Voltaic Strategic Resources Limited ABN 66 138 145 114 Suite 2, 38 Colin Street

West Perth WA 6005

ASX: VSR +61 8 6245 9821 info@voltaicresources.com voltaicresources.com

ASX Release

15 June 2023

Significant Rare Earths system further confirmed at Neo prospect, Paddy's Well Project.

Highlights

- Multiple holes with significant mineralised REE intercepts (~80m) from surface; potentially some of widest reported in Australia¹, alluding to large scale & "open pit" potential.
- Mineralisation remains open at depth and along strike.
- Encouraging high ratio of in-demand 'magnet' REEs to TREO ('Magnet REO') (peak: 30%)
- Metallurgical testing underway to characterise the REE species present positive 'size by assay' results have been received and are under review.

Voltaic Strategic Resources Limited (ASX:VSR) has confirmed the scale potential of the Neo Prospect at its Paddy Well Project in Western Australia's Gascoyne region after encountering several further extremely wide REE mineralised intercepts from surface. Assays from another 12 RB drillholes from the Phase-1B campaign show intercepts of almost 80m from surface across multiple holes, with mineralisation remaining open at depth and along strike.

Neo forms part of an expanding regional 6 x 2km anomalous area with multiple >1,000 ppm TREO zones identified at surface and only a fraction of the area tested to date (Fig. 3). Encouragingly, drilling returned individual metre values up to 1% TREO, and high tenor 'magnet REE' percentages up to 30%.

Work commenced earlier this year to test the upper clay zone and determine basement depth within an area where historical uranium-focused drilling identified REEs in both the upper oxide (clay) horizon, and primary REE mineralisation in deeper basement³.

Voltaic Chief Executive Officer Michael Walshe commented:

"We now have unequivocal evidence for the presence of a large alumina-rich, kaolinitic REE clay system at Neo, which has the potential for hosting a near-surface "open-pittable" REE clay deposit of substantial scale¹."

"Metallurgical testing on the clays is now underway to determine their preliminary economic viability and ion-absorption (IAD) potential. The 'size by assay' analysis work has been completed and the preliminary results are encouraging for a significant upgrade in REE grades and the removal of waste, by undertaking simple upstream mineral processing techniques4.

¹ Based on stated TREO cutoff and a preliminary review of several peer company announcements. Please see Forward Looking cautionary statement on page 5 & JORC tables.

² TREO: Total Rare Earth Element Oxide including yttrium oxide (Y₂O₃); MREO:TREO: the ratio of "Magnet" REEs to Total REEs in oxide form. "Magnet" REEs = Nd, Pr, Tb, Dy

³ Refer ASX:VSR release dated 13 October 2022 'Rare Earths Confirmed at Gascoyne Project'

⁴ An ASX announcement is currently being prepared to provide an update on these results.

"The leach testwork is due to commence next week once this data has been reviewed and a decision made on the optimal size fraction for leaching. Encouragingly, halloysite has already been identified⁵ from scanning electron microscope (SEM) analysis (*Fig. 10*), which is a kaolinitic clay mineral commonly found in true IAD clays."

"Simultaneously, in the field our focus is now on primary carbonatite targets. We will soon undertake several field surveys including: airborne magnetics / radiometrics, photogrammetry, and soil sampling. These programs will increase our pool of priority targets and ensure several months of highly active and material news flow over the remainder of 2023."

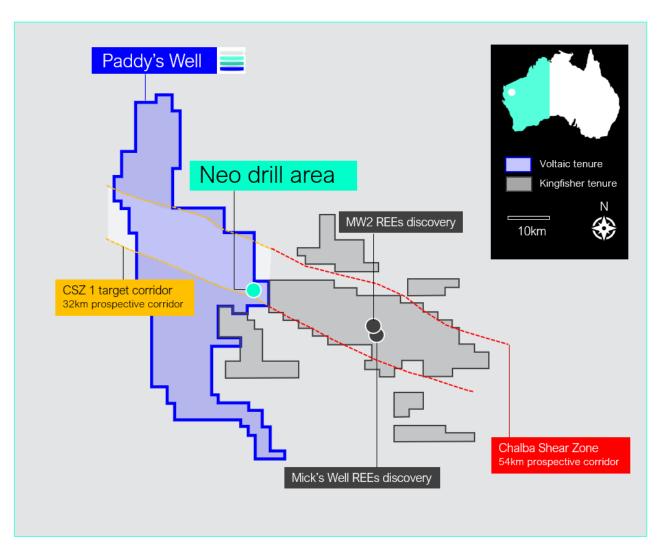


Figure 1. Location of the Neo prospect area, Paddys Well project.

⁵ Refer ASX:VSR release dated 17 April 2023 'Met test work on REE-enriched clays at Paddys Well' & ASX:VSR release dated 17 May 2023 'Drilling confirms significant Rare Earths system at Neo'

Significant assay results from 14-hole Phase 1B campaign⁶:

DRILL HOLE		INTERSECTION
NEORB002		78m @ 1,001ppm TREO (from surface NEORB002)
	incl:	52m @ 1,270ppm TREO (from 21m)
	and:	12m @ 3,402ppm TREO (from 50m)
	with peak of:	1m @ 10,072ppm TREO (1.01% TREO) (from 56m)
NEORB003		78m @ 661ppm TREO (from surface NEORB003)
	incl:	3m @ 1,187ppm TREO (from 53m)
	incl:	1m @ 1,410ppm TREO (from 77m EOH)
	with peak of:	1m @ 2,046ppm TREO (from 54m)
NEORB008		75m @ 521ppm TREO (from surface NEORB008)
	incl:	3m @ 1,009ppm TREO (from 42m)
	with peak of:	1m @ 1,263ppm TREO (from 13m)
NEORB006		65m @ 546ppm TREO (from surface NEORB006)
	incl:	18m @ 1,018ppm TREO (from 34m)
	with peak of:	1m @ 1,899ppm TREO (from 46m)
NEORB013		63m @ 582ppm TREO (from surface NEORB013)
	incl:	4m @ 1,143ppm TREO (from 49m)
NEORB004		60m @ 491ppm TREO (from surface NEORB004)
	incl:	12m @ 636 ppm TREO (from 67m)
	with peak of:	1m @ 2,045ppm TREO (from 68m)
NEORB014		59m @ 878ppm TREO (from surface NEORB014)
	incl:	5m @ 1,758ppm TREO (from 18m)
	with peak of:	1m @ 2,827ppm TREO (from 22m)
NEORB005		33m @ 756ppm TREO (from surface NEORB005)
	incl:	12m @ 1,004ppm TREO (from 21m)
	with peak of:	1m @ 3,766ppm TREO (from 32m)

 $^{^{6}}$ This program comprised 14 RB holes for 710m at Neo, and 8 holes for 405m at Link, with assays for Link holes pending

No further clay-focused drilling is planned until the leaching results are known, which the Company believes is the most prudent use of capital going forward, and concurrently, exploration continues focusing on the Company's several primary carbonatite REE & niobium targets within Paddys Well (see *Fig. 2*).

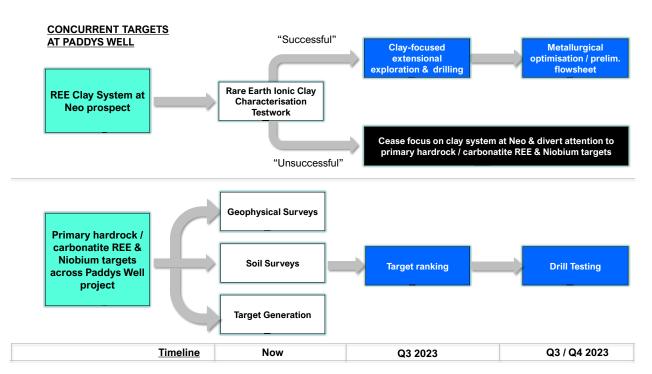


Figure 2. The strategy ahead at Paddy's Well

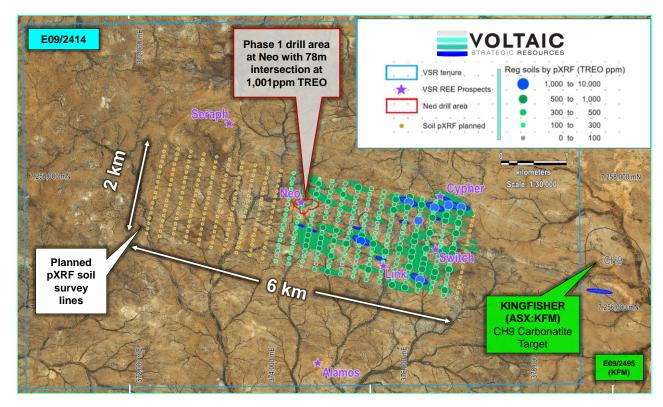


Figure 3. TREO contours at the Neo prospect within regional 6 x 2km anomalous area with multiple >1,000ppm TREO zones identified at surface and only a fraction of the area tested to date.

