

20 September 2023

Amended Announcement - 18 September 2023 - 'EV Vision Enhanced'

In accordance with Listing Rule 5.7 and the JORC Code, this amended announcement includes JORC Table 1 (sections 1 and 2), in reference to the helicopter reconnaissance rock chip sampling program that was completed.

Further, a visual estimate has been included as the announcement refers to 'outcropping manganiferous material' within the body of the announcement under the header 'Highlights and exploration summary' and refers to the photo at Figure 2. Accordingly, additional information has been included under this header and also below Figure 2 in accordance with ASX and AIG guidance. Lastly, a summary of the 91 samples is included at Annexure 0.1.

Thank you,

Chris Achurch
Company Secretary

20 September 2023

EV VISION ENHANCED

HIGHLIGHTS

- Reach acquires tenement E09/2543 from Firebird Metals (ASX: FRB).
- Tenement E09/2543 adjoins existing Reach tenure and expands the manganese and rare earth prospectivity of the Company's assets by ~25%.
- Reach continues to acquire ground focused on the growing battery market.
- High-grade rock chips up to 18% MnO² at neighbouring Reach tenement E09/2539¹.
- Significant land holding now held by Reach, right in the middle of Hastings and FMG.
- Low cost acquisition payable entirely in Reach shares (A\$110k).

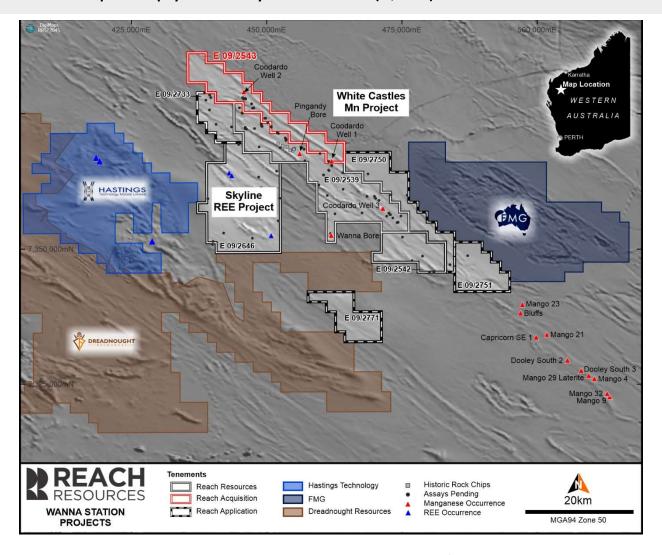


Figure 1: Location of newly acquired tenement E09/2543

¹ ASX Announcement 13 February 2023

Reach Resources Limited (ASX: RR1 & RR10) ("Reach" or "the Company") is pleased to announce it has entered into a binding tenement sale agreement to acquire tenement E09/2543 from Firebird Metals (ASX: FRB). The tenement acquisition consolidates ground already held by Reach in an area highly prospective for manganese and rare earths. The low cost acquisition (A\$110,000) is payable via the issue of ordinary shares in Reach Resources.

Manganese is recognised as a critical mineral by the Office of the Chief Economist (Australian Government Department of Industry, Innovation and Science). Further, a White House document (June 2021) states that manganese use in battery cathodes may result in the metals preferred element emergence in next generation battery cells, due to its 'relative safety' and 'having by far the most stability'.

Figure 2: Manganese outcropping ² - Tenement E09/2543

Note 2:

- **1. The nature of the mineral occurrence:** *Massive stratiform/supergene manganese mineralisation hosted within sediments of the Ullawarra Formation.*
- 2. Identify the minerals observed: The Manganese minerals observed are limited to a suite of manganese oxides, hydroxides, carbonates, and silicates. The outcrop as shown displays all of the characteristics which typify manganese mineralisation, i.e jet black in colour, surficial and concentric supergene coating/banding, massive stratiform layering, extremely fine grained with high specific gravity and likely contains iron in addition to manganese.
- **3. Estimate of abundance:** Manganese is observed as per 2 above. Managanese ores are extremely fine-grained microscopic mixtures of several different manganese minerals. The manganese content of the material sampled based on visual examination ranges between 10% and 30% by volume.
- **4. Anticipated timing of assay results**: Assay results are expected in October 2023.

