20 September 2023

Nickel-Copper Intersected Near Surface in 8 Holes at Bayrock's Vuostok Project including 6.9m @ 1.2% Ni and 2.2% Cu

- Highly encouraging nickel-copper grades returned from near surface in eight diamond drill holes including 6.9m @ 1.2% Ni, 2.2% Cu from 5 metres downhole and in another drillhole 6.2m @ 1.2% Ni, from 11m downhole.
- Ni-Cu sulphide mineralisation intercepted in drill holes at the Storbodsund Prospect, within Bayrock's Vuostok Nickel-Copper Project in northern Sweden.
- Results indicate near surface massive Ni-Cu sulphides between 0.3 and 6 meters thick, less than 18 metres from surface and beneath a thin cover of glacial sediments.
- The Vuostok Nickel-Copper deposits are within 60 kilometers from Bayrock's Lainejaur high-grade Nickel-Copper-Cobalt deposit, offering potential joint development opportunity as a "district play".
- QXR has a significant 39% investment in unlisted public Australian company Bayrock Resources Limited, which has a portfolio of highly prospective battery minerals assets in Sweden, primarily with Nickel, Copper and Cobalt.

QX Resources Limited (ASX:QXR) is pleased to announce that Bayrock Resources Limited (**Bayrock**) has confirmed highly encouraging nickel-copper mineralisation, some in thick intercepts, in eight drill holes at the Storbodsund Prospect within Bayrock's Vuostok Nickel-Copper Project in Northern Sweden. QXR has a significant (39%) holding in Bayrock Resources Limited.

Significant diamond drill assay results (Table 3) included:

VUO23011 : 6.2m @ 1.2% Ni, 2.2% Cu, 0.04% Co from 11m down hole.
VUO23013 : 6.9m @ 1.2% Ni, 0.3% Cu, 0.05% Co from 5.1m down hole. including 0.4m @ 3.9% Ni, 0.3% Cu, 0.11% Co from 6.85m down hole.
VUO23004 : 0.7m @ 3.2% Ni, 1.0% Cu, 0.08% Co from 10.3m down hole.
VUO23005 : 0.9m @ 1.2% Ni, 0.1% Cu, 0.08% Co from 6m down hole.

QXR Managing Director Steve Promnitz commented: "Highly encouraging nickel-copper results in thick intercepts at both of Bayrock's Lainejaur and Vuostok projects show a potential district scale operation in a mining friendly region of Sweden. Today's results confirm excellent mineralisation in a new area of interest, expanding the project footprint. Bayrock is now planning the next exploration phase and also undertaking sampling across new areas of interest with a further update pending."

Bayrock has received assay results from the 17 shallow diamond drill holes (508m) completed at the Storbodsund Prospect, of the Vuostok Nickel-Copper Project. Vuostok is one of Bayrock's six 100% owned Ni-Cu projects located in northern Sweden (Figures 1, 2 and 3).

Massive sulphides (pyrrhotite, pentlandite and chalcopyrite) with high grades of nickel, copper and cobalt were intersected in four drill holes (VUO23004, VUO23005, VUO23011 and VUO23013) less than 18 metres from the surface and beneath thin sediment cover. Another four holes in the drill program also intersected significant shallow nickel and copper mineralisation including:

 VUO23003 :
 7.8m @ 0.2% Ni and 0.1% Cu from 6.25m down hole,

 VUO23007 :
 1.0m @ 0.2% Ni and 0.1% Cu from 12.6m down hole,

 VUO23010 :
 5.15m @ 0.3% Ni, 0.4% Cu and 0.02% Co from 4.4m down hole,

VUO23012 : 5.7m @ 0.2% Ni, 0.4% Cu and 0.02% Co from 6.3m down hole

Including 1.7m @ 0.6% Ni, 0.2% Cu and 0.02% Co from 6.3m down hole.

The mineralisation appears to be flat-lying and open to the northeast (Figure 2). High-grade nickel and copper sulphides were previously located 70 years ago in the flat-lying Storbodsund deposit of near-surface sulphides (within 20m of surface). Massive Ni-Cu sulphides (average grade of 2.3% Ni and 0.6% Cu (including up 3.7% Ni), between 0.3 and 7.7 meters thick, were intersected by drilling in the basal section of a gabbroic intrusive at the contact with underlying granite and are covered by a thin veneer of transported glacial sediments (see ASX announcement 11 July and 1 August 2023). Note that Storbodsund is one of four targets drilled by previous explorers at the Vuostok Project area (Figure 3).

