upper Saprolite		
	RRMRB121 RRMRB121	18 20	20 22	2	112.9 109.7	153.6 156.6	24.8 24.2	86.5 84.1	12.6 13.3	2.5 2.4	9.2 9.5	1.3	6.7 7.2	1.3 1.3	3.5	0.5 0.5	3.6	0.5	41.8 44.4	461	Upper Saprolite		
	RRMRB121	20	22	2	99.1	165.2	24.2	73.6	13.3	2.4	9.5	1.2 1.1	5.6	1.3	3.9 3.0	0.5	3.7 2.9	0.6 0.4	35.9	463 433	Upper Saprolite Upper Saprolite		
	RRMRB121	24	24	2	105.2	146.2	23.3	80.5	12.3	2.4	8.7	1.1	6.7	1.1	3.5	0.4	3.3	0.4	40.6	436	Upper Saprolite	20	448
- 1	RRMRB121	0	20	2	126.1	411.5	23.3	82.3	12.3	2.4	11.0	1.2	9.7	1.3	5.5	0.3	5.5	0.0	50.7	748	Hardcap	20	440
	RRMRB122	2	4	2	172.4	762.8	24.0	83.6	14.0	2.7	8.9	1.3	7.7	1.3	3.8	0.6	4.1	0.6	33.5	1124	Hardcap		
1	RRMRB122	4	5	1	134.9	588.4	29.0	98.9	17.0	3.0	13.1	2.0	10.9	2.0	5.8	0.0	5.7	0.0	57.5	970	Transition		
	RRMRB122	5	7	2	133.1	334.1	29.7	107.8	18.8	3.7	14.5	2.2	11.6	2.2	5.9	0.9	6.0	0.9	62.9	734	Clay		
	RRMRB122	7	9	2	73.7	174.4	17.9	66.0	11.7	2.5	9.8	1.5	7.9	1.5	4.3	0.6	4.1	0.7	42.9	419	Clay		
	RRMRB122	9	11	2	53.6	160.3	14.4	55.6	10.4	2.1	8.6	1.2	6.5	1.3	3.7	0.5	3.4	0.5	39.9	362	Upper Saprolite		
	RRMRB122	11	13	2	57.2	159.1	14.0	52.4	10.2	2.2	8.4	1.2	6.2	1.1	3.3	0.5	3.1	0.5	34.4	354	Upper Saprolite		
- 1	RRMRB122	13	15	2	67.0	102.4	15.9	58.9	11.0	2.8	8.6	1.2	6.7	1.1	3.2	0.5	2.6	0.4	34.8	317	Upper Saprolite		
ľ	RRMRB122	15	17	2	58.1	139.4	15.0	54.5	10.3	2.4	8.5	1.2	6.4	1.2	3.3	0.5	3.1	0.5	36.6	341	Upper Saprolite		
1	RRMRB122	17	19	2	58.2	131.4	14.8	57.4	10.5	2.5	8.9	1.3	6.7	1.2	3.4	0.5	3.4	0.4	40.5	341	Upper Saprolite		
	RRMRB122	19	21	2	69.4	129.0	17.2	66.4	13.2	2.9	9.5	1.3	6.9	1.3	3.4	0.5	3.1	0.4	38.6	363	Upper Saprolite		
	RRMRB122	21	22	1	68.7	121.9	16.6	63.1	12.2	2.7	10.0	1.2	6.9	1.2	3.5	0.5	3.1	0.4	39.1	351	Upper Saprolite	17	401
	RRMRB123	0	2	2	67.7	165.2	15.6	56.6	10.6	1.6	9.5	1.6	8.9	1.8	5.5	0.8	5.8	0.8	53.5	405	Hardcap		
- (RRMRB123	2	4	2	45.5	329.2	9.9	34.6	6.3	1.2	5.5	1.0	6.4	1.2	3.9	0.6	4.2	0.6	35.0	485	Hardcap		
	RRMRB123	4	6	2	77.3	218.0	17.1	58.6	11.1	1.7	9.8	1.6	9.8	1.9	5.8	1.0	6.4	0.9	62.6	484	Transition		
	RRMRB123	6	7	1	85.5	400.5	19.0	64.9	12.2	1.9	10.6	1.7	10.5	2.2	6.1	1.0	7.1	1.0	70.1	694	Clay		
- (RRMRB123	7	9	2	61.0	200.2	13.8	47.9	8.8	1.3	8.0	1.4	8.1	1.7	4.7	0.8	5.2	0.8	53.6	417	Upper Saprolite		
- 1	RRMRB123	9		1	64.2	111.7	15.4	53.2	10.6	1.7	8.2	1.4	7.8	1.6	4.7	0.8	5.2	0.8	50.8		Upper Saprolite		
	RRMRB123	10	12	2	141.9	129.6	33.5	115.2	21.5	3.2	17.0	2.6	14.7	2.9	8.1	1.2	8.1	1.2	94.4	595	Upper Saprolite		
	RRMRB123	12	14	2	181.8	237.1	43.0	147.5	25.2	4.2	22.1	3.1	16.8	3.5	10.0	1.5	10.0	1.5	107.4	815	Upper Saprolite	10	504
	RRMRB123	14	16	2	143.7	124.7	31.3	111.0	19.6	3.3	17.2	2.6	13.8	2.8	8.3	1.3	8.7	1.4	89.7	579	Upper Saprolite	10	584
- (RRMRB123	16	18 20	2	58.5 54.5	73.7 90.3	13.3 12.2	48.4 43.5	8.5 8.1	1.6 1.5	8.3 7.7	1.3 1.1	6.2 6.0	1.5 1.2	3.8	0.6	3.8	0.6	40.0 33.5	270 267	Upper Saprolite		
	RRMRB123 RRMRB123	18 20	20	2	54.5 53.1	90.3 68.2	12.2	43.5	8.1	1.5	7.7	1.1	6.6	1.2	3.2 3.5	0.5 0.5	3.3 3.4	0.4 0.5	33.5	267	Upper Saprolite Upper Saprolite		
	RRMRB123	20	22	2	40.1	60.2	9.0	42.0 34.2	6.3	1.5	6.2	0.9	5.5	1.4	3.5 2.9	0.5	3.4	0.5	32.5	240	Upper Saprolite		
- (RRMRB123	22	24	2	40.1	79.4	9.0 11.6	40.2	7.4	1.5		1.1	5.9	1.0	3.4	0.4	3.5	0.5	35.2				
Ľ		1 27	20	2	FU.7	70.7		10.2	7.7	1.0			0.0	1.2	Ј .т	0.0	0.0	0.0	00.2	240		I	I

