ASX Announcement

Drilling High Priority Targets at Fields Find West

HIGHLIGHTS:

- Drilling of high priority copper and nickel targets set to commence at the Fields Find Project (Fields Find West) this quarter.
- Exceptional, initial exploration results by previous owners demonstrate the potential of Fields Find West:¹
 - Falcon Prospect: 2m @ 4.4% Ni from 122m, and 1m @ 1.3% Cu & 6.3 g/t Au from 98m
 - Sandpiper Prospect: 4m @ 36.9 g/t Au from 104m, and 1m @ 2.5% Cu & 24.5 g/t Au from 96m
- Surface rock chip sampling by Warriedar at the historic Warriedar Copper Mine, located within Fields Find West, returned:
 - MGRX003134: 20.1% Cu, 63 g/t Ag, Au pending
 - MGRX003135: 17.8% Cu, 157 g/t Ag, Au pending
- Programs of Work (POWs) approved to commence drilling at three of the Stage 1 high-priority areas at Fields Find West.
- Stage 1 program of 5,600m of RC drilling to commence this quarter.
- Comprehensive drill program planned to test all 10 separate target areas through the remainder of H2 2023.
- Fields Find West offers a strong pipeline of further high-potential targets for significant base metal (and gold) discoveries.

Warriedar Resources Limited (ASX: WA8) (**Warriedar** or the **Company**) is pleased to advise that drilling of high priority base metal (and gold) targets in the Fields Find West area is set to commence this quarter. Fields Find West is part of Warriedar's broader Golden Range and Fields Find Projects located in the Murchison province of Western Australia (see Figure 1).

The Company has been seeking to drill key copper targets in this area since completing the acquisition of the Fields Find (and Golden Range) Projects earlier this year. Three POWs have now been approved to drill high-priority geophysical ("EM") and geological targets at Fields Find West. The approved POW's cover the target areas at the historic Warriedar Copper Mine and the Falcon Prospect (see Figure 2).

¹ Refer WA8 ASX release dated 28 November 2022.

Warriedar's strategic consolidation of tenure at the Fields Find Project has enabled the project to be explored in a cohesive, systematic, and prioritised manner, allowing a robust pipeline of targets to be established ahead of drill testing.

Fields Find West offers some of the best brownfield and geophysical targets for both base metals and gold from across the Fields Find and Golden Range projects.

The planned drilling program at Fields Find West is designed to test 10 specific target areas (as outlined in Table 1). This drilling is set to be undertaken through H2 CY2023, with the first stage being approximately 5,600m of RC drilling. This Stage 1 program includes the drill testing of the historic Warriedar Copper Mine and the high priority EM targets identified at the Falcon Prospect (see Figure 2 for locations).

Figure 1: The location of the Golden Range and Fields Find Projects, surrounded by existing mines and development projects (large black circles). Processing plants (existing or proposed) are annotated with the cyan mining symbol.

Fields Find West program overview

Systematic exploration of Fields Find West commenced in Q1 CY2023 when the Company commissioned an Airborne Electromagnetic (**AEM**) survey (see ASX release 30 January 2023). The survey was designed to highlight areas exhibiting properties consistent with possible accumulations of massive sulphides. The AEM survey identified a multitude of priority targets that demanded follow-up (see ASX release 23 March 2023).

Follow up ground EM surveys were completed across several of these target areas with 10 high priority targets ultimately being defined (see ASX release 3 July 2023). The first phase of drilling will test targets located at the historic Warriedar Copper Mine and the Falcon Prospect. Ground based EM surveys are ongoing to define and refine additional targets ahead of drilling.

Figure 2: Fields Find West: key target areas for drilling during H2 CY2023.

Warriedar Copper Mine (target commodities: Cu, Ag, Au, Co, Mo)

At the Warriedar Copper Mine, the Company has defined two structural targets for drill testing. The Company is pursuing an exploration model based on structurally hosted (Deflector-style) copper deposits.

