

Diamond Drilling Confirms Ultra High-Grade REEs Extend Significantly Beneath Resource

Highlights

Assay results from 27 diamond cores at the Caldeira Project received

85% of historic drilling was completed to an average depth of less than 10 metres. Meteoric's new diamond drilling conclusively shows the clay zone and the High-Grade REE mineralisation extends significantly deeper, including to 36 metres at Capão do Mel and 56 metres at Figueira

Assay highlights effectively commencing from surface include remarkable results of:

- CDMDD001 31.2m @ 3,769 ppm TREO¹ including 16.4m @ 5,537 ppm TREO
- CDMDD002 18.5m @ 3,808 ppm TREO, including 10.4m @ 5,000 ppm TREO
- CDMDD004 16.4m @ 5,967 ppm TREO, including 10.7m @ 7,243 ppm TREO
- CDMDD005 5.4m @ 8,200 ppm TREO
- CDMDD006 36.0m @ 2,881 ppm TREO, including 9.0m @ 4,228 ppm TREO
- CDMDD007 33.0m @ 2,102 ppm TREO
- CVNDD001 19.2m @ 5,825 ppm TREO
- CVNDD002 20.6m @ 4,111 ppm TREO, including 11.2m @ 5,538 ppm TREO
- CVNDD003 31.8m @ 3,243 ppm TREO, including 4.0m @ 16,074 ppm TREO
- CVNDD004 27.4m @ 2,914 ppm TREO, including 11.0m @ 5,066 ppm TREO
- DM1DD002 33.6m @ 2,715 ppm TREO
- DM1DD003 9.9m @ 4,741 ppm TREO
- FGDD001 41.2m @ 1,846 ppm TREO, including 3.6m @ 3,711 ppm TREO
- FGDD002 58.3m @ 2,449 ppm TREO, including 5.5m @ 4,834 ppm TREO
- FGDD003 45.6m @ 3,352 ppm TREO, including 11.7m @ 6,108 ppm TREO
- SBDD002 26.1m @ 3,348 ppm TREO, including 14.0m @ 4,365 ppm TREO

The Company recently published its maiden Mineral Resource Estimate (**MRE**) for the Caldeira REE Project under JORC 2012 which stands at a World Class 409Mt @ 2,626 TREO at a 1,000ppm cut off² based solely on the historical drilling to an average depth of less than 10m. The new diamond drilling which extends mineralisation up to 56m at Figueira and 36m at Capão do Mel has enormous positive implications for any future resource estimate should the trend continue.

 $^{^{1}\}text{ TREO} = \text{La}_{2}\text{O}_{3} + \text{CeO}_{2} + \text{Pr}_{6}\text{O}_{11} + \text{Nd}_{2}\text{O}_{3} + \text{Sm}_{2}\text{O}_{3} + \text{Eu}_{2}\text{O}_{3} + \text{Td}_{4}\text{O}_{7} + \text{Dy}_{2}\text{O}_{3} + \text{Ho}_{2}\text{O}_{3} + \text{Er}_{2}\text{O}_{3} + \text{Tm}_{2}\text{O}_{3} + \text{Yb}_{2}\text{O}_{3} + \text{Lu}_{2}\text{O}_{3} + \text{Yb}_{2}\text{O}_{3} + \text{Yb}_{2}\text{O}_{$

² ASX:MEI 01/05/2023 - Caldeira REE Project Maiden Mineral Resource

Meteoric Resources NL (**Meteoric** or the **Company**) (ASX: **MEI**) is pleased to announce results from 27 diamond drill holes where assays have now been received. These results represent the first new sampling of the project by Meteoric.

Executive Chairman, Dr Andrew Tunks said,

This is groundbreaking work for the Company with the first real data to indicate that the high-grade rare earth mineralisation continues significantly deeper than the current Inferred Resource. The new assays clearly show there is significant extensions at depth at all prospects and indeed this is particularly clear at Capão do Mel, where the diamond drilling has extended the mineralisation to a depth of thirty-six (36) metres and at Figueira where we see REE mineralised zones down to sixty-seven (67) metres. In fact, the diamond drilling at all six resource areas has extended the maximum depths of mineralisation significantly. This has enormous positive implications for any future resource estimate should the trend continue in future drilling.