Release authorised by the Board of Voltaic Strategic Resources Ltd.

For more information, please contact:

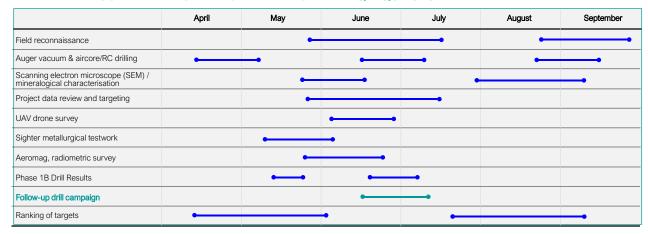
MICHAEL WALSHE

Chief Executive Officer
Phone: +61 8 6245 9821

michael.walshe@voltaicresources.com

GARETH QUINN

Media and Investor Relations Phone +61 417 711 108 gareth@republicpr.com.au


UPCOMING NEWS FLOW

June/July 2023: Paddys Well geophysical data (radiometric / magnetic / photogrammetry) acquisition update

June/July 2023: Further drill sample assays from Link prospects

June/July 2023: Update on Metallurgical testing of REE-enriched clays from Neo

PLANNED AND COMPLETED ACTIVITIES AT PADDYS WELL: Q2-Q3 2023

COMPETENT PERSON STATEMENT

The information in this announcement related to Exploration Results is based on and fairly represents information compiled by Mr Claudio Sheriff-Zegers. Mr Sheriff-Zegers is employed as an Exploration Manager for Voltaic Strategic Resources Ltd and is a member of the Australasian Institute of Mining and Metallurgy. He has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. He consents to the inclusion in this announcement of the matters based on information in the form and context in which they appear.

The information in this document that relates to metallurgical test work and flowsheet development is based on, and fairly represents, information and supporting documentation reviewed by Mr Michael Walshe. Mr Walshe is engaged as Chief Executive Officer for Voltaic Strategic Resources Ltd. He holds a Bachelor of Chemical and Process Engineering (Hons.) and a Master of Business Administration (Finance). He is a chartered engineer with both Engineers Australia & the Institution of Chemical Engineers (IChemE), and is a member of the Australasian Institute of Mining & Metallurgy (AusIMM). He has over 15 years of experience in process engineering and metallurgy across a wide range of commodities including rare earths, and has approved and consented to the inclusion in this document of the matters based on his information in the form and context in which it appears.

FORWARD-LOOKING STATEMENTS

This announcement may contain forward-looking statements involving several risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update statements if these beliefs, opinions, and estimates should change or to reflect other future development. Furthermore, this announcement contains forward-looking statements which may be identified by words such as "potential", "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements. The Company cannot and does not give assurances that the results, performance, or achievements expressed or implied in the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

ABOUT VOLTAIC STRATEGIC RESOURCES

Voltaic Strategic Resources Limited explore for the next generation of mines that will produce the metals required for a cleaner, more sustainable future where transport is fully electrified, and renewable energy represents a greater share of the global energy mix.

The company has a strategically located critical metals portfolio led by lithium, rare earths, base metals, and gold across two of the world's most established mining jurisdictions: Western Australia & Nevada, USA.

Voltaic is led by an accomplished corporate and technical team with extensive experience in REEs, lithium and other critical minerals, and a strong skillset in both geology and processing / metallurgy.

Appendix 1 Drill data

Table 1. Neo blade/reverse circulation (RB) drilling – lab assay results, significant intersections

Hole	From (m)	To (m)	Interval (m)	TREO* (ppm)	TREO intercept (ppm)
NEORC001	0	40	40	583	40m @ 583ppm TREO (from surface NEORC001)
NEORB002	0	78	78	1,001	78m @ 1,001ppm TREO (from surface NEORB002)
	0	14	14	629	14m @ 629ppm TREO (from surface)
	21	72	52	1,270	52m @ 1,270ppm TREO (from 21m)
	50	61	12	3,402	12m @ 3,402ppm TREO (from 50m)
	55	56	1	10,072	1m @ 10,072ppm TREO (1.01% TREO) (from 55m)
NEORB003	0	78	78	661	78m @ 661ppm TREO (from surface NEORB003)
	4	13	9	985	9m @ 985ppm TREO (from 4m)
	17	21	4	760	4m @ 760ppm TREO (from 17m)
	28	33	5	1,151	5m @ 1,151ppm TREO (from 28m)
	31	32	1	1,977	1m @ 1,977ppm TREO (from 31m)
	36	49	13	601	13m @ 601ppm TREO (from 36m)
	53	56	3	1,187	3m @ 1,187ppm TREO (from 53m)
	54	55	1	2,046	1m @ 2,046ppm TREO (from 54m)
	58	79	21	679	21m @ 679ppm TREO (from 58m)
	64	67	3	851	3m @ 851ppm TREO (from 64m)
	64	65	1	1,037	1m @ 1,037ppm TREO (from 64m)
	74	79	5	816	5m @ 816ppm TREO (from 74m)
	77	78	1	1,410	1m @ 1,410ppm TREO (from 77m EOH)
NEORB004	0	60	60	491	60m @ 491ppm TREO (from surface NEORB004)
	28	34	6	800	6m @ 800ppm TREO (from 28m)
	47	55	8	664	8m @ 664ppm TREO (from 47m)
	67	79	12	636	12m @ 636ppm TREO (from 67m)
	68	69	1	2,045	1m @ 2,045ppm TREO (from 68m)
	74	78	4	753	4m @ 753ppm TREO (from 74m)
	77	78	1	1,133	1m @ 1,133ppm TREO (from 77m)
NEORB005	0	33	33	756	33m @ 756ppm TREO (from surface NEORB005)
	5	15	10	861	10m @ 861ppm TREO (from 5m)
	13	14	1	1,063	1m @ 1,063ppm TREO (from 13m)
	21	33	12	1,004	12m @ 1,004ppm TREO (from 21m)
	31	33	2	2,994	2m @ 2,994ppm TREO (from 31m)
	32	33	1	3,766	1m @ 3,766ppm TREO (from 32m)
NEORB006	0	65	65	546	65m @ 546ppm TREO (from surface NEORB006)
	34	57	23	914	23m @ 914ppm TREO (from 34m)
	34	52	18	1,018	18m @ 1,018ppm TREO (from 34m)
	43	51	8	1,016	8m @ 1,216ppm TREO (from 43m)
	46	47	1	1,899	1m @ 1,899ppm TREO (from 46m)
NEORB007	0	12	12	493	12m @ 493ppm TREO (from surface NEORB007)
	5	8	3	844	3m @ 844ppm TREO (from 5m)
	5	6	1	1,413	1m @ 1,413ppm TREO (from 5m)
	17	64	47	431	47m @ 431ppm TREO (from 17m)
	41	42	1	1,049	1m @ 1,049ppm TREO (from 41m)
	49	63	14	639	14m @ 639ppm TREO (from 49m)
	57	58	1	1,002	1m @ 1,002ppm TREO (from 57m)

