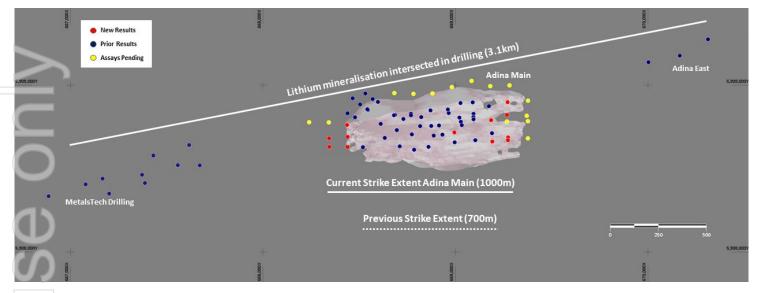
ASX RELEASE | 1 August 2023

Substantial high-grade intersections continue to grow Adina

HIGHLIGHTS

- Assays have been received from "step-out" drilling to the east and west of previous drilling at Adina Main, with results now available from regular spaced drilling of over 1km of the 3.1km of known mineralisation at Adina.
- Substantial, high grade lithium mineralisation continues to be intersected in both Main Zone and Footwall Zone. Results detailed in Table 1 and include:
 - o 1.37% Li₂O over 61.2m from 8.9m (AD-23-024, Main Zone),
 - o 1.98% Li₂O over 35.4m from 251.2m (AD-23-021, FW Zone)
 - o 1.62% Li₂O over 20.4m from 345.2m (AD-23-023, FW Zone)
 - o 1.59% Li₂O over 27.6m from 32.4m (AD-23-024A, Main Zone),
 - o 1.24% Li₂O over 33.3m from 227.3m (AD-23-024A, FW Zone),
 - o 1.35% Li₂O over 30.8m from 67.5m (AD-23-075, Main Zone),
 - o 2.18% Li₂O over 24.1m from 268.5m (AD-23-075, FW Zone),
 - o 1.62% Li₂O over 14.0m from 194m (AD-23-99, FW Zone).
- Mineralised intersections continue to include discrete ultra-high grade zones, with the above intersections containing zones such as:
 - 2.14% Li₂O over 7.0m from 29.0m &
 2.60% Li₂O over 8.1m from 62.0m (AD-23-024, Main Zone),
 - 1.97% Li₂O over 16.6m from 32.4m (AD-23-024A, Main Zone), and
 - o 2.66% Li₂O over 10.3m from 88.0m (AD-23-075, Main Zone).
- Assays still awaited from near surface drill testing of Footwall Zone.
- Drilling rigs mobilising to site this week following lifting of restrictions, next phase focussing on higher grade zones to inform maiden Mineral Resource.

Lithium exploration and development company Winsome Resources (ASX:WR1; "Winsome" or "the Company") is pleased to provide an update on exploration at its 100% owned Adina project in the James Bay region of Quebec, Canada. Further thick, high-grade results have been received from both the Main Zone and Footwall Zone, summarised in Table 1 and 2, increasing the strike length of the core Adina Main Deposit. Drill rigs are currently mobilising back to Adina to re-commence the 2023 drill programme.


WINSOME'S MANAGING DIRECTOR CHRIS EVANS SAID:

Adina continues to grow in size with each set of drilling results as does its potential to be a significant near term supplier to the North American lithium market. We are focussed on defining a robust lithium resource with systematic drill testing of the pegmatite bodies identified to date, as well as testing for new pegmatite swarms similar to the recent Footwall Zone discovery.

We are very pleased and relieved to be back on site at Adina following the recent fires in Quebec. We consider ourselves fortunate to have escaped without significant damage to our property and our thoughts are with those that have suffered damage in this fire event. We also appreciate the assistance provided by the various emergency services to the communities. I would also like to personally thank RJLL for their support in re-commencing operations and look forward to the drills turning shortly."

Hole	Intercepts	Setting
AD-23-021	1.98% Li ₂ O over 35.4m from 251.2m to 286.6m	East
AD-23-023	1.62% Li ₂ O over 20.4m from 345.2m to 365.6m	East
AD-23-024	1.35% Li ₂ O over 7.3m from 271.1m to 224.4m	East
	2.30% Li ₂ O over 5.2m from 254.0m to 259.2m	
AD-23-024A	1.18% Li ₂ O over 10.2m from 198.1m to 208.3m	East step-out
	1.24% Li ₂ O over 33.3m from 227.3m to 260.6	
	incl. 1.89% Li ₂ O over 11.5m from 249.1m to 260.6m	
AD-23-029	1.24% Li ₂ O over 5.0m from 272.0m to 277.0m	East / Central area
	1.85% Li ₂ O over 27.9m from 329.0m to 356.9m	
AD-23-075	1.32% Li ₂ O over 26.0m from 215.5m to241.5m	East step-out
	1.71% Li ₂ O over 11.4m from 281.7m to 293.1m	
	1.28% Li ₂ O over 7.5m from 410.2m to 417.7m	
AD-23-077	1.65% Li ₂ O over 11.0m from 352.0m to 363.0m	East step-out
AD-23-010	0.91% Li ₂ O over 19.3m from 231.9m to 251.2m	West step-out
	incl. 2.20% Li ₂ O over 3.8m from 237.0m to 240.8m incl. 1.39% Li ₂ O over 4.0m from 245.5m to 249.5m	
AD-23-099	1.62% Li ₂ O over 14.0m from 194.0m to 208.0m	West step-out
AD-23-100	1.48% Li ₂ O over 7.4m from 315.3m to 322.7m	West step-out
AD-23-102	1.47% Li ₂ O over 3.6m from 248.8m to 252.4m	West step-out
	1.14% Li ₂ O over 8.6m from 264.6m to 273.3m	
AD-23-103	1.78% Li ₂ O over 9.0m from 245.1m to 254.1m	West step-out

Table 2. Key mineralised intercepts, Adina Footwall Zone

Figure 1: Adina Main Zone strike extents in plan view. Figure shows intersection points of drilling with Main Zone (upper contact), view rotated down and looking northward.

