

ASX Release

7 July 2023

Drilling Extends Siviour Graphite Deposit

Drilling confirms continuity of widespread, high-grade graphite extending over 3 kilometres immediately north of Siviour Mineral Resource

Highlights:

- Drilling confirms major extension to Siviour Graphite Deposit, with assays demonstrating the continuity of widespread, high-grade graphite over an area extending over 3 kilometres immediately north of the Siviour Mineral Resource.
- Significant intersections include:
 - o 47m @ 7.6% Total Graphitic Carbon (TGC) from 78m (SIVDD290),
 - 38m @ 6.6% TGC from 91m (SIVDD 294),
 - 26m @ 9.0% TGC from 70m, including 7m @ 14.1% TGC from 79m (SIVDD287),
 - 24m @ 8.7% TGC from 110m, including 12m @ 11.4% TGC from 110m (SIVDD288) and
 - o 11m @ 8.7% TGC from 72m and 27m @ 6.5% TGC from 93m (SIVDD276).
- Renascor's 100%-owned Siviour Graphite Deposit in South Australia is currently the world's largest reported Reserve outside of Africa and the second largest Proven Reserve globally¹.
- Renascor considers the new drilling to offer potential for a significant increase to the Siviour Mineral Resource and to support extensions to the current pit design for future expansions beyond the capacity being currently being considered under the updated, optimised Battery Anode Material Study (BAM Study).
- An updated Mineral Resource estimate is expected later this quarter.

Renascor Resources (**ASX: RNU**) (**Renascor**) is pleased to announce the results from a drill program that has confirmed widespread, high-grade graphite mineralisation over an area extending over 3 km immediately north of the Siviour Mineral Resource. See Figure 1.

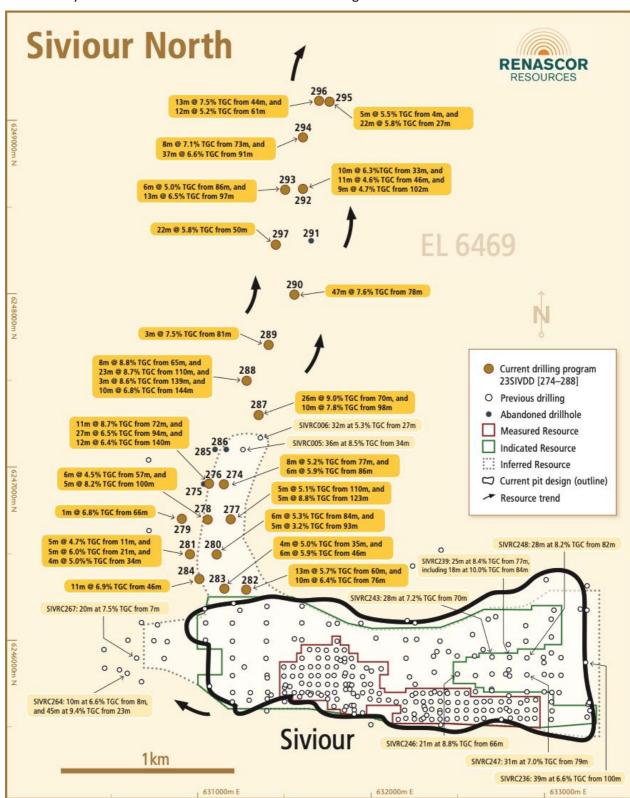


Figure 1. Siviour Graphite Deposit, showing results from recently completed drilling northwest of the existing Mineral Resource

Commenting on the drill results, Renascor Managing Director David Christensen stated:

"The drill results continue to add to the world-class quality of the Siviour Graphite Deposit and demonstrate the unique potential of an abundance of near-surface, high-grade graphite in a single ore body.

We expect that these results will support further extensions to the current pit design for future capacity expansions beyond those being considered in the optimised BAM Study, as well as to offer the potential for a significant increase to the Siviour Mineral Resource."

Discussion

Renascor has now received all assays results from its recently completed resource expansion drill program.

The primary aim of this program has been to confirm the continuity to, and to test for possible extensions of, mineralisation to the north of the Siviour Mineral Resource. See Figure 2.

