MAJOR LITHIUM DISCOVERY AT TABBA TABBA, WA

Highlights

0

First assays from Wildcat's maiden drilling at Tabba Tabba, WA, confirm high-grade lithium mineralisation from surface in northern and central pegmatite clusters, demonstrating potential for a large-scale lithium camp

Best results from the central cluster:

- o 85m at 1.1% Li₂O from surface (TARC086) (down-hole length)
 - including 59m @ 1.5% Li₂O from surface
 - 218m at 0.8% Li2O from 16m (TARC089) (down-hole length)
 - including 22m at 1.0% Li₂O from 31m
 - including 23m at 1.0% Li₂O from 152m
 - including 51m at 1.5% Li₂O from 183m to end of hole
 - Estimated true width is approximately 53m

Best results from the northern cluster:

- 21m at 1.1% Li₂O from 42m (TARC055) (est. true width)
- 26m at 0.9% Li₂O from 76m (TARC015) (est. true width)
- 20m at 1.3% Li₂O from 20m (TARC005) (est. true width)
- 16m at 1.1% Li₂O from 17m (TARC001) (est. true width)

Central pegmatite zone is now more than 1.2km long at true widths of 50m and up to 132m

Over 66 drill holes are pending assay and over 15,000 metres drilled year to date with drilling continuing

Wildcat to deploy a diamond drill rig in early October to accelerate the evaluation of the new discovery

Continuous batches of assays expected over the coming months

Wildcat Resources Limited (ASX: WC8) ("Wildcat" or the "Company") is pleased to announce it has received the first assay results from maiden drilling at the Tabba Tabba Lithium Tantalum Project in the Pilbara, near Port Hedland, WA¹ (Appendix 1, Table 1), with **initial results from 21 RC holes confirming pegmatite bodies contain significant widths and grades of lithium mineralisation** (see Figures 1 to 4). Tabba Tabba is near some of the world's largest hard-rock lithium mines, 47km from Pilbara Minerals' (ASX: PLS) 414Mt Pilgangoora Project and 87km from Mineral Resources' (ASX: MIN) 259Mt Wodgina Project.

Wildcat's initial batch of assays comprises **seventeen holes from the northern pegmatite cluster and four holes from the central pegmatite cluster**. Initial scout drilling commenced in the north of the Mining Leases, and this confirmed shallownorth easterly dipping, stacked pegmatites. The exploration program proceeded south to the central area where multiple, wide, sub-vertical (70°) dipping pegmatites were intercepted, and a second rig was added. The first intercepts from the central area were fast-tracked through the laboratory so they could be included in the first batch of results to aid exploration planning.

ASX Code:	WC8
Director:	Jeff Elliott
Director:	Matthew Banks
Director:	Samuel Ekins
Director:	Alex Hewlett
Director:	Ajanth Saverimutto
Secretary:	James Bahen

REGISTERED OFFICE Level 2, 25 Richardson St, West Perth, WA, 6005

Postal Address Level 2, 25 Richardson St, West Perth, WA, 6005

WEBSITE www.wildcatresources.com.au

> T: +61 (8) 6555 2950 F: +61 (8) 6166 0261

ACN: 098 236 938

Wildcat Resources Ltd

Wildcat Resources is a company focussed on discovery with strategic landholdings in world class provinces in Australia. The company has key landholdings for gold in the Lachlan Fold Belt (NSW), gold and lithium in the Mallina Province – Pilbara (WA), and greenfields exploration projects regionally in WA.

FOR ENQUIRIES PLEASE CONTACT: info@wildcatresources.com.au T: +61 (8) 6555 2950

¹ ASX announcement 17 May 2023: <u>https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf</u>

Managing Director Samuel Ekins said: "I'm confident we are in the early stages of a major discovery at Tabba Tabba and it's been a welcome surprise to see the size of the system. Over 95% of all holes to date have intersected pegmatites and we eagerly await further rounds of assays. Our central pegmatite is now over 1.2km long (open to the north), subvertical and outcropping at widths of over 50m which is very significant."

"Given our proximity to major global lithium projects including Pilgangoora and Wodgina, we see plenty of potential to uncover a large-scale lithium deposit across the extensive 3.2km trending pegmatite system. We anticipate receiving Foreign Investment Review Board (FIRB) approval for our acquisition of Tabba Tabba and Ministerial Approval by the end of September and bringing our first diamond rig onto site in early October, with more results from our initial drilling expected also."

Discussion of Exploration Activities

The Company has focussed on drilling the defined "simple pegmatite" outcrops which were mapped by Pancontinental in the 1980's as albite rich, the pegmatites at Pilagangoora are described as albite-spodumene type. The Tabba Tabba LCT pegmatite field has never been explored for lithium historically and previous groups only focussed on the high-grade tantalum resource. **Two RC rigs are drilling at Tabba Tabba and to date 87 holes for 15,142m have been competed** (See Figure 1 and Appendix 1, Table 2). A third rig is planned to be deployed in early October to commence diamond drilling to accelerate the evaluation of the lithium discoveries.

Assays have been returned for 21 RC holes from two areas of the pegmatite field, the northern cluster and the central area, as highlighted in red on Figure 1. Significant intercepts are listed in Appendix 1, Table 1 and are reported using 0.1% Li₂O cut-off grade with 10m internal dilution for aggregated intercepts and 0.3% Li₂O cut-off and 3m of dilution for internal high-grade zones. The results represent drilling from only a small area of the 3.2km trend of over 50 outcropping pegmatite drill targets and are for only 21 of the 87 holes drilled to date.

The broadest intersections have been returned from the previously undrilled central area of the Mining Leases to the south of the Tabba Tabba Tantalum deposit (Figures 1 and 2). In this area the pegmatites seem to occur as large, north-south trending, steeply east dipping, stacked sets with some sections more than 130m wide (true width). The central cluster is currently defined by mapping and drilling over a 1.2km strike length (which is open in all directions) and is the priority of current exploration efforts due to the wide, high-grade intersections returned from initial drilling.

RC drill hole TARC086 returned **85m at 1.1% Li₂O from surface** and includes a high-grade zone of **59m at 1.5% Li₂O from surface**. Note that fresh rock is intercepted at 2m below surface, and this has been common in the holes drilled to date. RC hole TARC089, collared approximately 80m to the north of TARC086), returned **218m at 0.8% Li₂O from 16m to end of the hole** (true width estimated at ~53m). The pegmatite intercept in TARC089 contains several internal high-grade zones including **22m at 1.0% Li₂O from 31m**, **23m at 1.0% Li₂O from 152m and 51m at 1.5% Li₂O from 183m (including 4m at 1.9% Li₂O at the end of the hole)**.