	Hole	Intercepts	Setting
	AD-23-021	1.09% Li ₂ O over 22.4m from 77.0m to 99.4m	East step-out
60	AD-23-023	4.03% Li ₂ O over 5.2m from 129.3m to 134.5m	East step-out
		1.00% Li ₂ O over 4.5m from 209.5m to 214.0m	
	AD-23-024	$1.37\%\ \text{Li}_2\text{O}$ over 61.2m from 8.9m to 70.1m incl. $2.14\%\ \text{Li}_2\text{O}$ over 7.0m from 29.0m to 36.0m incl. $2.60\%\ \text{Li}_2\text{O}$ over 8.1m from 62.0m to 70.1m	East step-out
20	AD-23-024A	1.01% Li ₂ O over 12.4m from 9.0m to 21.4m	East step-out
		$1.59\% \ \text{Li}_2\text{O}$ over 27.6m from 32.4m to 60.0m incl. 1.97% Li_2O over 16.6m from 32.4m to 49.0m	
<u>ab</u>	AD-23-029	1.45% Li ₂ O over 31.0m from 139.0m to 170.0m incl. 2.32% Li ₂ O over 10.0m from 140.0m to 150.0m	East / Central area
	AD-23-075	1.35% Li ₂ O over 30.8m from 67.5m to 98.3m incl. 2.66% Li ₂ O over 10.3m from 88.0m to 98.3m	East step-out
	AD-23-077	2.00% Li ₂ O over 5.1m from 127.0m to 132.1m	East step-out
7		1.57% Li ₂ O over 9.7m from 184.4m to 194.1m	
	AD-23-010	1.01% Li ₂ O over 26.7m from 106.3m to 133.0m incl. 2.11% Li ₂ O over 4.6m from 111.4m to 116.0m	West step-out
	AD-23-102	1.96% Li ₂ O over 4.4m from 40.6m to 45.0m	West step-out
Пп		1.45% Li ₂ O over 9.0m from 140.0m to 149.0m	
	AD-23-103	1.91% Li ₂ O over 3.9m from 31.1 to 35.0m	West step-out
		$0.99\%~\text{Li}_2\text{O}$ over 30.0m from 100.0 to 130.0m incl. 2.18% Li_2O over 4.5m from 109.5m to 114.0m	

Table 2. Key mineralised intercepts, Adina Main Zone

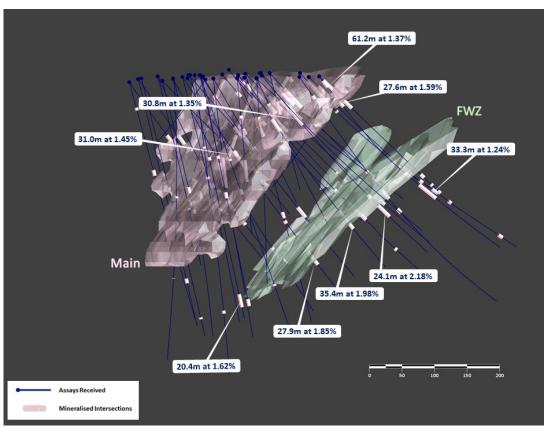


Figure 2: Adina Drill Results (East) – Oblique view looking to south-west along conceptual pegmatite models.

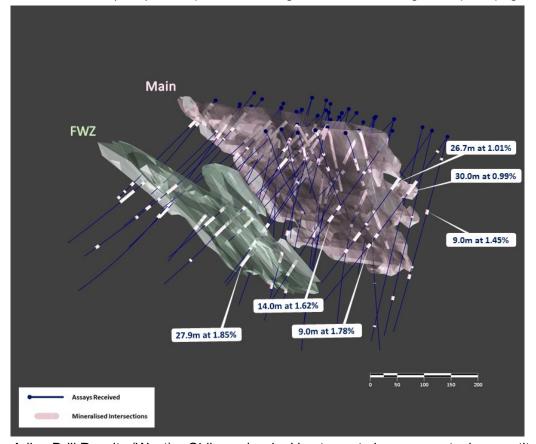


Figure 3: Adina Drill Results (West) – Oblique view looking to east along conceptual pegmatite models.

Commentary on Drilling Results

Intersections reported in this announcement confirm the continuity of lithium mineralisation to the east and west of Adina Main. With the receipt of these results drilling has now defined lithium mineralisation at Adina at close spacing over a strike length of 1km, representing the core of the 3.1km of mineralisation defined by drilling at Adina¹. Drilling stepped out some 250m to the east and a further 150m to the west, systematically testing mineralisation on a spacing of approximately 100m x 100m. Mineralisation remains open to the east and west of drilling.

All drillholes tested both the Main Zone and the recently discovered Footwall Zone, with thick, high-grade intersections received from both zones as detailed in Tables 1 and 2 above. New results received are shown on Figures 1 and 2 with all data from the programme to date included in the Appendices. A total of 76 holes had been completed for 22,500 metres at the time drilling was suspended. Assays have now been received for 62 of these drillholes.