Hole	From (m)	To (m)	Interval (m)	TREO* (ppm)	TREO intercept (ppm)
NEORB008	0	75	75	521	75m @ 521ppm TREO (from surface NEORB008)
	13	29	16	747	16m @ 747ppm TREO (from 13m)
	13	21	8	948	8m @ 948ppm TREO (from 13m)
	13	14	1	1,263	1m @ 1,263ppm TREO (from 13m)
	16	17	1	1,104	1m @ 1,104ppm TREO (from 16m)
	38	54	16	697	16m @ 697ppm TREO (from 38m)
	42	45	3	1,009	3m @ 1,009ppm TREO (from 42m)
	43	44	1	1,157	1m @ 1,157ppm TREO (from 43m)
NEORB009	0	4	4	358	4m @ 358ppm TREO (from surface NEORB009)
	9	11	2	322	2m @ 322ppm TREO (from 9m)
NEORB010	0	10	10	356	10m @ 356ppm TREO (from surface NEORB010)
	6	7	1	1,240	1m @ 1,240ppm TREO (from 6m)
NEORB011	0	7	7	574	7m @ 574ppm TREO (from surface NEORB011)
NEORBOTT	7	8	1	791	1m @ 791ppm TREO (from 7m)
	,	O .	'	751	THE POTER THE CHOILE THE
NEORB012	0	28	28	447	28m @ 447ppm TREO (from surface NEORB012)
	5	8	3	703	3m @ 703ppm TREO (from 5m)
	25	28	3	708	3m @ 708ppm TREO (from 25m)
NEORB013	0	63	63	582	63m @ 582ppm TREO (from surface NEORB013)
	41	63	22	741	22m @ 741ppm TREO (from 41m)
	49	53	4	1,143	4m @ 1,143ppm TREO (from 49m)
NEORB014	0	59	59	878	59m @ 878ppm TREO (from surface NEORB014)
	11	13	2	1,285	2m @ 1,285ppm TREO (from 11m)
	12	13	1	1,502	1m @ 1,502ppm TREO (from 12m)
	18	23	5	1,758	5m @ 1,758ppm TREO (from 18m)
	22	23	1	2,827	1m @ 2,827ppm TREO (from 22m)
	24	32	8	1,195	8m @ 1,195ppm TREO (from 24m)
	31	32	1	1,944	1m @ 1,944ppm TREO (from 31m)
	53	58	5	1,137	5m @ 1,137ppm TREO (from 53m)
	56	57	1	2,122	1m @ 2,122ppm TREO (from 56m)

