

Exceptional High-Grade Gold Assays Indicate Potential Buried Intrusion at Everleigh

Iceni Gold Limited (ASX: ICL) (Iceni or the Company) is pleased to provide a significant **exploration update** on the Everleigh target area.

Highlights

• Exceptional high-grade rock chip assays returned from the Everleigh Well target area include:

3,880g/t Au 859g/t Au 475g/t Au 98.3g/t Au 22.5g/t Au 20.1g/t Au 12.6g/t Au

• These results follow the high-grade quartz vein discovered at Everleigh's **Christmas Gift** target, where assays included:

18,207/t Au[#] 18,179g/t Au[#] 16,776g/t Au[#] 16,659g/t Au[#] 14,780g/t Au[#]

- The assays expand the high-grade gold discoveries made across the greater Everleigh Well target area.
- Analysis of soil anomalies, rock chips and (+800) gold nuggets indicate the **potential for a large buried intrusion** linked to the **Everleigh Embayment (CSA04).**
- Review of historical RAB assays* and results from diamond drillhole FMDD0032 also supports the geological model that suggests significant gold anomalism may represent gold leakage emanating from a deeper buried intrusion.
- Fieldwork continues to evaluate drill positions in the context of a buried intrusion within an orogenic model.

Technical Director David Nixon commented:

"The **exceptional high-grade** rock chip assays returned from the Everleigh area are interpreted to link the various mineralised outcrops, gold soil/nugget anomalies, and drill intercepts together.

these new assays, in addition to previous results and the geological model, indicate that the Everleigh Target Area is potentially related to a larger buried intrusion.

The **Everleigh** target area continues to deliver very positive results and remains a high priority focus for Iceni in the search for a significant high-grade orogenic gold discovery at **14 Mile Well**".

* Previously reported in WAMEX reports and Iceni IPO Prospectus dated 3 March 2021. # Previously reported in ASX release dated 8 June 2023.

Registered Address

Iceni Gold Limited Level 2 41-43 Ord Street West Perth WA 6005 t: +61 6458 4200 e: admin@icenigold.com.au w: icenigold.com.au

Corporate

Brian Rodan Executive Chairman David Nixon Technical Director Keith Murray Non-Executive Director Hayley McNamara Non-Executive Director Sebastian Andre Company Secretary Project 14 Mile Well

Capital Structure

Shares: 208,571,428 Options: 19,706,857

ASX: ICL ACN: 639 626 949

Figure 1 Visible gold in quartz sulphide veins at EV-8. Gold fineness measured by pXRF at 96.8-97.2% Au.

Figure 2 Gold in angular quartz fragments, at EV-5. Gold fineness measured by pXRF at 90.8-96.1% Au.

*Visual estimates of mineral abundance or analysis by pXRF should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

Figure 3 New gold assays have been received across the Greater Everleigh area.

Everleigh: Background

The Everleigh Well target area is located centrally within the 14 Mile Well Project, on the 30km segment of the Castlemaine Fault, which has been a significant focus area for the occurrence of hydrothermal activity and mineralisation. At Everleigh a number of targets are coincident and were developed using different exploration techniques, including: FMD21 (geophysics), EW27 (geophysics), CSA04 (geology) and 14UF009 (geochemistry).

The target area formed part of the historic Redcastle gold mining centre which was discovered in 1894. The Everleigh area also contains a number of pits and shafts that were previously explored 25 years ago, by BHP among others. The Tatong prospect at Everleigh was discovered by BHP as one of many large soil anomalies which were drill tested by shallow Rotary Air Blast (RAB) and Reverse Circulation (RC) drilling. Tatong was considered to be the most prospective gold anomaly by BHP, as it was nearly 3kms long and 1km wide (Pawlitschek 1995).

The Company targeted the Everleigh Well area as a result of positive field mapping observations made by CSA Global geologists during the 2018 and 2020 field seasons. The following prospectivity indicators were identified:

- Presence of a prominent fault and cross structures, evident in magnetic/gravity data.
- Albite alteration identified in litho-geochemistry.
- Interpreted Everleigh Embayment on the Danjo Batholith margin.
- Alteration zonation vectoring towards the Embayment.
- Historic workings trending towards the structural intersections.

Figure 4 Oblique view of the Everleigh geophysical model, looking north-northwest, showing the modelled intrusion beneath the gold mineralisation and anomalism expressed at surface.

Figure 5 Exploration model for orogenic gold mineralisation (from Groves, Goldfarb and Robert 1998), showing the relationships between shear zones, intrusions, disseminated and quartz vein hosted gold.

Figure 6 Structural interpretation by CSA Global of an intrusion located at the Everleigh Embayment (Wilson, Power and Moore 2018). The intrusion is seen in geophysical data and is modelled at depth in the current 3D model.

Everleigh Geophysical, Seismic and Geological Model

The geological model developed for the Everleigh Well target area has been interpreted by consultants and the Company.

This ongoing review, supported by mapping and surface sampling, has facilitated the development of an updated geological model. The interpretation ties together the soil anomalies (like **14UF008** and **14UF009**) with the discovery of significant quantities of gold nuggets and the gold bearing quartz veins at surface. These expressions of mineralisation may potentially all be linked to a large, deeply buried intrusive target, first postulated by CSA Global in 2018 as the **Everleigh Embayment** target **CSA04**.

Recent review of assay results from diamond drillhole **FMDD0032** suggests the downhole gold anomalism may represent gold leakage potentially emanating from the buried intrusion nearby.