Cautionary Statement: Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

Jeremy Bower CEO commented:

"Whilst primarily used in the steel industry as an alloying agent to improve hardness, strength and resitence to corrosion, the Electric Vehicle revolution is here and manganese is a key component in the production of lithium-ion batteries. The Company remains entirely focused on our Morrissey Hill lithium project, but it's important that we continue to consolidate our tenure in highly prospective areas, with a focus on the EV market. This low cost acquisition is right in between some big players in Hastings and FMG and we are very interested in manganese generally and the role it will play over the coming years."

Highlights and exploration summary

Tenement E09/2543 is prospective for manganese and REE in the Gascoyne Mineral Field, WA

- E09/2543 consolidates a large parcel of land held or in application by Reach.
- E09/2543 and surrounding tenure lies in the Edmund Basin which is dominated by sedimentary rocks of the Edmund and Collier groups.
- The area is dominated by the Narimbunna Dolerite and sedimentary siliclastic rocks of the Ullawarra Formation. The Ullawarra Formation regionally hosts supergene-stratiform, lateritic and detrital style Mn mineralisation.
- Neighbours include Fortescue Metals Groupto the east, Hastings Technology Metals to the west and Dreadnought Resources to the South West.
- As part of the due diligence process, the Reach geological team have recently completed a helicopter reconnaissance rock chip sampling program. A total of 91 samples were collected from various outcropping manganiferous material (Figure 2 and Annexure 0.1).
- E09/2543 and the surrounding Reach tenure each secure sequences of the Edmund and Collier Groups, including sediments of the Ullawarra Formation a known host to widespread manganese occurrences in the region. Rock chip sampling by Reach focussed on visual recognition of manganese-bearing outcrops with targets identified from available mapping and historical records (regional scale stream sediments and rock chips).
- All 91 samples contain manganiferous material. The manganese content of the material sampled ranges between approximately 10% and 30% by volume based on visual estimates (Annexure 0.1). The residency and grade of any manganese mineralisation within each of the samples collected will be determined by detailed petrology/petrography and laboratory analyses and will be reported on once received and interpreted.
- Samples have been submitted to Intertek laboratories with results expected in October.

Consideration

The equivalent number of Reach shares calculated by dividing \$110,000 by a deemed issue price using the 5 day volume weighted average price of Reach shares for the five trading days preceding the completion date ("Completion Date"). The Completion Date means the 5 days after the date the tenement sale agreement was signed (15 September 2023)), unless otherwise agreed between Reach and Firebird Metals.

Conditions precedent

Completion of the Acquisition is subject to the transfer of rights over the tenement and relevant information, including the issue of freely tradeable ordinary shares in RR1, to Firebird Metals or their nominee/s.

This announcement has been authorised by the Board of Reach Resources Limited For further information please contact:

Jeremy Bower Chief Executive Officer Level 4, 216 St Georges Terrace Perth, 6000 W.A jeremy@reachresources.com.au

-ENDS-

Annexure 0.1: Sample Summary

SAMPLE_ID	TYPE			Lithology	Estimation of mineral
		SAMPLE LOCATION			abundance
		MGA_E	MGA_N		
				Massive	Microscopic manganese
				stratiform/supergene	mineralisation observed at
				manganese mineralisation	10%-30% by volume.
220001/454	DOCK	420064.6	7250042	hosted within sediments of	
23RRRK151	ROCK	439961.6	7350913	the Ullawarra Formation	A
23RRRK152	ROCK	439951.1	7350913	As above	As above
23RRRK153	ROCK	461980.2	7365827	As above	As above
23RRRK154	ROCK	461934.7	7365877	As above	As above
23RRRK155	ROCK	461876.7	7365897	As above	As above
23RRRK156	ROCK	461846.3	7365931	As above	As above
23RRRK157	ROCK	461783.4	7365967	As above	As above
23RRRK158	ROCK	461722	7366019	As above	As above
23RRRK159	ROCK	461673.6	7366051	As above	As above
23RRRK160	ROCK	461604.4	7366125	As above	As above
23RRRK161	ROCK	461525.5	7366202	As above	As above
23RRRK163	ROCK	453572.7	7370278	As above	As above
23RRRK164	ROCK	453539.1	7370333	As above	As above
23RRRK165	ROCK	453493.2	7370425	As above	As above
23RRRK166	ROCK	453429.3	7370466	As above	As above
23RRRK167	ROCK	453413.4	7370547	As above	As above
23RRRK168	ROCK	453478	7370362	As above	As above
23RRRK169	ROCK	453529.9	7370238	As above	As above
23RRRK170	ROCK	453543.4	7370072	As above	As above
23RRRK171	ROCK	452018.7	7371479	As above	As above
23RRRK172	ROCK	451941.3	7371532	As above	As above
23RRRK173	ROCK	451928.6	7371460	As above	As above
23RRRK174	ROCK	452122.6	7371404	As above	As above
23RRRK175	ROCK	452154.1	7371368	As above	As above
23RRRK176	ROCK	450822.4	7372546	As above	As above
23RRRK177	ROCK	450837.2	7372643	As above	As above
23RRRK178	ROCK	450168.5	7373381	As above	As above
23RRRK179	ROCK	445492.4	7375094	As above	As above
23RRRK180	ROCK	445397.3	7375160	As above	As above
23RRRK181	ROCK	439429.2	7378475	As above	As above
23RRRK182	ROCK	439442	7378430	As above	As above
23RRRK183	ROCK	439657.6	7377981	As above	As above
23RRRK184	ROCK	438737.6	7377530	As above	As above