Results are still pending from holes drilled to test the up-dip extension of the Footwall Zone, closer to surface (Figure 3). Forthcoming drilling will focus on testing extensions to higher grade mineralisation in both the Main and Footwall Zones, to ensure these zones are well defined prior to resource modelling later in 2023.

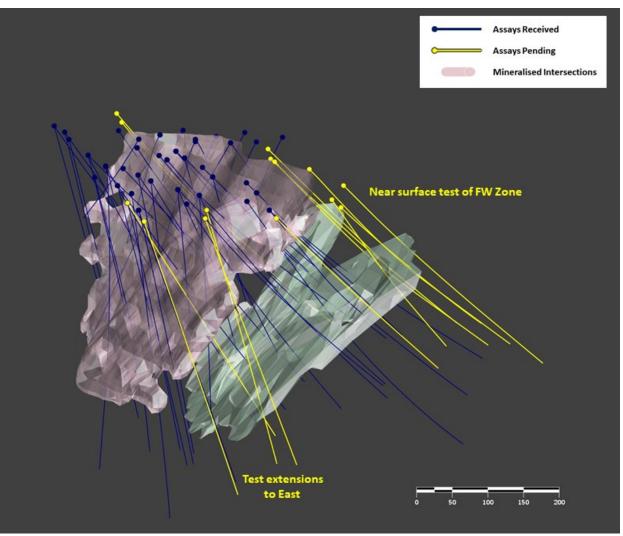


Figure 3: Oblique view looking west of drilling to date at Adina Main showing conceptual pegmatite models and drillholes where assays are pending

¹ "Over 3km of lithium mineralisation confirmed at Adina" ASX Announcement 3 April 2023

MINSOMERES QURCES

Commentary on Operations in Quebec

The Company is pleased to advise that its team have returned to Cargair Camp over the last few days following the lifting of restrictions in the James Bay region. Inspection of the area has confirmed the initial assessment that the Company's assets have not been affected by the fire. As previously advised, there was some fire damage to drilling and ancillary equipment owned by the Company's drilling contractor RJLL but access is expected to be re-established in coming days to all active drilling sites. RJLL is mobilising drilling rigs to site to enable operations to re-commence over the coming week.

The Company acknowledges the efforts of RJLL to assist in the rapid re-start of drilling at Adina as well as being supportive of all those affected by recent fires in the region.

Drilling will focus on following up higher grade results received from the programme to date to ensure that high grade zones are well defined ahead of resource modelling scheduled for the later part of 2023. While there remain several high priority exploration targets within the Adina Project, drilling will be prioritised between new targets and ensuring adequate data density over a significant proportion of the 3.1km of mineralisation defined by drilling at Adina to date.

This announcement is authorised for release by the Board of Winsome Resources Limited.

For further information please contact:

INVESTORS

Chris Evans – Managing Director Winsome Resources

administration@winsomeresources.com.au

MEDIA

Josh Nyman – Senior Media Counsel Spoke Corporate

josh@hellospoke.com.au

+61 413 243 440

ABOUT WINSOME RESOURCES

Winsome Resources (ASX: WR1) is a Perth-based, lithium focused exploration and development company with six project areas in Quebec, Canada. Four of Winsome's projects – Cancet, Adina Sirmac-Clappier and Tilly are 100% owned by the Company. The Company also has exclusive option agreements to acquire and explore 669 claims totalling 385km² in Decelles and a further 259 claims totalling 149km² at Mazerac, located near the Quebec mining town of Val-d'Ór. Recently the Company acquired a further 47km² of claims at the Tilly Project, located near Adina, and an option over the 29 claims of the Jackpot Property, immediately north of Adina.

The most advanced of Winsome's projects - Cancet and Adina, provide shallow, high grade lithium deposits and are strategically located close to established infrastructure and supply chains.

In addition to its impressive portfolio of lithium projects in Quebec, Winsome Resources owns 100% of the offtake rights for lithium, cesium and tantalum from Power Metals Corp (TSXV:PWM) Case Lake Project in Eastern Ontario, as well as a 10% equity stake in PWM.

Winsome is led by a highly qualified team with strong experience in lithium exploration and development as well as leading ASX listed companies.

More details: www.winsomeresources.com.au

CAUTION REGARDING FORWARD-LOOKING INFORMATION

This document contains forward-looking statements concerning Winsome. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory, including environmental regulation and liability and potential title disputes.

Forward-looking statements in this document are based on the Company's beliefs, opinions and estimates of Winsome as of the dates the forward-looking statements are made, and no obligation is assumed to update forward-looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

COMPETENT PERSON'S STATEMENT

The information in this report which relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Antoine Fourier, VP Exploration of Winsome Resources Ltd. Mr Fourier is a member of the Quebec Order of Geologists (OGQ #0516), a Registered Overseas Professional Organisation as defined in the ASX Listing Rules, and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr Fourier consents to the inclusion in this release of the matters based on the information in the form and context in which they appear.

-ends-

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

Appendix 1: Significant Drillhole Lithium Intercepts – New Results Adina Main 2.