New Finds

Recent fieldwork has identified a further gold bearing vein at EV-8 and an additional three prospective areas with gold at surface at Everleigh have also been identified (EV-5, EV-6 and EV-7). Each of these prospect locations has the potential to host additional high-grade gold veins, similar to those already discovered at Christmas Gift or quartz vein stockwork mineralisation, commonly seen in gold deposits within the Yilgarn Craton. Ongoing fieldwork, rock chip sampling, and mapping continues.

	chip sampling, and mapping continues.						
Table 1 Summary of Recent Finds from Everleigh							
	Location		Description	Gold Fineness (pXRF)*			
	EV-1#	Gold hosted	by quartz and ironstone, coarse angular cobble, low transport	87.3-90.4% Au & 93.7-94.6% Au			
	EV-2#	Gold in by quart	z sulphide veining in sediments, angular, close to source outcrop	96.0-97.7% Au			
	EV-3#		Gold nugget ~1oz, some rounding, low transport	96.6-97.1% Au			
	EV-4#	Gold in quartz sulphic	de veining in sheared sediments, in outcrop, at source	87.7-95.0% Au			
	EV-5		90.8-96.1% Au				
	EV-6	Δ	ngular gold in transported laterite, formed in-situ	95.5-98.0% Au			
	EV-7	Go	90.6-91.7% Au				
	EV-8 Gold in quartz from historic workings, at source 96.8-97.2% At						
	*Visual estimates of mineral abundance or analysis by pXRF should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.						
	5		Table 2 Summary of New Rock Chip Assays from Everleigh				
		Sample Number	Assay Results				
IE28295 3,880g/t Au, 91.0g/t Ag, 0.22g/t Te							
	t Te						
IE28294 475g/t Au, 20.6g/t Ag, 0.78g/t Te							
		IE32626	98.3g/t Au				
		IE32628	22.5g/t Au				
	IE28081 20.1g/t Au, 0.34g/t Ag, 0.30g/t Te						

	Table 2 Summary of New Rock Chip Assays from Everleigh
Sample Number	Assay Results
IE28295	3,880g/t Au, 91.0g/t Ag, 0.22g/t Te
IE28080	859g/t Au, 5.34g/t Ag, 0.65g/t Te
IE28294	475g/t Au, 20.6g/t Ag, 0.78g/t Te
IE32626	98.3g/t Au
IE32628	22.5g/t Au
IE28081	20.1g/t Au, 0.34g/t Ag, 0.30g/t Te
IE28298	12.6g/t Au, 0.50g/t Ag, 0.09g/t Te
IE28286	7.35g/t Au, 0.17g/t Ag, 1.94g/t Te
AIE28454	3.44g/t Au, 0.42g/t Ag, 0.66g/t Te
IE32886	3.26g/t Au
IE32629	2.76g/t Au
IE29301	2.23g/t Au

Christmas Gift 14UF010

The Christmas Gift target at Everleigh Well is a multi-element UFF anomaly (14UF010B), coincident with targets E1 (geological), EW01 (geophysical) and SY43 (intrusion/syenite target).

Ongoing fieldwork, including inspection of historic workings, has **confirmed** the presence of the outcropping **high-grade vein** with abundant visible gold at Christmas Gift. High-grade gold assays have been received from the vein outcrop and further along strike. Gold mineralisation has been identified in the wall rock surrounding the quartz vein. These observations are supported by the new gold assays.

The multi-element geochemistry results (in ASX release dated 16 June 2023) have been finalised. QA/QC was within specifications and there are no variations from the previously reported multi-element assays. The pathfinder geochemical signature includes **Au-Ag-Cu-Hg-W-(Pt)-Pd**.

Further gold assays have been received from the Christmas Gift vein that previously returned the high-grade results **18,207/t Au, 18,179g/t Au, 16,776g/t Au, 16,659g/t Au and 14,780g/t Au** (in ASX release dated 8 June 2023).

Figure 7 Gold recovered after fire assaying the high-grade Christmas Gift vein samples; these samples returned 18,207/t Au, 18,179g/t Au, 16,776g/t Au, 16,659g/t Au and 14,780g/t Au (in ASX release dated 8 June 2023).

Authorised by the board of Iceni Gold Limited.

For more information contact:

Brian Rodan Executive Chairman Iceni Gold Limited +61 6458 4200 David Nixon Technical Director Iceni Gold Limited +61 6458 4200

About Iceni Gold

Iceni Gold Limited (Iceni or the Company) is a Perth based exploration company that operates the 14 Mile Well Gold Project in the Laverton Greenstone Belt. Iceni now has a strong focus on 2 of the key high priority target areas within the 14 Mile Well project area, being Everleigh Well and Guyer. Iceni is actively exploring the project using geophysics, metal detecting, surface sampling, Ultrafine (UFF+) soil sampling, air core (AC) drilling and diamond drilling (DD). The ~900km² 14 Mile Well tenement package, the majority of which has never been subject to modern systematic geological investigation, is situated on the western shores of Lake Carey, ~ 50km from Laverton WA.

Competent Person Statement

The information in this announcement that relates to exploration results fairly represents information and supporting documentation prepared by Mr David Nixon, a competent person who is a member of the Australasian Institute of Mining and Metallurgy. Mr Nixon has a minimum of twenty-five years' experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a competent person as defined in the 2012 Edition of the Joint Ore Reserves Committee Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Nixon is a related party of the Company, being the Technical Director, and holds securities in the Company. Mr Nixon has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

DATA APPENDIX

Rock Chip Assays (Au, Ag, Te)