The pegmatite was initially interpreted to dip west based on observations of magmatic layering in the outcropping pegmatite. However, after TARC086 and TARC089 intercepted very wide intervals of pegmatite it was suspected that the holes were drilled obliquely down-dip and scissors holes (drilled to the west) were completed (see Figure 3). The follow-up scissor holes confirm the pegmatites in this area have an easterly dip, and therefore the down hole intersections in TARC086 and 089 are not true width. However, the follow up drilling has confirmed **the pegmatites in this area appear to be of considerable thickness over 50m and up to 132m (true width) and extend over 1.2km of strike** (currently open in all directions) as illustrated on Figures 1 and 2.

Figure 1 – Tabba Tabba Project showing outcropping pegmatites in blue and the collar locations of the holes (green triangles) drilled to date. The central area and northern areas are highlighted in red. Note that the thick pegmatite intercepted in TARC089, TARC087 and TARC023 is highlighted in light blue and appears continuous and open over 1.2km and averages 40m width in all intercepts to date, with a peak width of 132m.

Figure 2 shows a section through TARC089 and follow-up scissor holes TARC117, TARC118 and TARC119 – assays pending. The section shows four, thick, stacked steeply dipping pegmatite bodies, noting that the west quarter of the section progresses under shallow alluvial cover.

Figure 2 – Cross Section 1 through TARC089 containing 218m at 0.8% Li₂O (true width estimated to be 53m) and holes TARC117, TARC118, TARC119, and TARC030 for which assays are pending. The section illustrates the wide and stacked nature of the pegmatites in the central area. Section location shown on Figure 3.

Figure 3 – Close up of the central area on Figure 1. Note that assay results have only been returned for TARC086, TARC089, TARC023, and TARC027 from this area. Assays are pending for all other holes shown. (Note, TARC027 missed the pegmatite and drilled into the hanging wall parallel to it)

A photograph of RC chip trays for part of the lithium mineralised pegmatite intervals from TARC086 is presented as Figure 4. The dominant lithium mineral species in TARC086 is interpreted to be **spodumene** based on the vibrant salmon orange fluorescence of the rock chips under ultraviolet light in conjunction with supporting lithium analytical data. Little to no lepidolite was observed during logging across all major pegmatites. Confirmation of the mineralogy will be reported once quantitative XRD analyses of samples at ALS laboratories are received. This will be evaluated along with multi-element chemical data and observations from diamond core when received.

Figure 4 – TARC086 chips under natural light and ultraviolet light. The chips glowing salmon orange under ultraviolet light are interpreted to be spodumene (to be confirmed by XRD analyses).

Weathered elongate crystal textures suspected to be after spodumene have also been observed at surface 650m south of TARC086 and these are shown on Figure 5 and located on Figure 1.

Figure 5 – Elongate crystal textures comprising 50% of the rock mass observed at surface to the south of the central area² 650m south of TARC086. Location shown on Figure 2.

² ASX announcement 17 May 2023: <u>https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf</u>

The northern cluster of pegmatites is shown in detail on Figure 6. This is the first area that was targeted by Wildcat as historic sterilisation drilling for a tailings storage facility (TSF) had returned high-grade lithium results including 8m at 1.4% Li₂O from 4m (TDRC02)³. It is also the area that abuts FMG's Exploration Licence to the north where a pegmatite-hosted lithium discovery appears to have been made⁴.

Wildcat's drilling intersected northwest trending, stacked, shallow northeasterly dipping pegmatites. Best intervals include: **21m at 1.0% Li₂O from 42m** (TARC055), including **15m at 1.4% Li₂O from 45m**; **26m at 1% Li₂O from 17m** (TARC005), including **20m at 1.3% Li₂O from 20m**; **21m at 0.9% Li₂O from 15m** (TARC001), including **16m at 1.1% Li₂O from 17m**; and **25m at 0.9% Li₂O from 13m** (TARC006), Including **16m at 1.3% Li₂O from 17m**.

A section through TARC006 is provided as Figure 7 and shows the stacked, shallow northeast dipping pegmatites, the largest of which outcrops at surface as a broad flat body over 300m long.

Figure 6 – Close up of the northern area located on Figure 3 with completed drilling and significant intercepts.

³ ASX Announcement 17th May 2023: <u>https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf</u>

⁴ ASX announcement 17 May 2023: <u>https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf</u>

Figure 7 – Cross Section 2 through the northern area showing stacked, shallow northeast dipping pegmatites up to 29m wide.

The northern pegmatite area has some wide mineralised zones which are shallow dipping resulting in large targets, close to surface, much of which is located under previously mining permitted areas. The northern area complements the large central pegmatite, and both will be systematically evaluated and progressed rapidly towards a development pathway.

Next Steps

- Receive FIRB Approval
- Continue to focus the RC drill rigs on the central pegmatite and other priority areas
- Deploy third rig to commence diamond drilling in early October 2023
- Progress early-stage studies to support evaluation and permitting.

- ENDS -

This announcement has been authorised by the Board of Directors of the Company.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Mr. Samuel Ekins **Managing Director** Tel: +61 (8) 6555 2950 info@wildcatresources.com.au Mr. Matthew Banks **Executive Director** Tel: +61 (8) 6555 2950 info@wildcatresources.com.au Nathan Ryan **NWR Communications** Tel: +61 420 582 887

About Tabba Tabba

The Tabba Tabba Lithium-Tantalum Project is located on granted Mining Leases just 80km by road from Port Hedland, Western Australia. It is nearby some of the world's largest hard-rock lithium mines (47km by road from the 414Mt Pilgangoora Project⁵ and 87km by road to the 259Mt Wodgina Project⁶) (Figure 8).

Figure 8 – Location of the Tabba Tabba Project

Wildcat announced that it had entered an exclusive, binding agreement to acquire 100% of the Tabba Tabba Lithium-Tantalum Project on the 17th of May, 2023⁷. Sons of Gwalia previously owned four significant LCT pegmatite projects in WA, these were Greenbushes, Pilgangoora, Wodgina and Tabba Tabba Tabba is the last of these assets to be explored for lithium mineralisation.

Thirty-eight (38) outcropping pegmatite bodies have been mapped within the Mining Leases at Tabba Tabba, however only one is extensively drilled and most of the samples were not assayed for lithium. The lack of drilling offers significant upside for Wildcat for lithium exploration.