																					200 _ا >200 - TREO	
	From	To	Int		6-0	Dr. O		Sm 0	Eu O			Du O		E 0	Tm O	Vh O		X O	TREO	Develith	Inter	
Hole ID	From m	To m	Int. m	La₂O₃ ppm	CeO₂ ppm	Pr₂O₃ ppm	Nd₂O₃ ppm	Sm ₂ O ₃ ppm	Eu₂O₃ ppm	Gd₂O₃ ppm	Tb₂O₃ ppm	Dy₂O₃ ppm	Ho₂O₃ ppm	Er₂O₃ ppm	Tm₂O₃ ppm	Yb₂O₃ ppm	Lu₂O₃ ppm	Y₂O₃ ppm	TREO ppm	Regolith Zone	Length (m)	TREO ppm
RRMRB123	26	27	1	59.5	77.4	13.1	48.2	9.3	1.7	8.1	1.3	7.0	1.3	4.0	0.5	4.2	0.6	40.5	277	Upper Saprolite		
RRMRB124	0	2	2	71.2	595.8	16.6	59.4	10.7	1.9	9.5	1.4	8.5	1.6	4.9	0.8	4.6	0.7	47.9	835	Hardcap		
RRMRB124	2	4	2	46.6	216.8	9.6	34.2	6.4	0.7	4.9	0.9	5.1	1.0	3.1	0.5	3.5	0.5	32.8	367	Gravel]	
RRMRB124		5	1	70.6	255.5	15.6	53.3	9.6	1.3	8.4	1.4	8.0	1.7	4.8	0.8	5.5	0.9	54.2	492	Gravel		
RRMRB124	-	7	2	80.1	320.6	18.1	61.2	10.7	1.7	8.4	1.4	8.2	1.6	4.8	0.8	5.4	0.8	50.3	574	Clay	2	574
RRMRB124		9	2	54.2	133.9	12.3	41.8	7.7	1.2	6.4	1.0	5.9	1.3	3.9	0.5	4.3	0.7	35.9	311	Clay	ļ	
RRMRB124		11	2	49.8	241.4	12.0	42.5	7.2	1.3	7.0	1.0	6.2	1.3	3.7	0.6	4.1	0.6	40.0	419	Upper Saprolite		
RRMRB124		13	2	66.6	191.0	16.1	60.0	9.3	1.4	8.6	1.3	7.3	1.5	4.1	0.6	4.3	0.6	48.3	421	Upper Saprolite	6	
RRMRB124		15	2	99.9	204.5	25.1	87.1	13.7	1.9	11.1	1.6	8.3	1.7	5.2	0.7	4.6	0.6	57.1	523	Upper Saprolite	-	
RRMRB124		17	2	74.1	171.4	18.3	65.8	10.5	1.6	9.0	1.3	7.4	1.5	4.1	0.6	4.2	0.6	49.3	420	Upper Saprolite		
RRMRB124		19	2	80.6	186.1	20.6	71.9	11.8	1.8	9.6	1.3	7.7	1.6	4.1	0.6	3.9	0.6	50.7 51.4	453	Upper Saprolite	10	454
	-	21	2	82.0	168.9	20.1	71.2	12.1	1.6	9.8	1.4	7.7	1.5	4.2	0.6	3.9	0.6	-	437	Upper Saprolite	10	451
RRMRB125		2	2	51.5 66.6	1240.7 593.3	10.5 14.6	36.2 49.6	6.4 8.4	1.2 1.5	5.1 7.1	0.8 1.0	4.8 5.9	0.9 1.1	2.9 3.2	0.4 0.5	3.0	0.4 0.5	27.0 32.1	1392 789	Hardcap	{	
RRMRB125		4 5	2	89.8	277.6	20.2	49.6 69.3	0.4 11.3		9.4		5.9 7.8	1.1			3.3 4.7	0.5	47.7	548	Hardcap	ł	
RRMRB125		5	1	89.8	164.6	20.2	65.4	11.3	1.8 1.9	9.4	1.3 1.3	7.8	1.7	4.2 4.2	0.6 0.6	4.7	0.7	47.7	548 422	Hardcap Transition	ł	
RRMRB125		8	2	64.3	179.3	19.0	53.3	9.0	1.9	6.9 7.2	1.3	6.2	1.4	4.2	0.6	4.2	0.5	43.3	391	Clay		
RRMRB123	-	10	2	77.3	179.3	13.0	64.7	9.0 10.8	2.1	9.7	1.2	7.4	1.4	4.1	0.5	4.3	0.5	43.4	378	Clay	{	
RRMRB123		10	1	59.8	128.4	16.0	51.6	8.9	1.6	9.7 7.6	1.3	6.5	1.0	4.3 3.8	0.0	4.3	0.6	47.4	378	Clay		
RRMRB125		12	1	65.4	102.0	14.1	56.8	9.4	2.1	8.8	1.1	7.1	1.4	4.1	0.5	3.7	0.0	45.2	309	Upper Saprolite	6	363
RRMRB123		12	2	45.0	84.5	11.0	39.3	9.4 6.8	1.6	6.4	1.0	5.7	1.4	3.1	0.5	3.2	0.3	38.7	249	Upper Saprolite	0	303
RRMRB125		14	2	42.2	80.2	10.5	39.9	7.2	1.0	6.2	0.9	5.2	1.1	3.0	0.3	2.7	0.4	33.1	249	Upper Saprolite	ł	
RRMRB125		18	2	61.0	136.4	10.3	50.5	8.3	1.7	6.6	0.9	4.5	0.8	2.6	0.4	2.1	0.4	27.6	318	Upper Saprolite	ł	
RRMRB125		20	2	40.8	107.2	9.4	33.8	5.7	1.4	5.0	0.7	4.1	0.0	2.3	0.3	2.4	0.4	25.9	240	Upper Saprolite	ł	
RRMRB125		20	2	41.3	92.3	10.1	34.3	6.4	1.4	5.1	0.7	4.0	0.0	2.3	0.3	2.4	0.4	25.5	240	Upper Saprolite	4	
RRMRB125		24	2	44.2	100.5	10.1	37.7	6.0	1.5	5.0	0.8	4.1	0.8	2.0	0.3	2.1	0.3	26.0	243	Upper Saprolite	ł	
RRMRB125		26	2	46.6	106.1	11.4	38.5	7.1	1.4	5.4	0.8	4.4	1.0	2.4	0.3	2.3	0.3	25.4	253	Upper Saprolite	í	
RRMRB126		20	2	64.7	312.0	15.3	51.8	9.4	1.8	8.2	1.3	7.2	1.4	4.6	0.6	4.3	0.6	40.8	524	Hardcap		
RRMRB126		3	1	76.5	1189.1	17.5	61.0	10.6	1.7	7.7	1.3	7.0	1.3	4.3	0.6	4.5	0.6	38.1	1422	Hardcap	í	
RRMRB126		5	2	117.3	291.1	26.0	86.9	14.3	2.3	11.1	1.6	9.4	1.8	5.5	0.8	5.4	0.9	61.0	635	Clay		
RRMRB126		6	1	115.8	199.0	25.6	86.1	14.1	2.3	10.9	1.6	9.6	1.0	5.7	0.8	5.5	0.0	59.1	539	Clay	1	
RRMRB126	-	8	2	91.1	139.4	20.1	68.6	11.1	1.8	8.6	1.3	7.3	1.6	4.6	0.7	4.4	0.7	46.0	407	Clay	ł	
RRMRB126		10	2	69.2	100.7	15.7	51.8	8.8	1.4	6.9	1.0	5.9	1.1	3.4	0.5	3.3	0.5	35.8	306	Upper Saprolite	1	
RRMRB126		12	2	54.1	69.5	12.4	43.5	7.2	1.4	5.6	0.8	5.0	1.0	2.9	0.4	2.9	0.4	31.2	239	Upper Saprolite	1	
RRMRB126	12	14	2	89.6	287.4	16.7	54.2	9.3	2.1	7.2	1.1	6.2	1.2	3.5	0.5	3.3	0.5	36.1	519	Upper Saprolite	ĺ	
RRMRB126	14	16	2	74.8	221.1	17.0	59.3	9.5	2.1	8.4	1.2	6.9	1.4	4.0	0.6	3.7	0.5	41.3	452	Upper Saprolite	1	
RRMRB126		18	2	104.6	180.0	19.8	65.7	10.5	2.4	9.4	1.3	6.9	1.4	3.6	0.5	3.4	0.6	39.7	450	Upper Saprolite		
RRMRB126		20	2	101.2	165.2	18.8	63.6	10.2	2.2	8.3	1.2	6.6	1.3	4.0	0.5	3.3	0.5	38.1	425	Upper Saprolite		
RRMRB126		22	2	87.5	155.4	16.7	57.7	9.5	2.2	8.0	1.2	6.6	1.3	3.5	0.5	3.4	0.5	37.2	391	Upper Saprolite		
RRMRB126	22	24	2	75.6	203.3	15.2	50.6	8.8	2.0	6.5	1.0	6.1	1.2	3.3	0.5	2.9	0.5	32.9	410	Upper Saprolite		
RRMRB126	24	26	2	71.5	156.6	14.6	51.9	7.6	1.9	6.5	1.0	5.8	1.1	3.1	0.5	2.9	0.5	32.8	358	Upper Saprolite	23	423
RRMRB126	26	28	2	69.4	125.3	14.5	49.1	8.3	1.9	6.8	0.9	5.1	1.1	3.0	0.4	2.7	0.4	30.4	319	Upper Saprolite		
RRMRB127	0	2	2	66.4	122.7	16.1	58.0	11.1	2.2	9.4	1.4	8.4	1.7	5.1	0.8	4.7	0.7	44.3	353	Hardcap		
RRMRB127	2	4	2	46.0	556.5	11.2	38.4	7.0	1.4	6.0	1.0	6.0	1.1	3.5	0.6	3.8	0.6	28.4	711	Hardcap]	
RRMRB127	4	6	2	62.4	839.0	15.8	55.3	10.7	2.1	8.0	1.3	7.9	1.5	4.5	0.7	4.7	0.7	36.4	1051	Transition]	
RRMRB127	6	8	2	167.1	139.4	27.4	93.1	14.8	2.7	11.4	1.6	9.4	1.9	5.3	0.8	5.7	0.7	54.5	536	Clay		
RRMRB127	8	10	2	314.3	103.9	48.8	156.3	23.5	4.3	16.3	2.0	11.6	2.1	5.4	0.7	4.7	0.7	57.4	752	Upper Saprolite		
RRMRB127	10	12	2	232.2	107.2	43.6	140.6	21.5	4.3	14.4	1.8	9.8	1.6	4.2	0.6	3.7	0.6	47.6	634	Upper Saprolite	ļ	
RRMRB127	12	14	2	142.5	80.8	29.7	100.0	15.8	3.5	12.3	1.6	8.8	1.6	4.6	0.6	4.4	0.6	48.8	456	Upper Saprolite		
RRMRB127	14	16	2	124.3	116.2	38.5	163.3	34.8	9.5	39.4	5.6	34.1	6.9	19.7	2.7	16.1	2.4	262.9	876	Upper Saprolite	ļ	
RRMRB127	16	18	2	73.2	99.6	21.5	94.9	19.3	5.4	20.7	2.9	17.2	3.7	10.9	1.4	8.2	1.3	141.6	522	Upper Saprolite		