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Length (m)	Li₂O %	Zone
AD-23-021	669186	5908747	513	-55	360	77.0	99.4	22.4	1.09	Main
						251.2	286.6	35.4	1.98	FWZ
AD-23-023	669195	5908663	517	-75	360	129.3	134.5	5.2	4.03	Main
						209.5	214.0	4.5	1.00	Main
						345.3	365.6	20.4	1.62	FWZ
AD-23-024	669271	5908856	515	-45	360	8.9	70.1	61.2	1.37	Main
	including					29.0	36.0	7.0	2.10	Main
	including					62.0	70.1	8.1	2.60	Main
						217.1	224.4	7.3	1.35	FWZ
						239.0	242.6	3.6	1.25	FWZ
						254.0	259.2	5.2	2.30	FWZ
AD-23-024A	669271	5908856	515	-50	360	9.0	21.4	12.4	1.01	Main
						32.4	60.0	27.6	1.59	Main
	including					32.4	49.0	16.6	1.97	Main
						198.1	208.3	10.2	1.18	FWZ
						227.3	260.6	33.3	1.24	FWZ
	including					249.1	260.6	11.5	1.89	FWZ
AD-23-029	669002	5908666	514	-55	350	139.0	170.0	31.0	1.45	Main
	including					140.0	150.0	10.0	2.32	Main
						272.0	277.0	5.0	1.24	FWZ
						302.8	312.0	9.2	0.94	FWZ
						329.0	356.9	27.9	1.85	FWZ

² Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 5m thickness and widths including up to 7m internal dilution.

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Length	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23-075	669269	5908768	516	-50	360	67.5	98.3	30.8	1.35	Main
	including					88.0	98.3	10.3	2.66	Main
						244.9	254.0	9.1	1.29	FWZ
						268.5	292.6	24.1	2.18	FWZ
AD-23-077	669270	5908672	517	-75	360	127.0	132.1	5.1	2.00	Main
						184.4	194.0	9.7	1.57	Main
						352.0	363.0	11.0	1.65	FWZ
AD-23-077A	669270	5908672	517	-70	360	136.8	140.0	3.2	3.17	Main
						186.5	194.8	8.3	0.66	Main
						340.9	343.9	3.0	2.03	FWZ
AD-23-010	668441	5908641	511	-55	360	106.3	133.0	26.7	1.01	Main
	including					111.4	116.0	4.6	2.11	Main
						210.5	214.5	4.0	1.01	FWZ
						231.9	251.2	19.3	0.91	FWZ
	including					237.0	240.8	3.8	2.20	FWZ
	including					245.5	249.5	4.0	1.39	FWZ
						271.3	278.7	7.4	0.85	FWZ
AD-23-099	668440	5908717	512	-55	360	92.0	97.0	5.0	0.50	Main
						171.0	181.0	10.0	0.70	FWZ
						194.0	208.0	14.0	1.62	FWZ
AD-23-100	668441	5908641	511	-75	360	162.6	165.7	3.1	1.06	Main
						315.3	322.7	9.4	1.16	FWZ
AD-23-102	668343	5908635	506	-75	360	40.6	45.0	4.4	1.96	Main
						140.0	149.0	9.0	1.45	Main
						248.8	252.4	3.6	1.47	FWZ
						264.6	273.3	8.6	1.14	FWZ

I	Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Length	Li₂O	Zone
	TIOIE ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
	AD-23-103	668343	5908635	506	-55	360	31.1	35.0	3.9	1.91	Main
							100.0	130.0	30.0	0.99	Main
		including					109.5	114.0	4.5	2.18	Main
Ī							221.7	230.5	8.8	0.80	FWZ
							245.1	254.1	9.0	1.78	FWZ

Appendix 2: Significant Drillhole Lithium Intercepts – Previous Results 3.

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Thickness (m)	Li₂O %	Zone
AD-22-001 ²	668477	5908772	511	-45	135	3.0	66.1	63.1	1.35	Main
	including					3.0	11.0	8.0	1.61	Main
	including					23.0	39.0	16.0	2.16	Main
	including					60.4	66.1	5.7	2.37	Main
	including					73.1	85.8	12.7	1.89	Main
		further including				73.1	77.2	4.1	4.19	Main
AD-22-002 ²	668503	5908851	511	-45	135	6.0	11.0	5.0	0.60	Main
AD-22-003 ³	668555	5908901	513	-45	135	85.0	89.0	4.0	2.08	Main
AD-22-004 ³	668513	5908739	512	-45	135	87.1	90.2	3.1	1.50	Main
						93.0	96.0	3.0	1.18	Main
AD-22-005 ¹	668542	5908812	513	-45	135	2.3	109.9	107.6	1.34	Main
	including	· ·				2.3	23.0	20.7	1.52	Main
	including					41.0	71.0	30.0	2.21	Main

³ Refer footnotes to table for announcement details. Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 5m thickness and widths including up to 7m internal dilution.

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
noie iD	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-22-005A ²	668542	5908812	513	-45	315	4.6	28.5	23.9	1.52	Main
	including					4.6	18.5	13.9	2.04	Main
						78.6	84.4	5.8	1.59	Main
AD-22-006 ³	668596	5908861	515	-45	135	2.2	57	54.8	1.14	Main
	including					2.2	8	5.8	1.88	Main
	including					10	20	10.0	1.69	Main
	including					27	32	5.0	1.37	Main
	including					45	51	6.0	1.54	Main
						66.2	78	11.8	0.55	Main
AD-22-006B ³	668596	5908861	515	-45	315	1	11	10.0	0.89	Main
						34.1	37.45	3.35	1.46	Main
AD-22-007 ²	668430	5908809	510	-45	135	88.6	105.6	17.0	1.56	Main
	including					98.6	105.6	7.0	2.72	Main
						141.9	151.4	9.5	0.69	Main
						232.8	287.0	54.2	1.04	Main
	including					232.8	238.8	6.0	2.14	Main
	including					249.0	260.0	11.0	1.14	Main
	including					275.3	287.0	11.7	1.77	Main
						324.6	343.6	19.0	0.88	Main
	including					324.6	329.6	4.6	2.01	Main
AD-22-008 ²	668460	5908892	510	-45	135	41.9	65.7	23.8	0.88	Main
	including					41.9	48.9	7.0	1.31	Main
	including					51.9	54.9	3.0	1.34	Main
	including					60.5	63.5	3.0	1.89	Main
AD-22-009 ³	668512	5908942	511	-45	135	33.9	37.9	4.0	0.26	Main