⁵ Pilbara Minerals Ltd ASX announcement 7 August 2023:

https://1pls.irmau.com/site/pdf/3c3567af-c373-4c3c-ba7a-af0bc2034431/Substantial-Increase-in-Mineral-Resource.pdf

http://clients3.weblink.com.au/pdf/MIN/02037855.pdf

⁶ Mineral Resources Ltd ASX announcement 23 October 2018:

⁷ ASX Announcement 17th May 2023: <u>https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf</u>

The pegmatite body that contains **the high-grade Tabba Tabba tantalum deposit has a Mineral Resource estimate of 318Kt at 950ppm Ta₂O₅ for 666,200lbs Ta₂O₅ at a 400ppm Ta₂O₅ lower cut-off grade³. The resource drilling on the Tabba Tabba pegmatite was only to 35m depth, and the mineralisation is open in most directions.**

Only four drill holes were completed outside of the Tabba Tabba tantalum deposit, these were drilled in 2013 and three intersected pegmatite that returned **8m at 1.42% Li₂O from 4m (TDRC02), 16m at 0.9% Li₂O from 10m (TDRC03) and 1m at 2.00% Li₂O from 40m to EOH (TDRC04)**. This single pegmatite has an outcrop expression that is 300m long³. In May 2023 Wildcat commenced a drone photographic survey to map and validate the pegmatite outcrops on the Tabba Tabba mining tenements⁸. The Company announced that it had identified substantially more pegmatite outcrop through interpretation of the drone data in July 2023⁹. Wildcat has commenced the first drilling program to systematically explore the Tabba Tabba mining tenement package for lithium mineralisation.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Wildcat Resources Limited's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Wildcat Resources Limited believes that its expectations reflected in these forwardlooking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Competent Person's Statement

The information in this announcement that relates to Exploration Results for Tabba Tabba Project is based on, and fairly represents, information compiled by Mr Samuel Ekins, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Ekins is a fulltime employee of Wildcat Resources Limited. Mr Ekins has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Ekins consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

<u>No New Information or Data</u>: This announcement contains references to exploration results, Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived from the production targets, all of which have been cross-referenced to previous market announcements by the relevant Companies. Wildcat confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements. In the case of Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived from the production targets, all material assumptions and technical parameters underpinning the estimates, production targets and forecast financial information derived from the production targets contained in the relevant market announcement continue to apply and have not materially changed in the knowledge of Wildcat.

This document contains exploration results and historic exploration results as originally reported in fuller context in Wildcat Resources Limited ASX Announcements - as published on the Company's website. Wildcat confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements. In the case of Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived from the production targets, all material assumptions and technical parameters underpinning the estimates, production targets and forecast financial information targets contained in the relevant market announcement continue to apply and have not materially changed in the knowledge of Wildcat.

⁸ ASX Announcement 31st May 2023: <u>https://www.investi.com.au/api/announcements/wc8/20e4fead-fa5.pdf</u>

⁹ ASX Announcement 5th June 2023: <u>https://www.investi.com.au/api/announcements/wc8/f08da5f1-19e.pdf</u>

Appendix 1

Table 1: Significant intercepts - Assays reported 0.1% Li2O cut-off grade with 10m internal dilution foraggregated intercepts and 0.3% Li2O cut-off and 3m of dilution for internal high-grade zones.

\geq	Hole ID	From (m)	To (m)	Intercept Length (m)	Est. True Width (m)	Grade (Li₂O %)	Prospect
	TARC001	15	36	21	20	0.87	Northern
	including:	17	33	16		1.10	
	and:	120	123	3		0.75	
-	TARC002	1	18	17	17	0.57	Northern
	<u></u>						
	TARC005	17	43	26	25	0.87	
	including:	20	40	20		1.29	
2	and:	147	148			0.96	
1	TARC006	13	38	25	19	0.88	Northern
	including:	17	33	16		1.29	
	and:	163	165	2		0.64	
				ſ			
9	TARC007	45	48	3	3	0.82	Northern
			-	1			
	TARC008	35	37	2	2	0.96	Northern
				-			
	TARC009	6	10	4	4	1.33	Northern
2				-			
1	TARC010	97	100	3	3	1.22	Northern
5	_						
	TARC011	18	25	7	7	0.69	Northern
1	TARC013	31	33	2	2	0.82	Northern
	TARC014	88	91	3	3	1.29	Northern
				ſ	ſ		1
	TARC015	75	104	29	27	0.81	Northern
	Including:	76	102	26		0.89	
	1					E Contraction of the second	
	TARC023	147	276 <u>(EOH)</u>	129	N/A	0.59	Central
	including:	160	179	19		1.28	
	and:	193	202	9		0.68	
	and:	220	235	15		1.08	
	and:	245	259	14		1.04	
	and:	273	276 (EOH)	3		1.22	
	TARC027	151	153	2	2	0.69	Central

Hole ID	From (m)	To (m)	Intercept Length (m)	Est. True Width (m)	Grade (Li₂O %)	Prospect
TARC034	5	7	2	2	0.86	Northern
and:	8	11	3	3	0.84	
TARC055	42	63	21	21	1.05	Northern
including:	45	60	15		1.40	
and:	146	147	1		0.93	
TARC086	0	85	85	N/A	1.12	Central
including:	0	59	59		1.53	
and:	79	84	5		0.57	
J						
TARC089	16	234 <u>(EOH)</u>	218	N/A	0.78	Central
and:	31	53	22		0.97	
and:	58	62	4		0.91	
and:	69	102	33		0.81	
and:	106	110	4		0.63	
and:	125	126	1		0.95	
and:	138	142	4		0.52	
and:	146	148	2		1.09	
and:	152	175	23		1.00	
and:	183	234 (EOH)	51		1.54	

Table 2: RC drill hole collar table (note that NSI stands for no significant intercepts)

	Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth (m)	Azimuth	Dip	Assay Status	Prospect
	TARC001	RC	700,747	7,714,616	106	222	230	-55	Received	Northern
	TARC002	RC	700,555	7,714,521	113	198	230	-55	Received	Northern
	TARC003	RC	700,604	7,714,566	117	150	230	-55	NSI	Northern
	TARC004	RC	700,651	7,714,602	110	168	230	-55	NSI	Northern
	TARC005	RC	700,725	7,714,660	110	228	230	-55	Received	Northern
\square	TARC006	RC	700,782	7,714,589	105	216	230	-55	Received	Northern
	TARC007	RC	700,817	7,714,563	105	150	230	-55	Received	Northern
	TARC008	RC	700,890	7,714,517	104	150	230	-55	Received	Northern
	TARC009	RC	700,770	7,714,424	107	240	200	-55	Received	Northern
	TARC010	RC	700,642	7,714,473	109	162	230	-55	Received	Northern
	TARC011	RC	700,541	7,714,623	113	168	230	-55	Received	Northern
	TARC012	RC	700,478	7,714,673	114	174	230	-55	NSI	Northern
	TARC013	RC	700,672	7,714,720	109	192	230	-55	Received	Northern
	TARC014	RC	700,845	7,714,748	105	288	230	-55	Received	Northern
	TARC015	RC	700,902	7,714,697	104	156	230	-55	Received	Northern
	TARC017	RC	700,391	7,714,261	113	156	270	-55	Pending	Northern
	TARC018	RC	700,457	7,713,662	102	150	230	-60	Pending	Tabba Tabba

	Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth (m)	Azimuth	Dip	Assay Status	Prospect
	TARC019	RC	700,362	7,713,707	111	174	230	-60	Pending	Tabba Tabba
\geq	TARC020	RC	700,312	7,713,789	115	174	230	-60	Pending	Tabba Tabba
	TARC021	RC	700,269	7,713,836	110	168	230	-60	Pending	Tabba Tabba
	TARC022	RC	699,970	7,713,306	100	150	75	-60	Pending	Central
	TARC023	RC	699,809	7,713,262	96	276	75	-60	Received	Central
	TARC024	RC	699,972	7,713,309	100	258	250	-55	Partial	Central
	TARC025	RC	700,146	7,713,372	104	120	240	-55	Pending	Central
	TARC026	RC	699,965	7,713,155	100	115	65	-60	Pending	Central
10	TARC027	RC	699,820	7,713,159	95	180	100	-60	Received	Central
D	TARC028	RC	699,688	7,712,913	100	132	90	-55	Pending	Central
	TARC029	RC	700,095	7,713,249	102	150	270	-55	Pending	Central
/]	TARC030	RC	699,968	7,713,093	99	96	180	-55	Pending	Central
	TARC031	RC	700,514	7,714,570	112	90	170	-60	Pending	Northern
	TARC032	RC	700,617	7,714,567	115	52	90	-60	Pending	Northern
	TARC033	RC	700,489	7,714,464	109	48	10	-55	Pending	Northern
_	TARC034	RC	700,769	7,714,439	106	102	340	-55	Received	Northern
	TARC035	RC	700,447	7,714,260	116	192	240	-60	Pending	Northern
L	TARC036	RC	700,331	7,714,376	120	150	240	-60	Pending	Northern
	TARC039	RC	700,414	7,714,339	115	204	240	-60	Pending	Northern
	TARC041	RC	700,402	7,714,408	114	210	240	-60	Pending	Northern
	TARC044	RC	700,386	7,714,220	111	204	240	-60	Pending	Northern
	TARC048	RC	700,302	7,714,077	110	150	60	-60	Pending	Northern
6	TARC052	RC	699,813	7,713,243	96	108	255	-60	Pending	Central
12	TARC055	RC	700,861	7,714,595	103	204	230	-70	Received	Northern
	TARC059	RC	700,698	7,714,696	107	228	230	-90	Pending	Northern
15	TARC060	RC	700,698	7,714,700	107	225	230	-55	Pending	Northern
L	TARC064	RC	700,510	7,714,641	113	168	230	-55	Pending	Northern
	TARC065	RC	700,541	7,714,566	114	150	230	-60	Pending	Northern
	TARC070	RC	700,972	7,714,690	103	234	230	-80	Pending	Northern
	TARC072	RC	700,920	7,714,527	103	198	230	-70	Pending	Northern
	TARC076	RC	700,926	7,714,721	106	246	230	-75	Pending	Northern
	TARC082	RC	700,829	7,714,634	103	186	230	-70	Pending	Northern
	TARC084	RC	699,750	7,712,940	99	150	90	-60	Pending	Central
	TARC085	RC	699,654	7,712,915	98	228	90	-60	Pending	Central
	TARC086	RC	699,734	7,712,995	98	162	90	-60	Received	Central
	TARC088	RC	699,693	7,712,870	101	240	90	-60	Pending	Southern
	TARC089	RC	699,747	7,713,072	95	234	90	-60	Received	Central
	TARC091	RC	699,798	7,712,945	99	174	270	-55	Pending	Central
	TARC092	RC	699,682	7,712,878	100	24	270	-60	Pending	Central
	TARC093	RC	699,728	7,713,003	97	18	270	-60	Pending	Central
	TARC094	RC	699,618	7,712,335	103	156	300	-55	Pending	Southern
	TARC095	RC	699,638	7,712,409	105	150	300	-55	Pending	Southern
	TARC096	RC	699,647	7,712,545	101	210	300	-55	Pending	Southern
	TARC097	RC	699,752	7,712,563	96	198	300	-55	Pending	Southern

	Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth (m)	Azimuth	Dip	Assay Status	Prospect
	TARC098	RC	699,826	7,712,625	95	300	300	-55	Pending	Southern
\geq	TARC099	RC	699,792	7,712,644	94	210	300	-55	Pending	Southern
	TARC100	RC	699,812	7,712,707	99	234	300	-55	Pending	Southern
	TARC101	RC	699,511	7,712,456	99	108	300	-55	Pending	Southern
	TARC102	RC	699,691	7,712,623	101	180	300	-55	Pending	Southern
	TARC104	RC	699,417	7,712,309	100	84	300	-55	Pending	Southern
	TARC105	RC	699,372	7,712,134	100	150	270	-55	Pending	Southern
	TARC107	RC	699,690	7,712,470	99	180	300	-55	Pending	Southern
	TARC108	RC	699,794	7,712,530	96	276	300	-55	Pending	Southern
	TARC111	RC	699,560	7,712,245	101	120	300	-55	Pending	Southern
1	TARC114	RC	699,457	7,711,928	102	102	300	-55	Pending	Southern
J	TARC117	RC	699,788	7,713,081	94	102	270	-55	Pending	Central
1	TARC118	RC	699,838	7,713,093	98	198	265	-55	Pending	Central
1	TARC119	RC	699,903	7,713,073	98	276	270	55	Pending	Central
	TARC120	RC	699,772	7,713,149	94	150	270	-55	Pending	Central
	TARC121	RC	699,814	7,713,162	95	132	260	-55	Pending	Central
	TARC122	RC	699,772	7,713,229	95	36	270	-55	Pending	Central
4	TARC123	RC	699,891	7,713,227	99	204	270	-55	Pending	Central
	TARC124	RC	699,771	7,713,310	96	156	270	-55	Pending	Central
	TARC125	RC	699,808	7,713,313	96	120	270	-55	Pending	Central
	TARC128	RC	699,892	7,713,384	100	228	270	-55	Pending	Central
	TARC131	RC	699,879	7,713,312	100	176	270.08	-55	Pending	Central
2	TARC132	RC	700,051	7,713,313	101	336	270	-55	Pending	Central
H	TARC141	RC	699,693	7,712,836	98	120	270	-60	Pending	Southern
	TARC142	RC	699,732	7,712,829	96	180	270	-60	Pending	Southern
5	TARC144	RC	699,951	7,713,385	103	330	270	-55	Pending	Central

Table 3: Intervals logged as pegmatite (no estimation of mineral abundance)

Cautionary note: In relation to the disclosure of visual observations of rock type, the Company cautions that visual estimates of pegmatite should never be considered a proxy for lithium mineralisation or a substitute for laboratory analysis. Laboratory assay results are required to determine the widths, mineralogy, and grade of lithium within the visible intercepts of pegmatite reported. The status of assays for each hole are listed in Table 2.