Equally significant has been the validation of the historic auger drilling results, with the Company's first diamond hole assays confirming the Caldeira Project's status as the **World's highest grade lonic Clay REE**. Assays also confirm that the high TREO grades reflect very high-grade Magnetic Rare Earth Oxide (MREO)³ results with several thick intersections well over 1,500ppm MREO. The Caldeira Project is clearly significantly higher grade than any other IONIC clay REE yet documented. When coupled with the excellent metallurgical recoveries document by previous explorers⁴ this is potentially a disruptive asset in the global rare earth market.

The coming months will see an exciting time for the Company with considerable activity following on from these diamond results. An initial batch of composite samples for metallurgical testwork is now underway at ANSTO laboratories in Australia, looking to confirm very high REE recoveries previously reported. The Company owned and operated Aircore drill rig will be infill drilling at Capão do Mel, Sorberbo and Figueira to delineate Measured and Indicated Resources for optimisation and economic studies. In addition, the diamond drilling will continue testing both priority soil anomalies outside the defined resource areas as well as further testing within the resource to collect depth to basement and density data. Given today's exciting results, it is expected that this drilling will continue for the remainder of 2023 and form a crucial dataset for the next Mineral Resource Estimate.

Diamond Drilling Program

A total of 41 HQ Diamond (DD) drill holes for 1,313m have been drilled into the six (6) known deposits to 18 July 2023 (**Figure 1**). The collar table for all drilling is presented in **Appendix 1**. The initial proposed 1,250m program was designed to test the depth to the base of the clays below the Inferred Resource and support metallurgical characterisation and density testwork programs.

Due to the success of this program, drilling has been expanded to test seventeen (17) priority regional targets (soil anomalies) on licences outside the Company's existing REE resource areas. Updates on these targets will be reported as results are received and interpreted.

Upon completion of the regional drill program further resource diamond holes will be completed in the resource areas documenting the validity of historical auger drilling and providing solid geological logging of the transition from the regolith profile into the underlying unweathered intrusive basement.

³ MREO = $Pr_6O_{11} + Nd_2O_3 + Tb_4O_7 + Dy_2O_3$

⁴ ASX:MEI 20/12/23 Metallurgical Tests Confirm Caldeira as Ionic Adsorption Clay REE Deposit

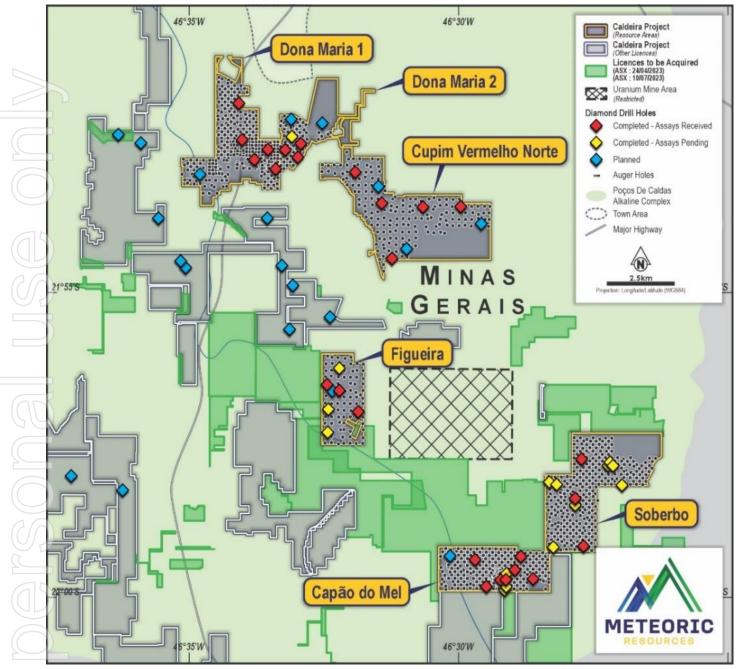


Figure 1: DD Drill Hole Location Plan

Meteoric Resources NL ABN 64 107 985 651 Level 1, 33 Ord Street, West Perth WA 6005 www.meteoric.com.au | Page 3 of 11

Diamond Drilling Results

Rare Earth mineralisation occurs in a thick saprolite (clay zone) and transition zone which has formed as a result of intense weathering of the underlying intrusive host rocks.

