

EXPLORATION UPDATE

LOCATION: Southern California, USA

12.1% (121,388 ppm) TREO HIGH-GRADE ROCKCHIPS FROM EL CAMPO

Highlights:

- Surface sampling program has returned very high-grade assays up to 12.1% (121,388 ppm) Total Rare-Earth Oxide (TREO's) and 3.19% (31,940 ppm) NdPr¹.
- A total of 171 rock-chip samples have been assayed for a full suite of elements by American Analytical Services (AAS).
- 12 rock-chip samples returned TREO grades over 1%.
- The mapping and sampling program identified a 860m long interpreted prospective horizon associated with high-grade outcropping samples between 1.03% and 12.1% TREO.
- Applications for drilling have been lodged with the BLM (Bureau of Land Management) to undertake 5-6 diamond holes to follow-up the high-grade TREOs. Drillholes will target the El Campo 'lode'.

Figure 1: Historic El Campo 'lode' running 12.1% TREO - Dipping 75° to the south-west

ASX RELEASE 20 September 2023

LOCKSLEY RESOURCES LIMITED

ACN 629 672 144

Level 8, London House 216 St Georges Terrace Perth Western Australia 6000 Tel: +61 (08) 9481 0389 Facsimile: +61 (08) 9463 6103

CONTACT

Mr Stephen Woodham Managing Director Tel: +61 417 293 449 woodhams@locksleyresources.com.au

DIRECTORS

Adam Giles Stephen Woodham Stephen Brockhurst

TICKER ASX: LKY

SHARES ON ISSUE 146,666,665

LOCKSLEY RESOURCES LIMITED ACN 629 672 144

Level 8, London House 216 St Georges Terrace Perth Western Australia 6000 Tel: +61 (08) 9481 0389 Facsimile: +61 (08) 9463 6103

CONTACT

Mr Stephen Woodham Managing Director Tel: +61 417 293 449 woodhams@locksleyresources.com.au

DIRECTORS

Adam Giles Stephen Woodham Stephen Brockhurst

TICKER ASX: LKY

SHARES ON ISSUE 146,666,665

Locksley Resources Limited (ASX:LKY) ("Locksley" or "the Company") is excited to announce that the rockchip sampling program recently completed over Mojave's North Block, South Block, and EL Campo leases have returned 12 high-grade samples ranging from 1.03% to 12.1% TREO along the interpreted mineralised horizon located within the highly prospective rare-earth-elements (REE) project in the Mojave Desert, USA.

Locksley Resources Limited Managing Director, Steve Woodham commented:

"The recent successful mapping and sampling program at the Mojave Project area has identified a prospective zone that continues for over 800 metres, including a rock chip assay of over 12% TREO. These grades are significant and provide the group with strong drilling targets which will commence on receipt of the drilling approvals.

Given the location of the Project and its proximity to existing infrastructure, the identification of high-grade TREO samples represents a unique opportunity for the Company to commit to a drilling program which will target the high-grade surface samples.

The high-grade Mountain Pass mine and processing facility sits within close proximity to the El Campo prospect.

The Company is well funded to commence further work and the Board look forward to informing the market closer to the commencement of drilling."

Twelve (12) samples have returned assays greater than 1% TREO, ranging between 1.03% to 12.14% TREO's, the high-grade 12.1% TREO rock-chip sample was collected from the outcropping gossan identified during the mapping and sampling program² completed in August.

The mapping identified an interpreted prospective horizon that extends for 860m. The highest-grade samples collected within the El Campo claims are associated with a line of historic workings developed on the mapped gossan reported on the 6th September, seven (7) samples over 46m strike returned over 1% TREO, five (5) of those over 3% TREO (including 12.1% TREO) were collected along the line of workings.

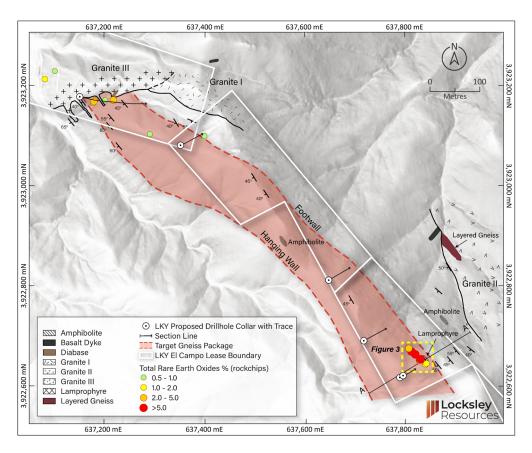


Figure 2: Plan view mapped prospective horizon and rockchip samples. Yellow square = El Campo 'lode' gossan (Figure 3)

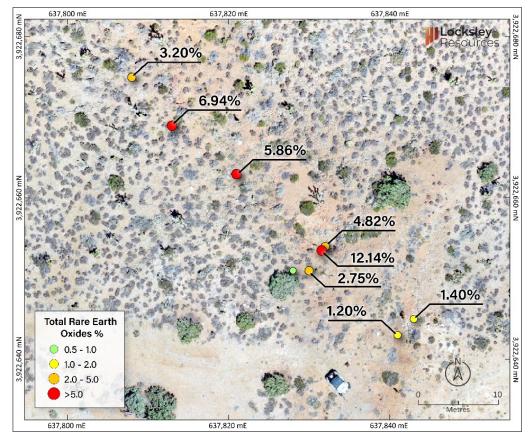


Figure 3: El Campo 'lode' gossan high-grade TREO rock-chip samples (on drone orthomosaic)

The surface expression of the sampled gossan was seen as an oxide stain shedding down slope in detailed drone orthomosaic imagery (figure 3) but could not be traced further than 46m under a steep scree slope to the north-west so remains open under cover along strike. The El Campo 'lode' runs close to parallel to the footwall of the mapped prospective horizon mapped for 860m.

Applications have been lodged with the Bureau of Land Management (BLM) for core drilling to test the down dip continuity. Drilling will get underway as soon as practicable after approvals have been received. The first priority holes will be to target the down-plunge El Campo 12.1% TREO 'lode'.