Sample	Easting	Northing	Au_ppm	Ag_ppm	Te_ppm
IE28295	400083	6799090	3880	91	0.22
IE28080	399596.3	6791498	859	5.34	0.65
IE28294	400083	6799090	475	20.6	0.78
IE32626	402678.9	6797482	98.3		
IE32628	402664.4	6797473	22.5		
IE28081	399596.1	6791498	20.1	0.34	0.3
IE28298	400215.4	6799087	12.6	0.5	0.09
IE28286	398573.4	6795365	7.35	0.17	1.94
AIE28454A	400083.8	6799091	3.44	0.42	0.66
IE32886	402106	6800039	3.26		
IE32629	402662.1	6797471	2.76		
IE28301	400212.4	6799080	2.23	0.26	-0.05
IE32696	401178.1	6801434	1.96		
IE32630	402661.8	6797470	1.835		
IE32627	402673	6797475	1.805		
IE28178	401253.3	6802106	1.45	20.9	14.8
IE32631	402654.4	6797466	1.155		
IE28079	399596.8	6791498	0.936	0.05	0.17
IE28297	400216.4	6799088	0.657	0.09	-0.05
IE32635	402612.7	6797473	0.617		
IE28291	400083	6799090	0.464	0.85	0.38
IE32633	402615.2	6797473	0.379		
IE32639	402151.6	6797690	0.341		
IE32625	402700.3	6797486	0.277		
IE28304	400190.1	6799031	0.273	0.05	-0.05
IE32638	402605.3	6797479	0.27		
IE28296	400148.4	6799074	0.249	0.01	-0.05
IE32637	402606.2	6797475	0.236		
IE32634	402613	6797473	0.233		
IE28156	401478.5	6802147	0.201	0.03	0.14
IE28293	400083	6799090	0.195	0.6	0.43
IE32641	402143.1	6797727	0.184		
IE32693	401204.8	6801441	0.153		
IE32743	400090.5	6799075	0.133		
AIE28453A	400084.4	6799090	0.132	0.35	0.61
IE28455	400085.4	6799090	0.11	0.49	0.6
IE32773	400082.2	6799096	0.109		
IE32774	400081.8	6799096	0.108		
IE32890	402437.5	6799727	0.1		
IE32775	400081.4	6799091	0.099		
IE32900	400090.9	6799080	0.099		

Sample	Easting	Northing	Au_ppm	Ag_ppm	Te_ppm
IE32642	402138.1	6797738	0.098		
IE28175	401225.9	6802157	0.095	0.6	0.32
IE32640	402149.6	6797698	0.092		
IE32754	400091.5	6799073	0.085		
IE32649	399518.2	6798390	0.076		
IE32772	400087.3	6799101	0.074		
IE32643	402181.8	6797640	0.064		
IE28284	398629.2	6794151	0.062	0.03	-0.05
IE32636	402609.3	6797471	0.061		
IE28439	400080	6799087	0.057	0.21	0.43
IE28309	400124.5	6798978	0.048	0.04	-0.05
IE28310	400116.2	6798998	0.037	0.05	-0.05
IE28307	400168.2	6799016	0.036	0.02	-0.05
IE28334	400202.3	6798801	0.034	0.01	-0.05
IE32632	402618.6	6797468	0.032		
IE28155	401479.6	6802147	0.031	0.01	0.11
IE32755	400089.8	6799077	0.031		
IE32751	400092.7	6799082	0.03		
IE28249	400768.8	6804877	0.029	1.4	0.57
IE28456	399763	6799263	0.028	0.48	0.89
IE28285	398632.1	6794148	0.027	0.03	0.23
AIE28450A	400445.3	6798813	0.026	0.14	-0.05
IE32752	400093	6799081	0.025		
IE28148	401429.4	6802293	0.024	0.05	0.2
IE32584	402735.6	6798142	0.024		
IE28282	398629.3	6794149	0.023	0.05	0.06
IE28257	400734.6	6804776	0.022	0.04	0.16
IE28283	398621.9	6794144	0.022	0.02	-0.05
IE32893	402414	6799748	0.021		
IE28289	400090.1	6799084	0.021	0.07	0.23
IE28303	400197	6799045	0.021	0.02	-0.05
IE32876	402029.1	6798669	0.019		
IE28278	400574.7	6804376	0.018	0.09	1.66
IE28198	401401.4	6803053	0.017	0.01	-0.05
IE28313	399905.2	6799131	0.016	0.04	0.24
IE28288	400089.3	6799077	0.016	0.06	5.65
IE32699	401170.1	6801429	0.015		
IE32692	401272.6	6801419	0.015		
IE32658	401534	6801352	0.015		
IE32745	400087.5	6799080	0.015		
IE32624	401001.1	6797531	0.015		
IE28201	400942.3	6805726	0.014	0.33	0.09

Sample	Easting	Northing	Au_ppm	Ag_ppm	Te_ppm
IE28195	401399.3	6803041	0.012	0.01	0.05
IE32744	400089.9	6799081	0.012		
IE32899	400091.1	6799079	0.012	012	
IE28312	399993.2	6798944	0.012	0.22	0.08
IE32884	402291.7	6800046	0.011		
IE28316	400037.2	6799202	0.011	0.03	-0.05
IE32710	400751.3	6798580	0.011		
IE28180	401000.3	6802372	0.01	0.13	-0.05
IE32697	401175.3	6801431	0.01		
IE28258	400730.8	6804760	0.009	0.05	0.44
IE28260	400710	6804688	0.009	0.02	0.73
IE28182	401436.3	6802439	0.009	0.09	0.09
IE32647	399490.7	6798432	0.009		
IE32654	399499.1	6798427	0.009		
IE32721	400131.6	6799107	0.008		
IE28306	400166.9	6799017	0.008	0.02	-0.05
IE28329	400208.3	6798873	0.008	0.04	0.17
IE32616	399524.3	6798551	0.008		
IE28202	400943.3	6805765	0.007	0.02	-0.05
IE28281	400361.9	6803792	0.007	0.24	3.25
IE28147	401429.3	6802293	0.007	0.01	-0.05
IE32694	401202.7	6801436	0.007		
IE32888	401987.1	6800129	0.007		
IE32887	402028.1	6800098	0.007		
IE28299	400215.9	6799087	0.007	0.05	-0.05
IE32650	399525.7	6798421	0.007		
IE28272	400615.2	6804396	0.006	0.17	0.28
IE28276	400575.4	6804378	0.006	0.16	4.15
IE28184	401422.2	6802365	0.006	0.02	0.06
IE28151	401431.1	6802289	0.006	0.01	-0.05
IE28158	401473.9	6802162	0.006	0.03	-0.05
IE28179	401143.1	6802086	0.006	0.08	0.06
IE32892	401902.5	6800089	0.006		
IE32895	402558.3	6799620	0.006		
IE32605	400102.8	6799114	0.006		
IE28292	400083	6799090	0.006	0.04	0.09
IE28302	400195.9	6799054	0.006	0.03	0.08
IE28319	400254.5	6798971	0.006	0.09	-0.05
IE32614	399550.4	6798576	0.006		
IE28263	400676.7	6804660	0.005	0.09	1.59
IE28172	401054	6802214	0.005	0.04	-0.05
IF28163	401455	6802191	0.005	0.06	-0.05