23RRRK185	ROCK	442024.7	7353008	As above	As above
23RRRK186	ROCK	445731.2	7377752	As above	As above
23RRRK187	ROCK	445741.3	7377759	As above	As above
23RRRK188	ROCK	445744.2	7377780	As above	As above
23RRRK189	ROCK	445757.7	7377783	As above	As above
23RRRK190	ROCK	445759.5	7377834	As above	As above
23RRRK191	ROCK	445708.4	7377855	As above	As above
23RRRK192	ROCK	445623.4	7377937	As above	As above
23RRRK193	ROCK	445513.8	7377994	As above	As above
23RRRK194	ROCK	445684.2	7377884	As above	As above
23RRRK195	ROCK	445760.3	7377781	As above	As above
23RRRK196	ROCK	447165.5	7376846	As above	As above
23RRRK197	ROCK	447209.2	7376830	As above	As above
23RRRK198	ROCK	447567.1	7376111	As above	As above
23RRRK199	ROCK	447622.6	7376067	As above	As above
23RRRK200	ROCK	447360.8	7376049	As above	As above
23RRRK201	ROCK	449622.8	7374185	As above	As above
23RRRK202	ROCK	449805	7374183	As above	As above
23RRRK203	ROCK	449027.7	7373130	As above	As above
23RRRK204	ROCK	449015.7	7373069	As above	As above
23RRRK205	ROCK	448964.1	7373115	As above	As above
23RRRK206	ROCK	448943	7373099	As above	As above
23RRRK207	ROCK	448936.6	7373125	As above	As above
23RRRK208	ROCK	449129.5	7372679	As above	As above
23RRRK209	ROCK	449121.2	7372699	As above	As above
23RRRK210	ROCK	449062.5	7372714	As above	As above
23RRRK211	ROCK	449027.9	7372779	As above	As above
23RRRK212	ROCK	469891.4	7359779	As above	As above
23RRRK213	ROCK	470075.2	7359446	As above	As above
23RRRK214	ROCK	470084.9	7359428	As above	As above
23RRRK215	ROCK	470116.9	7359391	As above	As above
23RRRK216	ROCK	470727	7359034	As above	As above
23RRRK217	ROCK	473290.9	7355794	As above	As above
23RRRK218	ROCK	474077.3	7354934	As above	As above
23RRRK219	ROCK	474120.7	7354948	As above	As above
23RRRK220	ROCK	474244.2	7355012	As above	As above
23RRRK221	ROCK	474279.3	7354998	As above	As above
23RRRK222	ROCK	445994.1	7372401	As above	As above
23RRRK223	ROCK	446020.4	7372472	As above	As above
23RRRK224	ROCK	446000	7372498	As above	As above
23RRRK225	ROCK	446020.8	7372223	As above	As above