																						>200p TREO-0 Interv	CeO ₂
	Hole ID	From m	To m	Int. m	La₂O₃ ppm	CeO₂ ppm	Pr ₂ O ₃ ppm	Nd₂O₃ ppm	Sm₂O₃ ppm	Eu₂O₃ ppm	Gd₂O₃ ppm	Tb₂O₃ ppm	Dy₂O₃ ppm	Ho ₂ O ₃ ppm	Er₂O₃ ppm	Tm₂O₃ ppm	Yb₂O₃ ppm	Lu₂O₃ ppm	Y₂O₃ ppm	TREO ppm	Regolith Zone	Length (m)	TREO ppm
F	RRMRB127	18	20	2	137.2	93.2	29.7	102.3	18.2	4.3	14.6	1.9	11.4	2.1	5.7	0.7	4.8	0.7	72.4	499	Upper Saprolite	()	ppm
	RRMRB127	20	22	2	280.3	97.0	48.2	155.7	23.4	5.3	16.0	2.1	11.2	1.9	5.1	0.6	4.1	0.6	53.3	705	Upper Saprolite	ł	
_	RRMRB127	22	23	1	272.1	95.2	47.5	158.0	23.8	4.9	16.7	2.1	11.2	2.0	5.1	0.7	4.4	0.7	58.0	702	Lower Saprolite	17	627
	RRMRB128	0	2	2	109.3	547.9	20.5	67.7	12.3	2.0	10.3	1.5	9.3	1.8	5.2	0.8	5.2	0.7	45.1	839	Hardcap	-	
	RRMRB128	2	4	2	154.2	894.3	21.7	63.7	10.0	1.9	6.6	1.1	6.4	1.2	3.4	0.5	3.1	0.4	25.9	1194	Gravel	1	
	RRMRB128	4	5	1	144.3	1480.2	28.3	92.1	17.2	2.7	11.6	1.8	10.9	2.0	6.3	0.9	5.9	0.9	53.6	1859	Transition]	
	RRMRB128	5	7	2	148.4	218.0	32.6	110.7	19.2	3.2	13.6	2.0	11.6	2.2	6.2	1.0	5.9	0.9	62.1	638	Clay]	
E	RRMRB128	7	9	2	201.1	110.2	51.1	177.9	30.5	5.2	20.3	2.9	15.4	2.7	7.7	1.0	6.5	0.8	76.3	710	Clay]	
	RRMRB128	9	10	1	176.5	170.1	39.9	145.8	25.0	4.7	20.9	2.8	16.0	2.8	8.1	1.1	6.7	0.9	81.4	703	Clay		
	RRMRB128	10	12	2	207.0	121.1	40.6	152.8	27.3	5.9	27.7	4.1	24.2	4.6	13.4	1.7	10.3	1.5	156.8	799	Upper Saprolite		
- (4	RRMRB128	12	13	1	131.4	115.6	25.4	98.4	18.1	3.9	18.4	2.6	14.3	2.8	7.2	1.0	6.1	0.9	95.2	541	Upper Saprolite		
- 14	RRMRB128	13	15	2	107.2	130.8	21.4	86.8	17.4	4.4	20.6	2.8	18.6	3.8	10.7	1.3	7.5	1.1	150.5	585	Lower Saprolite	ł	
-	RRMRB128	15	17	2	85.7	166.4	18.5	71.4	13.1	2.9	12.9	1.9	11.1	2.1	5.9	0.8	5.4	0.8	78.4	477	Lower Saprolite		
- 14	RRMRB128	17	19	2	70.0	160.9	16.0	59.0	11.8	2.7	11.2	1.6	9.7	1.9	5.8	0.7	4.5	0.7	63.1	420	Lower Saprolite		
- 4	RRMRB128	19	21	2	76.2	185.5	17.0	63.6	12.5	2.7	10.8	1.5	9.1	1.7	4.7	0.7	3.9	0.5	54.2	445	Lower Saprolite	16	587
	RRMRB129	0	2	2	92.3	545.4	21.9	78.1	13.6	2.4	11.6	1.7	10.1	1.9	5.6	0.8	5.4	0.9	51.9	844	Hardcap	4	
-	RRMRB129	2	3	1	118.5	1443.4	26.8	88.4	14.8	2.5	11.5	1.9	10.3	1.9	6.0	0.9	5.6	0.8	46.5	1780	Hardcap	ł	
-	RRMRB129	3	4	1	114.8	2149.7	27.1	90.4	15.9	2.6	11.0	1.7	10.5	1.9	5.2	0.9	5.6	0.8	49.5	2488	Transition		
- (+	RRMRB129	4	6	2	107.9	471.7	23.3	79.4	12.8	2.3	10.0	1.4	8.3	1.4	4.4	0.6	4.2	0.6	45.8	774	Clay	4	
- 14	RRMRB129	6	8	2	102.3	315.7	22.9	79.5	12.1	2.1	8.9	1.2	6.5	1.2	3.6	0.5	3.1	0.5	38.1	598	Clay	ł	
	RRMRB129 RRMRB129	8 10	10 12	2	135.5 214.6	335.4	31.7	106.3	17.6	2.4 3.3	10.8	1.4	7.4 10.8	1.3	3.6	0.5 0.7	3.5	0.5	40.4	698	Upper Saprolite	4	
H	RRMRB129	10	12	2	164.8	445.9 334.1	49.4 38.9	165.0 127.7	25.9 21.2	2.8	16.5 14.6	2.0 1.9	10.8	1.9 1.8	5.0 5.1	0.7	4.3 4.1	0.6	59.1 54.1	1005 782	Upper Saprolite		
- 14	RRMRB129	12	14	2	138.4	298.5	38.9	127.7	18.5	2.6	14.0	1.9	8.4	1.6	4.7	0.6	3.7	0.6	48.8	684	Upper Saprolite	4	
E	RRMRB129	14	18	2	174.7	364.8	42.2	138.2	23.2	3.1	12.0	2.1	10.6	2.0	4.7 5.6	0.0	4.5	0.6	40.0 62.6	851	Upper Saprolite Upper Saprolite	4	
	RRMRB129	10	20	2	161.3	329.2	37.5	132.4	23.2	3.0	16.0	2.1	11.0	2.0	5.5	0.7	4.5	0.0	61.8	789	Upper Saprolite	ł	
	RRMRB129	20	20	2	179.4	363.6	41.8	137.6	21.0	3.1	13.7	1.8	9.6	1.6	4.7	0.6	4.0	0.6	50.0	834	Upper Saprolite	ł	
	RRMRB129	20	24	2	167.1	334.1	38.8	139.4	23.1	3.2	16.6	2.1	11.0	2.1	6.0	0.0	5.2	0.0	65.5	816	Upper Saprolite	4	
-	RRMRB129	24	26	2	156.6	330.4	36.7	129.5	22.1	2.8	15.6	2.0	10.7	2.0	5.4	0.8	4.8	0.7	61.1	781	Upper Saprolite	1	
-	RRMRB129	26	27	1	167.1	334.1	38.5	135.3	21.7	2.9	15.2	1.8	9.9	1.9	5.2	0.7	4.4	0.6	57.0	796	Upper Saprolite	4	
	RRMRB129	27	28	1	143.7	308.3	32.9	116.6	19.5	2.7	13.5	1.8	9.1	1.8	4.7	0.6	4.4	0.6	50.9	711	Lower Saprolite	24	781
17	RRMRB130	0	2	2	47.9	1008.5	10.9	38.0	6.9	1.2	5.6	1.0	5.4	1.0	3.1	0.5	3.4	0.5	26.4	1160	Hardcap		
- 17	RRMRB130	2	3	1	83.7	470.5	17.6	62.5	10.1	2.1	8.0	1.2	7.4	1.3	4.1	0.7	4.5	0.7	41.3	716	Transition	ĺ	
	RRMRB130	3	4	1	126.1	409.1	29.6	104.3	17.0	3.1	12.0	1.8	9.9	2.0	6.0	0.9	6.2	1.0	59.4	788	Clay	ĺ	
- 7	RRMRB130	4	6	2	133.7	362.4	31.5	107.3	17.2	3.4	12.6	1.9	10.3	2.1	5.9	0.9	5.6	0.9	59.3	755	Clay	1	
71	RRMRB130	6	8	2	129.0	324.3	31.9	102.8	15.9	3.4	10.2	1.4	7.4	1.5	4.0	0.6	3.9	0.6	41.3	678	Clay	1	
	RRMRB130	8	10	2	129.0	275.2	31.9	107.9	17.2	3.5	11.1	1.5	8.2	1.5	4.3	0.5	3.8	0.6	41.7	638	Upper Saprolite]	
	RRMRB130	10	12	2	151.3	347.6	37.9	133.6	21.1	4.4	14.1	1.8	9.6	1.8	4.5	0.6	4.0	0.6	51.3	784	Upper Saprolite]	
- ((RRMRB130	12	14	2	167.7	335.4	42.2	148.1	24.2	4.8	16.7	2.2	11.2	2.2	5.8	0.7	4.6	0.7	61.2	828	Upper Saprolite]	
	RRMRB130	14	16	2	160.7	307.1	39.6	142.9	23.3	4.3	16.0	2.0	10.7	2.0	5.4	0.8	4.0	0.7	61.8	781	Upper Saprolite		
	RRMRB130	16	17	1	129.6	281.3	31.7	107.4	17.7	3.3	12.0	1.5	8.3	1.4	3.9	0.5	3.2	0.5	43.9	646	Upper Saprolite	Į	
10	RRMRB130	17	19	2	115.6	245.7	27.4	96.0	15.8	3.0	10.1	1.4	6.7	1.3	3.3	0.4	2.9	0.5	38.1	568	Lower Saprolite	16	719
	RRMRB131	0		2	46.9	230.9	11.0	39.1	7.2	1.4	6.5	1.1	6.6	1.3	3.8	0.6	3.8	0.6	35.8	396	Hardcap	Į	
	RRMRB131	2	4	2	38.9	285.0	9.6	34.4	5.9	1.2	5.0	0.8	4.9	1.0	3.1	0.5	3.0	0.4	26.3	420	Transition		
Ē	RRMRB131	4	5	1	86.7	277.6	19.7	70.8	11.9	2.0	10.1	1.4	8.0	1.7	4.9	0.7	4.9	0.7	49.3	550	Clay	ļ	
	RRMRB131	5	7	2	78.9	152.3	17.6	63.9	11.2	2.0	9.4	1.3	7.5	1.7	4.8	0.7	4.6	0.6	47.2	404	Upper Saprolite	3	453
- (4	RRMRB131	7	9	2	58.4	93.5	12.9	44.9	8.7	1.5	7.3	1.2	6.4	1.3	3.8	0.6	3.9	0.5	39.5	284	Upper Saprolite	ļ	
4	RRMRB131	9	10	1	44.4	87.8	10.1	36.6	6.4	1.3	5.6	0.9	5.0	1.1	3.3	0.4	3.0	0.4	32.5	239	Upper Saprolite	ł	
	RRMRB131	10	11	1	21.6	41.4	4.8	17.5	3.2	0.6	2.6	0.4	2.4	0.5	1.4	0.2	1.5	0.2	15.7	114	Upper Saprolite		
- [4	RRMRB131	11	13	2	46.4	68.3	10.9	38.7	7.0	1.5	5.6	0.8	4.4	0.9	2.7	0.4	2.5	0.3	27.3	218	Upper Saprolite	-	
4	RRMRB131	13	15	2	83.4	111.8	19.3	68.2	11.9	2.6	8.8	1.2	5.9	1.2	3.2	0.4	2.8	0.4	36.2	357	Upper Saprolite		