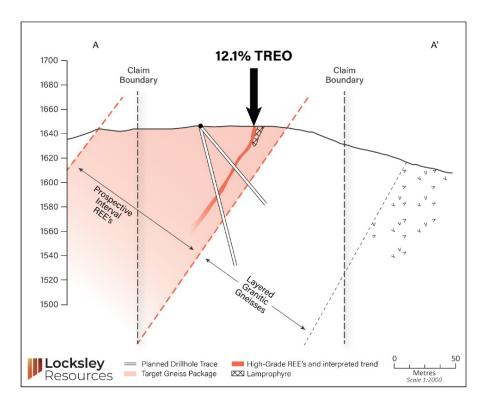


Figure 4: Interpreted cross-section El Campo 'lode' and planned priority drillholes

The percentage of Neodymium and Praseodymium Oxide (NdPr) for the samples greater than 1% TREO average 26% NdPr, the high-grade sample that returned 12.1% TREO assayed 2.60% Neodymium Oxide (Nd2O3), 0.59% Praseodymium Oxide (Pr2O3), 4.88% Cerium Oxide (Ce2O3) and 2.32% Lanthanum Oxide (La2O3).

Neodymium and Praseodymium (often abbreviated as NdPr) are critical elements used to make high-strength magnets used in wind turbines and electric vehicle motors that play a pivotal role in the emerging green technology industries.

Cérium and Lanthanum are used in various applications across different industries like catalysts, glass, fuel additive industries and high-temperature alloys to name a few.

The Board of Directors of Locksley Resources Limited authorised the release of this announcement.

Further information contact:

Mr Stephen Woodham Managing Director T: +61 8 9481 0389

E: woodhams@locksleyresources.com.au

CONTACT

Mr Stephen Woodham Managing Director Tel: +61 417 293 449 woodhams@locksleyresources.com.au

Facsimile: +61 (08) 9463 6103

DIRECTORS

Adam Giles Stephen Woodham Stephen Brockhurst

TICKER ASX: LKY

SHARES ON ISSUE 146,666,665

Compliance Statements

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of the Company. Actual values, results or events may be materially different to those expressed or implied in this document. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. No representation is made that, in relation to the tenements the subject of this presentation, the Company has now or will at any time the future develop resources or reserves within the meaning of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves.

Cautionary Statement

Visual estimates described in the announcement are a guide only and should never be considered a proxy or substitute for laboratory analysis. Only subsequent laboratory geochemical assay can be used to determine grade of mineralisation. LKY will always update shareholders when laboratory results become available.

Competent Persons

The information in this document that relates to exploration targets, exploration results, mineral resources or ore reserves is based on information compiled by David Ward BSc, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AUSIMM), (Member 228604). David Ward is a shareholder of Locksley Resources Ltd. David Ward has over 25 years of experience in metallic minerals mining, exploration and development and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a 'Competent Person' as defined under the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Ward consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

LOCKSLEY RESOURCES LIMITED ACN 629 672 144

Level 8, London House 216 St Georges Terrace Perth Western Australia 6000 Tel: +61 (08) 9481 0389 Facsimile: +61 (08) 9463 6103

CONTACT

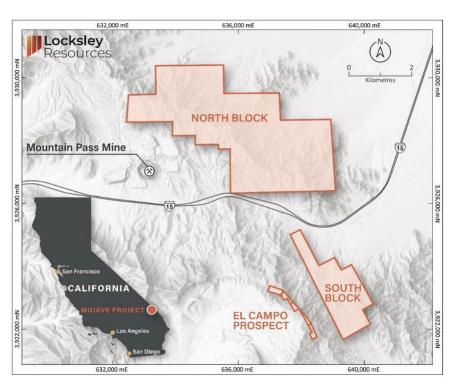
Mr Stephen Woodham Managing Director Tel: +61 417 293 449 woodhams@locksleyresources.com.au

DIRECTORS

Adam Giles Stephen Woodham Stephen Brockhurst

TICKER ASX: LKY

SHARES ON ISSUE 146,666,665


About Locksley Resources Limited

Locksley Resources Limited (ASX:LKY) is an ASX-listed minerals explorer with a focus on copper, gold and base metal assets throughout Australia. LKY is also active in exploring for Rare-Earth Element (REE) projects located in the United States of America (USA), positioning LKY as a player in the fast-growing REE exploration market. LKY aims to build shareholder wealth through the discovery and development of mineral deposits across various Australian and USA projects; being the Tottenham Project and Mojave Project.

Mojave Project

The Mojave Project is in the Mojave Desert, California, USA. Consisting of three areas: The North Block is comprised of 164 claims totalling 14.9 km², South Block comprising of 32 claims totalling 3.5 km², and El Campo Prospect comprising of 5 claims totalling 0.34 km².

The Mojave Project is positioned next to one of the highest-grade REE mines in the world and multiple significant carbonatite REE veins have been identified. The Mojave Project has returned high grade TREO rock-chip results of up to 9.49%.

MOJAVE PROJECT – Location of the Mojave Project Blocks in south-eastern California, USA

LOCKSLEY RESOURCES LIMITED

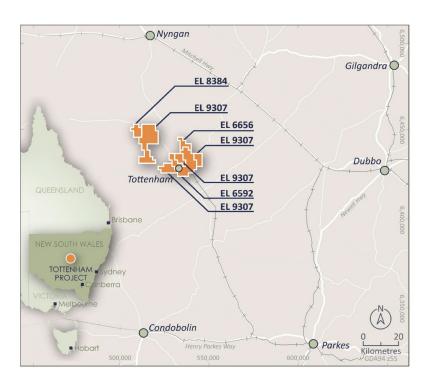
ACN 629 672 144

Level 8, London House 216 St Georges Terrace Perth Western Australia 6000 Tel: +61 (08) 9481 0389 Facsimile: +61 (08) 9463 6103

CONTACT

Mr Stephen Woodham Managing Director Tel: +61 417 293 449 woodhams@locksleyresources.com.au

DIRECTORS


Adam Giles Stephen Woodham Stephen Brockhurst

TICKER ASX: LKY

SHARES ON ISSUE 146,666,665

Tottenham Project

The Tottenham Project is an advanced Cu-Au exploration project that consists of four Exploration Licences, (EL6592, EL6656, EL8384, EL9307), covering 470km2, located in the Lachlan Fold Belt of central New South Wales.