Figure 1: Vuostok Project (Storbodsund) massive sulphides: 3%-5%pyrrhotite, 0.5% pentlandite, 1%-2% chalcopyrite. From 5.7m to 7.2m in Drillhole VUO23012

The Vuostok Project is located about 60km northwest of the Lainejaur Project (Figure 4). The aim of the drilling was to identify and characterise sufficient mineralisation within potential trucking distance of the Lainejaur Project to advance the possibility for future stand-alone Nickel-Copper operations or additional ore feed for a possible Lainejaur development. The two deposits are connected by all-weather roads and both are close to considerable support infrastructure. Trucking of ore material for processing is a regular feature of operations in this part of Northern Sweden.

Figure 2: Vuostok Project, Storbodsund Prospect – Drillhole plan with highlight results. Inset showing a schematic cross section with historic drilling

Figure 3: Vuostok Project geophysics (GEOTEM) with the Storbodsund prospect drilling area and other known Ni-Cu sulphide occurrences and prior drill hole locations. Note the close association of GEOTEM anomalies and mineralisation.

Figure 4: Lainejaur and Vuostok Project location map showing relative proximity of projects within 60km connected by sealed roads capable of supporting trucking of ore material

QXR has assisted Bayrock with financing and development of its Projects, considered highly prospective for key battery metals of nickel, copper and cobalt (ASX announcement 30 Mar and 4 July 2023). Further information is available at: <u>www.bayrockresources.com</u> together with Bayrock's announcement which accompanies this ASX release.

Figure 5: Bayrock Projects location map in Sweden and inset of the Vuostok Project and Storbodsund Prospect

Authorised by the Board of QX Resources Limited.

Further information:

Steve Promnitz, Managing Director: 0423 333 296 steve@qxresources.com.au

Maurice Feilich, Executive Chairman: 0411 545 262

Sam Jacobs, Six Degrees Investor Relations: 0423 755 909

Follow @QXResources on Twitter

Follow **QX Resources** on LinkedIn

Strategy Battery Minerals Development New Energy

About QX Resources

QX Resources (ASX:QXR) is focused on exploration and development of battery minerals, with hard rock lithium assets in a prime location of Western Australia (WA), and gold assets in Queensland. The aim is to connect end users (battery, cathode and car makers) with QXR, an experienced explorer/developer of battery minerals, with an expanding mineral exploration project portfolio and solid financial support.

Lithium hard rock portfolio: QXR's lithium strategy is centred around WA's prolific Pilbara province, where it has four projects in strategic proximity to some of Australia's largest lithium deposits and mines. Across the Pilbara, QXR's regional lithium tenement package (both granted or under application) spans more than 350 km².

Lithium brine: QXR is continuing due diligence under an exclusive Letter of Intent over a large recently consolidated lithium brine project in California, USA

Gold portfolio: QXR is also developing two Central Queensland gold projects through an earn-in agreement with Zamia Resources Pty Ltd. Both gold projects are strategically located within the Drummond Basin, a region that has a >6.5moz gold endowment.

Nickel sulphides: QXR has a significant investment in unlisted public Australian company Bayrock Resources Limited, which has a portfolio of highly prospective battery minerals assets in Sweden, primarily in nickel, cobalt and copper. QXR is assisting Bayrock with project development and financing initiatives

Competent Persons statement

The information in this report that relates to Exploration Results and Exploration Targets is based on information compiled by Dr Ian Pringle, a Director and Shareholder of the Company, who is a 25+ year Member of the Australasian Institute of Mining and Metallurgy (MAusIMM), Member of the Australian Institute of Geoscientists and a Member of Australian Institute of Company Directors. Dr Pringle has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration results, Mineral Resources and Ore Reserves''. Dr Pringle consents to the inclusion of the data contained in relevant resource reports used for this announcement as well as the matters, form and context in which the relevant data appears.

The Company confirms that it is not aware of any new information or data that materially affects the Exploration Results or Mineral Resources included in the ASX releases made by Berkut Minerals Limited on 26 July 2017 and 12 February 2018.

Forward Looking Statements and Important Notice

This report contains forecasts, projections and forward-looking information. Although the Company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions it can give no assurance that these will be achieved. Expectations and estimates and projections and information provided by the Company are not a guarantee of future performance and involve unknown risks and uncertainties, many of which are out of QX Resources' control.