23RRRK226	ROCK	446110.8	7372254	As above	As above
23RRRK227	ROCK	446130.2	7372244	As above	As above
23RRRK228	ROCK	446206.4	7372211	As above	As above
23RRRK229	ROCK	446250	7372187	As above	As above
23RRRK230	ROCK	446012.3	7372273	As above	As above
23RRRK231	ROCK	457031	7366339	As above	As above
23RRRK232	ROCK	458943.8	7352250	As above	As above
23RRRK233	ROCK	471443.4	7357333	As above	As above
23RRRK234	ROCK	472571.6	7356644	As above	As above
23RRRK235	ROCK	472559.1	7356673	As above	As above
23RRRK236	ROCK	472578.1	7356710	As above	As above
23RRRK237	ROCK	472761.8	7356399	As above	As above
23RRRK238	ROCK	472838	7356416	As above	As above
23RRRK239	ROCK	472850.2	7356402	As above	As above
23RRRK240	ROCK	480888.4	7345906	As above	As above
23RRRK241	ROCK	480871.8	7345915	As above	As above
23RRRK242	ROCK	480878.9	7345857	As above	As above

About Reach Resources Limited

Reach Resources is a critical mineral explorer with a large portfolio of tenements in the resource rich Gascoyne Mineral Field. Recent and historical exploration results have confirmed the presence of Lithium, REE, Niobium and Manganese across the Company's land holdings.

However, the Company is distinct from other pure explorers by also having an Inferred Gold Resource at Payne's Find and a significant investment in a downstream patented technology that recycles the rare earth elements from the permanent magnets required in electric vehicles, wind turbines, hard disk drives and MRI machines.

Competent Person's Statement

Information in this announcement that relates to exploration results is based on and fairly represents information and supporting documentation prepared and compiled by Mr Steve Vallance, who is a Member of the Australian Institute of Geoscientists. Mr Vallance is the Exploration Manager for Reach Resources Limited employed on a full-time basis. Mr Vallance has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person, as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Vallance consents to the inclusion in the announcement of the matters based on this information in the form and context in which it appears.

No New Information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

Forward Looking Statements

This report contains forward looking statements concerning the projects owned by Reach Resources Limited. If applicable, statements concerning mining reserves and resources may also be deemed to be forward looking statements in that they involve estimates based on specific assumptions. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward looking statements as a result of a variety of risks, uncertainties and other factors. Forward looking statements are based on management's beliefs, opinions and estimates as of the dates the forward looking statements are made and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	Criteria	JORC Code explanation	Commentary		
	Sampling techniques	niques specific specialised industry standard measurement tools appropriate	Recent surface sampling (Rock Chip) reported in this ASX release was undertaken by Reach Resources Ltd targeting manganese mineralisation.		
		to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The program is defined as first pass reconnaissance with sampling being controlled by the availability of outcrop. As such the sampling is random.		
		 Include reference to measures taken to ensure sample representivity 	Assay results for the program are pending.		
		 and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 91 rock chip samples were taken as random chips from available outcrop. The samples are considered representative of the outcrop being sampled (Annexure 0.1). Sample weights ranged between 1 and 3kg, collected in individually numbered calico bags and secured polyweave sacks with cable ties. Each sample was digitally photographed and located using handheld GPS units. Multi-element analysis will be completed by Intertek Laboratories Perth WA using 4 acid digest with ICPMS finish; over-range samples analysed using Intertek's Manganese Orfe XRF 		
))			Package, ie Li borate fusion/XRF		
			 Analysis will be completed for: Au, Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, 		
			Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tm, U, V, W, Y, Yb, Zn, Zr. Mn, Al2O3, BaO, CaO, Cr2O3, Cu, Fe2O3, K2O, MgO, Na2O, P2O5, Pb.		
7	Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple 	Not Applicable. No drilling has been reported in this ASX release.		

Criteria	JORC Code explanation	Commentary
	or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not Applicable. No drilling has been reported in this ASX release.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Not Applicable. No drilling has been reported in this ASX release. Not Applicable. No drilling has been reported in this ASX release.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No drilling was used to take these samples. Industry standard whole rock samples of 1-3kg were collected and considered to be appropriate for this style of sampling. Rock chip sampling is random by nature and sample spacing is determined by the availability of outcrop. The sampling is considered to be representative of the outcrops which were identified for sampling. All samples were collected in pre-numbered calico bags and placed into clearly labelled polyweave sacks. All samples were delivered to Intertek Laboratories, Perth WA for sample preparation and analyses.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels 	 All sample preparation and assaying was/will be conducted by Intertek Laboratories, Perth WA. Upon receipt at the laboratory, all samples were sorted, dried, crushed, pulverized. Multi-element analysis will be completed on all samples via 4A/MS48 with "over-range" samples being further analysed via FB1/XRF25. These techniques are considered appropriate for the range of commodities being targeted and the sampling being