TOTTENHAM PROJECT - Location of the Tottenham Project in central NSW, Australia

The Tottenham deposits are hosted within the Ordovician Girilambone Group that also host the Tritton and Girilambone Mines and Constellation Deposit, 110km to the north-northwest (Aeris Resources Ltd.), and is immediately along strike from the CZ Copper Deposit (Helix Resources Ltd.). Resources have been defined at both the Mount Royal to Orange Plains and Carolina Deposits for a global inferred resource of:

9.86Mt @ 0.72% Cu, 0.22g/t Au, 2g/t Ag at a 0.3% Cu cut off

The Competent Person for the Tottenham Project 2022 Resource is Mr Jeremy Peters FAusIMM CP(Geo, Min), a Director of Burnt Shirt Pty Ltd. The Mineral Resource estimate is stated in accordance with the provisions of the JORC Code (2012). Mr Peters has more than five years' experience in the estimation and reporting of Mineral Resources for base metals mineralisation in Australia and overseas, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Peters consents to the inclusion in the presentation of the matters based on his information in the form and context in which it appears.

Table 1: Mojave Rockchip Assays

Sample_ ID	Easting_ NAD- 83Zone11	Northing_ NAD- 83Zone11	Ce2O3	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr2O3	Sc2O3	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	NdPr Oxide%	TREO%
307382	637828	3922652	48800	254	49.4	674	1840	27.5	23200	2.53	26000	5940	8.94	3670	95	10600	3.61	223	3.19	12.14
285476	637813	3922669	28800	153	32.6	381	1070	17	13900	1.71	15100	3540	6.38	2220	56.5	4040	2.61	54.1	1.86	6.94
285475	637821	3922663	24800	104	19.7	286	870	10.5	11800	2.42	13100	3020	4.87	1840	43.1	2640	1.5	49.7	1.61	5.86
285469	637832	3922654	19600	129	30.9	298	785	15.4	9180	2.04	10500	2430	10.9	1610	45.3	3510	2.86	67.4	1.29	4.82
285441	637179	3923168	20900	44.8	12.4	98.1	278	5.64	12000	0	7590	2050	15.3	631	16.2	782	0	29.1	0.96	4.45
285477	637808	3922675	13200	78.8	16.2	196	510	8.53	6100	0	7320	1660	9.03	1130	29.5	1660	1.33	44.8	0.90	3.20
307381	637830	3922651	14.3	120	26.9	280	746	13.9	8920	1.44	10600	2410	10.3	1540	41.6	2670	2.33	134	1.30	2.75
257445	637218	3923171	9120	49.3	14.4	89.9	234	6.51	4410	1.21	4540	1120	19.3	521	15.3	860	1.58	64.1	0.57	2.11
285470	637843	3922645	5770	36	7.97	83.8	222	4.09	2740	0	3230	7.31	4.84	462	13.2	1390	0	17.1	0.32	1.40
285467	637841	3922643	5320	61.7	16.2	80.6	221	8.08	2370	0	2690	651	17.3	407	17.3	92.1	1.6	15.9	0.33	1.20
285473	637081	3923213	538	35.1	11.2	21.4	71.2	5.24	257	0	319	66.8	119	81.4	7.64	9750	1.25	64.9	0.04	1.13
285440	637181	3923170	4690	20.6	5.67	37.4	98.1	2.63	2470	0	2020	527	16.5	207	6.67	209	0	10.8	0.25	1.03
257479	637400	3923099	3170	15	3.19	32.6	93.3	1.69	1500	0	1620	389	8.41	190	5.49	345	0	3.98	0.20	0.74
307377	637828	3922651	2830	20.1	5.03	37.6	101	2.47	1260	0	1590	362	7.22	199	6.49	414	0	34.7	0.20	0.69
285474	637101	3923229	2170	15.3	3.81	27	74.2	1.84	1020	0	1150	271	73.1	153	4.86	1110	0	5.51	0.14	0.61
285458	637291	3923103	1130	17.9	4.07	23.3	63.9	2.18	553	0	596	145	22.8	105	5.23	2930	0	68.2	0.07	0.57
285439	637178	3923165	2440	17.7	4.02	25.6	71.2	2.13	1300	0	1090	278	6.63	137	5.31	18.7	0	1.11	0.14	0.54
285444	637202	3923171	2110	21	8.41	18.7	52.2	3.47	1140	0	924	242	17.7	99.1	4.68	349	1.04	26.2	0.12	0.50
257450	637316	3923170	1480	19.3	5.34	26.7	72.9	2.57	685	0	918	204	58.2	135	5.58	1240	0	36	0.11	0.49
257485	637446	3923067	2100	8.92	2.64	15.3	42.6	1.2	619	0	671	177	17.3	85.4	2.8	650	0	8.81	0.08	0.44
285442	637187	3923176	3270	7.11	2.43	9.38	25.2	1.05	410	0	372	94.2	22.3	49.1	1.87	92.3	0	11.2	0.05	0.44
285420	637162	3923185	1890	7.9	2.64	13.6	38.2	1.12	1090	0	806	213	9.41	82.2	2.52	10.9	0	5.14	0.10	0.42
252427	638189	3928134	3230	5.53	1.35	2.31	16.7	0	207	0	160	42.5	1.91	23.9	1.46	111	0	1.04	0.02	0.38
285422	637167	3923190	2950	9.01	3.05 3.05	5.23	16.6	1.35	248	0	187 690	48.6	8.72	25.2	1.92	42.9	0	5.62 2.73	0.02	0.36
2854ll 285462	637179 637532	3923168 3923047	1570	3.48		16.4	46.9 5.14	1.51 0	833	0	35.2	184	8.99	89.9 6.69	3.51	18.5	0	0		0.35
			3120		1.74	1.07			41.4			9.17	12.4			18.8			0.00	
307375	637128	3926504	3110	2.03	0	0	3.2	0	17	0	16.6	4.23	3.69	3.28	0	10.2	0	3.94	0.00	0.32