Hole ID	Easting (SWEREF)	Northing (SWEREF)	Dip	EOH Depth (m)	Grid	Drill Type
VUO23001	656397.13	7291183.83	-90	23.8	RT 90-2.5	DD
VUO23002	656389.65	7291171.97	-90	15		
VUO23002B	656389.65	7291171.97	-90	28.2		
VUO23003	656409.95	7291168.16	-90	32.7		
VUO23004	656401.97	7291166.05	-90	25.6		
VUO23005	656392.48	7291162.86	-90	36.9		
VUO23006	656386.43	7291160.07	-90	24.1		
VUO23007	656409.94	7291157.96	-90	23.4		
VUO23008	656376.45	7291144.01	-90	32.7		
VUO23009	656386.93	7291147.48	-90	32.6		
VUO23010	656396.77	7291148.46	-90	25.3		
VUO23011	656405.02	7291150.7	-90	32.5		
VUO23012	656400.52	7291135.16	-90	32.3		
VUO23013	565391.62	7291130.64	-90	30.8		
VUO23014	656382.7	7291127.15	-90	27.6		
VUO23015	656396.68	7291115.52	-90	26		
VUO23016	656406.48	7291117.95	-90	27.7		

Table 1. Drill hole collar summary

Table 2. Drill hole assays

Hole ID	From (m)	To (m)	Int. Thick. (m)	Sample Id.	Ni (ppm)	Cu (ppm)	Co (ppm)	Ni (%)	Cu (%)	Co (%)
VUO23001	. ,		. ,	NSA						
VUO23002				NSA						
VUO23002B				NSA						
VUO23003	6.25	7	0.75	D095488	1785.7	1464.2	99.7	0.18	0.15	
	7	8	1	D095489	1473	1397.2	83.5	0.15	0.14	
	8	9	1	D095490	2600.2	2308.5	123	0.26	0.23	
	9	10	1	D095491	2412.2	2153.8	171 3	0.20	0.23	
	10	11	1	D095492	1661 7	957 5	109.2	0.24	0.22	
	11	12	1	D095493	1703.2	1032.5	94	0.17	0.1	
	12	12	1	D095494	2059.8	500.5	59.7	0.17	0.1	
	13	1/	1	D095495	2033.0	900.5	16.9	0.21		
	1/	15	1	D095496	2150	225	26	0.22		
/11022004	5 15	5.7	0.55	D095490	4027	127	2.0			
0023004	5.15	5.7	0.55	D095498	4037	247	231			
	5.7	0.7	1	D095499	1208	347	40	0.12		
	0.7	7.7	1	D095500	1308	532	20	0.13		
	1.1	0.7	1	D002023	106	120	30 17			
	ō./	9.7	1	D095052	100	129	17		0.11	
	9.7	10.3	0.0	D095053	904	10420	4/	2 4 5	0.11	0.00
	10.3	11	0.7	D095054	31540	10430	781	3.15	1.04	U.U8
	11	12	1	D095055	32	76	2			
	12	13	1	D095056	22	58	2		0.40	
	13	14	1	D095057	198	1842	4		0.18	
	14	15	1	D095058	4	12	1			
VUO23005	5.4	6	0.6	D095060	299	428	14	0.17		<u> </u>
	6	6.53	0.53	D095061	1511	1452	393	0.15	0.15	
	6.53	6.9	0.37	D095062	27340	1376	1404	2.73	0.14	0.14
	6.9	7.9	1	D095063	53	302	4			
	7.9	8.9	1	D095064	144	453	4		-	
	8.9	9.9	1	D095065	41	454	2			<u> </u>
	9.9	10.9	1	D095066	22	194	2			
VUO23006				NSA						<u> </u>
VUO23007	4.6	5.6	1	D095068	73	58	41			
	5.6	6.6	1	D095069	85	49	43			<u> </u>
	6.6	7.6	1	D095070	126	14	54			
	7.6	8.6	1	D095071	82	55	44			
	8.6	9.6	1	D095072	72	43	41			
	9.6	10.6	1	D095073	87	29	41			<u> </u>
	10.6	11.6	1	D095074	546	291	66			
	11.6	12.6	1	D095075	974	642	60			
	12.6	13.6	1	D095076	1798	1307	119	0.18	0.13	
	13.6	14.6	1	D095077	972	678	81			
	14.6	15.6	1	D095078	396	264	60			
	15.6	16.6	1	D095079	417	229	62			
	16.6	17.6	1	D095080	424	407	24			
_	17.6	18.6	1	D095081	11	77	2.5			
VUO23008				NSA						
VUO23009				NSA						1
VUO23010	4.4	5	0.6	D095407	3013.5	1383	123.3	0.3	0.14	
	5	5.66	0.66	D095409	2009	1196.1	118.2	0.2	0.12	
	5.66	6.17	0.51	D095410	1654.9	1150.4	53	0.17	0.12	
	6.17	7	0.83	D095411	5142.2	13840	798.5	0.51	1.38	0.08
	7	7.38	0.38	D095412	2379.7	1380.9	72.4	0.24	0.14	
	7.38	8.34	0.96	D095413	4554.5	1818.4	103.7	0.46	0.18	
	8.34	9	0.66	D095414	56.8	154.5	13.5			1
	9	9.55	0.55	D095415	1069.9	4413.5	28.7	0.11	0.44	1
	955	10	0.55	D005/16	170	790 8	12.9.7	0.11	0.74	+
	3.55	10	1	D093410	205	267.2	10.2			+
	10	12	1	D095417	172.2	507.5	12.0			
	11	12	T	D095418	1/3.3	077.4	13.8			