The historic Warriedar Copper Mine is located at the south-western end of the prospective geological sequence (see Figures 2 & 3). The Warriedar Copper Mine was an active, high-grade copper mine until 1969 (with an average life-of-mine grade of 9.83% copper²) and is located less than 40km south of the largest operating base metal mine in WA, Golden Grove. Golden Grove

² Marston, R.J. (1979), Copper Mineralization in Western Australia, Mineral Resources Bulletin 13, Geological Survey of Western Australia, 01 January 1979

has a current JORC Resource of 61.4Mt @ 1.7% Cu, 4.0% Zn, 0.7 g/t Au, 28 g/t Ag (see 29M ASX release 23 February 2023).

Rock chip samples taken at surface (by Warriedar) returned up to 20% copper (see Table 2). Assays indicate that along with the contained copper mineralisation there is evidence of significant silver and molybdenum anomalism (surface rock chip sampling by Warriedar returned 157 g/t Ag, 129 ppm Co, 488 ppm Mo).

Falcon Prospect (target commodities: Cu, Ni, Au)

The Falcon Prospect was identified as a key target area at the time of Warriedar's acquisition of the Fields Find Project. The historic drill intercepts of 1.3 % Cu from 98m and 4.4% Ni from 122m, are proximal to a key controlling NNE trending structure.

The AEM survey flown in Q1 CY2023 highlighted anomalies located near the significant existing drill intercepts and hence upgraded the ranking of this prospect. A ground based fixed-loop EM survey (**FLEM**) validated upgrading this area and helped to define two well-modelled, discrete, bedrock conductors that are ready to drill test (see A2-08 and A2-18 in Figures 2).

Further targets

Drilling is planned to continue throughout the remainder of H2 CY2023. This further drilling is designed to test additional key targets across the broader Fields Find West area; including Sandpiper, LIC (the EM conductors A1-35 & A1-36) and the various targets within and along the periphery of the Fields Find layered igneous intrusion (see Figure 2 and Table 1).

Additional ground-based EM surveying and further flora and fauna surveys will be carried out as appropriate to progressively advance these targets to drill-ready status.

The additional targets planned to be tested during H2 CY2023 are summarised in Table 1 below. The remaining targets are focused on exploring for both gold and base metals.

Prospect	Target commodity	Geophysical target	Previous drilling	Proposed drilling
Warriedar Copper	Cu, Ag, Au, Co, Mo	Partial	Yes - but ineffective test	~1400m
Falcon (A2- 08 & 18)	Ni, Cu, Au	Yes	No	~1200m
Sandpiper	Au, Cu, Ni, REE	Partial	Yes - but not followed up	~1200m
LIC (A1-35 & 36)	Cu, Ni, PGE	Yes	No	Phase 2 Drilling
LUC (A1-01 & A1-02)	Cu, Ni, PGE	Partial	Yes - but ineffective test	Phase 2 Drilling
Fields Find Gold Mine	Au	Partial	Yes	Phase 2 Drilling
Mopoke	Au	Yes	No	~1800m
Golden Eagle	Au	No	Yes	Phase 2 Drilling
Weiro	Au	Partial	Yes - but ineffective test	Phase 2 Drilling
Reids Ridge	Au	Partial	Yes	Phase 2 Drilling

Table 1: Targets to be drill tested during H2 2023 at Fields Find West.

Figure 3: Photos of the Warriedar Copper target area. Top left: old shaft. Top right: example of surface samples. Bottom: aerial drone photo looking north.

Table 2: Rock chip samples	Warriedar Copper Mine,	Fields Find Project.
----------------------------	------------------------	----------------------

Sample ID	Ag g/t	Cu %	Mo ppm	Co ppm	Au
MGRX3134	63	20.1	144	96	Pending
MGRX3135	157	17.8	223	120	Pending
MGRX3136	22	2.6	231	74	Pending
MGRX3137	18	2.2	488	129	Pending

This announcement has been authorised for release by: Amanda Buckingham, Managing Director.

CONTACT:

Investors +61 8 9481 0389 info@warriedarresources.com.au

Media

Michael Vaughan (Fivemark Partners) +61 422 602 720

About Warriedar

Warriedar Resources Limited (ASX: WA8) is an advanced gold and copper exploration business with an existing resource base of almost 2 Moz gold (149 koz Measured, 867 koz Indicated and 944 koz Inferred)¹ across Western Australia and Nevada, and a robust pipeline of high-calibre drill targets. Our focus is on rapidly building our resource inventory though modern, innovative exploration.