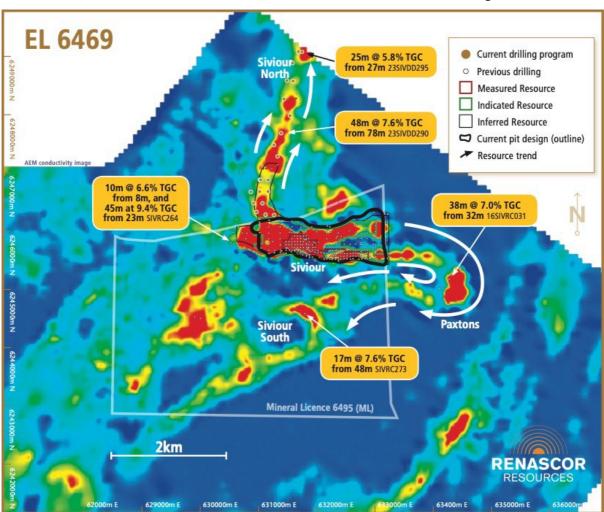


Figure 2. Siviour Graphite Deposit, showing existing Mineral Resource over airborne electromagnetic conductivity image

Drilling was carried out over an area extending approximately 3 kilometres from the current pit design being incorporated into the mine plan for the optimised BAM Study and included areas within the current northwestern potions of the Siviour Inferred Resource and areas extending immediately to the north.

In total, Renascor completed 26 diamond drill holes for 2,963 metres, with six of the 26 holes abandoned prior to intersecting mineralisation.

The drill assays have confirmed the continuity of widespread, high-grade graphite over an area extending over 3 kilometres, with results including:

- 47m @ 7.6% Total Graphitic Carbon (TGC) from 78m (SIVDD290),
- 38m @ 6.6% TGC from 91m (SIVDD 294),
- 26m @ 9.0% TGC from 70m, including 7m @ 14.1% TGC from 79m (SIVDD287),
- 24m @ 8.7% TGC from 110m, including 12m @ 11.4% TGC from 110m (SIVDD288) and
- 11m @ 8.7% TGC from 72m and 27m @ 6.5% TGC from 93m (SIVDD276).

Results from the drill program are included in Table 1, with complete details included in Appendix 1 and Appendix 2 of this announcement.

Table 1. Final assay results from the recent diamond drilling program undertaken at Siviour

Hole	Collar (MGAE)	Collar (MGAN)	From (metres)	To (metres)	Thickness (metres)*	TGC%
22SIVDD274	631197	6246901	68	70	2	6.7
			76	84	8	5.2
			86	92	6	5.9
			96	98	2	3.4
			108	111	3	5.0
22SIVDD275	631047	6246897		Ν	lil	
22SIVDD276	631056	6246897	58	59	1	3.5
			67	69	2	6.0
			72	83	11	8.7
			87	89	2	4.4
			94	121	27	6.5
			124	127	3	4.3
			136	139	3	6.8
			141	153	12	6.4
22SIVDD277	631190	6246701	110	115	5	5.1
			123	128	5	8.8
22SIVDD278	631050	6246699	14	15	1	5.3
			18	21	3	6.9
			29	31	2	7.3
			37	39	2	5.7
			49	51	2	6.2