Sample_ ID	Easting_ NAD- 83Zone11	Northing_ NAD- 83Zone11	Ce2O3	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr2O3	Sc2O3	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	NdPr Oxide%	TREO%
285401	634895	3929847	3150	0	0	0	1.63	0	10.1	0	7.24	1.69	1.46	1.66	0	2.33	0	0	0.00	0.32
252409	638896	3924013	3060	1.01	0	1.48	3.03	0	21.3	0	17.8	4.59	3.25	3.53	0	14.7	0	0	0.00	0.31
257481	637327	3923095	2990	4.26	0	1.48	7.16	0	40.5	0	38.8	9.67	3.81	7.14	0	18.6	0	1.55	0.00	0.31
257446	637292	3923166	1350	16.5	5.43	17.7	48.9	2.35	635	0	691	173	11.9	89.1	4.26	61.5	0	13	0.09	0.31
285466	637851	3922633	1080	11.2	3.85	14	38.3	1.65	527	0	534	129	8.02	74.2	3	277	0	4.11	0.07	0.27
285426	637314	3923170	675	10.8	3.18	12.6	35.2	1.5	356	0	348	80.1	17.5	58.3	2.94	910	0	37.6	0.04	0.25
307384	637828	3922650	967	37.5	13.6	25.3	73.7	6.02	425	0	512	116	10.3	103	8.08	73.8	1.34	4.83	0.06	0.24
252432	637221	3928049	579	11.6	3.08	9.66	37.2	1.51	268	0	278	64.7	14.6	49.3	3.3	81.6	0	8.56	0.03	0.14
307379	637830	3922651	544	14.2	3.79	11	33.7	1.9	270	0	236	58.6	12	44.8	3.46	84.9	0	5.38	0.03	0.13
285448	637313	3923157	431	11.8	5.8	6.29	19.1	2.19	205	0	209	49.6	24.3	30.4	2.06	157	0	6.11	0.03	0.12
285446	637236	3923188	511	5.92	2.09	4.79	13.3	0	291	0	167	48.9	7.46	20	1.35	25	0	2.59	0.02	0.11
307383	637828	3922650	413	12.9	3.7	14.6	36.1	1.81	197	0	244	52.1	19.7	54	3.42	30.3	0	4.03	0.03	0.11
285455	637290	3923141	428	5.43	1.79	4.07	14.4	0	239	0	179	45.6	6.87	24.5	1.35	28	0	3.06	0.02	0.10
285445	637235	3923180	429	6.1	2.28	4.3	13.1	0	233	0	150	42.3	6.6	19.3	1.37	20.8	0	1.81	0.02	0.09
252434	637210	3928060	393	4.4	1.08	6.57	20.7	0	184	0	179	42.7	10.5	32.4	1.42	48.7	0	4.43	0.02	0.09
252437	637408	3928359	368	6.41	2.99	0	13.4	1.15	185	0	140	36.7	34.6	18.7	1.42	112	0	0	0.02	0.09
252444	634184	3929173	197	6.44	1.34	0	13.7	0	84.9	0	78	20.5	358	14.7	1.67	49.2	0	4.55	0.01	0.08
285454	637309	3923137	334	6.73	2.64	2.81	13.5	1.12	160	0	142	36.7	2.62	20.3	1.45	36.8	0	3.04	0.02	0.08
257486	637452	3923065	277	3.49	0	5.8	15.3	0	124	0	163	36.6	7.42	28.2	1.13	79.3	0	1.6	0.02	0.07
252439	637377	3926695	311	2.57	0	1.89	11.4	0	162	0	129	31.6	4.19	19.6	0	14.2	0	7.04	0.02	0.07
252405	637244	3928947	311	8.56	3.37	2.05	14.9	1.44	141	0	121	31.6	9.51	18.2	1.76	25.7	0	0	0.02	0.07
285465	637728	3922700	271	14.9	2.57	2.74	27.7	1.73	121	0	120	30.1	0	27.2	3.75	38.2	0	2.62	0.02	0.07
307307	636328	3928891	251	10.7	3.89	5.52	23.4	1.69	94.1	0	129	28.6	5.22	26.8	2.43	42.2	0	12.7	0.02	0.06
285478	637214	3926481	240	4.76	1.57	4.18	12.6	0	111	0	118	27.3	18.1	18.3	1.15	11.8	0	0	0.01	0.06
285408	634434	3929806	195	6.13	2.65	1.23	10.7	109	87.4	0	78	20.6	6.64	13	1.27	30.6	0	1.88	0.01	0.06
252426	638129	3928067	228	4.53	0	0	13.3	0	99.2	0	93.7	23.5	0	17	1.22	82.9	0	1.19	0.01	0.06
252435	637188	3928012	218	4.41	2.33	1.33	10.2	0	96.9	0	85.4	22.1	5.05	14.1	0	71.1	0	1.14	0.01	0.05
257478	637407	3923102	209	5.02	1.98	4.43	12.3	0	84.6	0	109	24.7	20.7	19	1.12	22.1	0	2.03	0.01	0.05