Target	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO (ppm)	MREO as % of TREO
	CDMDD001	0.0	31.2	31.2	3,760	923	24.6%
	includina	2.2	18.6	16.4	5,537	1,572	24.0%
	CDMDD002	0.0	18.5	18.5	3,808	907	23.8%
	including	6.0	16.4	10.3	5,000	1,405	28.1%
	CDMDD004	0.0	16.4	16.4	5,967	1,736	29.1%
	including	3.3	14.0	10.4	7,243	2,203	30.4%
	CDMDD005	0.0	5.4	5.4	8,200	1,943	23.7%
Capão da Mel	including	0.7	5.4	4.7	8,794	2,025	23.0%
	CDMDD006	0.0	36.0	36.0	2,881	519	18.0%
	including	0.0	9.0	9.0	4,228	316	7.5%
	and	22.0	26.0	4.0	3,398	743	21.9%
	CDMDD007	0.0	33.3	33.3	2,102	371	17.7%
	CDMDD008	0.0	36.8	36.8	1,600	276	17.2%
	including	3.0	8.0	5.0	4,861	1,206	24.8%
	CVNDD001	0.0	19.2	19.2	5,825		24.8%
	including	0.0	19.2	19.2	6,403	1,403 <i>1,552</i>	24.1%
	CVNDD002	0.0	20.6	20.6	4,111	1,552	29.0%
		5.0					
	including	0.6	<u>16.2</u> 32.4	11.2	5,538	<i>1,795</i> 699	32.4%
Cupim Vermelho	CVNDD003	23.0	27.0	31.8 <i>4.0</i>	3,243		21.6%
	including CVNDD004		27.0		<i>16,074</i> 2,914	5,017	31.2% 21.6%
		0.0		27.4		631	-
	including	9.0 0.4	20.0	11.0	5,066	1,669	32.9%
	CVNDD005	-	19.8	19.4	1,556	282	18.1%
	DM1DD001	1.7	20.4	18.8	2,857	785	27.5%
	including	4.8	14.0	9.2	4,079	1,341	32.9%
Don Maria I	DM1DD002	1.0	34.6	33.6	2,715	580	21.4%
	including	4.0	16.0	12.0	4,714	1,445	30.6%
	DM1DD003	0.0	9.9	9.9	4,741	1,362	28.7%
	including	3.0	9.9	6.9	5,714	1,764	30.9%
	DM1DD004	0.3	13.4	13.0	2,229	474	21.2%
	DM1DD005	0.0	1.0	1.0	1,200	232	19.3%
	DM2DD001	0.0	15.6	15.6	2,076	517	24.9%
	including	3.0	6.0	3.0	3,453	883	25.6%
	DM2DD002	0.0	5.0	5.0	2,690	616	22.9%
	including	0.0	3.0	3.0	3,386	859	25.4%
Dona Maria II	DM2DD003	0.0	15.3	15.3	2,175	526	24.2%
	including	0.0	4.0	4.0	3,626	1,069	29.5%
	DM2DD004	0.0	15.6	15.6	2,331	521	22.3%
-	including	5.0	7.1	2.1	4,381	1,376	31.4%
	and	13.0	15.6	2.6	5,163	1,181	22.9%
	FGDD001	0.0	42.2	42.2	1,846	286	15.5%
	including	0.5	4.0	3.6	3,771	737	19.6%
	FGDD002	9.0	67.3	58.3	2,449	423	17.3%
Figueira	including	47.6	53.2	5.5	4,834	1,093	22.6%
	FGDD003	0.0	45.6	45.6	3,352	643	19.2%
	including	2.3	14.0	11.7	6,108	1,518	24.8%
	and	28.0	31.0	3.0	5,804	891	15.4%
	SBDD001	0.0	13.0	13.0	3,545	870	24.6%
	including	9.0	13.0	4.0	5,497	1,372	25.0%
Soberbo	SBDD002	0.0	26.1	26.1	3,348	878	26.2%
	including	11.0	25.0	14.0	4,365	1,282	29.4%
	SBDD003	0.0	3.9	3.9	1,506	343	22.8%