Hole ID	From (m)	To (m)	Thickness (m)	Rock type	Assay Status
TARC001	17	27	10	Pegmatite	Received
TARC001	31	34	3	Pegmatite	Received
TARC001	64	66	2	Pegmatite	Received
TARC001	117	122	5	Pegmatite	Received
TARC001	148	153	5	Pegmatite	Received
TARC001	173	174	1	Pegmatite	Received
TARC002	1	11	10	Pegmatite	Received
TARC002	25	26	1	Pegmatite	Received
TARC003	118	125	7	Pegmatite	Received

	Hole ID	From (m)	To (m)	Thickness (m)	Rock type	Assay Status
	TARC004	0	6	6	Pegmatite	Received
	TARC004	62	64	2	Pegmatite	Received
\geq	TARC004	128	130	2	Pegmatite	Received
	TARC004	137	138	1	Pegmatite	Received
	TARC004	147	150	3	Pegmatite	Received
	TARC005	0	3	3	Pegmatite	Received
	TARC005	20	30	10	Pegmatite	Received
	TARC005	33	41	8	Pegmatite	Received
	TARC005	123	126	3	Pegmatite	Received
75	TARC005	147	150	3	Pegmatite	Received
	TARC005	157	160	3	Pegmatite	Received
\bigcap	TARC005	168	169	1	Pegmatite	Received
リビ	TARC005	187	191	4	Pegmatite	Received
	TARC006	17	25	8	Pegmatite	Received
	TARC006	28	32	4	Pegmatite	Received
	TARC006	73	76	3	Pegmatite	Received
	TARC006	161	165	4	Pegmatite	Received
7	TARC006	199	203	4	Pegmatite	Received
C	TARC007	33	40	7	Pegmatite	Received
	TARC007	44	49	5	Pegmatite	Received
	TARC007	114	117	3	Pegmatite	Received
	TARC007	126	127	1	Pegmatite	Received
	TARC008	1	5	4	Pegmatite	Received
$\int \int$	TARC008	31	39	8	Pegmatite	Received
ノビ	TARC008	43	45	2	Pegmatite	Received
70	TARC008	61	63	2	Pegmatite	Received
115	TARC008	86	87	1	Pegmatite	Received
	TARC008	102	105	3	Pegmatite	Received
	TARC008	136	139	3	Pegmatite	Received
	TARC009	6	19	13	Pegmatite	Received
	TARC009	48	50	2	Pegmatite	Received
	TARC009	72	73	1	Pegmatite	Received
	TARC009	78	79	1	Pegmatite	Received
	TARC009	94	95	1	Pegmatite	Received
1	TARC009	126	128	2	Pegmatite	Received
	TARC009	131	134	3	Pegmatite	Received
	TARC009	137	140	3	Pegmatite	Received
	TARC009	182	193	11	Pegmatite	Received
	TARC009	202	204	2	Pegmatite	Received
	TARC009	208	214	6	Pegmatite	Received
	TARC009	221	227	6	Pegmatite	Received
	TARC010	28	29	1	Pegmatite	Received
	TARC010	48	49	1	Pegmatite	Received
	TARC010	92	101	9	Pegmatite	Received
	TARC010	146	147	1	Pegmatite	Received

	Hole ID	From	To (m)	Thickness	Rock type	Assay Status
	TARC011	13	30	17	Pegmatite	Received
	TARC011	148	151	3	Pegmatite	Received
\geq	TARC012	12	14	2	Pegmatite	Received
	TARC012	23	29	6	Pegmatite	Received
	TARC012	146	155	9	Pegmatite	Received
	TARC013	8	10	2	Pegmatite	Received
((TARC013	29	34	5	Pegmatite	Received
	TARC013	120	124	4	Pegmatite	Received
	TARC013	159	165	6	Pegmatite	Received
70	TARC013	177	178	1	Pegmatite	Received
D	TARC014	44	45	- 1	Pegmatite	Received
6	TARC014	64	66	2	Pegmatite	Received
IJĮ	TARC014	87	92	5	Pegmatite	Received
	TARC014	167	169	2	Pegmatite	Received
	TARC014	188	189	1	Pegmatite	Received
	TARC014	196	198	2	Pegmatite	Received
	TARC014	208	209	1	Pegmatite	Received
	TARC014	213	214	1	Pegmatite	Received
L	TARC014	269	270	1	Pegmatite	Received
	TARC014	276	277	1	Pegmatite	Received
	TARC015	17	18	1	Pegmatite	Received
(TARC015	64	65	- 1	Pegmatite	Received
	TARC015	77	101	24	Pegmatite	Received
	TARC017	0	5	5	Pegmatite	Pending
リビ	TARC017	36	39	3	Pegmatite	Pending
	TARC017	66	69	3	Pegmatite	Pending
75	TARC017	79	84	5	Pegmatite	Pending
IJ	TARC017	88	90	2	Pegmatite	Pending
	TARC017	94	96	2	Pegmatite	Pending
	TARC017	110	112	2	Pegmatite	Pending
	TARC017	136	138	2	Pegmatite	Pending
	TARC018	97	98	- 1	Pegmatite	Pending
	TARC019	58	60	2	Pegmatite	Pending
	TARC019	84	87	- 3	Pegmatite	Pending
1	TARC019	102	103	1	Pegmatite	Pending
		107	108	- 1	Pegmatite	Pending
	TARC019	132	133	- 1	Pegmatite	Pending
	TARC019	142	147	- 5	Pegmatite	Pending
	TARC019	151	153	2	Pegmatite	Pending
	TARC019	158	164	6	Pegmatite	Pending
		102	106	۵ ۵	Pegmatite	Pending
		135	137		Degmatite	Dending
		144	150	6	Pogmatito	Ponding
		74	200	6	Pogmatito	Donding
		74	80 102	<u>ь</u>	Pegmatite	Dending
	TAKCUZI	98	103	5	regmatite	renaing