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-22-011 ³	668687	5908776	517	-45	320	13.6	37	23.4	0.88	Main
)	including					28	37	9.0	1.70	Main
						51	72	21.0	0.82	Main
	including					51	66	15.0	1.00	Main
						94.8	102.2	7.4	0.53	Main
AD-23-022 ⁶	669174	5908833	514	-55	360	35.4	77	41.6	1.08	Main
	including					35.4	42.2	6.8	1.97	Main
	including					52.1	60.8	8.7	1.80	Main
						191.4	197.0	5.6	1.27	FWZ
						215.3	232.6	17.3	1.72	FWZ
						252.6	260.8	8.2	1.43	FWZ
AD-23-025 ⁶	668898	5908704	514	-55	340	110.5	140	29.5	1.16	Main
	including					114.5	121.5	6.0	2.21	Main
						157.2	160.3	3.1	1.33	Main
						255.5	275.7	20.2	0.91	FWZ
						290.0	317.4	27.4	1.11	FWZ
	including					290.0	312.0	22.0	1.26	FWZ
AD-23-026 ⁶	668898	5908704	514	-78	340	135.5	171.0	35.5	0.89	Main
	including					149.0	163.0	14.0	1.46	Main
AD-23-027 ⁶	668827	5908751	525	-50	350	57	83.4	26.4	2.04	Main
						116.7	142.2	25.5	1.93	Main
						245.7	255.7	10.0	1.65	Main
						271.3	313.0	41.7	1.03	FWZ
	including					271.3	290.8	19.5	1.32	FWZ
	including					298.0	306.0	8.0.	1.45	FWZ
						375.6	379.7	4.1	1.23	FWZ

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
поје ју	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23-033 ⁶	668521	5908640	512	-75	360	172.7	178.0	5.3	1.41	Main
						378.2	381.2	3.0	1.11	FWZ
AD 00 004 °	222252	500007	F.4.7	45	0.40	440.0	400.0	47.0	1.00	
AD-22-034 ³	668852	5908687	517	-45	340	112.9	129.9	17.0	1.32	Main
	including					112.9	117.9	5.0	1.93	Main
	including	T				121.9	128.9	7.0	1.67	Main
						156.9	164.4	7.5	1.28	Main
AD-22-035 ³	668634	5908726	519	-45	315	41.6	101	59.4	1.26	Main
	including					41.6	63	21.4	1.71	Main
	including					78	101	23.0	1.49	Main
AD-22-036 ³	668687	5908776	517	-45	360	28	83.5	55.5	1.35	Main
	including					49	58	9.0	2.40	Main
	including					62	71	9.0	1.51	Main
	including					74	83.5	9.5	1.17	Main
						101.8	107.7	5.9	0.36	Main
						227.7	234.5	6.8	0.76	Main
AD-22-037 ³	668702	5908651	515	-55	315	162.3	190.7	28.4	1.12	Main
	including					162.3	179.7	17.4	1.48	Main
						207.7	213.1	5.4	1.75	Main
AD-22-039 ³	668702	5908651	515	-45	360	135	142	7.0	0.59	Main
						154	160	6.0	2.37	Main
						166	170.6	4.6	0.97	Main
AD-23-040 ⁶	668769	5908781	519	-45	360	244.2	255.5	11.3	1.38	FW
						270.6	294.1	23. 5	1.15	FW
	including					270.6	278.7	8.1	1.55	FW
	including					283.7	294.1	10.4	1.32	FW

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
поје ју	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-22-041 ³	668872	5908797	520	-45	360	26.3	71	44.7	1.56	Main
	including					26.3	41.4	15.1	2.00	Main
	including					48	66	18.0	1.92	Main
AD-22-042 ³	668968	5908803	520	-45	340	32.7	80.1	47.4	1.64	Main
	including					32.7	47.3	14.6	2.15	Main
	including					55.1	78.1	23.0	1.78	Main
						100.4	104.65	4.25	1.39	Main
AD-22-046 ³	668968	5908803	520	-65	340	45	66	21.0	1.09	Main
	including					45	49	4.0	1.20	Main
	including					52	65	13.0	1.33	Main
						84	90	6.0	2.82	Main
AD-23-047 ⁶	669031	5908845	520	-45	340	17.8	64.25	46.45	1.73	Main
						84.1	87.0	2.9	1.52	Main
						215.5	241.5	26.0	1.32	FW
	including					219.5	229.2	9.7	2.32	FW
						257.7	263.9	6.2	1.76	FW
						281.7	293.1	11.4	1.71	FW
						314.6	320.0	5.4	0.80	FW
						410.2	417.7	7.5	1.28	FW
AD-22-055 ³	668944	5908718	512	-55	330	95.5	105.5	10	1.55	Main
AD-22-059 ³	668944	5908718	512	-82	330	123	167	44.0	1.08	Main
	including					123	133	10.0	1.37	Main
AD-22-043 ⁴	670003	5909088	531	-45	340	62.3	74.5	12.2	1.50	Main
	including					62.3	69.5	7.2	2.08	Main
AD-23-044 ⁴	670165	5909126	533	-45	340	83.4	89.4	6.0	1.77	Main
	including					83.4	85.4	2.0	3.63	Main