Sample	Easting	Northing	Au_ppm	Ag_ppm	Te_ppm
IE28157	401478.2	6802153	0.005	0.05	0.14
IE32671	401602.3	6801555	0.005		
IE32660	401527.8	6801313	0.005		
IE28444	400174.9	6798985	0.005	0.07	0.75
IE32609	399644.4	6798715	0.005		
IE32594	402446.8	6798126	0.005		
IE28341	399749.1	6797143	0.005	0.02	0.54
IE28251	400761.8	6804850	0.004	0.1	-0.05
IE28186	401436.9	6802595	0.004	0.1	-0.05
IE28181	401435	6802471	0.004	-0.01	-0.05
IE28149	401428.7	6802296	0.004	0.01	0.06
IE28165	401516	6802071	0.004	0.02	-0.05
IE32695	401206	6801436	0.004		
IE32700	401159.8	6801424	0.004		
IE32659	401531	6801318	0.004		
IE28443	400083.2	6799237	0.004	0.1	0.52
IE28441	400083.9	6799235	0.004	0.07	0.56
IE32604	400103.3	6799114	0.004		
IE32897	400096.3	6799079	0.004		
IE28325	400374.4	6798912	0.004	0.01	-0.05
IE32612	399615.7	6798560	0.004		
IE32652	399478.6	6798387	0.004		
IE32585	402753.4	6798173	0.004		
IE32581	403173.7	6798068	0.004		
IE28254	400742.8	6804808	0.003	0.11	0.36
IE28261	400675.8	6804671	0.003	0.02	2.26
IE28267	400632.6	6804429	0.003	0.04	0.76
IE28199	401401.1	6803096	0.003	0.01	-0.05
IE28187	401431.2	6802628	0.003	0.01	0.07
IE28185	401437.2	6802482	0.003	-0.01	-0.05
IE28150	401432.8	6802304	0.003	0.05	-0.05
IE28162	401458.9	6802185	0.003	0.03	-0.05
IE28161	401464.3	6802178	0.003	0.04	-0.05
IE28164	401515	6802076	0.003	0.04	-0.05
IE28169	401610.9	6801954	0.003	0.01	0.1
IE32664	401440.5	6801419	0.003		
IE32669	401408.9	6801385	0.003		
IE32663	401453.7	6801345	0.003		
IE32689	401392	6801269	0.003		
IE28317	400138.1	6798998	0.003	0.07	0.06
IE28328	400247.9	6798949	0.003	0.08	-0.05
IE28447	400227.6	6798935	0.003	0.2	0.47

Sample	Easting	Northing	Au_ppm	Ag_ppm	Te_ppm
IE32597	402313.6	6798198	0.003		
IE28250	400765.9	6804867	0.002	0.12	0.07
IE28252	400759	6804851	0.002	0.01	0.15
IE28259	400726.1	6804728	0.002	0.01	-0.05
IE28262	400676.4	6804670	0.002	0.01	0.82
IE28269	400630.9	6804459	0.002	0.01	0.1
IE28271	400635.2	6804457	0.002	-0.01	-0.05
IE28268	400619.5	6804418	0.002	0.05	0.11
IE28273	400611.7	6804385	0.002	0.02	0.15
IE28277	400577.8	6804379	0.002	0.44	2.41
IE28274	400607.6	6804364	0.002	0.02	0.14
IE28280	400356.2	6803771	0.002	0.02	0.16
IE28196	401398.3	6803066	0.002	0.02	-0.05
IE28190	401407.9	6802859	0.002	0.02	-0.05
IE28188	401413.3	6802784	0.002	0.01	-0.05
IE28177	401435.8	6802506	0.002	-0.01	0.07
IE28183	401434.1	6802443	0.002	-0.01	-0.05
IE28174	401046.1	6802210	0.002	0.03	-0.05
IE28160	401471.6	6802171	0.002	-0.01	-0.05
IE28159	401469.7	6802170	0.002	0.01	-0.05
IE28166	401546.2	6802028	0.002	-0.01	0.05
IE28168	401603.4	6801975	0.002	-0.01	0.09
IE32672	401645.3	6801553	0.002		
IE32670	401540.9	6801553	0.002		
IE32666	401428.2	6801474	0.002		
IE32668	401390.5	6801473	0.002		
IE32716	401316.3	6801450	0.002		
IE32720	401257.7	6801441	0.002		
IE32665	401422.4	6801430	0.002		
IE32698	401164.4	6801424	0.002		
IE32702	401389.5	6801421	0.002		
IE32690	401337.9	6801338	0.002		
IE32662	401469.8	6801273	0.002		
IE32679	401738	6801268	0.002		
IE32685	401301	6801255	0.002		
IE32677	401772.9	6801247	0.002		
IE32686	401352.8	6801227	0.002		
IE32682	401712.5	6801100	0.002		
IE32683	401748.4	6801013	0.002		
IE32889	402095.7	6800079	0.002		
IE32607	399566	6799680	0.002		
IE28442	400080.3	6799241	0.002	0.04	1.07