	Hole ID	From (m)	To (m)	Thickness (m)	Rock type	Assay Status
	TARC021	120	124	4	Pegmatite	Pending
	TARC021	130	132	2	Pegmatite	Pending
\geq	TARC021	141	153	12	Pegmatite	Pending
	TARC022	44	50	6	Pegmatite	Pending
	TARC022	54	72	18	Pegmatite	Pending
	TARC023	148	151	3	Pegmatite	Received
	TARC023	155	276	121	Pegmatite	Received
	TARC024	51	52	1	Pegmatite	Pending
	TARC024	171	239	68	Pegmatite	Pending
75	TARC025	16	17	1	Pegmatite	Pending
	TARC025	99	107	8	Pegmatite	Pending
6	TARC026	31	32	1	Pegmatite	Pending
リビ	TARC026	35	50	15	Pegmatite	Pending
-	TARC027	153	157	4	Pegmatite	Received
	TARC028	52	56	4	Pegmatite	Pending
	TARC028	92	119	27	Pegmatite	Pending
	TARC029	50	51	1	Pegmatite	Pending
Π	TARC029	68	88	20	Pegmatite	Pending
C	TARC030	19	40	21	Pegmatite	Pending
	TARC031	0	8	8	Pegmatite	Pending
	TARC031	26	27	1	Pegmatite	Pending
	TARC031	68	80	12	Pegmatite	Pending
	TARC034	5	10	5	Pegmatite	Received
]],]	TARC034	13	15	2	Pegmatite	Received
	TARC034	74	77	3	Pegmatite	Received
75	TARC035	27	29	2	Pegmatite	Pending
	TARC035	57	59	2	Pegmatite	Pending
)((TARC035	79	82	3	Pegmatite	Pending
	TARC035	88	89	1	Pegmatite	Pending
	TARC035	105	107	2	Pegmatite	Pending
	TARC035	118	119	1	Pegmatite	Pending
	TARC035	124	127	3	Pegmatite	Pending
	TARC036	47	72	25	Pegmatite	Pending
	TARC036	106	108	2	Pegmatite	Pending
	TARC036	134	137	3	Pegmatite	Pending
	TARC039	46	47	1	Pegmatite	Pending
	TARC039	60	66	6	Pegmatite	Pending
	TARC039	107	112	5	Pegmatite	Pending
	TARC039	115	121	6	Pegmatite	Pending
	TARC039	124	126	2	Pegmatite	Pending
	TARC041	71	74	3	Pegmatite	Pending
	TARC041	117	119	2	Pegmatite	Pending
	TARC041	129	131	2	Pegmatite	Pending
	TARC041	138	141	3	Pegmatite	Pending

	Hole ID	From (m)	To (m)	Thickness (m)	Rock type	Assay Status
	TARC041	172	177	5	Pegmatite	Pending
	TARC041	201	202	1	Pegmatite	Pending
>	TARC044	22	23	1	Pegmatite	Pending
	TARC044	58	60	2	Pegmatite	Pending
	TARC044	64	66	2	Pegmatite	Pending
	TARC044	72	74	2	Pegmatite	Pending
	TARC048	28	29	1	Pegmatite	Pending
	TARC052	69	83	14	Pegmatite	Pending
	TARC052	90	96	6	Pegmatite	Pending
75	TARC055	15	18	3	Pegmatite	Received
	TARC055	21	22	1	Pegmatite	Received
$\int f$	TARC055	46	61	15	Pegmatite	Received
リビ	TARC055	106	107	1	Pegmatite	Received
	TARC055	119	121	2	Pegmatite	Received
	TARC055	145	149	4	Pegmatite	Received
	TARC055	162	167	5	Pegmatite	Received
	TARC055	173	177	4	Pegmatite	Received
\square	TARC055	183	186	3	Pegmatite	Received
C	TARC059	9	17	8	Pegmatite	Pending
	TARC059	40	48	8	Pegmatite	Pending
	TARC059	120	121	1	Pegmatite	Pending
	TARC059	126	127	1	Pegmatite	Pending
\leq	TARC059	135	138	3	Pegmatite	Pending
ľŊ	TARC059	142	143	1	Pegmatite	Pending
	TARC059	157	160	3	Pegmatite	Pending
71	TARC059	195	196	1	Pegmatite	Pending
$\left \right\rangle$	TARC060	11	16	5	Pegmatite	Pending
	TARC060	29	45	16	Pegmatite	Pending
	TARC060	118	121	3	Pegmatite	Pending
	TARC060	137	147	10	Pegmatite	Pending
	TARC060	151	153	2	Pegmatite	Pending
	TARC060	186	187	1	Pegmatite	Pending
	TARC064	17	27	10	Pegmatite	Pending
\leq	TARC064	147	157	10	Pegmatite	Pending
	TARC065	2	3	1	Pegmatite	Pending
	TARC065	6	26	20	Pegmatite	Pending
	TARC070	85	104	19	Pegmatite	Pending
	TARC070	170	171	1	Pegmatite	Pending
	TARC072	5	9	4	Pegmatite	Pending
	TARC072	44	46	2	Pegmatite	Pending
	TARC072	61	63	2	Pegmatite	Pending
	TARC072	74	83	9	Pegmatite	Pending
	TARC072	94	97	3	Pegmatite	Pending
	TARC072	107	109	2	Pegmatite	Pending
	TARC072	131	134	3	Pegmatite	Pending

	Hole ID	From (m)	To (m)	Thickness (m)	Rock type	Assay Status
	TARC072	170	176	6	Pegmatite	Pending
	TARC072	185	188	3	Pegmatite	Pending
\geq	TARC076	21	24	3	Pegmatite	Pending
	TARC076	51	52	1	Pegmatite	Pending
	TARC076	86	105	19	Pegmatite	Pending
	TARC076	119	122	3	Pegmatite	Pending
(TARC076	192	193	1	Pegmatite	Pending
	TARC076	228	238	10	Pegmatite	Pending
	TARC082	7	8	1	Pegmatite	Pending
15	TARC082	38	57	19	Pegmatite	Pending
IJ	TARC082	66	69	3	Pegmatite	Pending
6	TARC082	156	159	3	Pegmatite	Pending
72	TARC082	172	173	1	Pegmatite	Pending
1	TARC084	48	51	3	Pegmatite	Pending
	TARC084	54	57	3	Pegmatite	Pending
	TARC084	125	128	3	Pegmatite	Pending
	TARC084	135	137	2	Pegmatite	Pending
	TARC085	77	90	13	Pegmatite	Pending
C	TARC085	175	176	1	Pegmatite	Pending
	TARC085	188	196	8	Pegmatite	Pending
	TARC086	0	24	24	Pegmatite	Received
	TARC086	27	78	51	Pegmatite	Received
	TARC086	81	83	2	Pegmatite	Received
$\left(\right)$	TARC086	131	140	9	Pegmatite	Received
	TARC088	0	66	66	Pegmatite	Pending
75	TARC088	154	161	7	Pegmatite	Pending
15	TARC088	196	216	20	Pegmatite	Pending
)(7	TARC089	0	5	5	Pegmatite	Received
	TARC089	18	97	79	Pegmatite	Received
	TARC089	102	234	132	Pegmatite	Received
	TARC091	31	48	17	Pegmatite	Pending
	TARC091	76	103	27	Pegmatite	Pending
	TARC091	115	116	1	Pegmatite	Pending
\square	TARC091	129	131	2	Pegmatite	Pending
	TARC091	144	162	18	Pegmatite	Pending
	TARC092	1	12	11	Pegmatite	Pending
	TARC093	1	10	9	Pegmatite	Pending
	TARC094	28	42	14	Pegmatite	Pending
	TARC095	0	23	23	Pegmatite	Pending
	TARC095	31	32	1	Pegmatite	Pending
	TARC095	44	56	12	Pegmatite	Pending
	TARC096	9	29	20	Pegmatite	Pending
	TARC096	51	66	15	Pegmatite	Pending
	TARC096	97	105	8	Pegmatite	Pending