Competent Person Statement

The information in this report that relates to Exploration Result is based on information compiled by Dr. Amanda Buckingham and Dr. Peng Sha. Buckingham and Sha are both employees of Warriedar and members of the Australasian Institute of Mining and Metallurgy and have sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr. Buckingham and Dr. Sha consent to the inclusion in this report of the matters based on his information in the form and context in which they appear.

Appendix 1: Mineral Resources

Golden Range Mineral Resources (JORC 2012) - December 2019												
		Measured			Ir	dicated	Inferred			Total Resources		
Deposit	kt	g/t Au	kOz Au	kt	g/t Au	kOz Au	kt	g/t Au	kOz Au	kt	g/t Au	kOz Au
Austin	-	-	-	222	1.3	9.1	212	1.5	10.1	434	1.4	19.2
Baron Rothschild	-	-	-	-	-	-	693	1.4	31.3	693	1.4	31.3
M1	55	1.7	3	131	2.5	10.4	107	4.0	13.7	294	2.9	27.4
Riley	-	-	-	32	3.1	3.2	81	2.4	6.3	113	2.6	9.5
Windinne Well	16	1.9	1	636	3.5	71	322	1.9	19.8	975	2.9	91.7
Bugeye	14	1.5	0.7	658	1.2	24.5	646	1.1	22.8	1319	1.1	48.1
Monaco- Sprite	52	1.4	2.3	1481	1.2	57.7	419	1.1	14.2	1954	1.2	74
Mt Mulgine	15	2.1	1	1421	1.1	48.2	2600	1.0	80.2	4036	1.0	129.8
Mugs Luck- Keronima	68	2.3	5	295	1.6	15	350	1.6	18.5	713	1.7	38.6
Silverstone	62	3.0	6	4008	1.6	202.6	4650	1.8	267.5	8720	1.7	475.9
Grand Total	282	2.2	19.7	8,887	1.5	441	10,080	1.5	484.5	19,249	1.5	945

Note: Appropriate rounding applied

The information in this report that relates to estimation, depletion and reporting of the Golden Range and Fields Find Mineral Resources for is based on and fairly represents information and supporting documentation compiled by Dr Bielin Shi who is a Fellow (CP) of The Australasian Institute of Mining and Metallurgy. Dr Bielin Shi has sufficient experience relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr. Shi consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

		Big Springs Mineral Resources (JORC 2012) - November 2022										
	Measu	red		Indicate	ed		Inferred	ł		TOTAL		
Deposit	kt	g/t Au	koz	kt	g/t Au	koz	kt	g/t Au	koz	kt	g/t Au	koz
North Sammy	345	6.6	73.4	698	3.1	70.6	508	2.4	39.1	1,552	3.7	183.1
North Sammy Contact				439	2.2	30.9	977	1.4	45	1,416	1.7	75.8
South Sammy	513	3.4	55.5	4,112	2.0	260.7	1,376	1.5	64.9	6,001	2.0	381.2
Beadles Creek				753	2.6	63.9	2,694	1.9	164.5	3,448	2.1	228.4
Mac Ridge							1,887	1.3	81.1	1,887	1.3	81.1
Dorsey Creek							325	1.8	18.3	325	1.8	18.3
Briens Fault							864	1.7	46.2	864	1.7	46.2
Sub-Totals	858	4.7	128.9	6,002	2.2	426.1	8,631	1.7	459.1	15,491	2.0	1,014.1

Note: Appropriate rounding applied

The information in the release that relates to the Estimation and Reporting of the Big Springs Mineral Resources has been compiled and reviewed by Ms Elizabeth Haren of Haren Consulting Pty Ltd who is an independent consultant to Anova Metals Ltd and is a current Member and Chartered Professional of the Australasian Institute of Mining and Metallurgy and Member of the Australian Institute of Geoscientists. Ms Haren has sufficient experience, which is relevant to the style of mineralisation and types of deposits under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code).