Sample_ ID	Easting_ NAD- 83Zone11	Northing_ NAD- 83Zone11	Ce2O3	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr2O3	Sc2O3	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	NdPr Oxide%	TREO%
285406	634875	3929828	214	3.94	1.21	2.29	11.8	0	98.8	0	96.7	23.8	7.09	16.9	1.04	32.6	0	0	0.01	0.05
285418	637148	3928997	212	2.03	0	1.23	6.96	0	104	0	82.6	22.1	1.36	10.9	0	59.5	0	0	0.01	0.05
307396	633410	3928678	205	2.79	0	2.89	8.77	0	108	0	85.6	21.2	15.9	12.1	0	4.08	0	3.35	0.01	0.05
307306	636291	3928957	215	4.12	1.58	2.18	7.15	0	100	0	77.9	21.2	11.2	9.34	0	10.4	0	1.82	0.01	0.05
285434	637187	3923167	190	3.73	1.18	2.03	9.87	0	89.8	0	80.5	20.8	6.11	13.6	0	41.9	0	1.31	0.01	0.05
257444	637210	3923184	138	2.4	0	2.45	7.36	0	56.3	0	80.3	18.3	12	13	0	104	0	3.74	0.01	0.04
285461	637506	3923027	154	2.66	1.13	2.53	8.37	0	71.9	0	88.3	20.3	13.2	14.1	0	43.4	0	1.15	0.01	0.04
252438	637395	3926700	179	2.09	0	1.17	7.87	0	90.2	0	74.1	18.3	2.95	12	0	11.1	0	7.64	0.01	0.04
257477	637422	3923105	121	6.04	2.66	2.38	8.67	1.08	59.1	0	62.4	15.1	14.4	11.4	1.11	49.6	0	2.26	0.01	0.04
285430	637167	3923150	148	0	0	1.79	5.43	0	69.4	0	58.8	15.7	0	9.53	0	37.8	0	0	0.01	0.03
252433	637262	3928064	10.8	5.04	2.25	1.85	10.4	0	96.2	0	82.3	21.1	8.21	13.2	1.01	77.3	0	1.57	0.01	0.03
257452	637337	3923163	118	6.15	3.77	1.79	6.54	1.24	60.3	0	52.6	13.4	19.4	8.18	0	25.5	0	1.26	0.01	0.03
285428	637343	3923172	11.6	2.72	0	1.39	8.73	0	126	0	86.3	24.2	1.81	12.4	0	40	0	2.06	0.01	0.03
285410	637135	3928972	125	2.64	0	0	5.86	0	63.4	0	53.2	14.1	10.7	8.04	0	30.4	0	2.46	0.01	0.03
257448	637340	3923124	113	5.72	3	1.12	7.5	1.09	56	0	51.9	13	19.3	8.79	0	24.9	0	2.58	0.01	0.03
252436	637170	3927981	121	1.78	0	0	6.54	0	58.3	0	53.7	13.8	1.73	8.9	0	36	0	1.48	0.01	0.03
307397	633412	3928677	120	2.42	0	1.83	6.19	0	66.4	0	52.5	13.3	7.89	7.58	0	12.4	0	2.06	0.01	0.03
285480	637213	3926479	119	3.71	1.6	2.22	7.8	0	61.6	0	58.2	14.1	4.4	9.54	0	6.5	0	2.85	0.01	0.03
257484	637419	3923044	118	1.71	0	1.35	5.15	0	59.5	0	49.3	13	3.76	7.55	0	26.7	0	1.05	0.01	0.03
257495	637759	3922799	104	5.02	0	0	11.6	0	46.6	0	52.1	12.6	2.87	12	1.35	34.5	0	1.9	0.01	0.03
285464	637746	3922705	102	5.59	3.33	1.3	7.36	1.19	51.6	0	45.7	11.7	12.7	8.25	0	21.6	0	2.09	0.01	0.03
285421	637165	3923188	105	4.62	2.58	1.61	5.86	0	55.4	0	48.3	12.1	19.6	7.72	0	10.9	0	1.15	0.01	0.03
257480	637378	3923082	107	1.05	0	1.18	4.24	0	52.9	0	45.8	12.3	1.67	7.13	0	32.4	0	0	0.01	0.03
252441	637430	3926636	102	2.28	0	0	5.82	0	52.2	0	45.3	11.6	11.6	7.36	0	20.8	0	2.07	0.01	0.03
257494	637755	3922773	106	2.89	1.18	1.1	4.81	0	56.2	0	41.9	11.4	9.84	5.71	0	15.1	0	1.22	0.01	0.03
285436	637161	3923153	100	3.71	1.45	1.77	7.33	0	48.3	0	49.4	11.9	14.2	8.97	0	11.1	0	0	0.01	0.03
257493	637727	3922741	94	5.06	2.45	1.03	6.52	0	47.6	0	42.6	10.9	14.1	7.39	0	17.6	0	2.54	0.01	0.03
307302	632742	3928589	94.4	3.86	1.62	2.19	6.76	0	47.9	0	46.8	11.2	11.8	8.55	0	6.94	0	2.13	0.01	0.02

Sample_ ID	Easting_ NAD-	Northing_ NAD-	Ce2O3	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr2O3	Sc2O3	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	NdPr Oxide%	TREO%
285433	83Zonell 637182	83Zonell 3923163	91.3	3.88	1.83	1.56	6.24	0	45.9	0	41.9	10.6	12.2	7.39	0	18.3	0	0	0.01	0.02
307305	636274	3928911	64	1.14	0	1.38	4.73	0	27.2	0	35	7.85	0	6.7	0	7.94	0	81.9	0.00	0.02
285457	637264	3923129	90.9	3.38	1.78	1.26	5.7	0	44.5	0	39.2	10.1	10	7.1	0	19.6	0	0	0.00	0.02
285405	634878	3929846	89	2.61	0	0	5.26	0	42.7	0	40.3	10.5	6.32	7.2	0	25.4	0	4.15	0.01	0.02
285423	637173	3923193	80.4	2.14	0	1.21	5.09	0	39.3	0	39.6	9.81	12.4	7.11	0	24.1	0	3.97	0.00	0.02
285427	637359	3923182	93.1	3.66	1.46	1.22	5.97	0	41.4	0	42.5	11	8.77	7.16	0	7.58	0	0	0.01	0.02
285425	637295	3923178	88.1	3.58	1.33	1.73	6.2	0	43.2	0	41.7	10.5	7.84	7.3	0	11.1	0	0	0.01	0.02
285424	637217	3923205	79.7	1.99	0	1.37	4.45	0	39	0	41	9.77	9.97	7.54	0	19	0	8.61	0.01	0.02
307376	637094	3926577	84	3.3	1.14	0	5.5	0	42.5	0	37.5	9.57	7.55	6.65	0	17.4	0	6.59	0.00	0.02
257447	637346	3923128	87	3.6	1.94	1.28	4.65	0	37.1	0	33.5	8.6	12.3	5.63	0	15.6	0	1.47	0.00	0.02
285409	634341	3929782	94.7	3.22	1.38	0	5.56	0	36	0	35.3	9.12	4.14	6.4	0	11.9	0	3.11	0.00	0.02
257492	637149	3923258	72.6	4.31	1.99	2	7.03	0	29.7	0	43.8	9.8	16.3	7.75	0	3.69	0	2.23	0.01	0.02
307378	637830	3922652	73.6	3.08	1.14	1.73	6.16	0	40	0	40.4	9.68	3.73	7.2	0	14.3	0	0	0.01	0.02
285415	634523	3929783	73.5	3.42	1.87	0	5.14	0	37.8	0	33.3	8.59	9.15	6.11	0	18.4	0	2.62	0.00	0.02
285438	637172	3923164	80.2	2.41	0	1.52	4.92	0	40.3	0	40.8	9.89	5.43	6.96	0	8.11	0	0	0.01	0.02
285435	637195	3923168	73	3.44	1.74	1.15	4.96	0	36.6	0	32.1	8.24	15.4	5.68	0	15.6	0	0	0.00	0.02
307389	633751	3929115	70.9	2.52	1.15	0	5.22	0	34.9	0	31.7	8.15	3.01	6.5	0	27.9	0	3.99	0.00	0.02
285453	637324	3923127	65.1	3.18	1.7	1.02	4.77	0	34.4	0	31.2	8.03	12.8	5.78	0	16.3	0	1.34	0.00	0.02
307385	637003	3923282	69.2	2.53	1.18	1.19	4.78	0	33.1	0	33.6	7.97	8.77	5.81	0	9.32	0	1.48	0.00	0.02
252431	637448	3928480	67.8	2.1	0	0	4.91	0	32.9	0	31.5	7.78	6.61	6.07	0	14.9	0	1.92	0.00	0.02
285456	637255	3923136	69.9	2.11	0	1.28	4.5	0	33.6	0	31.3	7.97	5.09	6.08	0	14.5	0	0	0.00	0.02
307304	636251	3928921	70.6	1.92	0	0	4.26	0	33.7	0	29.9	7.72	5.46	4.89	0	11.8	0	2.29	0.00	0.02
257491	637183	3923278	62.8	3.9	1.94	1.35	5.03	0	30.7	0	30.7	7.4	10.4	5.69	0	6.11	0	1.38	0.00	0.02
285482	633729	3929119	57.3	3.17	0	0	5.57	0	26.3	0	27.2	6.94	4.36	6.07	0	29.2	0	3.19	0.00	0.02
252425	638311	3928101	65.9	1.66	0	1.05	4	0	33.9	0	27.7	7.33	3.85	4.78	0	17.1	0	0	0.00	0.02
285471	637119	3923298	66.8	2.2	1.11	0	3.56	0	29	0	29.1	7.25	5.81	5.08	0	16.3	0	0	0.00	0.02
285437	637161	3923154	66	1.64	0	1.43	3.41	0	33.9	0	29.3	7.56	4.73	4.86	0	12.5	0	0	0.00	0.02
252404	637049	3928792	67.9	1.69	0	1.74	3.45	0	35	0	27.5	7.42	1.34	4.31	0	12.7	0	0	0.00	0.02