		-	-	-	-
Sample	Easting	Northing	Au_ppm	Ag_ppm	Te_ppm
IE28440	400091.7	6799231	0.002	0.05	0.96
IE28315	399982.7	6799163	0.002	0.04	0.22
IE32898	400096	6799079	0.002		
IE28290	400087.1	6799078	0.002	0.07	0.13
IE28305	400190	6799031	0.002	0.03	-0.05
IE28308	400146.9	6798992	0.002	0.01	-0.05
IE28446	400176.3	6798971	0.002	0.04	0.15
IE28311	400104.9	6798969	0.002	0.04	0.06
IE28322	400322.2	6798938	0.002	0.05	-0.05
IE28327	400432	6798877	0.002	0.01	0.06
IE28331	400209.4	6798803	0.002	0.02	-0.05
IE32611	399640.5	6798707	0.002		
IE32880	401912.6	6798667	0.002		
IE32715	400688.4	6798620	0.002		
IE32620	400620.1	6798591	0.002		
IE32603	401716.1	6798567	0.002		
IE32615	399534	6798561	0.002		
IE32708	400760.6	6798556	0.002		
IE32599	402117.7	6798536	0.002		
IE32587	402788.2	6798238	0.002		
IE32590	402818.4	6798195	0.002		
IE32592	402445	6798127	0.002		
IE32593	402445.5	6798127	0.002		
IE32583	403139.4	6798082	0.002		
IE28253	400765	6804858	0.001	0.11	-0.05
IE28256	400739.8	6804799	0.001	0.08	0.22
IE28266	400649.8	6804511	0.001	0.07	-0.05
IE28265	400649.4	6804503	0.001	0.03	-0.05
IE28264	400647.4	6804501	0.001	0.07	-0.05
IE28279	400497.5	6804133	0.001	-0.01	-0.05
IE28200	401401.7	6803067	0.001	0.02	-0.05
IE28197	401396.1	6803014	0.001	0.01	-0.05
IE28193	401404.7	6802972	0.001	0.01	-0.05
IE28192	401417.2	6802908	0.001	-0.01	-0.05
IE28191	401404.6	6802884	0.001	0.02	-0.05
IE28189	401409.2	6802813	0.001	-0.01	-0.05
IE28152	401427.3	6802295	0.001	0.01	-0.05
IE28153	401440.1	6802261	0.001	0.01	-0.05
IE28173	401049.9	6802211	0.001	-0.01	-0.05
IE28171	401060	6802149	0.001	-0.01	-0.05
IE28170	401711.6	6801906	0.001	0.03	0.09
IE32667	401414.8	6801516	0.001		

Sample	Easting	Northing	Au_ppm	Ag_ppm	Te_ppm
IE32718	401323.2	6801482	0.001		
IE32719	401327	6801472	0.001		
IE32717	401306.8	6801460	0.001		
IE32703	401386.4	6801420	0.001		
IE32691	401324.2	6801376	0.001		
IE32655	401640.2	6801324	0.001		
IE32656	401638.1	6801315	0.001		
IE32657	401632.6	6801312	0.001		
IE32661	401520.5	6801285	0.001		
IE32678	401758.2	6801256	0.001		
IE32676	401775.7	6801246	0.001		
IE32675	401778.2	6801246	0.001		
IE32674	401778.2	6801245	0.001		
IE32680	401687.1	6801244	0.001		
IE32688	401401.8	6801242	0.001		
IE32687	401402.9	6801240	0.001		
IE32681	401727.1	6801182	0.001		
IE32684	401704.6	6801095	0.001		
IE32881	402301.4	6800048	0.001		
IE32894	402180.1	6800040	0.001		
IE32707	398144.2	6799941	0.001		
IE32644	399452.2	6799878	0.001		
IE28338	399834.3	6799181	0.001	0.02	-0.05
IE28314	399979.3	6799165	0.001	0.03	-0.05
IE28287	400087.4	6799079	0.001	0.08	0.06
IE28320	400293.4	6798986	0.001	0.02	-0.05
IE28318	400215.9	6798957	0.001	0.02	-0.05
IE28323	400336.6	6798923	0.001	0.01	-0.05
IE28324	400337.9	6798916	0.001	0.01	-0.05
IE28326	400375.5	6798909	0.001	0.01	-0.05
IE28330	400201.6	6798855	0.001	0.02	-0.05
IE28336	399885	6798855	0.001	0.02	-0.05
IE28448	400372.8	6798831	0.001	0.03	-0.05
AIE28452A	400383.3	6798824	0.001	0.03	0.12
AIE28451A	400428.2	6798809	0.001	0.01	-0.05
IE28332	400209.7	6798802	0.001	-0.01	-0.05
IE32608	399708.2	6798762	0.001		
IE28335	400227.1	6798754	0.001	0.01	-0.05
IE32610	399641.3	6798707	0.001		
IE28339	400385.9	6798650	0.001	0.01	-0.05
IE32714	400701.7	6798610	0.001		
IE32713	400711.4	6798609	0.001		