Appendix 2: Rock chip sample results

Sample Locations +/-5m

Sample ID	Easting	Northing	Grid	Zone
MGRX3134	512779	6782113	GDA-94	50
MGRX3135	512774	6782099	GDA-94	50
MGRX3136	512779	6782113	GDA-94	50
MGRX3137	512778	6782112	GDA-94	50

Rock chip Assay Results

Method	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI
Element	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Ce	Co	Cr
Units	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Detection Limit	1	0.01	2	1	0.5	5	0.01	1	10	1	2
MGRX3134	63	1.22	94	635	<0.5	22	0.2	3	55	96	23
MGRX3135	157	0.8	104	293	<0.5	21	0.4	20	51	120	15
MGRX3136	22	0.2	315	42	<0.5	<5	0.05	3	21	74	10
MGRX3137	18	0.24	688	24	<0.5	12	0.06	5	28	129	8
Method	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI
Element	Cu	Fe	Ga	к	La	Li	Mg	Mn	Мо	Na	Nb
Units	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
Detection Limit	1	0.01	10	0.01	2	1	0.01	1	2	0.01	10
MGRX3134	200901	6.04	<10	0.26	48	1	0.26	2411	144	0.16	<10
MGRX3135	177838	9.12	<10	0.09	35	2	0.41	213	223	0.08	<10
MGRX3136	26394	11.7	<10	<0.01	4	<1	0.1	354	231	0.02	<10
MGRX3137	22346	20.5	<10	0.01	6	1	0.13	185	488	0.01	<10
Method	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI
Element	Ni	Р	Pb	S	Sb	Sc	Se	Sn	Sr	Та	Те
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Detection Limit	1	20	2	20	5	1	10	5	1	10	10
MGRX3134	424	3757	19	9404	<5	9	27	6	28	<10	46
MGRX3135	612	3273	29	3876	<5	8	48	8	27	<10	51
MGRX3136	436	1120	15	5253	<5	3	13	5	6	<10	22
MGRX3137	787	1419	30	3009	17	6	<10	9	8	<10	<10
Method	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI	MADI		
Element	Th	Ті	ті	U	v	w	Y	Zn	Zr		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Detection Limit	10	5	10	20	1	5	1	1	1		
MGRX3134	<10	881	<10	<20	239	<5	8	208	19		
MGRX3135	<10	608	<10	<20	233	<5	5	336	13		
MGRX3136	<10	56	<10	<20	56	<5	4	299	7		
									10		

Appendix 3

JORC CODE (2012) TABLE 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Rock-chips Samples Each sample is a composite of approximately 10-20 pieces of rock collected within a 5m radium of the recorded sample point to give a total sample weight of approximately 2kg. No calibration of tools required. Rock Chips samples provide indication of the Warriedar Copper mineralisation style and potential economic metals.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Not applicable
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximize sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not applicable
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	 A geological description of the rock chips was recorded. Samples were collected from possible mining waste dump and outcrop. Each rock chip sample is a composite of approximately 10 to 20 pieces of rock collected with a 5m radius of recorded sample point to give a total sample weight of approximately 2kg.
Sub-sampling Techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and	 Rock chips samples were submitted to Jinning Testing & Inspection's Perth laboratory Samples were sorted and dried at 105 °C in client packaging or trays at Jinning.

Criteria	JOR
	appi
	Qua
	sub-
	repro Mea
	is re
	colle
	tieia Whe
	graii
Quality of	The
assay data	the a
anu Laboratory	cons
tests	For
	para
	inclu
	read
	Natu
	(e.g.
	labo
	prec
Verification	The
of sampling	eithe
and assaying	pers The
	Doc
	proc
	(pny Disc
Location of	Accu
data points	loca
	loca
	estin
	Qua
Data spacing	Data
and	Res
distribution	suffi
	geol
	for the
	appl
	Whe
Orientation of	appl W/be
data in	achi
relation to	struc
geological	KNOV If the
structure	orier
	mine
	intro asse