Table 1. Mineralised Intercept Table

*min 4m width, bottom cut-off 1000ppm TREO, max 2m internal dilution

**including: min 2m width, bottom cut-off 3000 ppm TREO, max 1m internal dilution

METEORIC RESOURCES

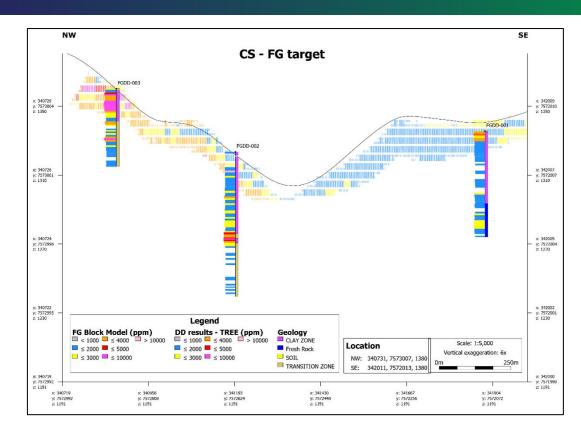
Clay Zone & REE Mineralisation Extends Below the Current Resource

In lonic Clay Adsorbed REE mineralisation the economic zone that can be leached with ammonium sulfate is confined to the clay zone of the regolith profile. Beneath the clay zone, in the partially weathered and fresh syenite (basement), a percentage of REE elements are possibly related to primary mineralisation and consequently may not be a target for the Company.

All Diamond Drill holes ended in fresh granite, penetrating below the base of Auger drilling and the current Inferred Resource to test the thickness of the clay zone and the depth to which REE mineralisation is present. **Table 2** shows the average depths of clay observed in historic Auger Drilling versus the average depths of clay observed in the current Diamond Drilling program.

		-	-		•	
Target	No. AUGER holes	Ave. Depth Clay in AUGER	No. DD holes	Ave. Depth Clay in DD	Increased Depth of Clay (m)	Increased Depth of Clay (%)
Capão do Mel	337	10.27	11	26.81	16.54	+ 161 %
Soberbo	323	9.25	11	18.76	9.51	+ 103 %
Figueira	92	10.33	6	56.66	46.33	+ 448 %
Cupim Vermelho	185	9.99	5	23.87	13.98	+ 140 %
Dona Maria I	316	10.00	5	16.08	6.98	+ 70 %
Dona Maria II	143	9.11	4	15.03	5.92	+ 65 %
TOTAL	1,396	9.83	42	26.20	16.38	+ 164 %

Table 2. Observed depth of mineralised Clay Zone (AUGER v DD Drilling).


The depth of the Clay Zone was observed to increase by an average of 164% across the 6 deposits, with the biggest increases coming at Figueira (448% increase), Capão do Mel (161% increase), and Cupim Vermelho Norte (140% increase).

Figures 2 - 4 (below) show a strong correlation with the block model from the current Inferred Resource in the upper part of the weathering profile (to a maximum of 20m depth), but also clearly show strong TREO grades (> 1000ppm) extending below the block model, confirming both an increase in the depth of clay and an increase in the depth of mineralisation below the current resource.

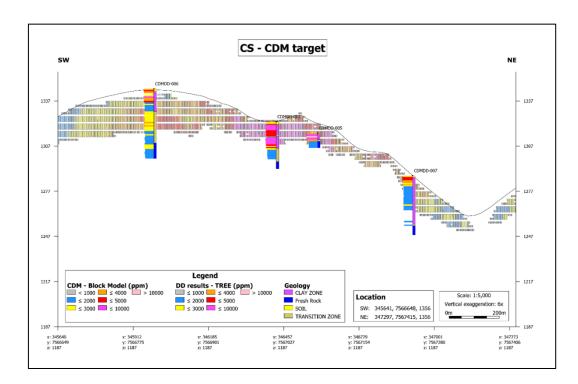

Remaining assay results from ALS (Belo Horizonte) are expected during August and will be reported once they have been received and interpreted.

Figure 2. Oblique Cross Section (NW-SE) through Figueira Deposit showing: current Inferred Resource block model, DD drill holes intersecting clays up to 70m below the current Inferred Resource (FGDD002), with an average increase in depth of Clay Zone of 449% across the Deposit.