* NOTE: cutoff of 250ppm TREO used

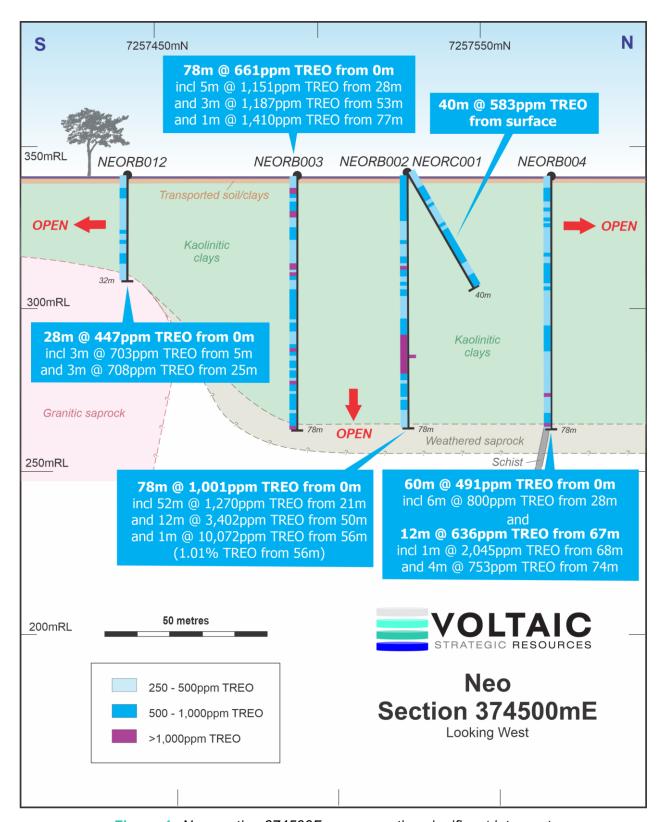


Figure 4. Neo section 374500E - cross section significant intercepts

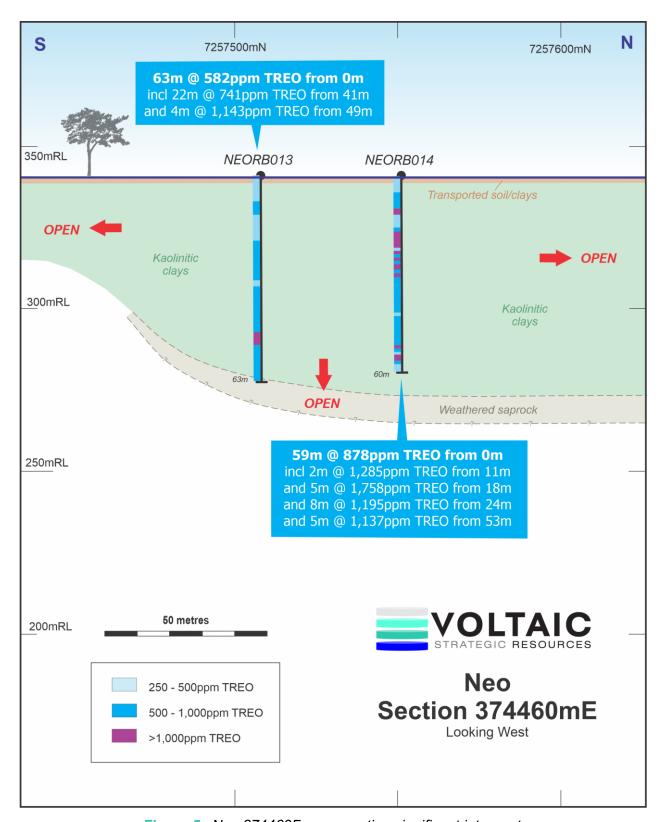


Figure 5. Neo 374460E cross section significant intercepts

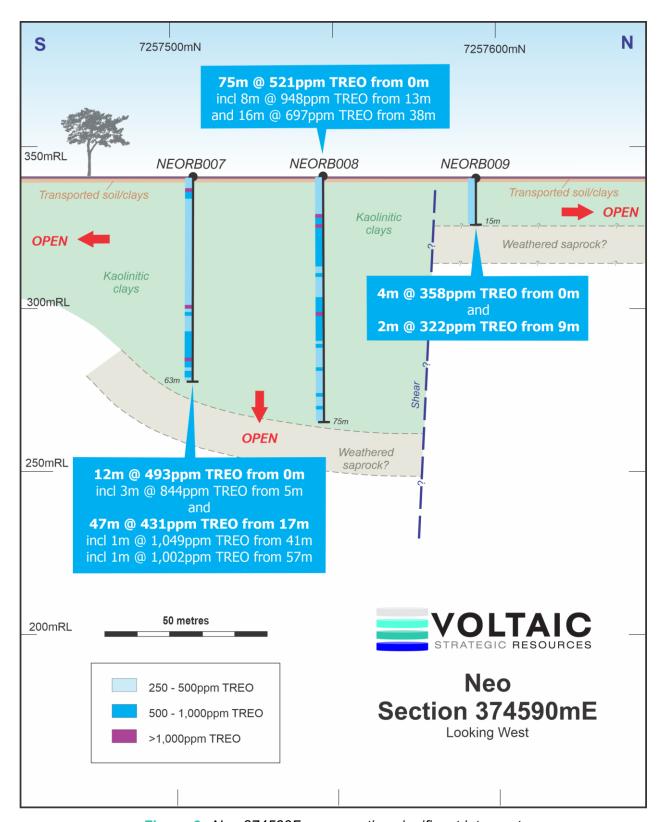


Figure 6. Neo 374590E cross section significant intercepts

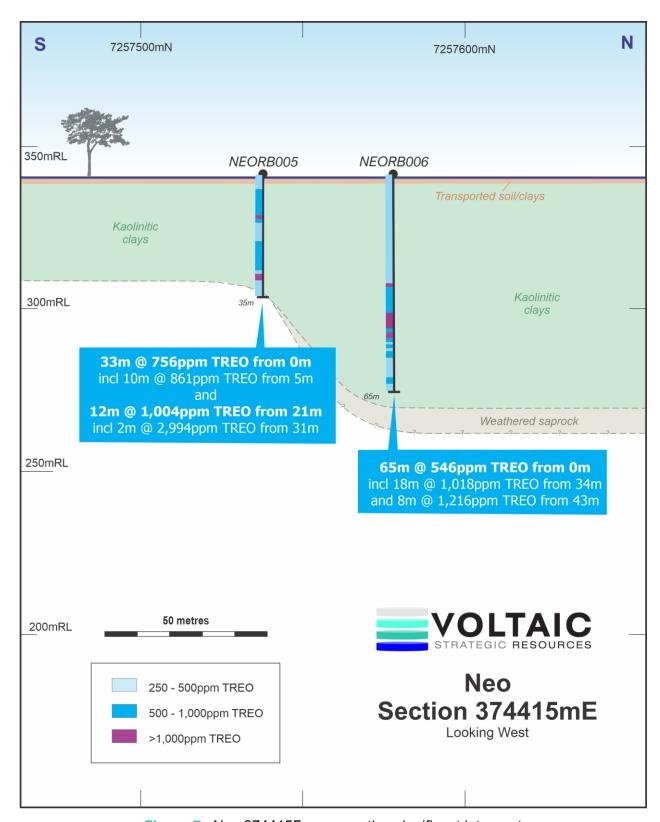


Figure 7. Neo 374415E cross section significant intercepts

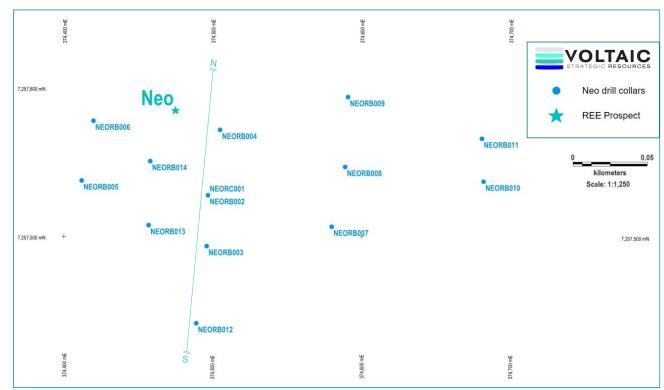


Figure 8. Map plan showing drill collars at the Neo prospect.

Figure 9. Aerial photo of the Neo prospect area, Paddys Well project.

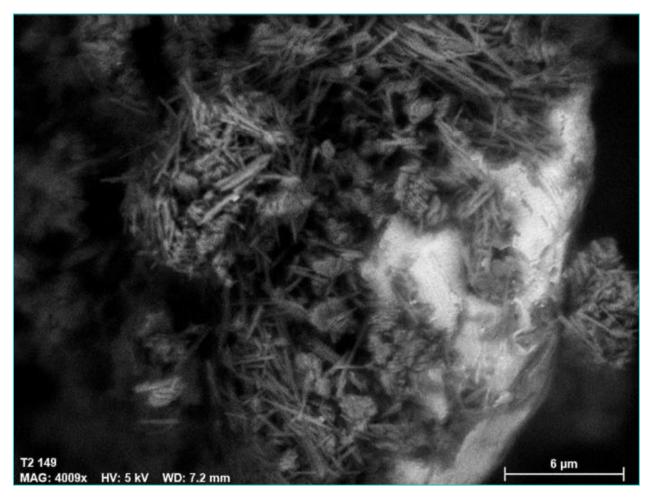


Figure 10. Halloysite nanotubes & associated kaolin⁷ identified from SEM analysis of REE-enriched clay samples from historical drillhole GAD0004⁸. Halloysite is a common kaolinitic clay mineral (Al₂O₃•2SiO₂•2H₂O) found in true REE ionic adsorption deposits (IADs) ⁹

⁷ Both halloysite (needles) and kaolinite (plates) are seen here intergrown with a REE-phosphate grain (bright phase on the right). The association between the minerals suggests that the REE phosphate formed contemporaneously with the clay minerals or after clay formation indicating that the REE phosphate is a secondary REE mineral and not a detrital REE phase.

⁸ Refer ASX release date 13 October 2022 'REEs confirmed at Paddys Well'

⁹ Qiu S, Yan H, Hong B, Long Q, Xiao J, Li F, Tong L, Zhou X, Qiu T 2022, 'Desorption of REEs from Halloysite and Illite: A Link to the Exploitation of Ion-Adsorption RE Ore Based on Clay Species', *Minerals*, vol. 12, no. 8, https://doi.org/10.3390/min12081003.

Appendix 2 Supplementary Data

Table 2. Neo phase 1B drilling summary

Hole ID	Easting GDA_94	Northing GDA_94	RL	Mag Azimuth	Dip	Depth (m)	Prospect	Drill Type
NEORC001	374497	7257528	341	010	-60	40	Neo	RC
NEORB002	374497	7257528	341	0	-90	78	Neo	RB
NEORB003	374496	7257494	341	0	-90	78	Neo	RB
NEORB004	374505	7257572	341	0	-90	78	Neo	RB
NEORB005	374412	7257538	341	0	-90	35	Neo	RB
NEORB006	374420	7257578	341	0	-90	65	Neo	RB
NEORB007	374580	7257507	341	0	-90	63	Neo	RB
NEORB008	374589	7257547	341	0	-90	75	Neo	RB
NEORB009	374591	7257594	341	0	-90	15	Neo	RB
NEORB010	374682	7257537	341	0	-90	11	Neo	RB
NEORB011	374681	7257566	341	0	-90	17	Neo	RB
NEORB012	374489	7257442	341	0	-90	32	Neo	RB
NEORB013	374457	7257508	341	0	-90	63	Neo	RB
NEORB014	374458	7257551	341	0	-90	60	Neo	RB