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23-045 ⁴	670312	5909224	533	-45	330	47.4	62.4	15.0	1.26	Main
	including					50.4	54.4	4.0	2.51	Main
AD-23-028 ⁵	668735	5908748	518	-50	350	35.2	45.2	10	2.09	Main
						95.7	104.0	8.3	0.99	Main
						253.0	276.2	23.2	1.02	FW
	•					284.2	294	9.8	0.46	FW
AD-23-030 ⁵	668789	5908668	512	-60	350	161.2	178.5	17.3	0.46	Main
	including					174.4	178.5	4.1	1.24	Main
						204.6	210.5	5.9	0.67	Main
AD-23-031 ⁵	669002	5908666	514	-75	350	158	216.9	58.9	0.37	Main
	including					191.3	198.4	7.1	0.84	Main
	including					214.0	216.9	2.9	0.81	Main
AD-23-038A ⁵	668789	5908668	511	-60	350	152	162	10.0	1.17	Main
						303.4	337.5	34.1	0.69	FW
	including					306.4	314.4	8.0	1.00	FW
	including					318.8	323.6	4.8	1.47	FW
AD-23-040 ⁵	668769	5908781	519	-45	360	49.9	92.7	42.8	1.71	Main
AD-23-048 ⁵	668702	5908651	515	-75	0	198.7	201.7	3.0	3.32	Main
						208	211	30.0	1.35	Main
AD-23-050 ⁵	668789	5908668	512	-75	350	181.5	184.5	30.0	1.14	Main
						307.4	317.9	10.5	0.90	FW
AD-23-051 ⁵	668769	5908781	519	-75	0	15.9	31.1	15.2	1.29	Main
						70.5	75.5	5.0	1.50	Main
						219.9	230	10.1	2.44	FW
						260.6	281.6	21.0	1.10	FW

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Thickness (m)	Li₂O %	Zone
AD-23-053 ⁵	669034	5908748	512	-45	360	73.5	115.2	41.7	0.83	Main
						80.6	99.2	18.6	1.16	Main
AD-23-054 ⁵	669090	5908854	512	-45	360	20.2	64.2	44.0	0.48	Main
						200.7	214.7	14.0.	1.29	FW
AD-23-057 ⁵	669034	5908748	512	-65	360	66.5	99.1	32.6	1.34	Main
	including					66.5	78.2	11.7	2.27	Main
	including					86.9	94.9	8.0	1.61	Main
AD-23-060 ⁵	669034	5908748	512	-85	240	57.5	62.0	4.5	3.59	Main
						126.0	160.0	34.0	1.68	Main
						139.2	158.0	18.8	2.42	Main
AD-23-068 ⁶	669102	5908677	517	-82	0	111	114	3	1.79	Main
						236	250	14	0.96	Main
	including					236	246	10	1.10	Main
						364.55	369.25	4.7	2.04	FW
AD-23-071 ⁵	669094	5908773	512	-85	360	59	75	16.0	1.41	Main
AD-23-072 ⁵	669094	5908773	512	-65	360	43.4	62	18.6	2.25	Main
						83.5	103.5	20.0	0.74	Main
						236.1	240.1	4.0	1.46	FW
AD-23-073 ⁵	669094	5908773	512	-45	360	49.9	94	44.1	1.38	Main
	including					49.9	61.3	11.4	2.36	Main
						221.5	236.9	15.5	1.57	FW

¹ Assays previously reported. "Strong lithium mineralisation recorded from first Adina drill hole assays" ASX Announcement 6 January 2023

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

MIUO BSD | TUSI ON | MIUO BSD | MIUO BUIN

² Assays previously reported. "New assay results confirm strong lithium mineralisation at Adina" ASX Announcement 14 February 2023

³ Assays previously reported. "Assays confirm Adina as a robust, high-grade lithium project" ASX Announcement 23 March 2023

⁴ Assays previously reported. "Over 3km of lithium mineralisation confirmed at Adina" ASX Announcement 3 April 2023

⁵ Assays previously reported. "New Lithium Bearing Pegmatite Dyke Swarm at Adina" ASX Announcement 10 May 2023

⁶ Assays previously reported. "New results confirm multiple zones and continuation of lithium mineralisation at Adina" ASX Announcement 13 June 2023

Appendix 3: Diamond Drilling Summary for Winsome's drilling program at Adina.

11.1.15	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-22-001	668477	5908772	511	-45	135	171.0
AD-22-002	668503	5908851	511	-45	135	213.0
AD-22-003	668555	5908901	513	-45	135	138.0
AD-22-004	668513	5908739	511	-45	135	147.0
AD-22-005	668542	5908812	513	-45	135	261.0
AD-22-005A	668542	5908812	513	-45	315	162.0
AD-22-006	668596	5908861	515	-45	135	118.0
AD-22-006B	668596	5908861	515	-45	315	56.5
AD-22-007	668430	5908809	510	-45	135	390.0
AD-22-008	668460	5908892	510	-45	135	210.2
AD-22-009	668512	5908942	511	-45	135	246.0
AD-22-011	668687	5908776	517	-45	320	150.0
AD-22-034	668688	5909055	519	-45	340	196.4
AD-22-035	668634	5908726	519	-45	315	186.0
AD-22-036	668687	5908776	517	-45	360	243.0
AD-22-037	668702	5908651	515	-45	315	228.0
AD-22-039	668702	5908651	515	-45	360	201.0
AD-22-041	668872	5908797	520	-45	360	213.0
AD-22-042	668968	5908803	520	-45	340	150.0
AD-22-043	670003	5909088	531	-45	340	141.1
AD-22-046	668968	5908803	520	-75	340	186.0
AD-22-055	668944	5908718	512	-55	330	300.0
AD-22-059	668944	5908718	512	-82	330	204.0
AD-23-044	670165	5909126	533	-45	340	168.0
AD-23-045	670312	5909224	533	-45	330	114.0
AD-23-010	668441	5908641	511	-55	360	300.0
AD-23-022	669174	5908833	514	-55	360	450.0
AD-23-023	669195	5908663	517	-75	360	384.0
AD-23-025	668898	5908704	514	-55	340	396.0
AD-23-026	668898	5908704	514	-78	340	408.0
AD-23-027	668827	5908751	525	-50	350	444.4
AD-23-028	668735	5908748	518	-50	350	315.7
AD-23-029	669002	5908666	514	-55	350	402.0
AD-23-030	668874	5908645	508	-75	340	402.0
AD-23-031	669002	5908666	514	-75	350	387.0
AD-23-033	668521	5908640	512	-75	360	408.0
AD-23-038A	668789	5908668	512	-60	350	420.0
AD-23-040	668769	5908781	519	-45	360	384.0
AD-23-047	669031	5908845	520	-45	340	444.0