	Hole ID	From (m)	To (m)	Int. Thick.	Sample Id.	Ni (ppm)	Cu (ppm)	Co (ppm)	Ni (%)	Cu (%)	Co (%)
		12	13	1	D095419	157.2	649.2	11.1			
		13	14	1	D095420	37.4	160.4	10.3			
		14	15	1	D095422	78.6	440.6	11.2			
		15	16	1	D095423	109.4	458.7	10.7			
>>	~	16	16.8	0.8	D095424	73.8	117.7	12.4			
		16.8	17.4	0.6	D095425	13.8	38.4	5.2			
		17.4	18	0.6	D095426	12.7	12.8	10.1			
\square	VUO23011	5.15	6	0.85	D095467	1305.4	1317.1	104.4	0.13	0.13	
		6	7	1	D095468	2368.6	3533.2	132.5	0.24	0.35	
		7	8	1	D095469	460	466.7	71.7			
(\bigcirc)		8	9	1	D095470	471.7	360.5	69.8			
		9	10	1	D095471	114.3	46.9	42.1			
		10	11	1	D095472	185.9	182.8	43.1			
		11	12	1	D095473	1111.1	2328.8	75.5	0.11	0.23	
(a S)		12	12.55	0.55	D095474	1946.8	656.9	82.2	0.19		
UD		12.55	13.35	0.8	D095475	2365.6	534.6	134	0.24		
10		13.35	14.15	0.8	D095476	29250	2609	704.3	2.93	0.26	0.07
((//))		13.35	14.15	0.8	D095477	20210	46380	515.9	2.02	4.64	
O D		14.15	15	0.85	D095478	12550	48270	359.6	1.25	4.83	
		15	15.81	0.81	D095479	4906.8	66900	174.7	0.49	6.69	
		15.81	16.53	0.72	D095480	21620	7610.8	1113.7	2.16	0.76	0.11
		16.53	17.15	0.62	D095481	25.1	92.7	3.2			
		17.15	18	0.85	D095482	11.3	15.9	2.6			
		18	19	1	D095483	34.9	417.6	2.4			
GD		28	29	1	D095484	/1./	/2/./	/			
$(\Box \cup)$		29	30	1	D095485	30.9	97.2	1.2			
	VIIIO22012	50	31 6.2	1	D095480	244.1	1317.1	104.4			
(0023012	5.7	0.5	0.0	D095427	1522.9	00/ 2	100.2	0.15		
		0.3	7.2	0.3	D095428	20030	554.5 6164	109.8	2.09	0.62	+
		7.48	7.40 g	0.52	D095420	1951 3	1081	240.2	0.50	0.02	
(())		7.40	8	0.52	D095431	336 3	438.9	239	0.50	0.11	
		8	9	1	D095432	212.7	7939.8	51.9		0.79	
20		9	10	1	D095433	1239.9	11900	221.2	0.12	1.19	-
(U, J)		10	11	1	D095434	1769.4	1624.3	636.3	0.18	0.16	
1		11	12	1	D095435	480.7	553.7	30.7			
		12	13	1	D095436	754.4	1342.8	26.8		0.13	
A5		13	14	1	D095437	149.8	328.4	11.7			
(UD)		14	15	1	D095438	65	266.4	10.4			
\sim		15	16	1	D095439	27.5	123.7	8.9			
()		16	17	1	D095440	60.4	214.9	4.7			
		21.9	22.9	1	D095441	478.9	1329.3	30.6		0.13	
		22.9	23.4	0.5	D095443	153.5	195.7	32.3			
7		23.4	24	0.6	D095444	109.4	167.2	22.6			
		24	25	1	D095445	6.5	20.2	2.9			
	1/1/022012	25	26	1	D095446	344.1	549.6	68.1	0.14		
(())	VUU23013	5.07		0.93	D095447	1427.7	928.5	92.2	0.14		
		0	0.85	0.85	D095448	3872.2	448.9 2608.6	1120.6	0.39	0.27	0.11
		7.29	7.20 9.17	0.45	D095449	20200	2096.0	20.2	3.95	0.27	0.11
		8.17	9	0.83	D095452	31850	4134	1051 3	3 19	0.41	0.11
		9	9.81	0.81	D095453	28010	4951.4	1376.7	2.80	0.50	0.14
		9.81	10.6	0.79	D095454	8864.7	13080	410.2	0.89	1.31	1
		10.6	11	0.4	D095455	5142.3	5391.5	485.9	0.51	0.54	
		11	12	1	D095456	1292.5	1996.3	55.5	0.13	0.20	
		12	13	1	D095457	606.5	2554.4	17.1		0.25	
		13	14	1	D095458	358.8	1415.6	9.1		0.14	
		14	15	1	D095459	59.5	192.1	3.1			
		15	16	1	D095460	5.2	4.7	2.1			
		16	17	1	D095461	5.7	4.6	2.6			