Sample_ ID	Easting_ NAD-	Northing_ NAD-	Ce2O3	Dy203	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr2O3	Sc2O3	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	NdPr Oxide%	TREO%
	83Zone11	83Zonell	F0.0	0.51	0	1.01	4.70	0	00.5	0	07.0	0.00	0.00	F.00	0	11.1	0	0.00		0.00
307387	636995	3923268	58.8	2.51	0	1.31	4.79	0	28.5	0	27.8	6.63	6.33	5.08	0	11.1	0	8.99	0.00	0.02
252410	638875	3924061	39.2	1.46	0	0	2.58	0	19.6	0	17.5	4.5	1.18	3.12	0	64	0	1.96	0.00	0.02
285468	637831	3922653	10.4	7.87	2.86	4.36	12.1	1.22	28.7	0	39.1	8.34	9.08	13.8	1.58	6.05		2.69	0.00	0.01
257489	637216	3923261	55.9	2.24	0	0	3.36	0	28.4	0	24.4	6.29	4.93	4.18	0	15.4	0	2.54	0.00	0.01
257451	637319	3923166	55.5	2.44	0	1.48	4.7	0	23.3	0	31.3	7.46	4.96	6.13	0	6.68	0	0	0.00	0.01
257449	637332	3923098	49.3	3.57	1.71	1.06	4.32	0	22.3	0	26.3	6.24	14.1	4.68	0	5.99	0	1	0.00	0.01
307380	637830	3922653	53	2.24	0	0	3.83	0	28.3	0	28.8	7	4.04	4.89	0	10.7	0	0	0.00	0.01
285483	633750	3929123	51.7	1.55	0	0	3.64	0	26.2	0	23.8	6.09	2.72	4.51	0	18.7	0	2.12	0.00	0.01
257496	637769	3922754	49.9	3.91	1.44	1.08	5.6	0	23.4	0	25.6	6.29	7.48	5.59	0	4.68	0	2.41	0.00	0.01
285459	637461	3922965	48	2.43	1.39	1.05	3.38		24.5	0	21	5.35	8.96	4.03	0	13.3	0	0	0.00	0.01
285431	637175	3923154	49	2.96	1.46	1.22	4.92	0	22.7	0	25.1	5.96	10.2	5.51	0	3.64	0	0	0.00	0.01
285443 285463	637199	3923183	41.7	3.58	2.18	1.12	4.16	0	20.7	0	21.8	5.06	21.7	3.79	0	1.86	0	0	0.00	0.01
	637767	3922710	47	1.81	1.06	0	2.46	0	25.4		18.7	5	5.77	3.08	0	7.83	0	0	0.00	0.01
252414 257483	638438	3928143 3923034	39.8	3.33	1.87	1.03	3.96	0	20.7	0	20.8	4.86	8.46	4.06 2.93	0	3.96	0	1.4	0.00	0.01
285451	637309	3923034	47.5 42.1	2.43	0	1.32	2.12 4.56	0	24.9 19.3	0	19.4	5.29 5.27	1.53 5.69	4.77	0	10.6	0	0	0.00	0.01
285402	634895	3923101	45	0	0	0	2.61	0	23.7	0	21.9	5.54	1.48	3.59	0	9.01	0	1.39	0.00	0.01
257490	637208	3923268	28.4	4.84	2.87	1.31	4.81	1.02	13.6	0	16.7	3.63	18.9	3.94	0	4.49	0	2.43	0.00	0.01
257490	637256	3923206	11.8	1.04	0	0	2.2	0	39.4	0	27.6	7.72	2.21	3.26	0	12.3	0	2.43	0.00	0.01
252424	638723	3923257	38.3	2.83	1.41	0	3.44	0	18.5	0	17.4	4.41	7.12	3.18	0	7.67	0	2.43	0.00	0.01
285447	637339	3923159	26.2	4.5	3.05	0	3.5	0	13.7	0	14.1	3.25	26.4	2.86	0	8.08	0	0	0.00	0.01
285479	637213	3926480	40.1	1.31	0	0	2.75	0	21.7	0	20.1	5.05	2.01	3.72	0	7.96	0	0	0.00	0.01
307390	637050	3929045	37	0	0	0	2.19	0	18.9	0	16.2	4.16	4.95	2.75	0	6.69	0	2.67	0.00	0.01
285460	637487	3922945	36.4	0	0	1.32	1.66	0	20.1	0	15.2	4.10	1.12	2.73	0	12.5	0	0	0.00	0.01
307308	636409	3928886	32.3	2.86	0	1.07	4.89	0	13.7	0	18.9	4.2	2.91	4.25	0	5.31	0	1.6	0.00	0.01
285429	637161	3928886	30.7	2.35	1.02	1.07	3.97	0	13.7	0	18.5	4.14	10.5	4.25	0	0.31	0	0.0	0.00	0.01
257499	637205	3926447	32.3	1.5	0	0	3.15	0	16.7	0	15.5	3.8	1.53	3.11	0	6.68	0	1.49	0.00	0.01
285417	637147			0	-	0		0		0				2.26	0		0	0	0.00	
285417	03/14/	3928999	34.8	U	0	U	1.38	U	18.4	l 0	14.2	3.83	2.82	2.20	U	8.32	U	U	0.00	0.01