225IVDD279				57	63	6	4.5
Color	2251/DD270	620000	6246701	101			0.2
Color							
22SIVDD280 631098 6246497 84 90 6 5.3 3.2 100 102 2 3.5 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102 2 3.5 3.2 100 102					_	T	
P3 98 5 3.2							
100 102 2 3.5	22SIVDD280	631098	6246497	84	90	6	5.3
11				93	98	5	3.2
21 26 5 5.9 30 32 2 7.2 34 39 5 5.0 34 39 5 5.0 35 22 7.2 34 39 5 5.0 45 52 7 6.0 23SIVDD284 631006 6246299 45 52 7 6.0 23SIVDD285 631096 6247101 6247102 7.0 23SIVDD287 631346 6247297 25 26 1 3.5 30 31 1 3.7 666 68 2 7.8 70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6				100	102	2	3.5
STATE	22SIVDD281	630949	6246501	11	18	7	4.7
Company				21	26	5	5.9
Color				30	32	2	7.2
Comparison of the latest comparison of the l				34	39	5	5.0
23SIVDD283 631150 6246299 34 39 5 5.0 23SIVDD284 631006 6246358 43 44 1 3.7 46 58 12 6.6 62 63 1 4.4 23SIVDD285 631096 6247101 Nil 23SIVDD286 631160 6247102 Nil 23SIVDD287 631346 6247297 25 26 1 3.5 30 31 1 3.7 66 68 2 7.8 70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6	22SIVDD282	631267	6246292	60	73	13	5.7
23SIVDD284 631006 6246358 43 44 1 3.7 46 58 12 6.6 62 63 1 4.4 23SIVDD285 631096 6247101 Nil 23SIVDD286 631160 6247102 Nil 23SIVDD287 631346 6247297 25 26 1 3.5 30 31 1 3.7 66 68 2 7.8 70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6				76	87	11	6.4
23SIVDD284 631006 6246358 43 44 1 3.7 46 58 12 6.6 62 63 1 4.4 23SIVDD285 631096 6247101 Nil 23SIVDD286 631160 6247102 Nil 23SIVDD287 631346 6247297 25 26 1 3.5 30 31 1 3.7 66 68 2 7.8 70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 110 134 24 8.7	23SIVDD283	631150	6246299	34	39	5	5.0
A6				45	52	7	6.0
23SIVDD285 631096 6247101 Nil 23SIVDD286 631160 6247102 Nil 23SIVDD287 631346 6247297 25 26 1 3.5 30 31 1 3.7 66 68 2 7.8 70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6	23SIVDD284	631006	6246358	43	44	1	3.7
23SIVDD285 631096 6247101 Nil 23SIVDD286 631160 6247102 Nil 23SIVDD287 631346 6247297 25 26 1 3.5 30 31 1 3.7 66 68 2 7.8 70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6				46	58	12	6.6
23SIVDD287 631346 6247297 25 26 1 3.5 30 31 1 3.7 66 68 2 7.8 70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6				62	63	1	4.4
23SIVDD287 631346 6247297 25 26 1 3.5 30 31 1 3.7 66 68 2 7.8 70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6	23SIVDD285	631096	6247101		N	Vil	l
30 31 1 3.7 66 68 2 7.8 70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6	23SIVDD286	631160	6247102		N	Jil	
66 68 2 7.8 70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6	23SIVDD287	631346	6247297	25	26	1	3.5
70 96 26 9.0 79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6				30	31	1	3.7
79 86 7 14.1 98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6				66	68	2	7.8
98 108 10 7.8 23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6				70	96	26	9.0
23SIVDD288 631277 6247496 18 20 2 8.5 65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6				79	86	7	14.1
65 73 8 8.8 88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6				98	108	10	7.8
88 89 1 13.2 110 122 12 11.4 110 134 24 8.7 139 142 3 8.6	23SIVDD288	631277	6247496	18	20	2	8.5
110 122 12 11.4 110 134 24 8.7 139 142 3 8.6				65	73	8	8.8
110 134 24 8.7 139 142 3 8.6				88	89	1	13.2
139 142 3 8.6				110	122	12	11.4
				110	134	24	8.7
145 155 10 6.8				139	142	3	8.6
				145	155	10	6.8

			82	87	5	7.5
23SIVDD290	631552	6247997	14	15	1	3.5
			27	28	1	4.1
			78	125	47	7.6
23SIVDD291	631648	6248298		N	lil	
22SIVDD292	631598	6248598	33	43	10	6.3
			46	57	11	4.6
			89	94	5	4.7
			102	111	9	4.7
			119	122	3	5.4
22SIVDD293	631500	6248597	86	92	6	5.0
			97	110	13	6.5
22SIVDD294	631599	6248899	73	81	8	7.1
			85	89	4	4.7
			91	128	37	6.6
22SIVDD295	631750	6249101	4	10	6	5.5
			24	26	2	4.0
			27	49	22	5.7
22SIVDD296	631698	6249100	44	57	13	7.5
			61	73	12	5.2
22SIVDD297	631446	6248282	42	43	1	4.9
			50	72	22	5.8

^{*} Including core loss

Significance

The results from the recent drilling suggest the potential to extend the current mine plan into the northwestern extension of the Siviour Mineral Resource and areas immediately north over a wide area, extending over 3 km.