_																						>200p TREO-(Inter	CeO₂
	Hole ID	From m	To m	Int. m	La₂O₃ ppm	CeO₂ ppm	Pr₂O₃ ppm	Nd₂O₃ ppm	Sm₂O₃ ppm	Eu₂O₃ ppm	Gd₂O₃ ppm	Tb₂O₃ ppm	Dy₂O₃ ppm	Ho₂O₃ ppm	Er₂O₃ ppm	Tm₂O₃ ppm	Yb₂O₃ ppm	Lu₂O₃ ppm	Y₂O₃ ppm	TREO ppm	Regolith Zone	Length (m)	TREO ppm
ľ	RRMRB131	15	17	2	76.6	105.0	17.9	62.9	10.7	2.4	8.1	1.1	5.7	1.0	2.9	0.4	2.3	0.4	32.3	330	Upper Saprolite	(11)	ppm
F	RRMRB131	17	18	1	59.1	84.1	13.8	50.4	8.1	1.8	6.6	0.9	4.6	1.0	2.7	0.4	2.4	0.4	30.1	266	Upper Saprolite	ł	
Ē	RRMRB131	18	19	1	67.9	107.0	15.5	55.4	10.1	2.1	7.7	1.0	5.3	1.1	2.8	0.4	2.4	0.4	30.5	310	Upper Saprolite	ĺ	
	RRMRB131	19	21	2	70.5	93.8	16.0	57.7	10.6	2.2	7.7	1.1	5.5	1.1	3.4	0.4	2.8	0.4	33.1	306	Upper Saprolite	ĺ	
	RRMRB131	21	23	2	56.6	102.0	13.0	48.2	8.4	1.7	6.2	0.9	5.0	0.9	2.6	0.4	2.4	0.3	29.0	278	Lower Saprolite		
	RRMRB131	23	25	2	67.7	109.1	15.9	56.0	9.3	2.1	7.0	1.0	5.4	1.1	2.9	0.4	2.4	0.4	31.7	312	Lower Saprolite	12	312
	RRMRB132	0	2	2	33.7	759.2	7.6	26.7	5.3	0.9	4.3	0.7	4.7	0.9	2.9	0.4	3.0	0.5	25.4	876	Hardcap	Į	
- 1	RRMRB132	2	4	2	40.5	633.9	9.2	32.1	5.9	1.1	5.0	0.9	5.0	1.0	3.3	0.5	4.1	0.6	31.9	775	Hardcap		
	RRMRB132	4	6	2	44.0	108.2	10.9	37.3	7.0	1.0	5.5	0.8	4.8	1.0	3.1	0.5	3.7	0.6	30.7	259	Gravel		
	RRMRB132	6	8	2	54.2	88.7	11.1	39.5	6.2	1.4	5.7	0.8	4.8	1.0	2.8	0.4	2.9	0.5	31.6	252	Upper Saprolite	ļ	
- (RRMRB132	8	10	2	50.2	110.4	10.9	39.2	6.2	1.5	5.5	0.8	4.9	1.0	2.8	0.4	2.6	0.4	31.2	268	Upper Saprolite		
- È	RRMRB132	10	12	2	45.2	98.4	11.9	41.5	7.4	1.2	5.4	0.8	4.1	0.8	2.2	0.3	1.9	0.3	24.1	246	Upper Saprolite	ļ	
ŀ	RRMRB132	12	14	2	39.5	86.0	10.1	36.4	6.4	1.2	5.0	0.7	3.8	0.8	2.5	0.3	2.4	0.4	24.4	220	Upper Saprolite	{	
- 6	RRMRB132 RRMRB132	14	16 18	2	37.9 42.8	89.3 79.4	9.8 10.7	33.4 36.7	6.0 6.6	1.3 1.5	4.9 5.6	0.8 0.8	4.5 4.6	0.9 0.9	2.6 2.4	0.4	2.5	0.4	29.0 29.8	224 225	Upper Saprolite	ł	
	RRMRB132	16 18	20	2	42.8	79.4 110.8	10.7	45.5	6.6 7.7	1.5	5.6	0.8	4.6	0.9	2.4	0.3	2.2 2.3	0.4	29.8	225	Upper Saprolite	ł	
F	RRMRB132	20	20	2	52.7	118.5	12.9	43.2	7.8	0.8	5.9	0.9	4.7	0.9	2.4	0.3	2.3	0.4	26.2	279	Lower Saprolite	{	
ŀ	RRMRB132	20	24	2	57.9	127.1	14.1	47.0	8.3	0.0	6.5	0.0	5.0	1.0	2.9	0.3	2.2	0.4	31.1	306	Lower Saprolite	ļ	
- 7	RRMRB132	24	25	1	59.1	131.4	13.4	47.4	8.6	0.0	6.8	0.8	4.6	0.9	2.5	0.4	2.6	0.4	29.7	309	Lower Saprolite	ł	
- (*	RRMRB133	0	2	2	74.9	174.4	17.2	60.3	10.6	1.8	10.1	1.4	7.9	1.6	4.7	0.6	4.7	0.7	48.1	419	Hardcap		
	RRMRB133	2	4	2	49.5	173.2	9.7	32.9	6.0	1.0	5.1	0.8	4.8	0.8	3.0	0.4	3.1	0.5	25.7	316	Transition	l	
-	RRMRB133	4	5	1	33.9	214.4	6.2	21.8	3.5	0.6	3.0	0.5	3.0	0.6	2.0	0.3	1.8	0.3	19.0	311	Gravel	l	
- (1	RRMRB133	5	7	2	74.6	181.2	15.2	51.9	9.5	1.3	7.2	1.1	6.8	1.3	4.1	0.6	4.2	0.6	40.8	400	Clay	ĺ	
- 1	RRMRB133	7	9	2	64.9	132.1	13.7	49.0	7.7	1.6	7.2	1.1	6.4	1.3	4.3	0.5	3.4	0.6	40.1	334	Clay	4	367
- 6	RRMRB133	9	11	2	58.5	96.8	12.7	45.1	7.2	1.3	5.9	1.0	6.1	1.1	3.3	0.5	3.3	0.5	34.2	278	Upper Saprolite	1	
	RRMRB133	11	12	1	58.5	115.7	13.1	45.8	8.2	1.4	6.4	0.8	4.8	1.0	2.8	0.4	2.7	0.4	30.4	292	Upper Saprolite]	
- 6	RRMRB133	12	14	2	54.7	114.7	13.3	44.6	7.7	0.9	4.8	0.6	3.0	0.6	1.6	0.2	1.6	0.2	18.8	267	Upper Saprolite)	
	RRMRB133	14	16	2	65.2	126.5	15.6	52.6	8.8	1.2	6.2	0.8	4.0	0.7	1.9	0.3	1.9	0.3	24.9	311	Upper Saprolite		
	RRMRB133	16	18	2	44.2	84.4	10.4	37.2	6.5	1.5	5.7	0.8	3.5	0.7	2.0	0.3	2.0	0.3	24.9	224	Upper Saprolite		
	RRMRB133	18	20	2	47.9	90.9	11.5	40.4	7.7	1.2	5.5	0.7	3.5	0.7	1.9	0.3	1.9	0.3	24.8	239	Upper Saprolite	Į	
	RRMRB133	20	22	2	43.7	98.9	10.8	36.2	6.4	1.2	5.0	0.7	3.5	0.8	2.1	0.3	1.8	0.3	23.5	235	Upper Saprolite	Į	
- (-	RRMRB133	22	24	2	44.3	78.9	9.9	37.7	6.6	1.4	5.6	0.8	4.3	0.8	2.3	0.3	2.2	0.3	28.2	224	Upper Saprolite		
	RRMRB133	24	25	1	45.9	88.4	10.5	36.3	6.3	1.3	5.7	0.7	4.0	0.8	2.1	0.3	2.1	0.3	27.3	232	Upper Saprolite		
	RRMRB134	0	2	2	48.6	332.9	8.2	28.1	5.2	1.0	3.8	0.7	4.1	0.7	2.3	0.4	2.3	0.4	21.8	461	Soil		
- (-	RRMRB134	2	4 5	2	40.2 64.4	155.4 136.4	8.9 14.7	30.3 50.9	5.8	0.9 1.6	4.4 7.2	0.8	4.2 5.8	0.8	2.5	0.3	2.7	0.4	24.4 35.8	282 335	Gravel		
- F	RRMRB134 RRMRB134	4	5	1	48.0	74.2	14.7	35.3	8.1 5.3	1.0	4.6	0.7	3.4	1.1 0.8	3.4 2.0	0.5 0.3	3.3 2.0	0.5	24.9	213	Clay Upper Saprolite	ļ	
H	RRMRB134	5	9	2	48.0 32.5	74.2 59.3	7.2	24.8	3.7	0.8	4.6	0.7	2.3	0.8	2.0	0.3	2.0	0.3	24.9 15.9	154	Upper Saprolite	ł	
- 6	RRMRB134	9	9 11	2	32.5	90.9	8.3	24.8	4.1	0.8	3.2	0.3	2.3	0.3	1.3	0.2	1.3	0.2	13.9	193	Upper Saprolite	l	
H	RRMRB134	9 11	13	2	45.0	90.9	10.0	33.1	5.1	0.9	3.2	0.4	2.3 1.9	0.4	0.9	0.2	1.0	0.2	14.0	208	Upper Saprolite	ł	
F	RRMRB134	13	15	2	73.2	149.3	17.0	54.6	7.7	1.0	4.2	0.4	2.2	0.4	1.2	0.1	1.0	0.1	14.7	327	Upper Saprolite	ł	
1	RRMRB134	15	17	2	75.9	148.0	17.9	55.2	8.4	0.9	4.5	0.6	2.5	0.4	1.2	0.2	1.0	0.2	14.0	331	Lower Saprolite	ł	
t	RRMRB134	17	19	2	51.5	113.0	11.9	39.8	6.0	0.7	3.7	0.4	2.2	0.3	0.9	0.1	0.8	0.1	10.9		Lower Saprolite	ĺ	
- 1	RRMRB134	19	21	2	37.1	76.9	8.6	29.0	4.2	0.7	2.5	0.3	1.6	0.3	0.0	0.1	0.8	0.1	9.7	173	Lower Saprolite	ĺ	
- E	RRMRB135	0	2	2	45.0	198.4	9.9	33.4	6.4	1.2	5.1	0.8	4.9	1.0	2.9	0.4	3.0	0.5	28.8	342	Soil		
Ē	RRMRB135	2	4	2	32.0	121.1	6.5	23.1	4.0	0.8	3.2	0.5	2.8	0.6	1.8	0.3	2.0	0.3	17.5	217	Gravel	ĺ	
	RRMRB135	4	5	1	28.7	72.5	6.0	21.7	3.6	0.7	3.3	0.4	2.6	0.6	1.6	0.3	1.8	0.3	17.5	162	Transition	ĺ	
	RRMRB135	5	7	2	29.2	59.8	6.1	23.0	3.5	0.6	2.9	0.4	2.2	0.5	1.5	0.2	1.7	0.3	15.7	148	Clay]	
ſ	RRMRB135	7	8	1	23.7	36.5	5.1	17.5	2.8	0.7	2.5	0.3	2.0	0.5	1.3	0.2	1.3	0.2	13.2	108	Upper Saprolite]	
1	RRMRB135	8	10	2	49.7	49.6	10.8	36.7	5.8	1.1	4.9	0.7	3.8	0.7	2.2	0.3	2.0	0.3	24.9	194	Upper Saprolite]	
- [RRMRB135	10	12	2	34.7	57.2	8.4	28.5	4.5	1.0	3.6	0.5	2.5	0.5	1.5	0.2	1.5	0.2	16.4	161	Upper Saprolite		