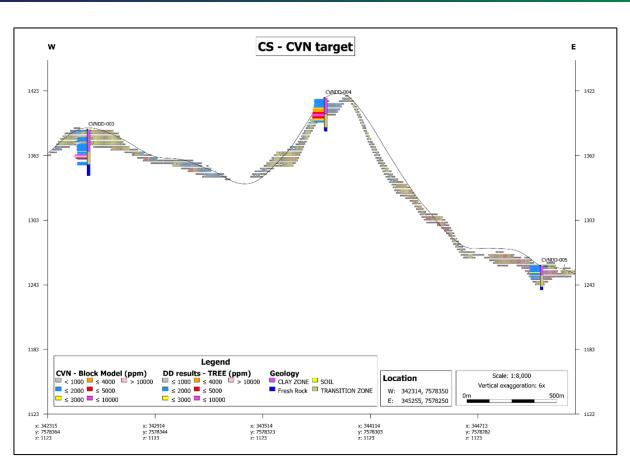


Figure 3. Oblique Cross Section (SW-NE) through Capão do Mel Deposit showing: current Inferred Resource block model, DD drill holes intersecting clays up to 19m below the current Inferred Resource (CDMDD006), with an average increase in depth of Clay Zone of 161% across the Deposit.

Meteoric Resources NL ABN 64 107 985 651 Level 1, 33 Ord Street, West Perth WA 6005 www.meteoric.com.au | Page 6 of 11

Figure 4. Oblique Cross Section (E-W) through Cupim Vermelho Norte Deposit showing: current Inferred Resource block model, DD drill holes intersecting clays up to 17m below the current Inferred Resource (CVNDD003), with an average increase in depth of Clay Zone of 139% across the Deposit.

Background Information on Ionic Clay REE Deposits

Geologically, the Caldeira REE Project is classified as an Ionic Adsorption Clay REE Deposit, which is characterised by the following key criteria:

Formed in the saprolite (clay) zone of the weathering profile

Majority of the REE's adsorbed onto clay minerals and accumulated in the clay zone of the regolith profile

Adsorbed REE are ionically attached to the clay minerals and can be liberated by leaching in a weak solution of ammonium sulphate (or other metal salt) at near neutral pH

Ionic Adsorption Clay REE Deposits are typically found near the surface, often at depths of less than 10 metres

The U and Th levels in Ionic Clay REE Deposits are typically low, as these elements are less soluble in ground waters and are not preferentially adsorbed by clays during the weathering and leaching processes

Mineral Resource Statement – Caldeira Project (ASX:MEI 30/04/2023)

	Licence	JORC	Tonnes	TREO	Pr ₆ O ₁₁	Nd ₂ O ₃	Tb ₄ O ₇	Dy_2O_3	MREO	MREO/TREO
	Licence	Category	Mt	ppm	ppm	Ppm	ppm	ppm	ppm	%
5	Capão do Mel	Inferred	68	2,692	148	399	4	22	572	21.3%
P	Cupim Vermelho Notre	Inferred	104	2,485	152	472	5	26	655	26.4%
	Dona Maria 1 & 2	Inferred	94	2,320	135	404	5	25	569	24.5%
D)	Figueira	Inferred	50	2,811	135	377	5	26	542	19.3%
6	Soberbo	Inferred	92	2,948	190	537	6	27	759	25.8%
J	Total	Inferred	409	2,626	154	447	5	25	631	24.0%

 Table 3. Caldeira REE Project 2023 Mineral Resource Estimate (JORC 2012) – by licence at 1,000ppm

 TREO cut-off

 $TREO = La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Lu_2O_3 + Y_2O_3 + Lu_2O_3 + Fa_2O_3 + Fa_2O_3$

This release has been approved by the Board of Meteoric Resources NL.