Hala ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-048	668702	5908651	515	-75	360	297.0
AD-23-050	668789	5908668	512	-75	350	378.0
AD-23-051	668769	5908781	519	-75	360	392.5
AD-23-053	669034	5908748	512	-45	360	187.0
AD-23-054	669090	5908854	512	-45	360	231.0
AD-23-057	669034	5908748	512	-65	360	213.0
AD-23-060	669034	5908748	512	-85	240	240.0
AD-23-068	669102	5908677	517	-82	360	462.0
AD-23-071	669094	5908773	512	-85	360	324.0
AD-23-072	669094	5908773	512	-65	360	252.0
AD-23-073	669094	5908773	512	-45	360	292.1
AD-23-074	669195	5908663	517	-58	360	393.0
AD-23-075	669269	5908768	516	-50	360	372.0
AD-23-076	669269	5908768	516	-75	360	350.0
AD-23-077	669270	5908672	517	-75	360	367.3
AD-23-077A	669270	5908672	517	-70	0	408.0
AD-23-099	668440	5908717	512	-55	360	261.0
AD-23-100	668441	5908641	511	-75	360	390.0
AD-23-102	668343	5908635	506	-75	360	375.0
AD-23-103	668343	5908635	506	-55	360	384.0
AD-23-049	669381	5908756	520	-70	350	375.0
AD-23-058	669381	5908670	517	-70	350	411.0
AD-23-083	669281	5908956	519	-45	360	258.0
AD-23-085	669084	5908977	522	-45	360	378.0
AD-23-086	668981	5908938	531	-45	360	378.0
AD-23-089	668683	5908906	518	-45	360	250.0
AD-23-091	668782	5908901	518	-45	360	351.0
AD-23-092	668881	5908898	528	-45	360	399.0
AD-23-095	669181	5908952	516	-55	360	264.0
AD-23-097	669381	5908856	519	-45	350	320.0
AD-23-104	668343	5908730	510	-50	360	417.0
AD-23-107	668240	5908732	508	-50	360	306.0

Legend for Appendix 3:

AD-22-005 Assays previously reported

AD-22-001 Assays reported in this announcement

AD-22-006 Assays awaited, collar/lithological data reported previously

AD-22-060 Assays awaited, collar/lithological data reported in this announcement

JORC Code, 2012 edition Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	on apply to all succeeding sections.)		
Sampling techniques	 Explanation All core is NQ (76mm) in this program. Core sample intervals were 		
	geologically logged, measured for average length, photographed, and placed into numbered core trays.		
	 RC drilling utilised face sampling hammers with samples split down to a 2kg sample size. 		
10	 Samples from Adina were sent to SGS Minerals Geochemistry under standard preparation procedures. 		
	Gravity data obtained by ground measurements at regular intervals.		
Drilling techniques	NQ diamond drilling was completed at Adina.		
	 Oriented core drilling was not completed. Downhole surveying was conducted using a gyro-based system. 		
Drill sample recovery	 The recovery of the diamond drilling samples was reported by the operators and supervised by our consulting geologist. 		
	 No sample bias has been established. 		
Logging	 NQ core was logged and cut according to geological boundaries, with ~1 m intervals targeted for individual samples. 		
(A)	 For RC and DD drilling features such as rock type, modal mineralogy, rock textures, alteration were recorded. Geological logging information was recorded directly onto the GeoticLog system and compiled onto Database platform, with weekly backups. 		
15)	 The core is stored in the Geological consultants (Technominex) yard in Rouyn-Noranda which is a secure location. 		
	 Various qualitative and quantitative logs were completed. All core has been photographed. 		
	 The logging database contains lithological data for all intervals in all holes in the database. 		
Sub-sampling techniques and sample preparation	 Adina drill core was split (sawn) at the Winsome core logging and cutting facility located at the project base in James Bay, with half core samples intervals submitted to SGS preparation facilities in Val-d'Or, Quebec. 		
	 Half core NQ samples are believed to be representative of the mineralisation targeted. Sampling intervals are based on geological boundaries to aid representivity. 		
	 Samples are crushed, milled and split at the laboratory (SGS) to achieve a 250g sub-sample for assay. Laboratory QC procedures for sample preparation include quality control on checks crushing and milling to ensure representivity. 		