	Hole ID	From (m)	To (m)	Thickness (m)	Rock type	Assay Status
	TARC096	170	177	7	Pegmatite	Pending
	TARC096	186	187	1	Pegmatite	Pending
\geq	TARC096	192	195	3	Pegmatite	Pending
	TARC097	45	47	2	Pegmatite	Pending
	TARC097	66	67	1	Pegmatite	Pending
	TARC097	109	123	14	Pegmatite	Pending
(TARC097	168	177	9	Pegmatite	Pending
	TARC098	141	154	13	Pegmatite	Pending
	TARC098	160	168	8	Pegmatite	Pending
75	TARC099	28	32	4	Pegmatite	Pending
	TARC099	52	56	4	Pegmatite	Pending
\bigcap	TARC099	59	63	4	Pegmatite	Pending
12	TARC099	143	154	11	Pegmatite	Pending
1	TARC099	172	181	9	Pegmatite	Pending
	TARC099	191	199	8	Pegmatite	Pending
	TARC100	30	37	7	Pegmatite	Pending
	TARC100	181	187	6	Pegmatite	Pending
	TARC100	190	197	7	Pegmatite	Pending
9	TARC100	215	221	6	Pegmatite	Pending
	TARC101	13	23	10	Pegmatite	Pending
	TARC101	35	36	1	Pegmatite	Pending
	TARC102	23	27	4	Pegmatite	Pending
	TARC102	79	97	18	Pegmatite	Pending
\int	TARC102	123	128	5	Pegmatite	Pending
	TARC102	142	147	5	Pegmatite	Pending
75	TARC103	5	6	1	Pegmatite	Pending
	TARC103	18	27	9	Pegmatite	Pending
15	TARC104	24	25	1	Pegmatite	Pending
	TARC105	16	20	4	Pegmatite	Pending
	TARC107	19	24	5	Pegmatite	Pending
	TARC107	27	28	1	Pegmatite	Pending
	TARC107	54	55	1	Pegmatite	Pending
	TARC107	70	81	11	Pegmatite	Pending
	TARC111	0	10	10	Pegmatite	Pending
	TARC117	18	42	24	Pegmatite	Pending
	TARC118	75	94	19	Pegmatite	Pending
	TARC118	100	108	8	Pegmatite	Pending
	TARC118	135	169	34	Pegmatite	Pending
	TARC118	185	187	2	Pegmatite	Pending
	TARC119	4	26	22	Pegmatite	Pending
	TARC119	30	39	9	Pegmatite	Pending
	TARC119	136	140	4	Pegmatite	Pending
	TARC119	156	209	53	Pegmatite	Pending
	TARC119	249	265	16	Pegmatite	Pending

	Hole ID	From (m)	To (m)	Thickness (m)	Rock type	Assay Status
	TARC120	46	49	3	Pegmatite	Pending
	TARC120	68	70	2	Pegmatite	Pending
\geq	TARC121	51	66	15	Pegmatite	Pending
	TARC121	80	82	2	Pegmatite	Pending
	TARC121	86	89	3	Pegmatite	Pending
	TARC123	127	129	2	Pegmatite	Pending
(TARC123	135	156	21	Pegmatite	Pending
	TARC123	172	177	5	Pegmatite	Pending
	TARC123	184	187	3	Pegmatite	Pending
75	TARC128	1	25	24	Pegmatite	Pending
J	TARC128	132	216	84	Pegmatite	Pending
	TARC131	119	167	48	Pegmatite	Pending
92	TARC132	13	14	1	Pegmatite	Pending
	TARC132	53	61	8	Pegmatite	Pending
	TARC132	68	82	14	Pegmatite	Pending
	TARC132	198	200	2	Pegmatite	Pending
	TARC132	203	245	42	Pegmatite	Pending
70	TARC132	248	295	47	Pegmatite	Pending
	TARC132	303	313	10	Pegmatite	Pending
	TARC132	317	333	16	Pegmatite	Pending
	TARC141	0	27	27	Pegmatite	Pending
	TARC141	33	35	2	Pegmatite	Pending
)	TARC141	53	57	4	Pegmatite	Pending
JŊ	TARC141	63	66	3	Pegmatite	Pending
	TARC141	70	79	9	Pegmatite	Pending
	TARC141	87	91	4	Pegmatite	Pending
10	TARC142	0	8	8	Pegmatite	Pending
	TARC142	19	20	1	Pegmatite	Pending
\bigcirc	TARC142	29	52	23	Pegmatite	Pending
	TARC142	56	64	8	Pegmatite	Pending
	TARC142	84	93	9	Pegmatite	Pending
	TARC142	97	106	9	Pegmatite	Pending
	TARC142	112	114	2	Pegmatite	Pending
	TARC144	17	42	25	Pegmatite	Pending
	TARC144	169	250	81	Pegmatite	Pending
	TARC144	257	262	5	Pegmatite	Pending

Appendix 2

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

6	Criteria	Cri	teria	Cor	nmentary
	Sampling techniques	•	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	•	Reverse circulation drilling completed by TopDrill Drilling. All RC drilling samples were collected as 1m composites, a 3-4kg sub-sample was collected for every 1m interval using a static cone splitter with the sub-sample placed into calico sample bags and the bulk reject placed in rows on the ground.
1	5	•	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	•	Pegmatite intervals were assessed visually for LCT mineralisation by the rig geologist assisted by tools such as ultraviolet light and LIBS analyser. All samples with pegmatite and adjacent wall rock samples were sent to ALS
P Z		•	Aspects of the determination of mineralisation that are Material to the Public Report.	•	laboratories in Perth for chemical analysis. The entire 3kg sub-sample was pulverised in a chrome steel bowl which was split and
9		•	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold	•	an aliquot obtained for a 50gm charge assay. LCT mineralisation was assessed using the MS91-PKG package which uses sodium peroxide fusion followed by dissolution and analysis with ICP-AES and ICP-MS.
			that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	•	Additional multielement analyses (48-element suite) using 4-Acid digest ICP-MS were requested at the rig geologist's discretion but have not yet been evaluated and are not reported in this announcement.
3	Drilling techniques	•	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	•	Reverse circulation drilling with orientation surveys taken every 30m to 60m and an end of hole orientation using a Reflex gyro tool.
	Drill sample recovery	•	Method of recording and assessing core and chip sample recoveries and results assessed.	•	Sample recovery (poor/good) and moisture content (dry/wet) was recorded by the rig geologist in metre intervals.
C)	•	Measures taken to maximise sample recovery and ensure representative nature of the samples.	•	The static cone splitter was regularly checked by the rig geologist as part of QA/QC procedures.
Į	9	•	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	•	Sub-sample weights were measured and recorded by the laboratory. No analysis of sample recovery versus grade has been made at this time.
	Logging	•	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	•	All RC samples were qualitatively logged by the rig geologist. The rock types were recorded as pegmatite, basalt, and dolerite/gabbro.