Table 3. Rare Earth Element Assay Results (as Oxides) from Phase 1B Campaign

Hole ID	From	To	TREO	MREO:	Nd ₂ O ₃	Pr ₆ O ₁₁	Tb ₄ O ₇	Dy ₂ O ₃	La₂O₃	CeO ₂	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Ho₂O₃	Er ₂ O ₃	Tm ₂ O ₃	Yb₂O₃	Lu ₂ O ₃	Y ₂ O ₃
	(m)	(m)	(ppm)	TREO	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
				(%)															
NEORB002	0	1	422	21.6%	67.3	21.0	0.6	2.3	94.6	196.8	11.1	1.3	5.5	0.4	0.9	0.1	0.6	0.1	10.2
	1 2	2	633 733	21.6% 21.5%	102.3	30.7	0.8	3.2 3.8	147.8 167.7	291.7 343.2	16.2	1.6	7.8	0.5 0.5	1.1	0.1	0.8	0.1 0.1	14.3
	3	4	733 871	21.5%	116.6 142.3	36.6 43.5	1.0 1.2	3.6 4.4	207.6	395.9	18.4 23.0	1.7 2.0	9.6 11.8	0.6	1.2 1.3	0.1 0.1	0.7 0.8	0.1	15.4 17.4
	4	5	644	22.0%	142.3	43.5 32.7	1.2	3.9	147.8	292.8	17.6	1.4	8.9	0.6	1.3	0.1	0.8	0.1	17.4
	5	6	655	21.8%	106.0	33.0	0.9	3.1	152.5	303.4	16.7	1.4	8.3	0.5	0.9	0.1	0.5	0.1	13.0
	6	7	597	22.7%	101.7	30.7	0.7	2.2	137.2	278.8	14.6	1.2	6.9	0.3	0.6	0.1	0.4	0.1	8.0
	7	8	417	22.8%	71.4	21.3	0.5	1.8	92.2	194.4	10.8	1.0	5.5	0.2	0.6	0.1	0.4	0.0	7.0
	8	9	279	21.7%	45.0	13.7	0.4	1.3	61.0	132.4	7.6	0.7	3.8	0.2	0.4	0.0	0.3	0.1	5.2
	9	10	834	22.7%	142.3	41.7	1.0	4.3	190.0	381.8	21.2	1.6	10.5	0.6	1.4	0.2	1.1	0.2	17.4
	10	11	1,169	23.0%	200.6	61.4	1.4	5.0	261.5	542.3	29.2	2.0	13.6	0.7	1.6	0.2	1.2	0.2	21.7
	11	12	702	22.7%	119.0	37.0	0.8	2.9	157.2	329.1	17.4	1.4	8.4	0.4	0.8	0.1	0.6	0.1	11.2
	12	13	339	22.2%	56.6	16.7	0.4	1.5	73.9	161.6	8.4	1.0	4.1	0.2	0.5	0.1	0.4	0.1	6.0
	13	14	509	22.6%	85.7	26.2	0.6	2.4	115.9	234.3	13.2	1.4	6.5	0.4	0.8	0.1	0.6	0.1	9.3
	14	15	227	22.2%	37.7	11.2	0.3	1.2	53.9	101.7	6.1	1.0	3.0	0.2	0.4	0.1	0.4	0.1	5.1
	15	16 20	255	21.8% 22.2%	41.4	12.7	0.4 0.4	1.3	57.5	119.5 133.5	6.4	1.1	3.3	0.2 0.2	0.5 0.5	0.1	0.4	0.0 0.1	4.9
	16 20	21	283 740	22.2%	47.1 126.0	13.8 38.1	0.4	1.5 3.0	61.0 164.2	347.9	7.1 18.6	1.2 1.6	3.5 8.5	0.2	0.5	0.1 0.1	0.4 0.8	0.1	5.7 12.0
	21	22	316	23.2%	54.8	16.7	0.4	1.4	73.2	142.9	8.2	1.3	3.8	0.4	0.9	0.1	0.4	0.0	5.5
	22	23	303	23.2%	52.4	16.1	0.4	1.5	67.1	139.4	7.8	1.3	3.6	0.2	0.5	0.1	0.4	0.0	5.5
	23	24	201	23.2%	34.8	10.5	0.3	1.0	44.8	91.6	5.1	1.2	2.5	0.1	0.3	0.0	0.3	0.0	3.5
	24	25	438	23.2%	75.5	23.0	0.6	2.4	92.4	202.6	12.1	1.7	5.9	0.4	1.0	0.1	0.8	0.1	9.1
	25	26	692	23.2%	120.1	36.0	0.9	3.6	150.1	320.9	17.9	1.8	8.9	0.5	1.3	0.2	1.3	0.2	13.0
	26	27	973	22.7%	166.8	49.5	1.0	3.6	226.4	449.8	23.9	2.1	11.5	0.5	1.1	0.1	0.9	0.1	14.1
	27	28	441	22.7%	75.6	22.6	0.5	1.6	101.8	205.0	11.1	1.4	5.0	0.2	0.4	0.1	0.4	0.1	5.7
	28	29	1,042	22.6%	177.3	53.9	1.0	3.7	241.6	483.7	25.5	2.2	11.4	0.5	1.3	0.2	1.2	0.2	14.2
	29	30	566	23.4%	99.1	30.2	0.6	2.4	124.3	261.2	14.6	2.0	6.3	0.4	1.1	0.1	1.2	0.2	9.7
	30	31	544	23.0%	93.7	28.0	0.6	2.7	120.8	249.5	13.8	1.9	6.8	0.4	1.0	0.1	1.0	0.2	11.3
	31	32	396	23.1%	68.7	20.3	0.5	1.9	87.8	181.6	10.3	1.9	4.9	0.3	0.6	0.1	0.5	0.1	8.1
	32	33	260	23.4%	45.5	13.8	0.3	1.3	56.3	118.3	7.3	1.7	3.3	0.2	0.5	0.0	0.4	0.1	5.0
	33 34	34 35	526 139	22.7% 22.7%	88.8 23.2	27.1 6.7	0.7 0.5	2.7 1.2	114.1 26.3	244.8 64.7	13.9 4.3	2.0 0.6	6.8 2.7	0.4 0.2	0.9 0.6	0.1 0.1	0.8 0.5	0.1 0.1	10.6
	34 35	36	895	23.1%	155.1	47.6	0.5	3.4	195.9	420.5	23.7	2.8	10.1	0.2	1.1	0.1	0.5	0.1	4.8 11.9
	36	37	588	22.9%	101.0	30.2	0.5	2.6	126.7	277.6	15.8	1.8	7.6	0.3	0.7	0.1	0.6	0.1	9.1
	37	38	490	22.6%	82.7	25.4	0.6	2.3	108.7	228.4	12.6	1.9	6.1	0.4	0.7	0.1	0.6	0.1	8.4
	38	39	364	23.2%	63.5	19.3	0.4	1.4	79.6	171.0	9.2	1.9	3.9	0.2	0.4	0.0	0.3	0.0	4.8
	39	40	291	22.8%	49.7	15.2	0.3	1.1	64.7	135.9	7.8	1.7	3.3	0.1	0.3	0.0	0.2	0.0	3.6
	40	44	319	23.4%	56.3	16.4	0.4	1.4	69.3	147.6	8.6	1.8	3.7	0.2	0.4	0.0	0.3	0.1	4.9
	44	45	505	23.2%	87.8	26.5	0.6	2.4	110.1	233.1	13.1	1.8	5.8	0.4	0.9	0.1	0.8	0.1	9.9
	45	46	707	22.7%	119.0	37.6	0.8	3.5	152.5	332.6	16.9	2.5	7.7	0.5	1.3	0.2	1.3	0.2	14.6
	46	47	848	22.4%	140.0	44.0	1.2	5.0	183.0	394.7	20.1	3.2	10.0	0.8	2.0	0.3	1.9	0.3	22.5
	47	48	721	22.1%	116.6	38.4	0.9	3.7	156.0	342.0	16.8	2.7	7.8	0.6	1.4	0.2	1.3	0.2	15.9
	48	49	916	22.9%	154.0	49.1	1.3	5.5	194.7	422.8	23.0	3.6	11.2	0.9	2.2	0.3	2.2	0.3	24.9
	49 50	50 51	1,128 1,630	23.1% 23.9%	192.5 285.8	59.6 90.9	1.5	6.6 10.1	236.9 344.8	523.6 730.9	28.4 43.4	4.7	13.8 21.8	0.9 1.6	2.4	0.3 0.5	2.1 3.8	0.3 0.5	29.3 46.5
	50 51	51 52	1,630 2,186	23.9%	285.8 367.4	116.3	2.4 2.9	10.1	344.8 424.6	1,050.7	43.4 56.4	7.3 9.5	27.0	1.6	4.2 4.6	0.5	3.8	0.5	46.5 55.7
	52	53	2,100	28.0%	496.9	153.4	4.5	19.4	585.2	886.7	78.7	15.5	37.7	2.8	6.9	0.0	5.4	0.0	70.4
	53	54	1,775	21.9%	286.9	90.7	2.1	8.9	337.8	885.5	43.9	7.6	20.1	1.4	3.3	0.4	2.7	0.4	40.5
	54	55	9,625	25.9%	1,854.6	584.8	11.2	39.0	2,545.0	3,865.3	238.9	55.1	114.3	4.8	9.0	0.8	3.9	0.4	109.1
	55	56	10,072	29.9%	2,204.5	685.0	23.5	97.0	1,630.2	4,205.0	365.3	92.1	199.4	14.0	31.6	3.9	23.1	2.9	289.5
	56	57	4,662	30.1%	1,027.6	317.8	11.4	48.0	716.6	1,920.9	175.1	41.7	98.9	7.0	16.7	2.1	12.6	1.6	170.2
	57	58	2,715	24.5%	487.6	151.0	4.9	21.0	322.5	1,417.3	80.9	17.8	42.4	3.2	7.3	1.0	6.5	0.9	81.4
	58	59	1,885	23.1%	318.4	98.8	3.3	14.9	381.2	856.2	52.8	10.0	28.9	2.3	5.6	0.8	5.0	0.7	64.3
	59	60	1,276	23.6%	221.6	67.4	2.3	10.5	265.1	566.9	35.7	6.1	19.6	1.7	4.4	0.6	3.9	0.6	42.4
	60	61	1,459	22.8%	243.8	75.4	2.4	10.6	303.8	671.2	37.9	7.6	21.3	1.6	4.2	0.5	3.3	0.5	41.9
	61	62	861	21.9%	140.0	43.0	1.0	4.5	194.7	401.8	19.9	3.2	9.7	0.7	1.7	0.2	1.4	0.3	18.8