Criteria	Explanation
Quality control & Quality of assay data and laboratory tests	 Assay and laboratory procedures have been selected following a review of techniques provided by laboratories in Canada. SGS and AGAT are both internationally certified independent service providers. Industry standard assay quality control techniques were used for lithium related elements.
	 Samples are submitted for multi-element ICP analysis by SGS or AGAT Laboratories which is an appropriate technique for high-grade lithium analysis.
15)	 Sodium Peroxide Fusion is used followed by combined ICP-AES and ICP-MS analyses (56 elements). Li is reported by the lab and converted to Li₂O for reporting using a factor of 2.153.
	No handheld instruments were used for analysis.
	Comparison of results with standards indicate sufficient quality in data. No external laboratory checks have been used but are planned to be completed shortly.
	 Different grades of certified reference material (CRM) for lithium mineralisation were inserted, as well as field duplicates, and blanks. The CRM's submitted represented a weakly mineralised pegmatite (OREAS 750), and a moderate lithium mineralised pegmatite (AMIS 0341) to high grade lithium mineralised pegmatite (OREAS 752 & 753). Quality Assurance and Quality Control utilised standard industry practice, using prepared standards, field blanks (approximately 0.4 kg), duplicates sampled in the field and pulp duplicates at the lab.
<u>)</u>	Blank samples were submitted at a rate of approximately 5%, same for duplicates and repeat assay determinations, whereas standards were submitted at a rate of approximately 20%.
Verification of sampling and	Significant intersections have been estimated by consultants to the company and cross checked.
assaying	Hard copy field logs are entered into and validated on an electronic database, which is maintained by Winsome on site in James Bay and backed up regularly by the Company's IT consultants in Val D'Or.
	Data verification is carried out by the Project Geologist on site, and a final verification was performed by the Senior Geologist and the geologist responsible for database management. An independent verification is carried out by consultants to the company.
<i>)</i> 1	 No assays have been adjusted. A factor of 2.153 has been applied to the reported Li assays by the laboratory so to report as Li₂O.
Location of data points	The drill holes have been reported as being located by hand-held GPS. Historical drill holes have been verified by GPS.
	The grid datum is NAD83. Zone 18N.
	Topographic elevation and landmarks are readily visible from a Digital Elevation Model with a 50cm grid resolution and orthophoto obtained from Lidar surveys performed in 2017 and 2022 over the property. Government topographic maps have been used for topographic

Criteria	Explanation	
	validation. The GPS is otherwise considered sufficiently accurate for elevation data.	
	 Down hole dip surveys were taken at approximately 30m intervals and the bottom of the diamond drill holes. 	
Data spacing and distribution	 In this early delineation stage, drilling is largely set along sections at 100m spacing and aiming to intercept targeted horizon at 80-100m centres. 	
	 No assessment has been made regarding the current drill hole locationand intersections with respect to resources or reserve estimation. 	
	 No sample compositing has been completed. However, internal dilution of non-mineralised material into calculated grade over widths reported herein may occur but is not considerable. 	
Orientation of data in relation to geological structure	 Drilling is designed to confirm the historical drilling results and test potential mineralisation. They were oriented sub-perpendicular to the potential mineralised trend and stratigraphic contacts as determined be field data and cross section interpretation. Intersection widths will therefore be longer than true widths. 	
	 No significant sample bias has been identified from drilling due to optimum drill orientation described above. Where present, sample be will be reported. 	
Sample security	The company takes full responsibility on the custody of the samp including the sampling process itself and transportation.	
	 Samples are shipped during the weekly supply run and delivered dire to the respective laboratories. 	
Audits or reviews	No external audit of the database has been completed, apart from by consulting geologists acting on behalf of the company.	

Section 2 Reporting of Exploration Results

(Criteria in the preceding section also apply to this section.)

		ection also apply to this section.)	
Criteria Mineral tenement	Explanation		
and land tenure	•	The Winsome Adina Lithium Project is 100% owned by Winsome Adina Lithium Inc.	
status	•	All tenements are in good standing and have been legally validated by a Quebec lawyer specialising in the field.	
Exploration done by	•	Initial Exploration and Review was undertaken by MetalsTech Limited.	
other parties	•	Government mapping records multiple lithium bearing pegmatites within the project areas with only regional data available.	
Geology	•	The mineralisation encountered at the Adina project is typical of a Lithium-Caesium-Tantalum (LCT) type of pegmatite. The pegmatite body is oriented sub-parallel to the general strike of the host rocks. The host rocks are composed of Archean Lac Guyer greenstone rocks, which include mafic and ultramafic rocks interlayered with horizons of metasedimentary and felsic volcanic rocks	
Drill hole Information	•	For the current drill program, the following information has been included for all holes reported:	
		 easting and northing of the drill hole collar 	
		 elevation or RL (reduced level – elevation above sea level in metres) of the drill hole collar 	
		dip and azimuth of the hole	
		 down hole length and interception level 	
		hole length	
	•	A summary of historical drill hole information was included in the Independent Geologists Report prepared by Mining Insights within the Company's prospectus	
Data aggregation methods	•	No sample weighting or metal equivalent values have been used in reporting.	
	•	Aggregation issues are not considered material at this stage of project definition. No metal equivalent values were used	
Relationship between mineralisation widths and intercept lengths	•	The pierce angle of the drilling varies from hole to hole, in order to attempt, wherever possible, to represent true widths	
Diagrams	•	See figures and maps provided in the text of the announcement.	
Balanced reporting	•	Winsome Resources Ltd will endeavour to produce balanced reports accurately detailing all results from any exploration activities.	
	•	All drillholes and intersections have been presented in this announcement and in previous announcements.	

Criteria	Explanation
Other substantive exploration data	 All substantive exploration data has been included in ASX Announcements. No other substantive exploration data is available at this time.
Further work	Winsome Resources Ltd continues to complete further site investigations.
	Further work planned includes comprehensive data interpretation, field mapping and exploration drilling.