For further information, please contact:

Dr Andrew Tunks

Executive Chairman Meteoric Resources NL E ajtunks@meteoric.com.au

T +61 400 205 555

Victoria Humphries

Investor and Media Relations NWR Communications E victoria@nwrcommunications.com.au T +61 431 151 676

METEORIC RESOURCES

APPENDIX 1

Target	Hole ID	East	North	RL	Hole Depth	Depth of Clay	As
Capão do Mel	CDMDD-001	346439	7566994	1328	31.18	26.54	Rec
Capão do Mel	CDMDD-002	345627	7567601	1312	20.40	18.50	Rec
Capão do Mel	CDMDD-004	347477	7567043	1326	18.85	16.35	Rec
Capão do Mel	CDMDD-005	346611	7567015	1316	9.78	5.40	Rec
Capão do Mel	CDMDD-006	345992	7566799	1344	46.35	35.95	Rec
Capão do Mel	CDMDD-007	346893	7567307	1288	39.44	33.25	Rec
Capão do Mel	CDMDD-008	347079	7567709	1272	40.58	36.76	Rec
Capão do Mel	CDMDD-009	346578	7566694	1289	29.61	16.92	Pei
Capão do Mel	CDMDD-010	346631	7567194	1308	57.75	52.63	Pe
Capão do Mel	CDMDD-011	346621	7566802	1296	25.95	25.95	Pe
Cupim Vermelho	CVNDD-001	342885	7576690	1422	23.25	19.15	Rec
Cupim Vermelho	CVNDD-002	341677	7579289	1382	28.05	20.64	Rec
Cupim Vermelho	CVNDD-003	342535	7578361	1421	42.95	32.40	Rec
Cupim Vermelho	CVNDD-004	343854	7578258	1434	31.10	27.40	Red
Cupim Vermelho	CVNDD-005	345060	7578282	1272	22.75	19.76	Red
Dona Maria 1	DM1DD-001	337939	7581336	1353	33.25	20.41	Red
Dona Maria 1	DM1DD-002	338450	7579638	1367	37.25	34.58	Red
Dona Maria 1	DM1DD-003	338886	7579953	1382	15.05	9.93	Red
Dona Maria 1	DM1DD-004	339141	7579358	1374	21.20	14.46	Red
Dona Maria 1	DM1DD-005	338056	7580236	1405	12.11	1.00	Red
Dona Maria 2	DM2DD-001	339847	7579729	1391	22.05	15.63	Red
Dona Maria 2	DM2DD-002	339441	7579946	1346	22.35	13.63	Red
Dona Maria 2	DM2DD-003	339936	7580142	1385	23.20	15.26	Re
Dona Maria 2	DM2DD-004	339649	7580345	1394	18.62	15.60	Pe
Figueira	FGDD-001	341851	7572048	1351	61.80	42.20	Re
Figueira	FGDD-002	341238	7572677	1352	84.45	84.45	Re
Figueira	FGDD-003	340847	7572850	1282	45.55	45.55	Re
Figueira	FGDD-004	340882	7571408	1343	97.65	97.65	Pe
Figueira	FGDD-005	340893	7572111	1330	20.74	11.10	Pe
Figueira	FGDD-006	341233	7573358	1250	58.99	58.99	Pe
Soberbo	SBDD-001	348798	7569484	1307	18.15	12.95	Re
Soberbo	SBDD-002	349087	7568044	1298	31.45	26.10	Re
Soberbo	SBDD-003	348993	7570684	1311	19.75	3.90	Red
Soberbo	SBDD-004	350298	7569905	1218	31.10	28.83	Pe
Soberbo	SBDD-005	348119	7568003	1313	23.40	17.00	Pe
Soberbo	SBDD-006	349845	7570492	1296	10.25	7.51	Pe
Soberbo	SBDD-007	347973	7569979	1209	11.14	8.81	Pe
Soberbo	SBDD-008	349905	7570592	1283	29.25	26.20	Pe
Soberbo	SBDD-009	350003	7570490	1261	29.57	26.15	Pe
Soberbo	SBDD-010	348201	7569900	1236	38.69	24.26	Pe
Soberbo	SBDD-011	348806	7569291	1306	28.85	24.45	Pe
Total	41 Holes				1,313.85		