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO	Nd₂O₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Tb ₄ O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO ₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y ₂ O ₃ (ppm)
NEORB002	62	63	855	(%) 22.9%	143.5	44.7	1.5	6.2	181.8	380.7	24.0	4.1	12.7	1.0	2.6	0.4	2.3	0.3	30.6
	63	64	3,137	24.4%	562.2	174.0	5.6	24.0	382.3	1,639.8	92.7	19.5	48.5	3.5	8.6	1.1	6.6	0.9	88.1
	64	68	659	22.0%	106.3	34.0	0.9	4.0	146.6	303.4	16.0	2.8	8.4	0.6	1.6	0.2	1.4	0.2	17.9
	68 69	69 70	442 760	22.1% 22.0%	72.4 123.6	22.7 39.9	0.5 0.8	2.0 3.0	102.6 179.4	205.0 352.6	10.0 17.4	2.0 2.3	4.9 8.4	0.3 0.4	0.7 1.0	0.1 0.1	0.6 0.8	0.1 0.1	7.9 13.1
	70	71	832	24.4%	149.3	46.9	1.3	5.2	115.4	428.7	20.6	3.7	11.5	0.4	1.9	0.1	1.5	0.1	23.9
	71	72	506	21.6%	80.4	23.4	1.0	4.4	109.0	227.2	14.1	3.7	9.3	0.7	1.5	0.2	1.1	0.1	19.2
	72	76	261	22.1%	41.5	12.1	0.8	3.2	55.6	104.5	8.9	1.5	6.6	0.5	1.3	0.2	1.2	0.2	17.3
	76 77	77 78	151 477	21.0% 20.0%	21.2 66.7	6.5 21.3	0.6 1.2	3.3 6.3	26.7	52.9 188.6	5.3 12.2	0.7 2.2	4.6 10.4	0.6	1.7 3.2	0.3	1.5 2.6	0.2 0.4	21.7 46.6
NEORC001	0	4	340	22.2%	56.0	16.6	0.6	2.3	104.4 76.5	153.4	9.1	0.9	5.1	1.2 0.4	0.8	0.4	0.6	0.4	9.7
NEORCOOT	4	5	318	20.0%	46.4	15.0	0.6	1.8	69.0	157.0	7.8	0.9	4.2	0.4	0.6	0.1	0.8	0.1	6.7
	5	6	560	21.7%	89.3	27.7	0.9	3.8	126.7	256.5	15.1	1.2	8.3	0.6	1.3	0.1	0.8	0.1	15.4
	6	7	540	21.3%	85.1	25.6	0.9	3.4	123.1	249.5	14.0	1.1	7.8	0.5	1.3	0.1	0.9	0.1	14.5
	7	8	755	21.9%	122.5	37.5	1.1	4.0	168.9	353.7	19.8	1.4	10.2	0.6	1.4	0.2	1.0	0.2	15.4
	8 9	9 10	945 649	21.3% 22.0%	149.3 106.4	46.5 32.6	1.2 0.8	4.7 2.9	218.1 151.3	445.1 301.0	24.2 17.2	1.7 1.2	12.2 8.4	0.6 0.4	1.4 0.9	0.2 0.1	1.1 0.6	0.2 0.1	16.8 10.6
	10	11	409	22.2%	67.3	21.0	0.6	2.2	91.9	188.6	11.7	1.1	6.0	0.3	0.8	0.1	0.5	0.1	8.1
	11	12	523	21.2%	82.2	26.2	0.6	2.0	123.1	247.1	12.8	1.3	6.0	0.3	0.6	0.1	0.5	0.1	7.8
	12	13	426	21.1%	67.1	20.5	0.5	1.7	102.6	197.9	10.4	1.2	5.0	0.3	0.7	0.1	0.5	0.1	7.8
	13	14	444	21.5%	71.4	22.5	0.4	1.5	106.0	209.7	10.4	1.1	4.7	0.2	0.4	0.1	0.3	0.0	5.5
	14 15	15 16	460 282	20.8% 21.6%	70.7 45.1	22.8 14.1	0.5 0.4	1.6 1.3	111.3 65.1	217.9 131.2	10.5 7.8	1.1 0.6	4.7 3.9	0.2 0.2	0.5 0.4	0.1 0.0	0.4 0.2	0.1 0.0	6.9 5.3
	16	17	418	20.2%	62.2	20.5	0.4	1.5	103.6	197.9	9.4	1.0	4.3	0.2	0.5	0.1	0.4	0.1	6.4
	17	18	492	19.9%	71.9	23.9	0.5	1.7	123.1	233.1	11.2	1.1	5.0	0.3	0.6	0.1	0.5	0.1	7.4
	18	19	831	21.1%	130.6	42.3	0.7	1.9	199.4	400.6	18.7	1.5	7.7	0.3	0.5	0.1	0.3	0.0	6.5
	19	20 21	421 955	20.6%	64.0	21.3	0.3	1.1	104.4 225.2	201.5 455.6	9.1 22.5	1.1 2.0	3.8 9.2	0.1	0.3 0.9	0.0	0.1 0.5	0.0	3.7 10.5
	20 21	22	955 680	21.6% 21.6%	154.0 110.3	48.3 33.7	0.8 0.6	2.8 1.9	160.7	324.5	22.5 16.2	1.3	9.2 7.1	0.4 0.3	0.9	0.1 0.1	0.5	0.1 0.1	6.7
	22	23	945	21.4%	150.5	48.3	0.8	2.4	221.7	453.3	22.0	2.2	9.5	0.3	0.8	0.1	0.6	0.1	10.3
	23	24	845	21.7%	137.6	43.1	0.7	2.1	198.2	404.1	20.2	1.7	8.0	0.3	0.5	0.1	0.5	0.1	7.9
	24	28	691	21.7%	112.0	35.2	0.6	2.1	163.0	328.0	16.8	1.8	7.2	0.2	0.6	0.1	0.4	0.1	7.0
	28 32	32 36	662 488	21.1% 21.3%	104.3 77.2	32.9 24.3	0.7 0.5	2.2 1.7	159.5 116.3	313.9 229.6	15.4 11.3	2.0 1.6	6.9 5.5	0.3 0.3	0.7 0.5	0.1 0.1	0.4 0.4	0.1 0.1	7.6 7.0
	36	37	689	22.0%	112.7	35.0	0.9	3.1	152.5	322.1	18.2	4.0	8.7	0.5	1.1	0.1	0.4	0.1	13.7
	37	38	538	22.0%	88.2	27.3	0.6	2.1	120.8	255.3	13.7	2.9	6.0	0.3	0.7	0.1	0.5	0.1	7.3
	38	39	940	21.9%	155.1	47.4	0.8	2.7	218.1	445.1	23.2	3.5	9.9	0.4	0.9	0.1	0.6	0.1	10.3
	39	40	532	21.9%	87.2	26.7	0.6	2.1	119.6	250.7	13.5	2.9	6.0	0.3	0.7	0.1	0.6	0.1	8.6
NEORB003	0	4	313	21.2%	48.1	14.1	0.7	3.4	63.8	146.2	8.0	1.8	5.5	0.6	1.5	0.2	1.5	0.2	17.1
	4	5	1,245	21.4%	194.8	58.8	2.2	10.7	286.2	573.7	29.2	6.6	17.4	1.8	4.4	0.6	3.4	0.5	55.2
	5 6	6 7	1,445 704	22.0% 20.2%	232.1 102.8	69.0 31.2	3.0 1.5	14.0 7.1	319.0 156.0	651.1 330.4	36.4 16.1	8.9 3.6	23.2 11.0	2.3 1.2	5.9 3.1	0.7 0.4	4.4 2.6	0.6 0.4	74.7 36.4
	7	8	351	20.2%	51.6	15.2	0.8	3.7	67.9	172.0	9.0	2.2	6.0	0.6	1.6	0.4	1.5	0.4	18.8
	8	9	653	21.4%	100.9	28.9	1.8	8.6	139.6	287.4	17.6	4.1	12.7	1.4	3.6	0.5	2.9	0.4	42.8
	9	10	729	20.8%	109.9	33.2	1.5	6.8	153.6	353.8	19.2	3.9	11.1	1.1	2.8	0.4	2.3	0.3	29.5
	10	11	541	20.2%	78.1	23.3	1.3	6.6	112.6	254.3	13.3	2.8	9.3	1.1	2.7	0.4	2.2	0.3	33.0
	11 12	12 13	1,493 1,705	20.2% 19.8%	215.8 243.8	69.6 77.2	2.8 2.9	13.2 13.3	336.6 412.8	713.7 805.8	34.8 36.2	6.5 5.7	20.6 21.2	2.1 2.3	5.4 5.9	0.7 0.8	4.3 5.2	0.6 0.7	66.4 71.2
	13	14	489	20.2%	72.3	22.2	0.7	3.6	112.0	238.3	11.2	1.5	6.1	0.6	1.5	0.0	1.5	0.7	17.3
	14	15	381	19.6%	54.8	17.0	0.5	2.2	87.4	191.6	8.5	1.3	4.3	0.4	1.0	0.1	1.0	0.1	10.9
	15	16	193	20.4%	28.7	8.8	0.3	1.5	42.3	92.6	4.5	0.8	2.5	0.3	0.8	0.1	0.8	0.1	8.7
	16	20	760	19.7%	110.8	34.2	0.9	4.1	178.3	379.6	16.8	2.1	8.2	0.6	1.6	0.2	1.4	0.2	20.8
	20 24	24 25	416 282	20.2% 19.5%	61.8 40.2	19.1 12.7	0.6 0.4	2.7 1.8	96.2 66.4	203.9 138.8	9.7 6.2	1.7 1.5	5.1 3.3	0.4 0.3	1.0 0.7	0.1 0.1	0.8 0.7	0.1 0.1	12.5 9.3
	24 25	26	205	20.2%	29.9	9.3	0.4	1.0	45.7	97.0	5.4	1.0	3.0	0.3	0.7	0.1	0.7	0.1	9.3
	26	27	275	20.4%	40.6	12.2	0.6	2.8	60.4	127.8	7.1	1.2	4.1	0.5	1.3	0.2	1.3	0.2	14.5