This would support future expansions to production beyond the capacity being considered under the optimised BAM Study. Since the mineralisation extends from the current pit design, the results further suggest the potential for efficiencies in mine scheduling by extending the initial mining pits for continuing and efficiently mining from the current pit limits in the mine plan.

The results also suggest the potential to expand the Siviour Mineral Resource estimate.

Siviour is already amongst the world's most significant graphite deposits, with the world's largest reported Reserve outside of Africa and the second largest Proven Reserve globally².

The assay results reported today, which focus only on the northwestern extension of the Siviour Resource, offer the potential to increase the Mineral Resource estimate in this area.

^{**} Unless otherwise indicated, TGC based on 3% cut-off, with maximum intervals of 1m internal waste

^{***} Intervals and TGC% subject to rounding

In addition, as shown in Figure 2 (see page 3), previous drilling and airborne electromagnetic surveys show the potential to further extend the Resource into additional areas along strike from the current pit design.

Next steps

The results from this recent drill program are now being incorporated into a revised geological interpretation and will be used update the resource model, with an updated Mineral Resource estimate expected later this quarter.

Sample material obtained from the diamond drilling will also be used in metallurgical testwork.

This ASX announcement has been approved by Renascor's Board of Directors and authorised for release by Renascor's Managing Director David Christensen.

For further information, please contact:

Company Contact

David Christensen Managing Director +61 8 8363 6989 info@renascor.com.au

Media Enquiries Contact James Moses Mandate Corporate +61 (0) 420 991 574 james@mandatecorporate.com.au

Keep in the Loop:

Subscribe to our newsletter

Disclaimer

Renascor confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. Renascor confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

This report may contain forward-looking statements. Any forward-looking statements reflect management's current beliefs based on information currently available to management and are based on what management believes to be reasonable assumptions. It should be noted that a number of factors could cause actual results, or expectations to differ materially from the results expressed or implied in the forward-looking statements.

Competent Person Statement

The information in this document that relates to exploration activities and exploration results is based on information compiled and reviewed by Mr G.W. McConachy who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr McConachy is a director of the Company. Mr McConachy has sufficient experience relevant to the style of mineralisation and type of deposits being considered to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code, 2012 Edition). Mr McConachy consents to the inclusion in the report of the matters based on the reviewed information in the form and context in which it appears.

Appendix 1

Drill hole locations

HOLE_ID	MGA94_E	MGA94_N	RL	AZI_Grid	DIP	T_Depth
22SIVDD274	631197	6246901	40.1	270	-70	121
22SIVDD275	631047	6246897	38.0	270	-70	77
22SIVDD276	631056	6246897	38.3	90	-60	159
22SIVDD277	631190	6246701	36.6	270	-70	147
22SIVDD278	631050	6246699	34.1	270	-70	128
22SIVDD279	630900	6246701	31.8	90	-70	93
22SIVDD279A	630900	6246701	31.8	90	-70	17
22SIVDD279B	630900	6246701	31.8	90	-70	150
22SIVDD280	631098	6246498	27.9	270	-70	138
22SIVDD281	630950	6246501	26.6	270	-70	144
22SIVDD282	631267	6246293	27.3	270	-70	93
23SIVDD283	631151	6246299	25.3	270	-70	75
23SIVDD284	631006	6246358	24.0	270	-70	78
23SIVDD285	631096	6247101	40.9	270	-70	71
23SIVDD286	631160	6247102	42.6	90	-70	139
23SIVDD287	631346	6247297	45.1	270	-70	154
23SIVDD288	631277	6247496	46.5	270	-70	159
23SIVDD289	631399	6247698	45.3	270	-60	150
23SIVDD290	631552	6247997	46.5	270	-55	127
23SIVDD291	631648	6248298	50.1	270	-55	125
23SIVDD292	631598	6248598	51.1	270	-55	122
23SIVDD293	631500	6248597	49.5	90	-55	132
23SIVDD294	631599	6248899	49.3	90	-55	138
23SIVDD295	631750	6249101	51.1	90	-55	63
23SIVDD296	631698	6249100	49.4	90	-55	85
23SIVDD297	631446	6248282	46.5	90	-55	87