	Hole ID	From	To (m)	Int. Thick.	Sample Id.	Ni (ppm)	Cu (ppm)	Co (ppm)	Ni (%)	Cu (%)	Co (%)
		(m)		(m)							
		17	18	1	D095462	3.5	6.1	2			
		18	19	1	D095463	52.7	129.7	16.1			
		19	20	1	D095464	52.9	336.2	2.9			
		20	21	1	D095465	11.8	24.3	2.8			
\geq	VUO23014				NSA						
_	VUO23015				NSA						
	VUO23016	5	6	1	D095401	134.5	104.8	56.9			
		6	7	1	D095402	44.1	81.5	39.2			
		7	8	1	D095403	27.8	56.5	26.4			
		8	9	1	D095404	51.2	27.6	20			
		9	10	1	D095405	16.1	68.3	8.1			
צ		10	11	1	D095406	12	28.3	5.4			

Table 3: Significant Drill Intersection Details including Assays

Hole ID	From (m)	To (m)	Int. Thick. (m)	Ni (%)	Cu (%)	Co (%)	Comments
VUO23003	6.25	7	0.75	0.18	0.15		
	7	8	1	0.15	0.14		7.75m @ 0.2% Ni, 0.1% Cu from
	8	9	1	0.26	0.23		6.25m
	9	10	1	0.24	0.22		
	10	11	1	0.17	0.10		
	11	12	1	0.17	0.10		_
	12	13	1	0.21	0.05		_
	13	14	1	0.22	0.10		_
VUO23004	10.3	11.0	0.7	3.15	1.04	0.08	0.7m @ 3.15% Ni, 1.04% Cu and
							0.08% Co from 10.3m
VUO23005	6.0	6.9	0.9	1.21	0.14	0.08	0.9m @ 1.2% Ni, 0.1% Cu and 0.08%
							Co from 6m
VUO23007	12.6	13.6	1	0.18	0.13		1m @ 0.18% Ni, 0.1% Cu from 12.6m
VUO23010	4.4	5	0.6	0.3	0.14		
	5	5.66	0.66	0.2	0.12		
	5.66	6.17	0.51	0.17	0.12		4.4m
	6.17	7	0.83	0.51	1.38	0.08	_
	7	7.38	0.38	0.24	0.14		_
	7.38	8.34	0.96	0.46	0.18		_
	8.34	9	0.66	0.01	0.02		_
	9	9.55	0.55	0.11	0.44		_
VUO23011	11	12	1	0.11	0.23		5.5m @ 1.17% Ni, 2.22% Cu from 6m
	12	12.55	0.55	0.20	0.07		1
	12.55	13.35	0.8	0.24	0.05		