Sample_ ID	Easting_ NAD-	Northing_ NAD-	Ce2O3	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr2O3	Sc2O3	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	NdPr Oxide%	TREO%
307400	83Zonell 638875	83Zonell 3923973	32	0	0	1.22	2.25	0	16.3	0	14.9	3.61	2.53	2.75	0	6.07	0	1.53	0.00	0.01
285419	637142	3923171	17	3.59	2.05	0	3.35	0	8.24	0	11	2.31	30.7	2.82	0	1.31	0	0	0.00	0.01
307388	636999	3923268	29.7	1.57	0	0	3.18	0	13.9	0	16.3	3.78	4.43	3.52	0	4.95	0	0	0.00	0.01
252416	632472	3928859	32.1	1.44	0	0	2.09	0	15.1	0	13.8	3.54	3.18	2.56	0	7.21	0	0	0.00	0.01
307386	636997	3923267	28.8	1.25	0	0	2.28	0	13.6	0	14.4	3.42	4.55	2.79	0	6.19	0	1.38	0.00	0.01
252422	638984	3927165	19.7	2.78	1.65	0	2.94	0	9.59	0	11.3	2.53	18	2.61	0	2.98	0	2.24	0.00	0.01
252429	637089	3928529	18.7	1.74	1.08	0	2.17	0	10.1	0	9.76	2.3	23.4	1.99	0	2.38	0	2.17	0.00	0.01
252430	636877	3928219	30.2	1.05	0	0	2.01	0	15.9	0	13.6	3.47	2.12	2.52	0	5.44	0	0	0.00	0.01
307301	633467	3928657	25.8	0	0	0	1.77	0	13.5	0	12.2	3.05	7.58	2.04	0	3.32	0	2.49	0.00	0.01
257500	637206	3926445	22.5	2.78	1.17	0	4.41	0	9.39	0	16.1	3.23	1.8	4.02	0	1.95	0	2.1	0.00	0.01
285452	637318	3923119	25.8	1.95	0	0	1.94	0	11.3	0	11.1	2.89	7.07	2.21	0	6.43	0	0	0.00	0.01
252423	638726	3928451	8.51	3.78	2.42	0	3.36	0	3.68	0	6.68	1.26	33.9	2.18	0	0	0	0	0.00	0.01
307391	637162	3928963	9.86	1.47	0	0	1.93	0	7.2	0	7.23	1.63	28.8	1.53	0	0	0	3.76	0.00	0.01
307303	636230	3928922	21.8	2.06	0	0	2.69	0	10.5	0	11.4	2.72	1.58	2.59	0	2.68	0	3.57	0.00	0.01
285481	637189	3926455	21.7	0	0	0	1.65	0	10.5	0	10.2	2.56	1.76	2.07	0	8.45	0	2.11	0.00	0.01
252415	632474	3928844	22.2	0	0	0	1.54	0	10.7	0	10.8	2.64	2.59	1.91	0	6.91	0	1.05	0.00	0.01
285472	637076	3923264	20.3	0	0	0	1.61	0	9.63	0	10	2.47	1.74	1.89	0	6.56	0	1.22	0.00	0.01
257497	637202	3926445	16.8	1.48	0	0	2.06	0	8.3	0	8.61	1.97	3.19	1.97	0	4.75	0	2.31	0.00	0.01
257488	637234	3923262	16.7	0	0	0	1.12	0	8.52	0	6.93	1.86	1.07	1.26	0	6.96	0	1.27	0.00	0.00
285404	634895	3929846	15.7	0	0	0	1.42	0	9.27	0	8.12	2.05	1.63	1.63	0	1.4	0	1.55	0.00	0.00
252421	638981	3927093	12.7	0	0	0	1.03	0	6.32	0	6.68	1.6	1.01	1.32	0	2.3	0	0	0.00	0.00
285484	634186	3928259	11.7	0	0	0	0	0	6.76	0	5.43	1.36	1.29	1.11	0	4.3	0	0	0.00	0.00
285449	637399	3923180	9.02	0	0	0	0	0	8.11	0	5.93	1.63	0	1	0	5.18	0	0	0.00	0.00
285416	637135	3928972	10.3	0	0	0	0	0	5.27	0	4.99	1.25	4.14	0	0	2.28	0	0	0.00	0.00
252440	637360	3926695	6.74	0	0	0	0	0	3.51	0	3.55	0	3.35	0	0	6.21	0	1.09	0.00	0.00
285450	637377	3923162	10.9	0	0	0	0	0	6.2	0	4.13	1.17	0	0	0	0	0	0	0.00	0.00
285407	634855	3929869	11.1	0	0	0	0	0	5.05	0	3.72	0	0	0	0	2	0	0	0.00	0.00
252443	637211	3926462	5.28	1.54	0	0	1.54	0	2.48	0	3.21	0	0	0	0	0	0	2.22	0.00	0.00