																						>200 TREO- Inter	CeO ₂
	Hole ID	From	То	Int.	La ₂ O ₃	CeO ₂	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y_2O_3	TREO	Regolith	Length	TREO
-	RRMRB135	m 12	m 14	m 2	ррт 42.3	ppm 85.9	<mark>ррт</mark> 9.8	ррт 33.4	ррт 5.2	ррт 0.9	ррт 3.5	ррт 0.5	ррт 2.1	ррт 0.5	ррт 1.2	ppm 0.2	ррт 1.1	ррт 0.2	ррт 14.2	ррт 201	Zone Upper Saprolite	(m)	ppm
H	RRMRB135	12	14	2	57.5	116.0	12.5	41.1	5.9	1.0	4.1	0.5	2.1	0.3	1.2	0.2	1.1	0.2	14.2	258	Upper Saprolite		
H	RRMRB135	16	10	1	62.9	119.0	13.8	47.1	7.3	1.3	4.8	0.6	3.1	0.4	1.5	0.2	1.5	0.2	14.2	282	Lower Saprolite		
	RRMRB135	10	19	2	41.5	86.2	9.0	30.2	5.0	0.9	3.0	0.5	2.4	0.5	1.0	0.2	1.3	0.2	14.2	196	Lower Saprolite		
	RRMRB135	19	20	1	49.0	96.2	10.8	36.2	6.1	1.0	4.0	0.5	3.2	0.5	1.5	0.2	1.5	0.2	18.3	229	Lower Saprolite		
10	RRMRB136	0	2	2					8.4		-	1.1			-	0.5	4.0	-	35.8		Soil		
F	RRMRB136	2	4	2	34.6	644.9	8.2	28.9	5.1	1.1	4.8	0.8	5.2	0.9	2.9	0.5	3.0	0.5	24.6	766	Clay		
Ē	RRMRB136	4	6	2	31.7	133.3	7.6	26.2	5.0	0.9	4.0	0.7	4.3	0.8	2.7	0.4	2.7	0.4	26.3	247	Gravel		
	RRMRB136	6	8	2	43.0	135.1	9.9	36.5	7.6	1.3	6.4	1.1	6.6	1.3	4.1	0.6	4.1	0.6	36.8	295	Upper Saprolite		
	RRMRB136	8	10	2	36.7	55.0	9.0	33.8	7.4	1.6	6.2	1.0	6.8	1.3	4.1	0.7	4.2	0.6	38.0	207	Upper Saprolite		
- (7	RRMRB136	10	11	1	50.3	63.0	11.5	44.3	9.6	2.1	9.5	1.6	10.5	2.1	6.4	0.9	6.4	0.9	64.3	284	Upper Saprolite		
- 12	RRMRB136	11	13	2	62.7	45.5	15.3	60.3	12.1	3.5	14.2	2.4	15.4	3.1	9.2	1.4	9.5	1.4	91.7	348	Upper Saprolite		
	RRMRB136	13	15	2	74.4	23.3	17.8	75.6	17.9	4.6	21.0	3.4	20.3	3.9	11.4	1.6	9.6	1.4	126.1	412	Upper Saprolite		
	RRMRB136	15	16	1	38.1	27.5	9.4	37.2	9.0	2.6	11.0	1.9	11.5	2.5	7.0	1.0	6.7	1.0	75.2	242	Upper Saprolite		
- 14	RRMRB136	16	18	2	40.7	60.1	10.2	39.1	8.9	2.4	10.8	1.6	11.0	2.1	6.4	0.8	6.3	0.9	65.9	267	Lower Saprolite	8	322
	RRMRB136	18	20	2	30.0	35.6	7.8	32.2	7.8	2.2	9.6	1.6	9.6	1.9	6.0	0.9	5.5	0.9	62.0	214	Lower Saprolite		
	RRMRB136	20	22	2	18.1	32.1	5.2	21.1	5.7	1.7	6.7	1.1	7.3	1.5	4.5	0.6	4.2	0.7	45.8	156	Saprock		
L	RRMRB137	0	2	2	35.7	669.5	8.3	29.6	5.6	1.1	4.7	0.8	4.2	0.8	2.2	0.4	2.6	0.4	23.7	790	Hardcap		
- 14	RRMRB137	2	4	2	33.1	134.5	7.2	23.4	4.3	0.8	3.7	0.6	3.3	0.7	2.0	0.3	2.4	0.4	20.8	237	Transition		
- 4	RRMRB137	4	6	2	53.2	113.5	10.5	38.5	6.2	1.1	5.1	0.8	4.1	0.9	2.7	0.4	2.6	0.4	29.6	270	Clay		
	RRMRB137	6	8	2	34.1	61.3	7.2	26.8	5.1	0.8	3.6	0.5	3.3	0.6	1.9	0.3	2.0	0.3	22.6	171	Upper Saprolite		
1	RRMRB137	8	9	1	37.2	62.5	8.6	30.4	5.2	0.9	4.1	0.6	3.7	0.7	2.1	0.3	2.1	0.3	24.1	183	Upper Saprolite		
- 44	RRMRB137	9	10	1	16.8	35.9	3.2	10.4	2.0	0.5	1.6	0.2	1.6	0.2	1.0	0.1	1.1	0.2	10.3	85	Upper Saprolite		
- 1	RRMRB137	10	12	2	24.2	56.5	5.6	19.7	3.4	0.8	2.8	0.5	2.7	0.5	1.4	0.2	1.6	0.3	15.2	135	Upper Saprolite		
	RRMRB137	12	14	2	35.1	78.2	9.0	33.5	5.2	1.4	4.2	0.6	3.2	0.6	1.8	0.3	1.7	0.3	18.5	193	Upper Saprolite		
H	RRMRB137	14	16	2	49.6	114.2	12.4 12.3	45.1	8.0 7.9	1.8 1.5	5.9 5.3	0.8	4.0	0.7	2.0	0.3	1.9	0.2	22.6	270	Upper Saprolite		
	RRMRB137	16	18 20	2	49.0	107.1		44.6 42.7	7.9	1.5	5.0	0.7 0.7	3.6 3.4	0.6 0.6	1.8 1.7	0.2	1.5	-	21.0	257	Upper Saprolite		
ŀ	RRMRB137 RRMRB137	18 20	20	2	46.6 34.0	103.8 65.5	11.8 8.2	42.7	4.9	1.5	3.9	0.7	3.4 2.8	0.6	1.7	0.2	1.3 1.2	0.2	20.3 16.3	247 171	Upper Saprolite Lower Saprolite		
H	RRMRB137	20	22	2	34.0	71.4	0.2 7.7	28.0	4.9 5.1	1.1	3.9	0.5	2.6	0.4	1.3	0.2	1.2	0.2	15.4	171	Lower Saprolite		
	RRMRB138	0	24	2	73.1	156.6	17.0	59.0	11.5	1.2	10.4	1.6	9.5	1.9	6.0	0.2	5.9	0.2	58.7	415	Soil		
E	RRMRB138	2	4	2	52.7	581.0	12.5	42.7	7.9	1.3	6.3	1.0	6.8	1.3	3.6	0.5	4.0	0.9	35.4	757	Hardcap		
- 18	RRMRB138	4	6	2	72.9	269.0	15.4	54.0	9.8	1.5	8.0	1.0	7.8	1.5	4.3	0.6	4.6	0.0	49.5	501	Clay		
- 1	RRMRB138	6	8	2	89.5	235.2	17.0	60.5	10.5	1.0	8.3	1.2	8.2	1.0	5.0	0.0	5.4	0.7	52.4	498	Clay		
Ē	RRMRB138	8	9	1	63.4	133.9	14.3	50.7	9.0	1.4	7.7	1.0	7.5	1.4	4.5	0.6	4.2	0.6	45.0	345	Clay	5	469
- (f	RRMRB138	9	10	1	56.5	173.8	11.8	40.8	7.4	1.2	6.3	1.0	6.1	1.2	3.5	0.5	3.6	0.5	37.8	352	Upper Saprolite	Ŭ	
Ē	RRMRB138	10	12	2	48.4	119.5	9.9	35.6	6.0	1.0	5.3	0.8	5.0	1.0	2.8	0.5	2.9	0.4	31.5	271	Upper Saprolite		
/	RRMRB138	12	14	2	45.9	137.6	11.0	38.6	6.6	1.0	5.4	0.8	4.5	0.9	2.7	0.4	2.4	0.4	27.6	286	Upper Saprolite		
- (7	RRMRB138	14	16	2	43.7	116.6	10.0	34.9	6.2	1.0	5.1	0.7	4.7	0.8	2.7	0.3	2.5	0.3	27.2	257	Upper Saprolite		
- 17	RRMRB138	16	18	2	53.9	112.4	12.4	42.8	7.2	1.1	5.6	0.8	5.2	0.9	2.9	0.4	2.6	0.4	29.0	278	Upper Saprolite		
	RRMRB138	18	20	2	46.3	136.4	10.7	37.0	7.1	1.1	5.2	0.7	4.3	0.9	2.5	0.3	2.4	0.4	26.9	282	Upper Saprolite		
1	RRMRB138	20	22	2	55.2	110.9	13.1	46.5	8.4	1.2	5.6	0.9	5.3	0.9	2.7	0.4	2.5	0.4	32.5	287	Upper Saprolite		
1	RRMRB138	22	24	2	52.5	94.2	12.4	43.5	7.8	1.3	5.9	0.9	5.0	0.9	2.8	0.4	2.6	0.4	30.0	261	Upper Saprolite		
- 6	RRMRB139	0	2	2	106.5	226.0	23.0	81.3	13.9	2.0	11.9	1.9	10.7	2.0	6.3	0.8	6.0	0.9	64.8	558	Soil		
- E	RRMRB139	2	4	2	63.1	289.9	13.9	50.0	8.8	1.1	6.4	1.0	6.2	1.3	3.6	0.5	4.1	0.6	38.2	489	Hardcap		
	RRMRB139	4	6	2	88.9	237.1	18.2	61.7	10.5	1.3	7.8	1.2	7.8	1.5	4.5	0.6	4.6	0.7	47.1	494	Clay		
1	RRMRB139	6	8	2	104.8	179.3	22.5	76.2	12.2	1.7	10.2	1.6	9.0	1.8	5.2	0.7	5.1	0.7	57.8	489	Clay		
4	RRMRB139	8	10	2	126.7	109.5	28.8	96.0	15.1	2.0	10.3	1.5	7.9	1.4	4.0	0.5	3.9	0.5	45.5	454	Upper Saprolite		
L	RRMRB139	10	12	2	110.7	77.6	24.8	81.3	12.8	1.9	8.6	1.1	6.2	1.1	3.0	0.4	2.9	0.4	33.1	366	Upper Saprolite		
- 14	RRMRB139	12	13	1	53.8	49.5	10.7	37.2	6.0	1.1	4.4	0.6	3.5	0.7	1.8	0.3	1.9	0.3	20.3	192	Upper Saprolite		
	RRMRB139	13	14	1	116.2	84.0	26.7	91.6	15.2	1.9	8.9	1.2	6.2	1.1	2.9	0.4	2.6	0.4	32.5	392	Lower Saprolite	10	419