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO	Nd₂O₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Tb ₄ O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er ₂ O ₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)
	27 28 29 30 31 32 33 34 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 72	28 29 30 31 32 33 34 35 36 40 44 45 46 47 48 49 50 51 52 53 54 55 60 61 62 63 64 66 67 68 72 73	1,169 1,774 273 1,977 563 334 497 462 825 615 505 369 540 801 795 430 338 248 458 772 2,046 744 344 426 543 797 420 968 576 343 1,037 946 569 454 538 665 330	20.5% 20.5% 20.0% 20.3% 20.5% 20.0% 20.0% 19.8% 20.0% 20.1% 20.2% 21.5% 21.5% 21.5% 21.5% 21.1% 21.5% 21.1% 21.5% 21.1% 21.5% 21.5% 21.1% 21.6% 21.7% 21.1% 21.6% 21.7% 20.3% 21.5% 21.1% 21.6% 21.7% 20.3% 21.5% 21.1% 21.6% 21.7% 20.3% 21.5% 20.3% 21.5% 21.7% 20.3% 21.5% 20.3% 21.7% 20.9%	173.8 257.8 40.1 291.6 83.5 48.8 73.5 68.7 122.5 91.0 75.1 54.4 78.3 129.5 115.4 66.6 54.0 39.9 70.1 119.0 325.4 116.3 51.2 67.7 86.9 122.5 65.9 142.3 84.2 50.6 168.0 149.3 87.8 73.9 85.8 107.1 51.1	51.2 79.5 12.0 83.0 25.4 14.9 22.8 20.5 36.9 28.4 23.0 17.2 23.9 40.1 33.5 19.8 16.8 11.8 21.9 37.3 104.3 36.5 16.2 20.3 26.6 38.3 20.2 45.7 26.5 15.3 51.2 45.8 27.5 22.6 25.0 31.3 14.9	2.4 3.0 0.6 5.2 0.9 0.5 0.6 0.6 0.9 0.7 0.7 0.6 0.9 0.8 2.1 1.1 0.6 0.5 0.5 0.8 2.0 0.8 0.5 0.7 0.8 1.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	11.9 14.5 2.7 25.7 3.1 2.2 2.4 2.3 3.9 3.0 3.0 2.7 4.3 2.9 9.9 5.0 2.6 2.4 2.3 3.1 7.7 3.4 2.3 3.3 3.4 6.6 3.5 7.2 4.9 3.2 8.6 7.5 4.1 3.1 4.4 5.0 2.5	267.4 422.2 61.2 472.6 137.2 81.9 119.6 111.1 195.9 146.6 115.2 84.1 123.1 190.0 180.6 90.1 72.0 50.9 106.4 183.0 479.7 175.9 82.2 95.2 125.5 173.6 92.7 231.0 137.2 81.3 232.2 215.8 132.5 103.8 124.3 159.5 81.0	523.3 809.5 125.3 825.5 273.9 159.7 245.7 227.3 410.3 304.6 250.6 180.6 260.4 393.1 355.0 194.1 159.7 114.5 226.0 379.6 1,004.8 361.1 199.0 255.5 372.2 196.5 458.2 270.2 158.5 476.6 439.8 267.8 212.5 244.5 299.7 148.6	29.3 40.8 7.1 52.0 12.5 8.0 10.9 10.3 17.6 13.9 11.4 8.4 12.6 20.1 20.8 12.4 9.0 7.2 9.8 17.4 46.7 17.2 8.1 11.0 13.1 19.5 10.8 22.5 13.7 8.3 27.6 23.2 14.1 12.1 14.4 17.2 8.0	6.4 7.9 1.4 13.4 2.8 1.7 2.5 2.2 2.9 2.0 1.5 1.1 1.8 1.3 4.3 2.7 1.6 1.5 2.9 4.9 3.1 2.7 2.4 3.0 3.5 2.0 1.8 3.1 2.7 2.4 3.0 3.5 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	18.7 23.5 4.7 39.3 6.4 4.3 5.2 4.9 8.4 6.4 5.4 4.9 7.2 9.6 15.6 7.7 5.0 4.2 4.8 7.7 20.6 8.1 4.7 6.1 6.8 10.6 6.3 13.0 8.2 5.5 5.5 15.8 8.3 7.8 6.5 8.3 10.4 8.3 8.3 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	2.1 2.6 0.5 4.6 0.5 0.4 0.4 0.4 0.5 0.5 0.5 0.4 1.7 0.8 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.7 0.6 0.5 0.7 0.6 0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	5.7 7.1 1.3 12.0 1.2 0.9 0.9 0.9 1.7 1.3 1.3 1.3 1.1 1.9 0.9 4.1 2.2 1.1 1.0 1.5 3.6 1.5 0.9 1.5 1.5 4.2 1.7 3.0 2.1 1.5 3.9 3.7 1.8 1.3 1.8 2.1	0.8 1.0 0.2 1.6 0.2 0.1 0.1 0.1 0.3 0.2 0.2 0.2 0.3 0.1 0.6 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.5 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.3 0.3 0.3 0.3 0.1	5.3 6.8 1.2 10.6 1.0 0.9 0.8 0.9 1.7 1.2 1.3 1.1 1.9 0.7 3.3 1.8 1.0 1.1 0.9 1.5 3.4 1.4 0.9 1.3 1.4 1.7 2.8 1.3 3.6 3.5 1.6 0.9 1.7	0.8 1.0 0.2 1.5 0.1 0.1 0.1 0.3 0.2 0.2 0.2 0.3 0.1 0.5 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	69.5 96.8 14.2 138.4 14.2 10.2 11.1 11.3 21.3 15.4 15.9 12.6 22.6 11.7 48.1 25.5 13.6 12.6 10.9 16.9 41.0 17.7 11.6 16.9 41.0 17.7 17.3 34.9 22.6 14.7 41.7 37.5 17.3 19.3 13.8 21.5 24.4 13.7
	73 74 75 76 77	74 75 76 77 78	575 584 732 779 1,410	20.4% 21.2% 20.5% 20.5% 21.0%	86.5 91.9 110.0 117.8 218.1	26.3 28.5 34.9 36.7 69.1	0.8 0.8 1.0 1.0	3.8 2.9 4.0 4.2 6.6	138.4 136.0 177.1 188.8 342.5	266.6 280.1 348.9 374.7 667.0	14.0 14.7 17.4 18.0 33.4	2.7 2.0 2.4 2.2 3.0	8.0 7.2 9.5 9.8 17.2	0.6 0.5 0.7 0.7 1.2	1.8 1.2 1.8 1.7 3.1	0.2 0.2 0.2 0.2 0.4	1.7 1.1 1.5 1.3 2.6	0.2 0.1 0.2 0.2 0.4	23.0 17.1 22.9 21.3 43.9
NEORB004	0 4 8 9 10 11 12 13 14 15 16 20 24 25 26	4 8 9 10 11 12 13 14 15 16 20 24 25 26 27	455 621 419 406 537 412 465 648 269 503 372 374 653 283 201	21.8% 20.9% 20.3% 20.4% 20.2% 20.7% 20.8% 21.1% 21.0% 21.19 21.0% 21.5% 21.3% 19.9%	73.2 95.6 62.5 60.9 80.2 63.7 71.9 101.6 42.3 77.9 58.6 58.1 105.0 45.1 29.6	22.2 30.7 20.2 19.3 26.2 20.2 23.0 32.7 13.3 24.9 18.5 18.7 33.2 13.9 9.6	0.7 0.7 0.5 0.5 0.5 0.3 0.4 0.6 0.2 0.6 0.4 0.4 0.6 0.3 0.2	3.0 2.7 2.1 2.1 1.8 1.1 1.6 1.8 0.7 2.2 1.3 1.3 1.9 0.7	103.7 144.3 98.3 95.2 130.2 99.5 109.2 154.8 64.2 117.3 88.8 89.4 157.2 67.7 50.3	215.0 308.3 208.8 201.5 270.2 206.4 234.6 325.5 135.1 250.6 185.5 185.5 185.5 324.3 140.0 99.9	11.2 15.0 9.9 9.6 12.1 9.6 10.4 14.3 5.9 12.1 8.5 9.0 15.1 6.5 4.6	1.6 2.1 1.1 1.2 1.4 1.2 1.5 0.7 1.1 0.8 0.9 1.0 0.7	5.9 6.8 5.0 4.8 5.3 3.9 5.0 6.2 2.6 5.9 3.9 4.3 7.0 3.1 2.2	0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.3 0.1 0.3 0.2 0.2 0.2	1.2 1.0 0.8 0.8 0.6 0.4 0.6 0.7 0.2 0.7 0.4 0.4 0.5 0.3	0.2 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0	1.1 0.9 0.5 0.6 0.4 0.3 0.3 0.4 0.1 0.5 0.3 0.3 0.4 0.1	0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0	15.7 12.3 9.1 9.4 7.7 5.2 6.5 7.9 3.1 8.5 5.2 5.0 6.8 4.0 2.7