Sample	Easting	Northing	Au_ppm	Ag_ppm	Te_ppm
IE32878	401860.2	6798605	0.001		
IE32712	400729.7	6798596	0.001		
IE32619	400616.1	6798589	0.001		
IE32711	400740.6	6798586	0.001		
IE32709	400757.6	6798575	0.001		
IE32613	399593.1	6798569	0.001		
IE32617	400571.3	6798546	0.001		
IE32645	399509.8	6798435	0.001		
IE32646	399501	6798433	0.001		
IE32600	402040	6798375	0.001		
IE32602	401648.9	6798361	0.001		
IE32586	402785.4	6798238	0.001		
IE32595	402308.8	6798234	0.001		
IE32588	402809.4	6798233	0.001		
IE32591	402830.4	6798178	0.001		
IE32582	403162.1	6798093	0.001		
IE28340	399744.7	6797138	0.001	0.04	-0.05
IE28270	400633.1	6804458	-0.001	-0.01	0.05
IE28275	400570.3	6804372	-0.001	-0.01	0.56
IE28194	401402.9	6803033	-0.001	0.01	-0.05
IE28167	401469.3	6802110	-0.001	0.01	-0.05
IE32673	401839.9	6801383	-0.001		
IE32882	402294	6800045	-0.001		
IE32885	402275.8	6799923	-0.001		
IE32606	399562.3	6799735	-0.001		
IE28337	399785.4	6799124	-0.001	0.01	-0.05
IE28321	400318.2	6798977	-0.001	0.03	-0.05
IE28449	400381.7	6798830	-0.001	0.04	0.09
IE28333	400204	6798800	-0.001	0.01	-0.05
IE32622	400685.5	6798590	-0.001		
IE32621	400653.8	6798583	-0.001		
IE32618	400590.5	6798571	-0.001		
IE32879	402130.9	6798465	-0.001		
IE32648	399528.8	6798420	-0.001		
IE32598	402059.7	6798375	-0.001		
IE32623	401179.1	6798320	-0.001		
IE32589	402831.7	6798222	-0.001		
IE32596	402310.6	6798206	-0.001		
IE28342	399750.2	6797145	-0.001	0.01	-0.05

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Rock Chip Sampling Rock Chip sampling is used to obtain a point sample of outcrop or float. Rock Chips are broken from outcrop or float using a steel Estwing geological hammer, the entire sample (nominal 0.3kg) is pulverised to produce a 50g charge for fire assay to analyse for Au and 0.5g is used for multielement analysis, where it is treated by four acid mixed acid digest and measured using a mass spectrometer and optical emission spectrometer. Sample locations are measured using handheld GPS Sampling is conducted by Company personnel Alteration and mineralisation have been identified by field geologists during routine sampling and logging in the field. Portable X-Ray Fluorescence Analysis (pXRF) pXRF analysis is conducted in the field on selected rock/mineral specimens using an Olympus Delta Handheld pXRF unit. The device measures a point <5mm in diameter on the surface of the rock/mineral specimen. pXRF results are considered useful for mineral identification, gold-silver ratio and guidance on the presence of pathfinder elements only. pXRF measurements are not a substitute for lab analyses.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No new drilling results being reported.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may 	No new drilling results being reported.

Criteria	JORC Code Explanation	Commentary
	have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Rock Chip Rock Chip samples are logged in the field at the sample site. Rock Chip grab sampling method is not suitable to support Mineral Resource Estimations Samples are bagged at the sample site and transported to a secure compound in Kalgoorlie.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Rock Chip Rock Chips are broken from outcrop or float using a steel Estwing geological hammer, the entire sample (nominal 0.3kg) is pulverised to produce a 50g charge for fire assay to analyse for Au and 0.5g is used for multielement analysis, where it is treated by four acid mixed acid digest and measured using a mass spectrometer and optical emission spectrometer. Ex-Lab QA/QC procedures include insertion of standards, blanks and field duplicates. In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, grind checks and repeat analyses are standard procedure. The 0.3kg sample size for a Rock Chip is an acceptable industry standard and considered appropriate for the style of mineralisation being targeted and the grainsize of the rock being sampled. pXRF Prior to sample measurements the pXRF is tested against a series of known standards. The on-board camera is used to accurately locate the device on the rock/mineral surface.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Rock Chips The lab procedures for sample preparation, fusion and analysis are considered industry standard. Ex-Lab QA/QC procedures include insertion of standards, blanks and field duplicates. In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, grind checks and repeat analyses are standard procedure. The nominal 0.3kg sample size for a rock chip sample is an acceptable industry standard and considered appropriate for the style of mineralisation being targeted and the grainsize of the rock being sampled. QA/QC samples are behaving within acceptable thresholds. pXRF Measurements in the field using the pXRF are point values on the surface of a sample only and are not subject to the same high standards as lab analyses.