ĺ		12.25	14 15	0.8	2.02	0.26	0.07	
		13.35	14.15	0.8	2.95	0.20	0.07	
		13.35	14.15	0.8	2.02	4.64		
		14.15	15	0.85	1.25	4.83		
		15	15.81	0.81	0.49	6.69		
	2	15.81	16.53	0.72	2.16	0.76	0.11	-
	Hole ID	From (m)	To (m)	Int. Thick. (m)	Ni (%)	Cu (%)	Co (%)	Comments
\bigcirc	VUO23012	6.3	7.2	0.9	0.15	0.10		5.7m @ 0.23% Ni, 0.44% Cu from
		7.2	7.48	0.28	2.09	0.62		6.3m
		7.48	8	0.52	0.50	0.11		Incl. 1.7m @ 0.58% Ni. 0.19% Cu from
(OD)		8	9	1	0.02	0.79		6.3m
26		9	10	1	0.12	1.19		_
02		10	11	1	0.18	0.16		
		11	12	1	0.05	0.06		-
	VUO23013	5.07	6	0.93	0.14	0.09		6.9m @ 1.17% Ni, 0.25% Cu from
		6	6.85	0.85	0.39	0.04		5.1m
ad		6.85	7.28	0.43	3.93	0.27	0.11	Incl. 0.43m @ 3.93% Ni. 0.27% Cu.
60		7.28	8.17	0.89	0.01	0.01		0.11% Co from 6.85m
		8.17	9	0.83	3.19	0.41	0.11	-
		9	9.81	0.81	2.80	0.50	0.14	-
\bigcirc		9.81	10.6	0.79	0.89	1.31		-
$\mathcal{C}\mathcal{D}$		10.6	11	0.4	0.51	0.54		-
		11	12	1	0.13	0.20		-
615				1				
\bigcirc								

Appendix 1 - JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria Commentary Sampling Historical exploration techniques • 1950's: Boliden - Geophysics, drilling and discovery of the Vuostok Storbodsund deposit 2000's: IGO/Mawson: Till/soil sampling, boulder sampling, drill core sampling. The IGO time-domain airborne electromagnetic survey was completed by SkyTEM using their two-coil X and Z) system. Magnetic data was collected simultaneously using a GEM Systems GSMP-32 magnetometer. The IGO FLEM survey was completed by SMOY using a Geonics Protem 37D receiver and TEM 37 transmitter (2.5 Hz frequency) on a 25 m station spacing and 100 m line spacing. The IGO DHEM survey was completed by SMOY using a Geonics BH43-3D probe with a Protem (TEM53) receiver and transmitter system. The transmitter frequency of 25 Hz was used mistakenly instead of 2.5 Hz. Current Exploration – Bayrock Resources Limited Bayrock has completed geological review of selected past drillcore with XRF Bayrock has completed 17 diamond drillholes for 408 metres to check prior drilling and generate material for metallurgical testwork. Samples were assayed using either ICP. • QAQC sampling protocols were carried out to the latest standard. Historical Drilling – Boliden and IGO/Mawson Drilling techniques Drillholes of which 49 drillholes were drilled (~1500m) ٠ Drilling diameters BQ (41mm). Bayrock Drilling 17 Diamond hole (508 metres) Drilling diameters: NQ Drill rigs used: Atlas Copco DBC ESD-9 (track mounted) 0 Drill sample Historical Drilling – Boliden and IGO/Mawson recovery For the Boliden drilling, the section lengths and core recovery lengths are recorded in the drill logs. As evidenced by the core photos, the drill recovery for the IGO/Mawson drilling was consistently very high with little to no core loss observed. There is similar evidence on the core blocks that drill run lengths and recovered lengths were recorded at core retrieval and checked and amended where necessary during the core orientation process. From the limited data available, there does not appear to be a sample bias. Bayrock Drilling Measuring produced core's length vs drill run's length for diamond drilling All measurements were done on site. High core recovery. Logging Historical Exploration - Boliden and IGO/Mawson For both the Boliden and IGO/Mawson drilling, the drillholes have been logged geologically in their entireties. In the case of IGO/Mawson, both holes were also photographed. . The 11 boulder samples collected by IGO/Mawson were also geologically logged