	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Pegmatite intervals were assessed visually for lithium mineralisation by the rig geologist assisted by tools such as ultraviolet light and LIBS analyser.
	• The total length and percentage of the relevant intersections logged.	• All chip trays were photographed in natural light and ultraviolet light and compiled using Sequent Ltd's Imago solution.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 3kg to 4kg sub-samples of RC chips were collected from the rig-mounted static cone splitter into uniquely numbered calico bags for each 1m interval. Sample sizes are appropriate to the crystal size of the material being sampled. Sub-sample preparation was by ALS laboratories using industry standard and appropriate preparation techniques for the assay methods in use. Internal laboratory standards were used, and certified OREAS standards and certified blank material were inserted in to the sample stream at regular intervals by the rig geologist. Duplicates were obtained from piles of cuttings placed in rows on the ground using an aluminium scoop at the site geologist's discretion in zones containing visual indications of mineralised pegmatite.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The RC core cuttings were analysed with MS91-PKG at ALS using sodium peroxide fusion ICP-AES for a LCT suite, fire assay for gold, and 4-acid digest ICP-AES and ICP-MS for multi-element analysis. Appropriate OREAS standards were inserted at regular intervals. Blanks were inserted at regular intervals during sampling. Certified reference material standards of varying lithium grades have been used at a rate not less than 1 per 25 samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No independent verification of significant intersections has been made. Significant intersections were checked by the Exploration Manager and the Managing Director. No twinned holes have been drilled at this time. Industry standard procedures guiding data collection, collation, verification, and storage were followed. No adjustment has been made to assay data as reported by the laboratory other than calculation of Li₂O% from Li ppm using a 2.153 conversion factor.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Location of drill holes were recorded by tablet GPS. A DGPS survey will be undertaken. Locational accuracy is +-1m in the XY and +-5m in the Z orientation. All current data is in MGA94 (Zone 51). Topological control is via GPS and DEM calculated from a drone photographic survey. The DEM is accurate to approximately 1m.

Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes are spaced at 40m to 160m intervals. There is abundant pegmatite outcrop and the drilling is spaced to determine continuity along strike and down dip. Infill drilling will also aim to close-off mineralisation along strike. At this stage there is insufficient data at a sufficient spacing to determine a Mineral Resource estimate. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No fabric orientation data has been obtained from the RC holes. True width has been estimated from a 3D geological model built using Leapfrog software. True width has not been estimated for holes which have potentially drilled down-dip of pegmatite bodies as the geometry of the pegmatite intersections cannot currently be determined. These holes include TARC086, TARC089, TARC023, and TARC027.
Sample security	The measures taken to ensure sample security.	• All samples were packaged into bulka bags and strapped securely to pallets on site and delivered by TopDrill to freight depots in Port Hedland. The samples were transported from Port Hedland to Perth ALS laboratories via Toll or Centurian freight contractors.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audit has been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Global Advanced Metals Ltd (GAM) owns 100% of the Tabba Tabba Project Mining Leases (M45/354; M45/375; M45/376 and M45/377) A binding agreement is in place between Wildcat and GAM for Wildcat to acquire the Tabba Tabba Project as announced on 17th May 2023: <u>https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf</u> No known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Goldrim Mining Ltd and Pancontinental Mining Ltd ("PanCon") completed 24 OHP, 59 RC and 3 DD holes between 1984 and 1991. GAM drilling of 29 RC holes in 2013. Pilbara Minerals Ltd (PLS) completed 5 diamond holes in November 2013.
Geology	Deposit type, geological setting and style of mineralisation.	• The Tabba Tabba pegmatites are part of the later stages of intrusion of Archaean granitic batholiths into Archaean metagabbros and metavolcanics. Tantalum mineralisation occurs in zoned pegmatites that intruded a sheared Archaean metagabbro. The pegmatite contains in outcrop a symmetrically disposed outer cleavlandite zone, mica zone and a megacrystic K feldspar zone with a centrally disposed quartz zone associated with an albitic replacement unit. The zones generally dip in sympathy with pegmatite margins. (Sourced from PanCon historical reports).
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drillhole collar location information is provided in Appendix 1. True width estimations are provided for all holes except TARC086, TARC089, TARC023, and TARC027, for which true width cannot be reliably estimated at this stage. 87 RC drill holes have been drilled by Wildcat Resources and assays have been returned or only 18 holes. These are from a small area in the north of the tenement package focussed on two outcropping pegmatites and an area in the centre of the tenement package focussing on one outcropping pegmatite. There are over 50 outcropping pegmatite bodies mapped over the tenement package and the drilling returned to date represents only a small area of the prospective pegmatite system that outcrops over 3.2km of strike.

	Criteria	JORC Code explanation	Commentary
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No top cut off has been used. All samples represent 1m composites obtained from the RC drill rig, so no weighted averaging technique has been used to report significant intervals. Aggregated pegmatite intercepts (e.g. TARC086, TARC089, TARC023, and TARC027) calculated at a 0.1% Li₂O cutoff grade with a maximum of 10m consecutive internal dilution and reporting overall intercepts with an average grade >0.5%. All smaller significant intercepts and the high-grade intervals included within broader aggregated intercepts have been separately reported and calculated using 0.3% Li₂O cut off and a maximum of 3m of internal dilution. All pegmatite intercepts listed in Appendix 1, Table 3 are calculated from dominant rock type from database logged geology table as a composite allowing for 2m internal dilution of "other rock". All aggregated intercepts have included separately reported significant intercepts. No metal equivalents have been used.
	Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Most pegmatite intervals intercepted have returned assay results >0.3% Li₂O, some are mineralised in totality, others are partially mineralised with localised zones of lithium mineralisation below 0.3%Li₂O. This is expected in fractionated, zoned pegmatite systems. All holes have intercepted the pegmatites at a favourable angle except for TARC086, TARC089, TARC023, and TARC027 which have inadvertently likely been drilled obliquely down-dip of the pegmatite bodies.
	Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See this announcement for appropriate maps and sections. An additional section through TARC023 is shown below:
		·	

Criteria	JORC Code explanation	Commentary
		SW NE 100m RL 100m RL
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All significant intercepts greater than 0.3%Li ₂ O have been reported in a separate table. All other intercepts or insignificant intercepts are reported in the collar table. To further provide a representative example of low and high grades a section has been provided on Figure 1 to show the gross interval, internal high-grade intervals and areas less than 0.3% Li ₂ O are shown as blank.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Initial mineralogical observations have been discussed and photos provided on Figure 4 and Figure 5.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• An ongoing campaign of RC drilling with a minimum of two rigs to confirm the nature, orientation and extent of lithium mineralisation throughout the Tabba Tabba pegmatite field. A diamond drill rig is being deployed in early October to commence infill drilling for mineralogy and metallurgical test work and to confirm geometry.