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 As such pXRF results are considered to be indicative and used for guidance only. Rock Chips Significant results are verified by field staff then validated by the Senior Geologist or Exploration Manager. Broken outcrop is physically inspected to validate significant results and logging. Logging data is entered digitally, using standard software with dropdown lists, it is sent to database administrators for incorporation in the digital database Assay data is not adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 In the field data points are located using Garmin GPSMAP64csx[™] handsets with a nominal accuracy is 3m. No mineral resource estimations form part of this announcement. Grid system is GDA94 zone 51 The project has a nominal RL of 440m, a more accurate DTM, provided by geophysical contractors, is used for topographic control.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Rock Chips Rock Chip grab samples are point samples and are not appropriate for Mineral Resource and Ore Reserve estimations.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Rock Chips Rock Chip grab samples are biased to the geometry of the available outcrop.
Sample security	The measures taken to ensure sample security.	 Rock Chips Samples within calico bags are stored in sealed polyweave bags within a larger Bulka bag, the Bulka bags are secured on pallets for transport Pallets of samples are transported by truck to the yard in Kalgoorlie The yard in Kalgoorlie is enclosed within a secured and locked compound with a monitored security system that includes internal and external video recording.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Rock Chips The sampling methods being used are industry standard practice. QAQC Standard samples are OREAS Super CRMs[®] for Au and Multi-elements. Samples were submitted to LabWest in Perth for sample preparation and analysis, The lab is subject to routine and random inspections.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	Criteria	J	ORC Code Explanation	Comm	entary				
	Mineral	٠	Type, reference name/number, location and	•	All exploration	is located within	Western Austra	alia.	
	tenement and		ownership including agreements or material issues				Activity: Tenemer	t Summary	
	land tenure		with third parties such as joint ventures,		Prospect	Tenement	Grant Date	Status	Owner
	status		partnerships, overriding royalties, native title		Everleigh	P39/5119	13/04/2012	Live	14 Mile Well Gold Pty Ltd
			interests, historical sites, wilderness or national		Everleigh	P39/5192	13/04/2012	Live	14 Mile Well Gold Pty Ltd
)			park and environmental settings.		Everleigh	P39/5434	29/01/2014	Live	14 Mile Well Gold Pty Ltd
		•	The security of the tenure held at the time of		Everleigh	P39/5435	29/01/2014	Live	14 Mile Well Gold Pty Ltd
			reporting along with any known impediments to		Everleigh	P39/5436	29/01/2014	Live	14 Mile Well Gold Pty Ltd
			obtaining a licence to operate in the area.		Everleigh	P39/5437	29/01/2014	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5438	29/01/2014	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5549	7/09/2015	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5569	4/05/2016	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5660	1/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5661	1/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5662	1/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5663	1/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5671	13/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5687	13/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5688	13/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5689	13/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5690	13/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5707	29/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5708	29/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5709	29/03/2017	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/5808	23/01/2018	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/6110	17/02/2020	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/6111	17/02/2020	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/6115	9/08/2019	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/6118	19/02/2020	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/6186	28/04/2021	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/6212	28/05/2021	Live	14 Mile Well Gold Pty Ltd
					Everleigh	P39/6248	27/10/2021	Live	14 Mile Well Gold Pty Ltd
					Everleigh	M39/1098	24/09/2015	Live	14 Mile Well Gold Pty Ltd
					Everleigh	M39/1108	6/07/2017	Live	14 Mile Well Gold Pty Ltd
					14 Mile Well Go	old Pty Ltd & Guyer W	ell Gold Pty Ltd are	e wholly owned	d subsidiaries of Iceni Gold Limited
	Exploration	٠	Acknowledgment and appraisal of exploration by	•	The Fourteen	Mile Well project	area has previo	ously been l	held but under-explored for Au.
	done by other		other parties.	•	The area being	a tested by the ex	ploration camp	aion is inade	equately drill tested by previous
	parties				explorers				
						- la nationa de la	haa hass	and the second second	· · · · · · · · · · · · · · · · · · ·
				•	Historical exp	pioration work	nas been cor	npleted by	numerous individuals and
					organisations.	The reports and	results are ava	ilable in the	public domain and all relevant
					WAMEX report	rts etc. are cited	in the Independ	dent Geolog	gists Report dated March 2021
					which is includ	ded in the Prospe	ctus dated 3 M	arch 2021.	

	Criteria	J	ORC Code Explanation	Comme	entary			
	Geology	•	Deposit type, geological setting and style of mineralisation.	•	Exploration is	targeting Orogeni	c Gold and Intrus	ion Related Gold deposit styles.
							Summary of Pro	spects
					Prospect	Host	Deposit Style	Associations
					Everleigh	Andesite – Sediment - Monzogranite	Orogenic	Quartz veining, alteration, sulphides
1						Monzogranite - Syenite	Intrusion Related	Quartz veining, alteration, sulphides
	Drillhole	•	A summary of all information material to the	•	Rock Chip inf	ormation and resu	Its are included in	the attached data appendix
	Information	•	 understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 					
	Data aggregation methods	•	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Rock C	hips Rock chips ar Anomalous/R Maximum/mir Rock chips ar Metal equivale	e point samples a eporting threshold imum grade trunc e point samples a ent values are not	nd are not averag : 0.10g/t Au ations are not use nd do not contain reported.	ed internal dilution

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Rock Chips Rock chips are point samples, relationships with mineralised widths are not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	 Plan included in the announcement showing location of rock chip results. Table of significant Rock Chip results included within the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Rock Chip information and results are included in the attached data appendix.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 1998 Groves, D., et al, Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, v13, p7-27. 2018 Wilson, M., Power, W. and Moore, L., Independent technical assessment report, 14 Mile Well Project, Western Australia. CSA Global Report R238.2018 Geological interpretation and review included in prospectus dated 3 March 2021. Gold intersected in drilling at Everleigh in ASX release dated 21 April 2022. 2.5km Gold anomaly at Everleigh in ASX release dated 20 September 2022. Significant anomalous intersection at Everleigh In ASX release dated 5 October 2022. Gold intersected at Everleigh in ASX release dated 14 October 2022. Gold intersected at Everleigh in ASX release dated 17 April 2023. High-grade gold vein discovered at Everleigh in ASX release dated 17 April 2023. High-grade rock chip assays continue at Everleigh in ASX release dated 1 June 2023. Spectacular high-grade vein at Everleigh in ASX release dated 8 June 2023. High-grade vein confirmed at Everleigh in ASX release dated 16 June 2023. Exceptional high-grade rock chip assays returned from the Everleigh Well target area include: 3,880g/t Au, 859g/t Au, 475g/t Au, 98.3g/t Au, 22.5g/t Au, 20.1g/t Au and 12.6g/t Au. These results follow the previously reported high-grade quartz vein discovered at Christmas Gift, where assays included: 18,207/t Au, 18,179g/t Au, 16,776g/t Au, 16,659g/t Au, 14,780g/t Au.