	Criteria	Commentary
		Bayrock Drilling
		All holes were logged by qualified geologists in Malå.
		Quantitative (spreadsheet) logging has been completed
>		Core photography has been completed.
	Sub-sampling	Historical Exploration - Boliden and IGO/Mawson
	techniques and	• For the Boliden diamond drilling there is insufficient information about the sampling
	sample	techniques used and OAOC measures taken but it is most likely that half-core
_	preparation	samples were taken by hand chisel which was standard industry practice at the time.
-		• For the IGO/Mawson drilling, half-core samples were sawn and sampled.
))		• According to Mawson press releases at the time, "duplicates, repeats, blanks and
2		standards were inserted according to standard industry practice".
		• The sampling protocols, certainly that of IGO/Mawson, used were appropriate for
5		the style of mineralisation.
リ		• Given the nature of boulder sampling and non- nominal core sampling, it is likely that
2		such samples may not be representative, and instead are only indicative of
IJ		anomalous elemental concentrations.
		• Core cut using a diamond core saw – both $\frac{1}{2}$ or $\frac{1}{2}$ core
))		 A OA/OC procedure of sample preparation implemented
_		 The blanks and duplicates and standard samples were inserted for OA/OC
		approximately at 1 in 15 samples.
	0 111 (
7	Quality of	Historical Drilling – Boliden and IGO/Mawson
IJ	laboratory	 For the Boliden drilling, there is no information available describing the nature, quality and appropriateness of the assaying and laboratory procedures.
	tests	• For the IGO/Mawson drilling Samples were prepared at ALS Chemex facility in Pitea
_		Sweden then sent to ALS Chemex in Vancouver for assaving using ME-MS61 (four-
_		acid digest mass specfinish) assaying technique
		• For the Mawson boulder sampling, the samples were submitted to ALS Chemex in
2		Piteå for standard prep and ME-ICP61 (four-acid digest, ICP-finish) assaying
)		technique.
D		QAQC data is not visible in the available laboratory files for the IGO/Mawson drilling
		and boulder sampling. It is assumed that ALS Chemex carried out their routine QAQC
5		practices, including duplicates, repeats, blanks, and standards.
))		Bayrock Drilling
\leq		Bayrock samples were submitted to MS Analytical with sample preparation
))		undertaken at their facility in Storuman in Sweden.
- 2		Pulp samples were then sent to the MS Analytical facility in Vancouver Canada.
		Samples to be digested using an industry standard mixed four acid digest with an
_		
	Verification of	Historical Drilling– Boliden and IGO/Mawson
))	sampling and	Boliden drilling: no information available describing the verification of sampling and
	assaying	assaying nor possible adjustment of assay data. The geological logs were made
		IGO/Mawson drilling: no twin boles drilled. DHEM was completed to confirmed
		whether the drillholes intercented the modelled conductors and to test for any off-
		hole conductors, one hole reported v did not test the main modelled conductor.
		There are no other reports of verification of reported mineral intercepts. The
		drillholes appear to have been logged digitally and stored in digital database.
		Bayrock Drilling
		• Preliminary logging was done by site geologists in "hand" and later entered to Excel
		spreadsheets by geologists.
		All data were prepared in accordance with prepared procedure of Bayrock.

	Criteria	Commentary
	Location of data points	 Historical Drilling – Boliden and IGO/Mawson For the Boliden drilling, there is no information available describing the method used for sighting the drillholes, although several of the historic collars have subsequently been located in the field by IGO/Mawson and surveyed with a handheld GPS. Boliden utilised a local grid system. The IGO/Mawson drillholes and boulder samples were sighted/located with a handheld GPS. IGO/Mawson utilised the Swedish RT90 grid system. There is no information related to topographic control Bayrock Drilling
		 Coordinates for the drillholes were completed using a GPS and entered into an Excel spreadsheet.
	Data spacing and distribution	 Historical Drilling – Boliden and IGO/Mawson For the Boliden drilling, there is no nominal drillhole spacing but the vast majority of their holes are clustered in one area where some holes appear to be drilled around 10 m x 10 m grids, 40 m x 40 m and others somewhat sporadically. Where drilled tightly, enough confidence was obtained to produce a geological section which showed good continuity of mineralisation. For the IGO/Mawson drillholes, they were targeting geophysical conductors. The data spacing is suitable for early-stage exploration. There is no information related to sample compositing.
		 Bayrock Drilling 17 drillholes to date. Samples in mineralised zones are sampled to reflect geological contacts or sulphide zonation, so intervals are variable.
	Orientation of data in relation to geological structure	 Historical Exploration - Boliden and IGO/Mawson The Boliden drilling does not appear to have been orientated in such a way as to introduce a sampling bias and the drilling appears to have been drilled perpendicular to the strike of the mineralisation. The IGO/Mawson drilling was targeting specific geophysical conductor targets and comprised a single drillhole into each target, as such there is insufficient information available to determine if a sampling bias has been produced The IGO/Mawson boulder sampling was random.
2		Bayrock Drilling
))		 Drillholes were vertical (90 degrees) to intercept flat lying mineralisation close to right angles to the interpreted mineralisation.
))	Sample security	 Historical Exploration – Boliden and IGO/Mawson Details of measures taken for the chain of custody of samples is unknown for the previous explorers' activities. Bayrock Drilling Samples monitored and controlled from site to sample prep lab
	Audits or reviews	 Historical Exploration No audits or reviews of sampling techniques and data have been undertaken. Bayrock Drilling Not considered necessary at this stage