Sample_ ID	Easting_ NAD- 83Zone11	Northing_ NAD- 83Zonell	Ce2O3	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr2O3	Sc2O3	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	NdPr Oxide%	TREO%
257498	637204	3926446	3.63	1.29	0	0	1.64	0	1.78	0	2.55	0	0	1.05	0	0	0	0	0.00	0.00
285414	634902	3929879	0	0	0	0	0	0	1.45	0	0	0	0	0	0	0	0	1.12	0.00	0.00
285403	634895	3929826	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00
285413	634927	3929890	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The recently collected rockchip samples referred to in this release were rockchip samples collected by a team of trained geologists. A total of 171 rockchip samples were collected and assayed for a suite of elements including gold, base metals, and rare earth elements. Multi-element analysis was completed for all elements using fire assay (FA-ICP), inductively coupled plasma (M-ICP-35_4A) and rare earth M-ICPMS-RE-4A analysis by AAS for all rockchip analysis.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling reported.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling reported.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or 	 Lithology, alteration, and mineralisation were logged for each rockchip sample collected, and where available, orientation of dip and dip direction were recorded. The nature and sample occurrence were noted.

Criteria	JORC Code explanation	Commenta	ary		
	costean, channel, etc) photography.The total length and percentage of the relevant intersections logged.	Logging	g was qualit	tative or quantitative	nature.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	No sub- Rock ch discretion	nip samples	were collected using	g a geopick at the geologist's
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	release were su underta 7 blank of 186 s No geop	were systemular were systemular with the land were samples are samples subsphysical too	matically sampled ar American Analytical S by fire assay and a 4 and 8 certified reference omitted to AAS for an	letermination of assay results
Verification of sampling and assaying	 alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	either inData haMultiele	ndependent is been uplo ment result	alternative company paded to the LKY geo s (REE) are converte	EE have been re-assayed by personnel for verification. ochemistry database. ed to stoichiometric oxide etric conversion factors.
	Discuss any adjustment to assay data.	Element	Oxide	Conversion Factor	
		La	La2O3	1.1728	
		Ce	Ce2O3	1.1713	
		Pr	Pr2O3	1.1703	
		Nd	Nd2O3	1.1664	
i		Sm	Sm2O3	1.1596	

Criteria	JORC Code explanation	Commenta	ary		
		Eu	Eu2O3	1.1579	
		Gd	Gd2O3	1.1526	
		Tb	Tb2O3	1.151	
		Dy	Dy2O3	1.1477	
		Но	Ho2O3	1.1455	
		Er	Er2O3	1.1435	
		Tm	Tm2O3	1.1421	
		Yb	Yb2O3	1.1387	
		Lu	Lu2O3	1.1371	
))		Y	Y2O3	1.2699	
		Sc	Sc2O3	1.5338	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	an accu All rocko	racy of +-5n chip sample	٦.	oles is a hand-held GPS with ined using Universal rmat.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Samplin	•		mineral resource estimate. ed.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Block, a	ind El Camp		dary of the North Block, South outcropping rock units, around
Sample security	The measures taken to ensure sample security.	Locksle collecte together	y Resources d, bagged, a r into larger d to AAS by	Limited and US based and tied in numbered tied polyweave bags	managed by the employees of sed MINEX. Samples were I coded calico bags, grouped Bagged samples were he surface sampling program

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data and sampling techniques have not been reviewed or audit.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Mojave Project combines to a total area of 18.74 km² and is a Rare Earth Element (REE) project located to the east and southeast of the Mount Pass Mine in San Bernardino Country, California. The project area lies to the north of and adjacent to Interstate-15 (I-15), approximately 24 km southwest of the California-Nevada state line and approximately 48 km northeast of Baker, California USA. This area is part of the historic Clark Mining District established in 1865 and Mountain Pass is the only REE deposit identified within this district. The project is accessed via the Baily Road Interchange (Exit 281 of I-15) and the southern extensions of the project area can be accessed via Zinc Mine road.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Rockchip sampling was completed by Locksley Resources staff in conjunction with MINEX staff, who assisted Locksley with site familiarisation, sampling, and logistical aspects of the rockchip sampling program.
Geology	Deposit type, geological setting and style of mineralisation.	The Mojave Project is located in the southern part of the Clark Range in the northern Mojave Desert. The Mojave Desert is situated in the southwestern part of the Great Basin province, a region extending from central Utah to eastern California. The region is characterised by intense Tertiary regional extension deformation. This deformational event has resulted in broad north-south trending mountain ranges separated by gently sloping valleys, a characteristic of Basin and Range tectonic activity. The Mountain Pass Rare Earth deposit is located within an uplift block of Precambrian metamorphic and igneous rocks that are bounded on the southern and eastern margins by basin-fill formations in the Ivanpah Valley. The block is separated from Palaeozoic and Mesozoic rocks to the west by the Clark Mountain fault, which strikes north-northwest and dips steeply to the west.

	JORC Code explanation	Commentary
		Mountain Pass, located within 1.4 km to the Mojave Project, is a carbonatite hosted rare earth deposit. The mineralisation is hosted principally in carbonatite igneous rock and Mountain Pass is the only known example of rare earth deposit in which bastnasite is mined in the primary magmatic economic mineral.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No drilling reported.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No data aggregation, all results mentioned in the body of the press release are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 No drilling reported. True widths of mineralisation cannot be interpreted from the results received to date. The geological boundaries of the prospective horizon are interpreted from mapping conducted by experienced field geologists; orientation dip and dip direction were determined using a brunton compass on outcrop.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 No drilling reported. Locations of all significant results are shown in the body of the announcement.

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All material results are shown in the body of the announcement. Results of rockchips mentioned in the body of the announcement were calculated using a stoichiometric conversion table of recently received assay results, with the intention of calculating total rare earth oxides (TREO).
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All material results are shown in the body of the announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The rockchip sampling program was a first pass exploration tool for in the area, if elevated REE values are obtained from analysis within the rockchip sampling program that has recently been conducted, further work may, but not limited to geophysical surveys and drilling.
	6	