^{*} Intervals subject to rounding

Summary of assays

Hole	Collar (MGAE)	Collar (MGAN)	From (metres)	To (metres)	Thickness (metres)*	TGC%
22SIVDD274	631197	6246901	68	70	2	6.7
			76	84	8	5.2
			86	92	6	5.9
			96	98	2	3.4
			108	111	3	5
22SIVDD275	631047	6246897		N	lil	
22SIVDD276	631056	6246897	58	59	1	3.5
			67	69	2	6
			72	83	11	8.7
			87	89	2	4.4
			94	121	27	6.5
			124	127	3	4.3
			136	139	3	6.8
			141	153	12	6.4
22SIVDD277	631190	6246701	110	115	5	5.1
			123	128	5	8.8
22SIVDD278	631050	6246699	14	15	1	5.3
			18	21	3	6.9
			29	31	2	7.3
			37	39	2	5.7
			49	51	2	6.2
			57	63	6	4.5
			66	69	3	3.2
			101	106	5	8.2
22SIVDD279	630900	6246701		N	lil	
22SIVDD279A	630900	6246701		N	lil	
22SIVDD279B	630900	6246701	66	67	1	6.8
22SIVDD280	631098	6246497	84	90	6	5.3
			93	98	5	3.2
			100	102	2	3.5
22SIVDD281	630949	6246501	11	18	7	4.7

			21	26	5	5.9
			30	32	2	7.2
			34	39	5	5.0
22SIVDD282	631267	6246292	60	73	13	5.7
			76	87	11	6.4
23SIVDD283	631150	6246299	34	39	5	5
			45	52	7	6
23SIVDD284	631006	6246358	43	44	1	3.7
			46	58	12	6.6
			62	63	1	4.4
23SIVDD285	631096	6247101		N	Nil	
23SIVDD286	631160	6247102		N	Nil	
23SIVDD287	631346	6247297	25	26	1	3.5
			30	31	1	3.7
			66	68	2	7.8
			70	96	26	9
			79	86	7	14.1
			98	108	10	7.8
23SIVDD288	631277	6247496	18	20	2	8.5
			65	73	8	8.8
			88	89	1	13.2
			110	122	12	11.4
			110	134	24	8.7
			139	142	3	8.6
			145	155	10	6.8
			82	87	5	7.5
23SIVDD290	631552	6247997	14	15	1	3.5
			27	28	1	4.1
			78	125	47	7.6
23SIVDD291	631648	6248298		ľ	Nil	l
22SIVDD292	631598	6248598	33	43	10	6.3
			46	57	11	4.6
			89	94	5	4.7
			102	111	9	4.7
			119	122	3	5.4
	ı	1	I	İ	1	1

22SIVDD293	631500	6248597	86	92	6	5.0
			97	110	13	6.5
22SIVDD294	631599	6248899	73	81	8	7.1
			85	89	4	4.7
			91	128	37	6.6
22SIVDD295	631750	6249101	4	10	6	5.5
			24	26	2	4
			27	49	22	5.7
22SIVDD296	631698	6249100	44	57	13	7.5
			61	73	12	5.2
22SIVDD297	631446	6248282	42	43	1	4.9
			50	72	22	5.8

^{*} Including core loss

 $^{^{**}}$ Unless otherwise indicated, TGC based on 3% cut-off, with maximum intervals of 1m internal waste

^{***} Intervals and TGC% subject to rounding

Appendix 2

JORC Table 1

	Section 1: Sampling Te	chniques and Data
	(criteria in this section apply t	o all succeeding sections)
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 All drilling and sampling was undertaken in an industry standard manner. HQ3 size Diamond Drill core was collected in standard core trays. DD drill core was logged by the onsite geologist. Duplicate drill samples represent 4% of total samples collected i.e., one duplicate for every 25 samples. Standards are inserted every 40 samples. Independent contractor cuts ¼ core samples for submission to laboratory. The independent laboratory pulverises the entire sample for analysis as described below. The independent laboratory then takes the samples which are dried, split, crushed and pulverized prior to analysis as described below. Samples are a standard 1 metre unless lithology or visual grade changes require shorter or longer intervals. Minimum sample size is 0.3 metre and longest 1.2 metres. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core 	 Diamond drilling was undertaken by a drilling contractor (Tier1 Drilling) using triple tube with a HQ3 drill bit (61mm core diameter). Core was orientated down hole
	diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 using a Reflex digital orientation system. No sample bias was observed.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Samples are 1 metre unless lithology or visual grade changes require shorter or longer intervals. Minimum sample size is 0.3 metre and maximum size is 1.2 metres. Industry standard triple tube diamond drilling used to maximize core recovery. All core drilled is represented in an industry