																						>200 TREO Inte	-CeO ₂
	Hole ID	From	То	Int.	La ₂ O ₃	CeO ₂	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	TREO	Regolith	Length	TREO
-	RRMRB139	m 14	m 16	m 2	ppm 80.2	ppm 96.4	ррт 18.4	ррт 60.2	ppm 9.3	ррт 1.3	ррт 6.5	ррт 0.8	ppm 4.0	ррт 0.7	ррт 1.8	ррт 0.3	ррт 1.6	ррт 0.3	ррт 20.4	ррт 302	Zone Saprock	(m)	ppm
ŀ	RRMRB139	14	18	2	55.9	96.4 86.2	10.4	42.2	9.3	1.3	5.4	0.8	4.0	0.7	1.0	0.3	1.6	0.3	20.4	240	Saprock	$\left\{ \right.$	
F	RRMRB139	0	2	2	38.0	213.1	7.7	26.2	4.6	0.5	4.1	0.7	5.1	1.1	3.5	0.5	3.8	0.5	36.7	240 346	Hardcap		
F	RRMRB140	2	4	2	63.1	213.1	13.6	47.2	8.3	1.1	7.2	1.1	7.5	1.6	4.7	0.3	5.1	0.0	49.0	430	Clay	4	
F	RRMRB140	4	6	2	43.6	97.4	9.8	34.3	7.4	0.8	9.0	1.7	13.5	3.0	9.9	1.7	11.7	1.9	109.0	355	Clay	4	
- 6	RRMRB140	6	8	2	34.7	61.7	7.6	26.5	5.6	0.6	7.2	1.5	11.1	2.6	8.5	1.4	9.2	1.5	90.7	271	Upper Saprolite	6	352
	RRMRB140	8	10	2	45.0	89.6	10.1	32.7	6.2	0.0	6.3	1.0	7.9	1.7	5.4	1.0	6.3	1.0	61.7	277	Upper Saprolite	i č	002
Ē	RRMRB140	10	12	2	59.5	116.2	13.6	44.4	8.5	0.7	5.6	0.8	4.6	0.9	2.5	0.4	2.5	0.4	29.2	290	Upper Saprolite	1	
- F	RRMRB140	12	14	2	58.2	104.2	13.6	44.3	7.5	0.8	6.2	0.9	4.6	0.9	2.6	0.3	2.5	0.4	29.8	277	Upper Saprolite	1	
Ē	RRMRB140	14	16	2	50.1	89.2	11.9	37.9	7.1	0.7	5.2	0.7	4.2	0.8	2.5	0.4	2.1	0.3	26.3	239	Upper Saprolite	1	
1	RRMRB140	16	18	2	59.2	124.1	14.1	45.6	8.7	0.8	6.2	0.8	4.5	0.8	2.3	0.4	2.2	0.4	26.5	297	Upper Saprolite	ĺ	
4 -	RRMRB141	0	2	2	41.8	470.5	9.6	35.0	6.5	1.0	5.5	1.0	5.1	1.0	3.2	0.5	3.4	0.6	33.0	618	Hardcap		
1	RRMRB141	2	4	2	66.1	315.7	14.5	50.3	8.8	1.4	7.4	1.2	7.1	1.4	4.3	0.7	4.7	0.7	44.4	529	Clay	ĺ	
- 7	RRMRB141	4	5	1	97.6	219.3	23.7	80.4	13.2	2.2	11.9	1.9	11.2	2.2	6.4	1.0	6.2	1.0	71.4	550	Clay	i	
1	RRMRB141	5	7	2	82.9	137.6	19.6	68.2	11.5	1.9	9.5	1.5	9.2	2.0	5.5	0.9	5.3	0.8	59.6	416	Upper Saprolite	1	
	RRMRB141	7	9	2	110.5	93.0	24.5	88.8	14.8	2.4	10.6	1.5	9.1	1.8	5.5	0.8	5.4	0.8	60.4	430	Upper Saprolite	1	
	RRMRB141	9	11	2	110.5	87.6	24.0	83.6	14.1	2.3	11.4	1.5	8.5	1.7	4.6	0.7	4.6	0.6	56.3	412	Upper Saprolite	1	
	RRMRB141	11	13	2	77.3	74.9	16.1	56.6	10.5	2.1	9.8	1.4	8.4	1.6	4.5	0.7	4.1	0.7	56.0	325	Upper Saprolite	11	434
- 7	RRMRB141	13	15	2	41.5	64.9	9.5	31.1	6.2	1.2	5.6	1.0	5.9	1.1	3.4	0.5	3.1	0.5	39.6	215	Upper Saprolite]	
	RRMRB141	15	17	2	34.9	52.0	8.0	27.2	4.7	0.9	4.5	0.8	4.9	1.0	3.0	0.5	2.9	0.5	34.4	180	Lower Saprolite]	
	RRMRB141	17	19	2	47.1	81.2	10.1	34.8	6.6	1.3	5.5	0.8	5.6	1.1	2.9	0.5	2.8	0.4	34.0	235	Lower Saprolite]	
- 2	RRMRB141	19	20	1	39.2	88.2	8.9	30.4	5.9	1.1	4.9	0.7	4.4	0.9	2.6	0.4	2.5	0.4	29.8	220	Lower Saprolite		
	RRMRB142	0	2	2	73.8	194.1	17.9	64.0	12.7	1.8	10.6	1.7	10.6	2.0	6.5	1.0	6.4	1.0	64.1	468	Soil	J	
	RRMRB142	2	4	2	52.1	359.9	12.4	43.7	8.4	1.2	7.3	1.2	7.8	1.5	4.9	0.7	5.6	0.8	44.4	552	Hardcap	ļ	
- 5	RRMRB142	4	6	2	63.7	337.8	14.9	51.1	10.1	1.5	8.7	1.4	8.7	1.8	5.3	0.9	5.9	0.9	53.7	566	Transition	1	
	RRMRB142	6	7	1	84.3	270.2	19.9	65.8	12.9	1.8	11.0	1.8	10.9	2.2	6.5	1.1	7.2	1.0	69.7	566	Clay	ļ	
- 6	RRMRB142	7	8	1	80.2	144.3	18.4	63.2	12.2	1.6	9.6	1.5	9.1	1.8	5.3	0.9	5.8	1.0	59.4	415	Upper Saprolite	1	
	RRMRB142	8	10	2	59.9	60.4	13.8	49.0	8.4	1.2	6.7	1.0	6.6	1.2	4.0	0.6	4.1	0.6	45.8	263	Upper Saprolite	1	
	RRMRB142	10	12	2	82.0	60.2	18.8	66.4	11.7	1.7	10.3	1.4	8.7	1.7	5.0	0.8	5.2	0.8	61.5	336	Upper Saprolite	1	
-	RRMRB142	12	14	2	207.6	138.2	48.1	159.2	28.9	4.6	26.3	4.0	24.3	4.9	14.5	2.2	13.2	2.4	185.4	864	Upper Saprolite	4	
k	RRMRB142	14	16	2	430.4	141.9	106.8	352.3	64.4	9.5	47.6	6.7	37.5	6.3	17.2	2.4	15.1	2.4	203.8	1444	Lower Saprolite	4	
- (4	RRMRB142	16	18	2	148.4	104.3	32.3	108.0	21.6	2.9	18.5	2.8	16.2	3.0	8.4	1.3	8.0	1.2	101.8	579	Lower Saprolite	4	
H	RRMRB142	18	20	2	127.2	122.0	28.4	100.3	16.4	2.4	15.6	2.4	13.4	2.4	6.8	1.0	6.6	1.1	84.1	530	Lower Saprolite	4	
-	RRMRB142	20	22	2	145.4	116.6	32.7	110.7	21.8	3.0	17.8	2.7	15.4	3.0	8.8	1.3	8.3	1.3	98.3	587	Lower Saprolite	40	640
- (H	RRMRB142	22	24	2	90.9	107.1	20.4	68.8	13.5	1.6	12.0	1.8	10.5	2.0	5.7	0.9	6.0	0.9	68.6	411	Lower Saprolite	18	612
- F	RRMRB143	0	2		57.8	193.5	12.4	44.3	8.5	1.1	7.2	1.1	6.7	1.4	4.2	0.6	4.1	0.6	40.8	384	Hardcap	4	
E	RRMRB143 RRMRB143	2	4 5	2	35.2 63.6	384.5 204.5	7.2 13.9	25.8 45.4	5.1 7.8	0.8	3.8 6.5	0.7	4.2	0.8 1.4	2.5 4.1	0.4 0.7	2.8 4.7	0.4 0.7	25.8 45.8	500 408	Hardcap Transition	4	
- 6	RRMRB143	4 5	5	2	78.8	204.5	13.9	45.4 56.7	10.6	1.1	6.5 8.8		8.3	1.4	4.1 5.3	0.7	4.7 5.5	0.7	45.8	408		2	426
-4-	RRMRB143 RRMRB143	5	9	2	78.8	79.7	8.4	28.3	5.9	0.6	4.4	1.4 0.7	8.3 4.4	0.9	5.3 3.0		5.5 3.2	0.8	30.7	426 210	Clay Clav	2	420
F	RRMRB143	9	9 11	2	44.0	87.8	0.4 10.0	<u>20.3</u> 31.8	5.9 6.3	0.8	4.4	0.7	4.4 5.1	0.9	3.0	0.5 0.5	3.2	0.5	34.3	210	Upper Saprolite	{	
- K	RRMRB143	9 11	13	2	44.0	97.2	10.0	35.5	6.8	0.7	5.0	1.0	5.1	1.1	3.2	0.5	3.3	0.6	34.3	235	Upper Saprolite	4	
H	RRMRB143	13	15	2	44.7	101.8	10.5	35.5	6.9	0.7	5.6	1.0	5.9	1.2	3.4	0.5	4.3	0.0	38.2	254	Upper Saprolite	4	
- F	RRMRB143	15	17	2	52.8	111.3	12.5	40.4	8.2	0.0	6.4	1.0	6.6	1.2	4.3	0.0	4.3	0.7	43.2	270	Upper Saprolite	4	
- H	RRMRB143	13	19	2	55.2	116.5	13.1	43.7	8.8	0.7	6.1	1.0	6.8	1.4	4.1	0.7	4.8	0.7	45.5	309	Upper Saprolite	1	
- F	RRMRB143	19	21	2	53.0	114.2	12.5	41.5	9.0	0.7	6.7	1.0	6.6	1.3	4.1	0.6	4.4	0.0	42.4	299	Upper Saprolite	1	
Ľ	RRMRB143	21	23	2	57.0	117.8	13.7	44.6	9.2	0.7	7.0	1.0	6.9	1.5	4.6	0.0	4.6	0.8	47.9	318	Upper Saprolite	2	318
- 16	RRMRB143	23	24	1	55.1	114.5	13.2	43.3	8.2	0.0	6.4	1.1	5.9	1.3	3.7	0.6	3.9	0.6	39.9	298	Upper Saprolite	-	010