Criteria	JORC Code explanation	Commentary
Quality of assay data	appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures upped and upbother the technique in	 Samples weighed and recorded when sample sorting. Pulverize 3kg to nom 85% <75um. Jinning Testing & Inspection has internal QA/QC procedures to ensure a representative sample. External standard reference materials were inserted. Jinning Testing & Inspection's Perth laboratory was used.
and Laboratory tests	considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Rock chips samples were assayed by 30 gm fire assay. Rockchips were analysed for multi elements (42 elements) with 4 acid digest and ICP finish. Detail result is shown in Appendix 1. External standard reference materials were inserted randomly. Field blanks and field duplicates were utilized.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Company geological personnel were involved in the collection and interpretation of results. Location and sample description data were collected in the field. Assay results were merged with the field data based on sample number.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 A handheld GPS was used to survey the sample points (+/- 5m). The grid used was GDA94 Zone 50.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Sample locations were based upon the availability of material to sample. The samples assay result will not be used in a mineral resource. No compositing was applied to rock chips sampling.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Surface sampling and rock chips sampling technique are considered appropriate for the pre-drilling field investigation.
Sample security	The measures taken to ensure sample security.	 Calico sample bags are tied, grouped by sample ID placed into polyweave sacks and cable tied. These sacks were then appropriately grouped, placed within larger in labelled bulka bags for ease of transport by company personnel, and dispatched by third party transport contractor.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Co	ommentary
Mineral	Type, reference name/number,	٠	There are 68 tenements associated with both Golden Dragon
tenement and	location and ownership including agreements or material issues with		and Fields Find. Among them, 21 are mining leases, 21 are in
status	atus third parties such as joint venture partnerships, overriding royalties native title interests, historical		exploration licenses and 3 are in prospecting licenses. The rest
	partnerships, overriding royalties, native title interests, historical		of the tenements are G and L licenses. Total tenement size is
	sites, wilderness or national park		804 Km2. Third party rights include: 1) the JV with Mid-west
	and environmental settings. The security of the tenure held at		Tungsten Pty Ltd at the Mt Mulgine project; 2) Gindalbie iron
	the time of reporting along with		ore rights; 3) Mt Gibson Iron ore right for the Shine project; 4)
	any known impediments to obtaining a licence to operate in		Messenger's Patch JV right on M 59/357 and E 59/852: 5) Mt
	the area.		Gibson's iron ore and non-metalliferous dimension stone right
			on Fields Find; 6) GoldEX Royalty to Anketell Pty Ltd for 0.75%
			of gold and other metals production from M 59/379 and M
			59/380; 7) 2% NSR royalty on products produced from Fields
			Find tenements to Mt Gibson; 8) Royalty of A\$5 per oz of gold
			produced payable to Mr Gary Mason, limited to 50Koz
			produced from P 59/1343, which covers part of E 59/1268. 9)
			Minjar royalty for A\$ 20 per oz of gold production from the
			project subject to a minimum received gold price of A\$2000 per
			oz with a cap of A\$18 million.
		•	There is no determined native title in place.
Exploration	Acknowledgment and appraisal of	•	Gold exploration at the region commenced in the 1980s.
done by	exploration by other parties.		Normandy Exploration commenced the systematic exploration
other parties			in late 1980s and 1990s. Project were acquired by Gindalbie
			Gold N.L. in December 1999. Golden Stallion Resources Pty
			Ltd acquired the whole project in March 2009. Shandong
			Tianye purchased 51% of Minjar (the operating company) in
			July 2009. Minjar became the wholly owned subsidiary of
			Tianye in 2010.
		•	Over 30,000 drill holes are in the database and completed by
			multiple companies using a combination technic of Reserve
			Circulation (RC), diamond drilling (DD), airecore (AC), Auger
			and RAB. Most of the drill holes were completed during the
			period of 2001-2004 and 2013-2018 by Gindalbie and Minjar
			respectively.
Geology	Deposit type, geological setting	•	In the Golden Range area, gold mineralisation is dominantly
	and style of mineralisation.		controlled by structures and lithologies. North-northeast
			trending shear zones and secondary structures are interpreted
			to be responsible for the hydrothermal activity that produced
			many of the region's gold deposits. Two major shear structures
			have been identified, the Mougooderra Shear Zone and the
			Chulaar Shear Zone; both striking approximately north and

Criteria	
Drill hole	/
Information	t
	i
	e
	e
	ľ
	0
	ł
	i i
	e t
	ť
Data	1
aggregation methods	۱ ۱
	t g
	Criteria Difference Drill hole Information Data aggregation methods