APPENDIX 2 - JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	• The drilling utilises a conventional wireline diamond drill rig (Mach 1200) with HQ diameter.
	• The core is collected in core trays with depth markers at the end of each drill run (blocks).
	 In the saprolite zone the core is halved with a metal spatula and bagged in plastic bags, the fresh
	rock was halved by a powered saw and bagged.
Drilling techniques	
Drilling techniques	
	Each drill site was cleaned and levelled with a backhoe loader.
	All holes are vertical.
	 Drilling is stopped once intersection with unweathered basement intrusives is confirmed = +5m of
	fresh rock.
Drill sample recovery	• Core recoveries were measured after each drill run, comparing length of core recovered vs. drill
	depth. Overall Core recoveries are 92.5%, achieving 95% in the saprolite target horizon, 89% in
	the transitional rock (fresh fragments in clay), and 92.5% in fresh rock.
Logging	 The geology was described in a core facility by geologist - logging focused on the soil (humic)
Logging	horizon, saprolite and fresh rock boundaries. Depth of geological boundaries are honoured and
	described with downhole depth – not metre by metre.
	Others important parameters data collected includes: grainsize, texture and colour, which can
	help to identify the parent rock before weathering.
	• All drilled holes have a digital photographic record. The log is stored in Microsoft Excel template
	with inbuilt validation tables and pick list to avoid data entry errors.
	All geological data are imported into a Microsoft Access database and validated.
Sub-sampling	 Sample preparation (drying, crushing, splitting and pulverising) is carried out by ALS laboratory
techniques and	using industry standard protocols:
sample preparation	\circ dried at 60°C
Sample preparation	
	 the saprolite is just disaggregated with hammers Diffusion with accurate
	 Riffle split 800g sub-sample
	 800 g pulverized to 90% passing 75um, monitored by sieving.
	 Aliquot selection from pulp packet
Quality of assay data	All samples were assayed by three ALS methods:
and laboratory tests	 ME-MS81 – Lithium borate fusion prior acid dissolution and ICP-MS analysis for
	Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sc, Sm, Sn,
	Sr, Ta, Tb, Th, Ti, Tm, U, V, W, Y, Yb, Zr
4	 Me-4ACD81 - Lithium borate fusion prior acid dissolution and ICP-MS analysis for
	Ag, Au, Cd, Co, Cu, Li, Mo, Ni, Pb, Sc, Tl, Zn.
	 ME-ICP06 – X-Ray Fluorescence (XRF) and acid ICP-AES analysis for Al₂O₃,
	BaO, CaO, Cr ₂ O ₃ , Fe ₂ O ₃ , K ₂ O, MgO, MnO, Na ₂ O, P ₂ O ₅ , SiO ₂ , SrO, TiO ₂ , LOI.
	 Laboratory inserted its own QA/QC controls, with standards, blanks and duplicates to
	assure the quality and standards of the lab.
	The QA/QC data includes a duplicate sample every 20 samples, and a blank and standard ample in each 20 samples.
	sample in each 30 samples.
Verification of	All data is in digital format and stored in a cloud server, also the company maintains a back up in
sampling and	a desktop computer to assure that the data could be restored if any problem occurs with the
assaying	cloud or with the desktop server.
	• Raw assays are received as Elemental data (ppm) from ALS laboratories. The Elemental data is
	converted to Element Oxide data using the following conversion factors:-
	Ce Ox Dy Ox Eu Ox Gd Ox Ho Ox La Ox Lu Ox Nd Ox Pr Ox Sm Ox Tm Ox Y Ox Yb Ox
	1.2284 1.1477 1.1435 1.1579 1.1526 1.1455 1.1728 1.1372 1.1664 1.1702 1.1596 1.151 1.142 1.2697 1.1379
Location of data	All collars were surveyed in SIRGAS 2000, 23S spindle UTM grid system. The SIRGAS 2000 is
points	a South American Datum which is very similar with the WGS 84.
points	
	At present the survey of collars was made with a hand GPS. Prior to inclusion in any resource activation work the balance will be surveyed here. BTK GPS
	estimation work the holes will be surveyed by a RTK GPS.
	• The Topographic data was made by by Nortear Topografia e Projectos Ltda., planialtimetric
	topographic surveyors. The GPS South Galaxy G1 RTK GNSS was used, capable of carrying
	out data surveys and kinematic locations in real time (RTK-Real Time Kinematic), consisting of
	two GNSS receivers, a BASE and a ROVER. The horizontal accuracy, in RTK, is 8mm + 1ppm,
	and vertical 15mm + 1ppm. The coordinates were provided in the following formats: Sirgas 2000
	datum, and UTM WGS 84 datum - georeferenced to spindle 23S.
	• For the generation of planialtimetric maps (DEM), drones were used with control points in the