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Rotary Air Blast (RAB) Drilling RAB drill cuttings collected by a specifically designed sample collection tray at the collar of the ho for each measured 1 metre of drill advance. All (100%) of collected sample transferred from tray to individually numbered plastic bag.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Hole diameter was 10.16cm (4 inch)
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Individual 1 metre samples weighed after collection in its plastic sample bag. There is no evidence of grade bias due to sample recovery
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	RAB chips geologically logged based on 1 metre drill interval. Logging is qualitative with description of colour, weathering status, alteration, major and minor rock types, texture, grain size, regolith zone and comments added where further observation is made. Additional non-geological qualitative logging includes comments for sample recovery, humidity, and hardness for each logged interval.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	Sample collected by a tray at the collar of the hole for each 1 metre of drill advance. All (100%) of collected sample transferred from tray to individually numbered plastic bag. Samples are then transferred to a plastic basin an mixed by hand prior to extraction of a 1.5kg sample for geochemical analysis.

Criteria	JORC Code explanation	Commentary						
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	This sample collection pro conducted.	ptocol is adequate for the reconnaissance style exploration	ion be				
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	A geological sample increme storage.	ent is selected and transferred to a chip tray for geological log	gging				
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 							
Quality of	• The nature, quality and appropriateness of the assaying and laboratory	Assay and Laboratory Proc	cedures – All Samples					
assay data	procedures used and whether the technique is considered partial or	Samples were dispatched by air freight direct to ALS laboratory Perth Australia. The preparation						
and	total.	and analysis protocol used is as follows:						
laboratory	• For geophysical tools, spectrometers, handheld XRF instruments, etc,	ALS Code	Description					
laboratory tests	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument	ALS Code WEI-21	Description Received sample weight					
	the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	WEI-21	Received sample weight					
	 the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, 	WEI-21 LOG-22	Received sample weight Sample Login w/o Barcode					
	 the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels 	WEI-21 LOG-22 DRY-21	Received sample weight Sample Login w/o Barcode High temperature drying					
	 the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, 	WEI-21 LOG-22 DRY-21 CRU-21	Received sample weight Sample Login w/o Barcode High temperature drying Crush entire sample					
	 the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels 	WEI-21 LOG-22 DRY-21 CRU-21 CRU-31	Received sample weight Sample Login w/o Barcode High temperature drying Crush entire sample Fine crushing – 70% <2mm					
	 the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels 	WEI-21 LOG-22 DRY-21 CRU-21 CRU-31 SPL-22Y	Received sample weight Sample Login w/o Barcode High temperature drying Crush entire sample Fine crushing – 70% <2mm					
	 the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels 	WEI-21 LOG-22 DRY-21 CRU-21 CRU-31 SPL-22Y	Received sample weightSample Login w/o BarcodeHigh temperature dryingCrush entire sampleFine crushing – 70% <2mm					

The assay technique used for REE was Lithium Borate Fusion ICP-MS (ALS code ME-MS81). This is a recognised industry standard analysis technique for REE suite and associated elements. Elements analysed at ppm levels:

Ва	Ce	Cr	Cs	Dy	Er	Eu	Ga
Gd	Hf	Но	La	Lu	Nb	Nd	Pr
Rb	Sm	Sn	Sr	Та	Tb	Th	Tm
U	V	W	Y	Yb	Zr		

Analysis for scandium (Sc) was by Lithium Borate Fusion ICP-AES (ALS code Sc-ICP06). The sample preparation and assay techniques used are industry standard and provide a total analysis.

All laboratories used are ISO 17025 accredited.

QAQC

• Analytical Standards

CRMs AMIS0276 and MUIACREI01 were included in sample batches at a ratio of 1:25 to drill samples submitted. This is an acceptable ratio.

The assay results for the standards were consistent with the certified levels of accuracy and precision and no bias is evident.

Blanks

CRM blanks AMIS0681 and OREAS22e were included in sample batches at a ratio of 1:25 to drill samples submitted for analysis. This is an acceptable ratio.

Both CRM blanks contain some REE, with elements critical elements Ce, Nd, Dy and Y present in small quantities. The analysis results were consistent with the certified values for the blanks. No laboratory contamination or bias is evident from these results.