Criteria	JORC Code explanation	Сс	ommentary
			controlling the occurrence of gold deposits. Host lithology units
			for gold mineralisation are predominantly the intensely altered
			matic to ultramatic units, BIF, and dolerite intrusions. Gold
			mineralisation hosted by porphyries has been discovered as
			well, from the most recent drilling programs at Sandpiper and
			Reids Ridge. Main mechanism for mineralisation is believed to
			be associated with: 1) Shear zones as a regional control for
			fluid; 2) dolerite intrusions to be reacted and mineralised with
			auriferous fluids; 3) BIF as a rheological and chemical control;
			4) porphyry intrusions associated with secondary or tertiary
			brittle structures to host mineralisation.
		•	The Fields Find project is contiguous with the Warriedar
			project, which, in combination; covers the entire Warriedar
			greenstone belt. Regional metamorphic grades are generally
			considered to be lower than amphibolite facies. Similar to
			Golden Dragon, gold deposits are structurally controlled, and
			occur in the settings of: 1) contact zones between mafic and
			ultramafic units; 2) hosted by BIF; 3) hosted by dolerite and
			porphyry intrusions. Base metals occur in different geological
			settings. Current exploration model for base metals, including
			Cu and Ni are: 1) intrusion related model; 2) structural control
			model; 3) VMS model.
Drill hole	A summary of all information material to the understanding of	•	All coordinates can be found in Appendix 2
mormation	the exploration results including a		
	tabulation of the following information for all Material drill		
	holes:		
	easting and northing of the drill hole collar		
	elevation or RL (Reduced Level –		
	elevation above sea level in metres) of the drill hole collar		
	dip and azimuth of the hole		
	down hole length and interception denth		
	hole length.		
	If the exclusion of this information is justified on the basis that the		
	information is not Material and this		
	exclusion does not detract from the understanding of the report		
	the Competent Person should		
	clearly explain why this is the case		
Data	In reporting Exploration Results,	•	No data aggregation required.
aggregation	weighting averaging techniques, maximum and/or minimum grade	•	No metal equivalent values were reported.
metnoas	truncations (eg cutting of high		
	grades) and cut-off grades are usually Material and should be		
	stated.		
	Where aggregate intercepts incorporate short lengths of high		
	grade results and longer lengths of		
	low grade results, the procedure		
	be stated and some typical		
	examples of such aggregations		
	Should be shown in detail.		

Criteria
Relationship between mineralisatio n widths and intercept lengths
Diagrams
Balanced reporting
Other substantive exploration data
Further work

Out out o	IODC Code combonation		
Criteria	JORC Code explanation	Co	ommentary
	The assumptions used for any		
	reporting of metal equivalent		
	values should be clearly stated.		
Relationship	These relationships are	٠	No drilling was undertaken.
between	particularly important in the		
mineralisatio	reporting of Exploration Results.		
n widths and	If the geometry of the		
intercent	mineralisation with respect to the		
Intercept	drill hole angle is known, its nature		
lengths	should be reported.		
	If it is not known and only the		
	down hole lengths are reported,		
	there should be a clear statement		
	to this effect (eg 'down hole length,		
	true width not known').		
Diagrams	Appropriate maps and sections	٠	Warriedar Copper project location is shown in Figure 2. Sample
-	(with scales) and tabulations of		locations are given in Annendix 2
	intercepts should be included for		locations are given in Appendix 2.
	any significant discovery being		
	reported These should include, but		
	not be limited to a plan view of drill		
	hole collar locations and		
	appropriate sectional views.		
Balanced	Where comprehensive reporting of	•	No drilling was undertaken.
reporting	all Exploration Results is not		
	practicable, representative		
	reporting of both low and high		
	grades and/or widths should be		
	practiced to avoid misleading		
	reporting of Exploration Results.		
Other	Other exploration data, if		
substantive	meaningful and material, should		
exploration	be reported including (but not		
data	limited to): geological		
	observations; geophysical survey		
	results; geochemical survey		
	results; bulk samples – size and		
	toot rooulto: bulk dopoity		
	aroundwater, gootochnical and		
	rock characteristics: notential		
	deleterious or contaminating		
	substances		
Further work	The nature and scale of planned	•	Further work includes RC and diamond core drilling programs
	further work (eq tests for lateral		i and of work molecules file and diamond core drining programs.
	extensions or depth extensions or		
	large-scale step-out drilling).		
	Diagrams clearly highlighting the		
	areas of possible extensions,		
	including the main geological		
	interpretations and future drilling		
	areas, provided this information is		
	not commercially sensitive.		
	· · · ·		