Criteria	JORC Code explanation	Commentary
	of accuracy (ie lack of bias) and precision have been established.	 undertaken. Analysis will be completed for: Au, Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tm, U, V, W, Y, Yb, Zn, Zr. Mn, Al2O3, BaO, CaO, Cr2O3, Cu, Fe2O3, K2O, MgO, Na2O, P2O5, Pb. No geophysical tools were used to determine any element concentrations. Intertek applied standard quality control procedures including the insertion of check samples, duplicates, blanks and standards. These procedures reflect accepted industry standard procedures and provide acceptable accuracy and precision for this stage of early exploration.
Verification of sampling and assaying	and the first of t	 All samples were collected and submitted by RR1 personnel. All data has been checked and verified by several senior personel. No drilling was undertaken. All field data and laboratory results are/will be entered and stored in an electronic/digital database. The Company's database is managed by PivotExims and independent database management consultancy.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All samples collected were located using handheld Garmin GPS units which provide an accuracy of +/- 5m. The grid system used is MGA Zone 50 (GDA94). The project's topographic control is adequate for early-stage surface targeting and reconnaissance. All samples were located using a handheld GPS and an accuracy of +/- 5 m.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The data is reconnaissance rock chip sampling. The data is not being used for resource estimation. No sample compositing has been undertaken.
Orientation of data in relation to geological structure		 No drilling was used to collect these samples. Sampling was undertaken both along strike and orthogonal to strike where possible in order to provide representive sampling. The orientations of possible structures within the tenements are not well-known at this early stage. The Competent Person considers this appropriate for reviewing historical surface sampling results for prospectivity targeting.
Sample security	The measures taken to ensure sample security.	 Chain of custody for samples was managed at all times by RR1 personnel including transport from site to Centurion Freight's facility in Carnarvon, WA. Centurion Freight are responsible for delivery to Interteks Perth Laboratory facility. Intertek notify Reach immediately upon receipt of samples.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 RR1 has not undertaken any audits or reviews with respect to this phase of exploration. Industry standard techniques are applied at every stage of the exploration process.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral enement and and tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Skyline/White Castles Project comprises eight Exploration Licences (E 09/2646, E 09/2733 (Application E09/2750(Application), E09/2539, E09/2542, E09/27 (Application), E09/2771 (Application) and E09/2543) white collectively secure a total area of approximately 906km². Reach owns 100% of all tenements/noting ELA above. The Project area is located 300km east-northeast of Carnarvo and 170km northeast of the town of Gascoyne Junction Westren Australia. To our knowledge, there are no joint venture agreement royalties, aboriginal heritage sites, historical sites, wilderness national parks or environmental settings recorded within React Skyline/White Castles Project tenements and applications.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical exploration has been very limited and includes regional scale, very wide spaced stream sediment and rock chip sampling.
Geology	Deposit type, geological setting and style of mineralisation.	 The Skyline/White Castles Project area is conside prospective for stratabound and structurally controlled "Woo Woodie Style" manganese mineralization and Carbona associated "Yangibana-style" Rare Earth mineralization. The Project tenure is located within the Edmund Basin which dominated by sedimentary rocks of the Edmund and Collier groups The area is dominated by the Narimbunna Dolerite and sedimentary siliclastic rocks of the Ullawarra Formation. The Ullawarra Formation regionally hosts supergene-stratiform, lateritic and detrital style Mn mineralisation

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Not Applicable – no drilling was undertaken.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No data aggregation methods have been applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Not Applicable – no drilling has been undertaken.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps for the Skyline/White Castles Project are included in the release. No drilling has been undertaken.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Recent and historical results that are considered relevant have been presented here in a balanced manner to avoid misleading reporting. The reported results reflect the full range of rock-chip results for the target commodities available to Reach Resources at the time of this

	Criteria	JORC Code explanation	Commentary
			report. No relevant information has been omitted.
	Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 RSC Mining and Mineral Exploration Consultants were engaged by Reach Resources Ltd to undertake a prospectivity analysis of the project areas. Relevant datasets were processed and filtered to identify targets Data which is relevant to this release is included in this report. All relevant data available to Reach Resources has been documented in this report.
	Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Desktop studies and target identification are in progress. Field reconnaissance and surface geochemical soil surveys are scheduled to commence in November 2023.
(10)			