	Criteria	JORC Code explanation	Commentary				
	ontena		Duplicates				
			•	ampling was conduc	ted at a ratio of 1:25 sam	ples. Duplicates we	ere created by
					om the composited samp		
					and submitted with the sa		
					e results is considered ac		
			evident.				-
					nks and duplicates were	analysed as per	industry standard
				s no evidence of bias			
_	Verification	• The verification of significant intersections by either independent or			cant intersection undertal	ken.	
	of sampling and	alternative company personnel.The use of twinned holes.		iamond core drill hol	es was undertaken. e sampling and QAQC we	ro documented an	d hold on site by
	assaying	 The use of twinned noies. Documentation of primary data, data entry procedures, data 			ures for data storage and		
$(\square$	assaying	verification, data storage (physical and electronic) protocols.	as yet.		ares for data storage and	i management nav	e been complied
\geq		 Discuss any adjustment to assay data. 		ted in the field by ha	and and entered into Exce	el spreadsheet. Dat	a are then
F					and stored in Access da		
$\left(\bigcup \right)$	\bigcup				ole depths, sample interva		
					by algorithm in spreads		
					mat from the laboratory a		
A	5				QAQC analysis and revie ected Access database.	ew against field data	a. Once finalised
\bigcup	\cup				npling data have been co	nducted to ensure	data entry is
~	6		correct.		inpling data have been oo		
(())	()			received from the la	boratory in element form	is unadjusted for d	lata entry.
U	Ð				E) to stoichiometric oxide		
	7				n factors.(Source: <u>https://</u>		
	9			and-resources/resou	rces-and-extras/element-	to-stoichiometric-c	oxide-conversion-
			factors)		Conversion Factor	Oxide Form	1
				Element ppm Ce	Conversion Factor 1.2284	CeO ₂	
				Dy	1.1477	Dy ₂ O ₃	
$(\cap$				Er	1.1435	Er ₂ O ₃	•
5	Θ			Eu	1.1579	Eu ₂ O ₃	1
G				Gd	1.1526	Gd ₂ O ₃	1
(()				Но	1.1455	Ho ₂ O ₃	1
				La	1.1728	La ₂ O ₃	
C	\sum			Lu	1.1371	Lu ₂ O ₃	
L	\square			Nd	1.1664	Nd ₂ O ₃	
~	5			Pr	1.2082	Pr ₆ O ₁₁	
$\left(\left(\right) \right)$	())			Sm	1.1596	Sm ₂ O ₃	
∇	D			Tb	1.1762	Tb ₄ O ₇	
2				Tm	1.1421	Tm ₂ O ₃	
6				Y	1.2699	Y ₂ O ₃	-
$\left(\left(\right) \right)$				Yb Sc	1.1387 1.5338	Yb ₂ O ₃ Sc ₂ O ₃	
2				50	1.0000	3C2O3]
P							

	JORC Code explanation	Commentary
	JORC Code explanation	Commentary Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: Note that Y_2O_3 is included in the TREO, HREO and CREO calculation. TREO (Total Rare Earth Oxide) = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Y_2O_3 + Lu_2O_3.$ HREO (Heavy Rare Earth Oxide) = $Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Tb_2O_3 + Yb_2O_3 + Y_2O_3 + Lu_2O_3$ CREO (Critical Rare Earth Oxide) = $Nd_2O_3 + Eu_2O_3 + Tb_4O_7 + Dy_2O_3 + Y_2O_3$ (From U.S. Department of Energy, Critical Materials Strategy, December 2011) LREO (Light Rare Earth Oxide) = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3$ NdPr = $Nd_2O_3 + Pr_6O_{11}$
		HREO% of TREO= HREO/TREO x 100
		In elemental form the classifications are:
		Note that Y is included in the TREE, HREE and CREE calculation.
		TREE: La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu+Y
		HREE: Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Y+Lu
		CREE: Nd+Eu+Tb+Dy+Y
l a cation of	Accuracy and evality of currence used to leasts drill balas (college and	LREE: La+Ce+Pr+Nd
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used	RAB collar locations were surveyed using handheld GPS. For this type of instrument, the general accuracy in x and y coordinates is + 5m. The elevation component of coordinates is variable and
	in Mineral Resource estimation.	may be low accuracy using this type of device.
	Specification of the grid system used.	Datum WGS84 Zone 36 North was used for location data collection and storage. This is the
	Quality and adequacy of topographic control.	appropriate datum for the project area. No grid transformations were applied to the data.
Data	Data spacing for reporting of Exploration Results.	RAB reconnaissance drill holes have been drilled on a broad spacing, generally >1km, based or
spacing and distribution	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	testing radiometric anomalies over a large area
Orientation	Whether the orientation of sampling achieves unbiased sampling of	Orientation of potential mineralisation unknown in this area but assumed to be horizontal as seen in
of data in relation to	possible structures and the extent to which this is known, considering the deposit type.	the Makuutu deposit
geological	• If the relationship between the drilling orientation and the orientation of	
structure	key mineralised structures is considered to have introduced a sampling	
Sampla	bias, this should be assessed and reported if material.	After collection, the complex were transported by Company representatives to Estables airport an
Sample security	The measures taken to ensure sample security.	After collection, the samples were transported by Company representatives to Entebbe airport and dispatched via airfreight to Perth Australia. Samples were received by Australian customs authoritie
Security		in Perth within 48 hours of dispatch and were still contained in the sealed shipment bags.
		Samples were subsequently transported from Australian customs to ALS Perth via road freight and
		inspected on arrival by a Company representative
	• The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been undertaken

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral enement and and tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Makuutu Project is located in the Republic of Uganda. The mineral tenements comprise two or granted Retention Licences (RL1693 and RL00007), three (3) Exploration Licences (EL1766, EL001, and EL00148) and one (1) Exploration Licence application TN03573. All granted licences are in good standing with no known impediments. TN03573 is pending grant we all application requirements met. The Makuutu Rare Earths Project is 100% owned by Rwenzori Rare Metals Limited ("RRM"), Ugandan registered company. IonicRE currently has earned a 51% shareholding in RRM and me increase its shareholding to 60% by meeting further commitments as follows: IonicRE to fund to completion of a Bankable Feasibility Study (BFS) to earn an additional Se interest for a cumulative 60% interest in RRM. Milestone payments, payable in cash or IonicRE shares at the election of the Vendor, follows: US\$375,000 on production of 10 kg of mixed rare-earth product from pilot demonstration plant activities; and US\$375,000 on conversion of existing licences to mining licences. At any time should lonicRE not continue to invest in the project and project development ceases for least two months RRM has the right to return the capital sunk by IonicRE and reclaim all interest early be leasible.
xploration one by other arties	Acknowledgment and appraisal of exploration by other parties.	 by IonicRE. Previous exploration includes: 1980: Country wide airborne geophysical survey identifying uranium anomalies in the Project area 1990s: French BRGM and Ugandan DGSM undertook geochemical and geological survey ov South-Eastern Uganda including the Project area. Anomalous Au, Zn, Cu, Sn, Nb and V identified 2006-2009: Country wide high resolution airborne magnetic and radiometric survey identified anomalism in the Project area. 2009: Finland GTK reprocessed radiometric data and refined the Project anomalies. 2010: Kweri Ltd undertook field verification of radiometric anomalies including scout sampling existing community pits. Samples showed an enrichment of REE and Sc. 2011: Kweri Ltd conducted ground radiometric survey and evaluated historic groundwatt borehole logs. 2012: Kweri Ltd and partner Berkley Reef Ltd conducted prospect wide pit excavation ar sampling of 48 pits and a ground gravity traverse. Pit samples showed enrichment of RE estwork. 2016 – 2017: Rwenzori Rare Metals conduct excavation of 11 pits, ground gravity survey, R4 drilling (109 drill holes) and one (1) diamond drill hole. The historic exploration has been conducted to a professional standard and is appropriate for the exploration stage of the prospect. 2019-2022: lonic Rare Earths under agreement with RRM completed 711 core drill holes an processing testwork leading to compilation of a DFS and statement of an ore reserve.
Geology	Deposit type, geological setting and style of mineralisation.	The Makuutu deposit is interpreted to be an ionic adsorption REE clay-type deposits similar to tho in South China, Chile, Madagascar and Brazil.

	Criteria	JORC Code explanation	Commentary
			The mineralisation is contained within the tropical lateritic weathering profile of a basin filled with sedimentary rocks including shales, mudstones and sandstones potentially derived from the surrounding granitic and mafic rocks. These rocks are considered the original source of the REE which were then accumulated in the sediments (via ionic bonds with the clays) of the basin as the surrounding rocks have degraded. These sediments then form the protolith that was subjected to prolonged tropical weathering. The weathering developed a lateritic regolith with a surface indurated hardcap, followed downward by clay rich zones that grade down through saprolite and saprock to unweathered sediments. The thickness of the regolith is between 10 and 20 metres from surface. The REE mineralisation is concentrated in the weathered profile where it has dissolved from its primary mineral form, such as monazite and xenotime, then ionically bonded (adsorbed) or colloidally bonded on to fine particles of aluminosilicate clays (e.g. kaolinite, illite, smectite). The adsorbed and colloidal REE is the target for extraction and production of REO at Makuutu.
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	The material information for drill holes relating to this announcement are contained in Appendix 1.
30	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	A lower cut-off of 200 ppm TREO-Ce ₂ O ₃ was used for data aggregation of significant intervals with a maximum of 2 metres of internal dilution and no top-cuts applied. This lower cut-off is consistent with the marginal cut-off grade estimated and applied in the resource statements on the Makuutu Project Significant intervals were tabulated downhole for reporting. All individual samples were included in length weighted averaging over the entire tabulated range. No metal equivalents values are used.
	Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Down hole lengths, true widths are not known.
	Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to diagrams in body of text.

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	This report contains all drilling results that are consistent with the JORC guidelines. Where data may have been excluded, it is considered not material.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Metallurgical leach testing was previously conducted on samples derived from exploration pits, RAB drilling, and one 8.5 tonne bulk pit sample. In 2012, 5 pit samples were sent to the Toronto Aqueous Research Laboratory at the University of Toronto for leachability tests In 2017, 2 pit samples were sent to SGS Laboratory Toronto for leachability tests. 2017/18, 29 samples were collected from 7 RAB drill holes. 20 of these were consigned to SGS Canada and 4 to Aqueous Process Research (APR) in Ontario Canada. The remaining 5 samples were consigned to Bio Lantanidos in Chile. 2018/19, 8.5 tonne bulk sample was consigned to Mintek, South Africa, to evaluate using Resin-inleach (RIL) technology for the recovery of REE. 2019: 118 samples from 31 holes from the 2019 diamond drilling program had preliminary variation testwork conducted TREE-Ce extraction ranged from 3% to 75%. 2020: Testing of composite samples with lower extractions from the 2019 variation testing using increasing rates of acid addition and leach time. Significant increases in extractions were achieved. 2020: Testing of composited samples from two exploration holes east of the Makuutu Central Zone provided an average extraction of TREE-Ce recovery of 41% @ pH1 Testing of samples from the project is ongoing.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Future work programs are intended to evaluate the economic opportunity of the project including extraction recovery maximisation, continued resource definition and estimation, regional exploration on adjoining licences and compilation of a Scoping Study.