Criteria	JORC Code Explanation	Commen	tary			
		W • Ai a • R su de • A th • A E • E sa • Ti	Yell target ar nalysis of sc large buried eview of his uggests sign beper buried buried intru e geophysic number of r verleigh area ach of these ampling will ne previousl	ea. bil anomalies, rock chips I intrusion linked to the E torical RAB assays and r bificant gold anomalism n d intrusion. sion has been interprete cal data. new locations with gold a a (EV-5, EV-6, EV-7 and e new locations has the p continue to establish the y reported preliminary m	and (+800) gold nuggets indic verleigh Embayment (CSA04) results from diamond drillhole nay represent gold leakage en d in the 3D geological model a tt surface have been identified I EV-8). potential to identify a high-grad continuity of each of these pro- ulti-element assay from the CI	ate the potential for FMDD0032 hanating from a and it is apparent in in the Greater e gold vein, ospects. hristmas Gift high-
		gı th ● Fi	ade vein ha e previously nal multi-ele	is been finalised, results / reported results. ement results confirm the	nave passed QA/QC there are geochemical signature of the	e no variations from Christmas Gift vein
		is • Fi ai	Au-Ag-Cu-ł eldwork cor o orogenic m	Hg-W-(Pt)-Pd. htinues to evaluate drill p nodel.	ositions in the context of a bur	ied intrusion within
			0			
				Table of Visual	Exploration Results	
		Location	Minerals	Table of Visual Nature of Occurrence	Exploration Results Abundance	Assay Timing
		Location EV-1	Minerals Gold	Nature of Occurrence In outcropping quartz vein	Exploration Results Abundance 87.3-90.4% Au & 93.7-94.6% Au	Assay Timing Not to be assayed
		Location EV-1 EV-2	Minerals Gold Gold	Nature of Occurrence In outcropping quartz vein In outcropping quartz vein	Abundance 87.3-90.4% Au & 93.7-94.6% Au 96.0-97.7% Au	Assay Timing Not to be assayed Not to be assayed
		Location EV-1 EV-2 EV-3	Minerals Gold Gold Gold Gold	Nature of Occurrence In outcropping quartz vein In outcropping quartz vein In nugget In quartz vein	Exploration Results Abundance 87.3-90.4% Au & 93.7-94.6% Au 96.0-97.7% Au 96.6-97.1% Au 87.7-95.0% Au	Assay Timing Not to be assayed Not to be assayed Not to be assayed Previously reported
		Location EV-1 EV-2 EV-3 EV-4 EV-5	Minerals Gold Gold Gold Gold Gold	Table of Visual Nature of Occurrence In outcropping quartz vein In outcropping quartz vein In nugget In quartz vein In quartz vein	Exploration Results Abundance 87.3-90.4% Au & 93.7-94.6% Au 96.0-97.7% Au 96.6-97.1% Au 87.7-95.0% Au 90.8-96.1% Au	Assay Timing Not to be assayed Not to be assayed Not to be assayed Previously reported Not to be assayed
		Location EV-1 EV-2 EV-3 EV-4 EV-5 EV-6	Minerals Gold Gold Gold Gold Gold Gold	Table of Visual Nature of Occurrence In outcropping quartz vein In outcropping quartz vein In nugget In quartz vein In laterite	Exploration Results Abundance 87.3-90.4% Au & 93.7-94.6% Au 96.0-97.7% Au 96.6-97.1% Au 87.7-95.0% Au 90.8-96.1% Au 95.5-98.0% Au	Assay Timing Not to be assayed Not to be assayed Not to be assayed Previously reported Not to be assayed Not to be assayed
		Location EV-1 EV-2 EV-3 EV-4 EV-5 EV-6 EV-7	Minerals Gold Gold Gold Gold Gold Gold Gold Gold	Table of Visual Nature of Occurrence In outcropping quartz vein In outcropping quartz vein In nugget In quartz vein In quartz vein In quartz vein In quartz vein In quartz float	Abundance 87.3-90.4% Au & 93.7-94.6% Au 96.0-97.7% Au 96.6-97.1% Au 96.8-97.1% Au 90.8-96.1% Au 95.5-98.0% Au 90.6-91.7% Au	Assay Timing Not to be assayed Not to be assayed Not to be assayed Previously reported Not to be assayed Not to be assayed Not to be assayed
		Location EV-1 EV-2 EV-3 EV-3 EV-4 EV-5 EV-6 EV-7 EV-8	Minerals Gold Gold Gold Gold Gold Gold Gold Gold	Table of VisualNature of OccurrenceIn outcropping quartz veinIn outcropping quartz veinIn nuggetIn quartz veinIn quartz veinIn lateriteIn quartz floatIn quartz vein	Abundance 87.3-90.4% Au & 93.7-94.6% Au 96.0-97.7% Au 96.6-97.1% Au 96.6-97.1% Au 96.5-97.1% Au 90.8-96.1% Au 95.5-98.0% Au 90.6-91.7% Au 96.8-97.2% Au	Assay TimingNot to be assayedNot to be assayedNot to be assayedPreviously reportedNot to be assayedNot to be assayedNot to be assayedNot to be assayedAssayed, this release
		Location EV-1 EV-2 EV-3 EV-4 EV-5 EV-6 EV-7 EV-8 • In vi sh as	Minerals Gold Gold Gold Gold Gold Gold Gold Gold	Table of VisualNature of OccurrenceIn outcropping quartz veinIn nuggetIn quartz veinIn quartz veinIn quartz veinIn quartz floatIn quartz veinthe disclosure of visual ecation, estimates of mibe considered a proxyare required to determircompany will update the	Exploration Results Abundance 87.3-90.4% Au & 93.7-94.6% Au 96.0-97.7% Au 96.6-97.1% Au 87.7-95.0% Au 90.8-96.1% Au 90.8-96.1% Au 90.6-91.7% Au 90.6-91.7% Au 96.8-97.2% Au exploration results, the compa neral abundance or point p) or substitute for laboratory an he the size and grade of any we market when laboratory analy	Assay Timing Not to be assayed Not to be assayed Not to be assayed Previously reported Not to be assayed Not to be assayed Not to be assayed Assayed, this release ny cautions that the KRF measurements nalyses. Laboratory risible mineralisation

Criteria	JORC Code Explanation	Commentary
	interpretations and future drilling areas, provided this information is not commercially sensitive.	