	field (mainly in a region with more dense vegetation), in addition to the auger drillholes.an employed company with drone imaging and RTK GPS on auger drill holes
Data spacing and	Collar plan displayed in the body of the release.
distribution	No resources are reported.
Orientation of data in relation to geological structure	 The mineralisation is flat lying and occurs within the saprolite/clay zone of a deeply developed regolith (reflecting topography and weathering). Vertical sampling from the diamond holes is appropriate.
	 Diamond drill core is acknowledged to deliver uncontaminated samples, as such no sampling bias is believed to be introduced.
Sample security	 Samples are removed from the field and transported back to a Core shad to be logged and sampled as reported before. All samples for submission to the lab are packed in plastic bags (in batches) and sent to the lab where it is processed as reported above.
	 The remaining sample is stored in the core trays and stored at the core shed on wooden pallets. The transport of samples from Poços de Caldas to ALS laboratory in Vespasiano was undertaken by a competent independent contractor.
Audits or reviews	 MEI conducted a review of assay results as part of its Due Diligence prior to acquiring the project Approximately 5% of all stored coarse rejects from auger drilling were resampled and submitted to two (2) labs: SGS Geosol and ALS Laboratories. Results verified the existing assay results returning values +/-10% of the original grades, well within margins of error for the grade or mineralisation reported. (see ASX:MEI 13/03/23 for a more detailed discussion). No independent audit of sampling techniques and data has been completed.

Section 2 Reporting of Exploration Results

	Criteria	Commentary
	Mineral tenement and	No change since previous report.
$ \rangle$	land tenure status	Given the rich history of mining and current mining activity in the Poços de Caldas there
9		appears to be no impediments to obtaining a License to operate in the area.
	Exploration done by other parties	• The Caldeira Project has had significant exploration in the form of surface geochem across 30 granted mining concessions, plus: geologic mapping, topographic surveys, and powered auger (1,396 holes for 12,963 samples).
)	 MEI performed Due Diligence on historic exploration and are satisfied the data is accurate and correct (refer ASX Release 13 March 2023 for a discussion).
2	Geology	 The Alkaline Complex of Poços de Caldas represents in Brazil one of the most important geological terrain which hosts deposits of ETR, bauxite, clay, uranium, zirconium, rare earths and leucite. The different types of mineralization are products of a history of post-magmatic alteration and weathering, in the last stages of its evolution (Schorscher & Shea, 1992; Ulbrich et al., 2005), The REE mineralisation discussed in this release is of the lonic Clay type as evidenced by development within the saprolite/clay zone of the weathering profile of the Alkaline syenite basement as well as enriched HREE composition.
Ц	Drill hole Information	Reported in body of report and Appendix 1.
	Data aggregation methods	 Mineralised Intercepts are reported with a minimum of 4m width, lower cut-off 1000ppm TREO, with a maximum of 2m internal dilution.
	/	 High-Grade Intercepts reported as "including" are reported with a minimum of 2m width, lower cut-off 3000 ppm TREO, with a maximum of 1m internal dilution.
	Mineralisation widths and intercept lengths	• All holes are vertical and mineralisation is developed in a flat lying clay and transition zone within the regolith. As such, reported widths are considered to equal true widths.
	Diagrams	Reported in the body of the text.
	Balanced reporting	 Highlights of the Mineralised Intercepts are reported in the body of the text with results from every drill reported in the Mineralised Intercept table for balanced reporting.
	Other substantive exploration data	 Metallurgical work was carried out on samples split from a 200kg composite sample, which in turn was composed of a selection of 184 samples from 41 holes (100 x100m grid) across the Capo do Mel Target. Head grade of the composite sample was 4,917ppm TREO. Results showed excellent recoveries by desorption of Rare Earth Elements (REE) using ammonium sulphate solution [(NH4)2SO4)] in weakly acidic conditions [pH 4]. Average recovery of the low temperature magnet REE Pr + Nd was 58%. desorption was achieved using a standard ammonium sulphate solution at pH 4 and confirms the Caldeira Project is an Ionic (Adsorption) Clay REE deposit (for further discussion refer ASX Release 20 December 2023). A maiden Inferred resource was published to the ASX on May 1st 2023.
	Further work	Proposed work is discussed in the body of the text.