Section 1: Sampling Techniques and Data (criteria in this section apply to all succeeding sections) Criteria **JORC Code explanation Commentary** standard core tray that provides a check for Whether a relationship exists sample continuity down hole. between sample recovery and grade and whether sample bias Core recovery averaged 87% for entire may have occurred due to holes. preferential loss/gain of fine/coarse material. Logging Whether core and chip samples Primary data was captured into spreadsheet have been geologically and format, and subsequently loaded into the geotechnically logged to a level of Renascor's database. detail to support appropriate • Core is geologically logged, core loss and Mineral Resource estimation, recoveries recorded for each drill run and mining studies and metallurgical structural and RQD information collected. studies. Logging is qualitative with all core logged • Whether logging is qualitative or and photographed. quantitative in nature. Core (or All core is quantitatively logged with core costean, channel, etc) loss and recovery recorded and structural photography. and RQD information recorded. • The total length and percentage of the relevant intersections logged. Sub-• If non-core, whether riffled, tube HQ3 diameter core is cut in half to preserve sampling sampled, rotary split, etc and the orientation mark. techniques whether sampled wet or dry. Graphite intervals are sampled using ¼ HQ3 and sample For all sample types, the nature, diameter core. preparation quality and appropriateness of the • All samples were marked with unique sample preparation technique. sequential numbering as a check against Quality control procedures adopted sample loss or omission. for all sub-sampling stages to • Every twenty-five samples a duplicate maximise representivity of sample is collected using ¼ HQ3 diameter samples. core and submitted for check analysis. Measures taken to ensure that the Standards inserted every 40 samples. sampling is representative of the in Samples selected by the logging geologist situ material collected, including based on visual grade and lithology changes. for instance results for field Sampling for analysis extended two metres duplicate/second-half sampling. above and below mineralized zones. • Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of The nature, quality and All samples were sent to Bureau Veritas assay data appropriateness of the assaying laboratory in Adelaide for preparation and and and laboratory procedures used for Total Graphitic Carbon (TGC) analyses **laboratory** and whether the technique is and the DDH core for additional multi tests considered partial or total. element analysis using a mixed acid digest. • For TGC analysis a portion of the sample is Nature of quality control procedures adopted (e.g., dissolved in weak acid to liberate carbonate carbon. The residue is then dried at 420°C standards, blanks, duplicates, external laboratory checks) and driving off organic carbon and then analysed

Section 1: Sampling Techniques and Data (criteria in this section apply to all succeeding sections) Criteria **JORC Code explanation Commentary** whether acceptable levels of by its sulphur-carbon analyser to give TGC. accuracy (i.e., lack of bias) and • Bureau Veritas Minerals has adopted the precision have been established. ISO 9001 Quality Management Systems. All Bureau Veritas laboratories work to documented procedures in accordance with this standard. Laboratory standards inserted at 1 per 25 samples. Laboratory blanks inserted at 1 per 90 samples. Laboratory repeats/duplicates inserted at 1 per 50 samples. Verification The verification of significant No adjustments have been made to the of sampling intersections by either independent assay data. and or alternative company personnel. Results are reported on a length weighted assaying • The use of twinned holes. basis. Documentation of primary data, Duplicate drill sampling was undertaken at data entry procedures, data the time of drilling and inserted at a rate of verification, data storage (physical 4%. and electronic) protocols. There were no twinned holes. Discuss any adjustment to assay The field crew collected GPS location data data. and survey points. Location of Accuracy and quality of surveys The grid system for the project is Geocentric data points used to locate drill holes (collar and Datum of Australia (GDA) 94, Zone 53. down-hole surveys), trenches, mine All drillhole collars were pegged to the plan workings and other locations used collar location using a handheld GPS. These in Mineral Resource estimation. collar coordinates are entered into the • Specification of the grid system drillhole database. used. • The degree of accuracy of drillhole collar Quality and adequacy of location and RL was estimated to be within a 5m error level. topographic control. Diagrams and location table are provided in the report Data Data spacing for reporting of Drilling was initial exploration only, with holes at approximately 50m to 60m spacing spacing Exploration Results. and Whether the data spacing and on twelve 200m and up to 300m separated distribution distribution is sufficient to establish sections. the degree of geological and grade Samples were taken over a 1m interval continuity appropriate for the except where grade or lithology changes Mineral Resource and Ore Reserve required different intervals. estimation procedure(s) and classifications applied. Whether sample compositing has been applied. Orientation Whether the orientation of Interpretation of the relationship between of data in sampling achieves unbiased the drilling orientation and the orientation