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	Criteria	Commentary
	Mineral tenement and land tenure status	 The Vuostok property comprises a single granted exploration permit (Vuostok nr 101) located in the Arvidsjaur and Arjeplog municipalities of Norrbotten County in northern Sweden. The property is centred at 65.72° N, 18.42° E. Bayrock has acquired a 100% interest in the Vuostok, Notträsk, Skogsträsk, Fiskelträsk and Kukasjärvi (collectively known as the "Northern Nickel Line") projects from Eurasian Minerals Sweden AB, a wholly owned subsidiary of EMX Royalty Corp. (TSX-V:EMX).
	Exploration done by other parties	 Historical exploration 1940-1942: Prospectors discover trail of nickel-copper mineralised boulders. 1943: Boliden - 13 DDH (9-90m deep), by Boliden, following up sulphide boulders in glacial till. Delineated a thin shallow flat-lying body of massive sulphide covering at least 800m². 1974-1975: Boliden - 2km² IP survey; 29 Diamond Drill holes (12-72m deep) in the general area. Shallow intersection of massive sulphides in drillhole 24. Five Diamond drillholes (maximum 352m) on other strong magnetic anomalies 6-8km NE of the massive sulphide occurrences, intersected wide thicknesses of barren gabbro (1.69m at 3.5% Ni from 33.5m). 2005: Mawson Resources Ltd - Storbodsund nr 1 pegged by Mawson in late 2005. Completed review of prospect then approached contacts in IGO who completed site visit and offered JV. Pegged additional ground (Storbodsund nr 2 and nr 3) 2006-2008: Independence Group NL (IGO) - SkyTEM airborne survey in August 2006, identified 16 EM features (some cultural). Ground EM by SMOY. Defined 5 anomalies, one of which was the drilled mineralisation. Proposed drill holes to test 4 of the 5 anomalies. IGO completed two shallow diamond drillholes in early 2008, intersecting narrow low to moderate grade nickel sulphide mineralisation in both (2m @ 1.8% Ni, 0.5% Cu from 76m depth) . SMOY undertook DHEM on the two drillholes. Interpretation of the data suggested that mineralisation mapped by the FLEM had been intersected. 2020: EMSAB - Field Observations, possibly re-logging of 1 drillhole.
	Geology	 The nickel-copper sulphide mineralisation, between 0.3 and 7.7 meters thick, is hosted at the base of a gabbroic intrusion at the contact with underlying granite. The area is covered by a thin veneer of glacial sediments (till). The Vuostok geology is dominated by alkali feldspar granite of the Arvidsjaur Suite, dated at around 1.88 Ga, intruded by irregular bodies of gabbroic to dioritic composition. Mineralisation includes massive sulphide and semi-massive clustered sulphide (pyrrhotite, pentlandite and chalcopyrite) near the basal portions of the intrusion.
))	Drill hole Information	 Current drilling included in Table 1 and 2. Suitable maps showing the mineralisation have been presented in this report.
	Data aggregation methods	 Although not reported by IGO/Mawson, it is assumed that the reported mineralised intercepts were length-weighted averages as per standard industry practice. Length weighted averaging is used for material intervals. Metal equivalents are not used.
	Relationship between mineralisation widths and	• Based upon the current understanding of the mineralisation geometry, the drilling generally intersected the mineralisation at close to right angles to the mineralisation.

Criteria	Commentary
intercept	
lengths	
Diagrams	 Appropriate Maps sections and figures are included in this report together with tabulations of meaningful intercepts.
Balanced reporting	 Significant intercepts have been previously reported for the historical drill data. A tabulation of significant intercepts are included in this report for current drilling.
Other substantive exploration data	 Photos of mineralisation are included.
Further work	 Bayrock is considering further geophysical exploration and diamond drilling within the mineralisation and to extend mineralisation to the north and conduct additional works as required.