	Section 1: Sampling Techniques and Data							
	(criteria in this section apply to all succeeding sections)							
Criteria	JORC Code explanation	Commentary						
relation to geological structure	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 of key mineralised structures indicates that mineralisation is likely to be perpendicular to strike continuity. The orientation of drilling is not expected to introduce sampling bias. 						
Sample security	The measures taken to ensure sample security.	 All core was delivered direct to Renascor then via tracked freight consignment to the independent cutting contractor and tracked consignment to laboratory. 						
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All data collected was subject to internal review.						

SECTION 2: REPORTING OF EXPLORATION RESULTS								
	(criteria listed in the preceding section apply also to this section)							
Criteria	JORC Code explanation	Commentary						
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Siviour deposit is located within Mineral Lease (ML) 6495 and Exploration Licence (EL6469), held by Ausmin Development Pty Ltd (Ausmin). Renascor, through its wholly-owned subsidiary Eyre Peninsula Minerals Pty Ltd (EPM), acquired 100% of Ausmin and its tenements in 2018. The tenements are in good standing. The drilling was carried out on agricultural freehold land. 						
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Several companies have carried out historic exploration over many years, but without any focus on graphite prospectivity. Cameco Ltd, as part of a uranium exploration program, acquired EM data across the tenement in 2006 and 2007. Cameco drilled hole CRD0090, without testing for graphite. During 2014, EPM carried graphite-focused 						

SECTION 2: REPORTING OF EXPLORATION RESULTS (criteria listed in the preceding section apply also to this section) Criteria **JORC Code explanation Commentary** exploration and drilled a further six RC holes and one diamond core hole reporting graphite intersections in all holes. Geology Deposit type, geological setting The graphite mineralization at Siviour is hosted within Meso-Proterozoic and style of mineralisation. metasedimentary rocks sediments of the Hutchison Group. • The graphite mineralization is within a nominally 30 m-thick band of pelitic schist that occurs within a thick calc-silicate sequence. Drillhole Drill hole collar and directional information • A summary of all information Information material to the understanding of is reported in Appendix 1. the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar • elevation or RL (elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. Data In reporting Exploration Results, Exploration laboratory assay results have aggregation weighting averaging techniques, been reported using weighted average methods maximum and/or minimum grade techniques and a 3% TGC grade cut-off. truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Relationship The drill holes are interpreted to be • *If the geometry of the* between mineralisation with respect to the approximately perpendicular to the strike mineralisati drillhole angle is known, its nature of mineralisation. on widths should be reported. Drilling may not always perpendicular to and • If it is not known and only the the dip of mineralisation and true widths intercept down hole lengths are reported, are then less than downhole widths. lengths there should be a clear statement Estimates of true widths will only be to this effect. possible when all results are received, and final geological interpretations have been completed. **Diagrams** • Appropriate maps and sections See figures in this release. (with scales) and tabulations of

intercepts should be included for

SECTION 2: REPORTING OF EXPLORATION RESULTS (criteria listed in the preceding section apply also to this section) Criteria **JORC Code explanation Commentary** any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. **Balanced** Where comprehensive reporting of The reporting is balanced. reporting all Exploration Results is not All drill collar locations are shown in figures practicable, representative and all significant results are provided in reporting of both low and high this report. grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Other Other exploration data, if Nothing material to report. substantive meaningful and material, should be Drilling is currently widely spaced and exploration reported including (but not limited further details will be reported in future data to): geological observations; releases when data is available. geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. **Further work** The nature and scale of planned Mineral Resource update to follow. further work (e.g., tests for lateral extensions or depth extensions or

large-scale step-out drilling).