27 28 700 21.4% 1901 382 10 3.3 187.7 382.0 11.5 15.1 10.1 0.5 0.5 0.0 0.3 0.0 0.5 0.5	Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO (%)	Nd₂O₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Tb ₄ O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO ₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y ₂ O ₃ (ppm)
20		27	28	760		120.1	38.2	1.0	3.3	167.7	382.0	19.7	1.5	10.1	0.5	1.1	0.1	1.0	0.2	13.2
30 31 888 215% 143.5 44.9 0.7 2.0 206.9 448.6 19.9 1.0 8.5 0.2 0.5 0.1 0.3 0.1 6.8 1.8 1.3 32 376.2 12.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		28						0.6	1.9			14.4	1.0		0.3	0.5	0.0	0.3		6.0
State																				8.0
32																				6.7
33 34 482 21.1% 882 21.5 0.4 1.1 105.8 21.0 1.0 1.0 1.0 3.3 0.0 0.2 0.0 4.8 33.3 5.5 0.7 21.1% 882 21.5 0.7 21.																				6.4
94 95 96 97 21.1% 99.7 31.0 0.0 1.9 192.5 319.2 14.6 1.3 0.8 0.2 0.5 0.1 0.3 0.0 0.5 0.3 0.0 0.3																				4.0
36 86 80 207 209% 323 10.1 0.2 0.7 50.8 102.0 4.8 0.7 2.3 0.1 0.2 0.0 0.1 0.0 0.2 0.0 4.8 40.8 10.2 0.4 1.4 1.8 1.8 1.2 1.2 1.8 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2																				6.8
40 44 980 208% 605 195 04 1.4 98.8 195.3 8.8 1.7 4.3 0.2 0.5 0.0 0.3 0.0 5. 6.0 4 44 65 333 209% 519 184.4 0.3 1.1 812 183.4 7.5 1.7 3.5 0.2 0.4 0.0 0.3 0.0 5. 6.0 44 67 207 21% 43.0 183.6 183.6 1.1 81.2 183.4 7.5 1.7 3.5 0.2 0.4 0.4 0.0 0.3 0.0 5. 6.0 1.1 81.0 183.4 18		35	36	207	20.9%	32.3	10.1	0.2	0.7	50.8	102.0	4.8	0.7	2.3		0.2	0.0	0.1	0.0	2.7
44 45 383 20.0% 51.9 16.4 0.3 1.1 81.2 183.4 7.5 1.7 3.5 0.2 0.4 0.0 0.3 0.0 5.4 46 185.4 7.5 1.7 3.5 0.2 0.1 0.4 0.0 0.3 0.0 5.4 46 185.4 7.5 1.7 3.5 0.2 1.0% 18.5 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0% 18.5 1.2 1.0%																				4.4
45 46 273 212% 430 137 03 0.9 646 135.1 6.4 1.1 2.9 0.1 0.4 0.0 0.3 0.0 4.4 1.4 46 46 47 777 216% 430 13.7 0.3 0.9 646 135.1 6.4 1.1 2.9 0.1 0.4 0.0 0.3 0.0 4.4 1.4 47 48 96 967 221% 183.3 50.1 1.1 3.8 124.0 485.2 25.0 2.8 11.8 0.6 1.3 0.2 1.0 0.8 0.1 12 4.8 4.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1																				5.8
## 46 47 767 21.6% 123.6 38.5 0.8 3.1 178.3 378.3 18.9 1.4 9.4 0.4 1.0 0.1 0.8 0.1 12 1.4 9.4 9.5 9.5 1.																				5.2
47 48 986 (22.1% 163.3 50.1 1.1 3.8 224.0 485.2 25.0 2.8 11.8 0.6 1.3 0.2 1.0 0.1 15 48 49 591 222.6 97.7 2.07 0.8 3.1 129.0 288.7 14.7 3.8 7.5 0.5 1.3 0.2 1.0 0.1 15 49 50 50 50 50 50 50 50 50 50 50 50 50 50																				12.3
## 48 # 49 591 222% 92.11 28.0 0.7 2.6 0.7 2.6 0.7 2.6 0.7 2.6 0.7 2.6 0.7 2.6 0.7 2.6 0.7 2.6 0.7 2.6 0.7 2.6 0.7 2.6 0.7 2.6 0.7 0.8 3.1 120.0 22.7 14.0 3.4 0.8 0.4 1.1 0.2 1.0 0.2 1.1 0.2 1.5 0.5																				15.9
SO 51 S31 21.5% 84.0 26.7 0.7 2.9 118.5 259.2 13.3 3.3 6.7 0.4 1.3 0.2 1.1 0.2 1.5 1.5 5.7 765 22.5% 12.8 3.8 39.1 1.0 4.0 168.9 364.8 20.2 6.5 10.5 0.7 1.8 0.2 1.6 0.2 17 5.5			49	591	22.2%	97.7	29.7		3.1	129.0	288.7	14.7	3.8	7.5	0.5		0.2		0.2	12.5
S1 S2 785 22.5% 128.3 39.1 1.0 4.0 188.9 364.8 20.2 6.5 10.5 0.7 1.8 0.2 1.6 0.2 1.7		49	50	556	22.2%	92.1	28.0	0.7	2.6	122.0	272.7	14.0	3.4	6.8	0.4	1.1	0.2	1.0	0.2	11.3
S2 S3 S54 22.3% 91.7 27.8 0.7 3.1 120.8 286.6 15.0 4.5 7.7 0.5 1.2 0.2 0.9 0.1 13 13 13 13 13 13 13																				13.1
S5 S5 S5 S5 S5 S5 S5 S5																				17.4
54 55 440 21.5% 65.5 21.5% 65.5 21.5% 65.5 21.1 0.4 1.6 101.7 208.8 10.5 2.0 5.0 0.2 0.5 0.1 0.4 0.1 5.6 60.0 418 21.5% 67.1 20.5 0.5 1.8 101.1 201.5 10.3 1.6 5.3 0.3 0.6 0.1 0.4 0.1 7.																				13.0 10.8
55 56 427 21.5% 68.5 21.1 0.4 1.6 101.7 20.88 10.5 2.0 5.0 0.2 0.5 0.1 0.4 0.1 6.																				8.4
60 64 65 205 21.3% 32.0 9.6 0.4 1.8 42.8 94.5 5.3 1.4 3.2 0.4 1.0 0.1 0.8 0.1 12.6 65 66 65 92 0.1% 8.3 2.2 0.2 1.2 10.6 20.1 1.7 0.8 1.5 0.3 0.8 0.1 0.6 0.1 10.6 66 67 434 20.4% 65.0 20.1 0.7 3.0 101.8 201.5 9.9 2.7 5.9 0.5 1.5 0.2 1.0 0.2 20.6 67 68 20.45 17.5% 239.1 56.5 10.1 52.6 445.7 536.8 47.7 26.1 77.0 10.8 29.3 3.2 17.4 3.0 490.6 68 69 70 281 21.1% 43.4 12.9 0.5 2.3 60.8 130.2 7.0 1.7 4.3 0.4 1.1 0.1 0.8 0.1 14.7 70 70 71 258 21.1% 40.8 12.4 0.3 0.9 59.8 127.8 6.0 1.1 2.8 0.1 0.4 0.0 0.2 0.0 0.5 1.7 70 71 72 411 21.6% 66.3 20.2 0.5 1.7 93.0 201.5 10.2 1.7 5.2 0.3 0.6 0.1 0.4 0.0 0.2 0.0 5.1 71 72 411 21.6% 66.3 20.2 0.5 1.1 4.5 130.2 262.9 15.9 3.8 9.9 0.7 1.6 0.2 1.0 0.2 24.7 7.7 7.0 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10																				6.2
64 65 65 205 213% 32.0 9.6 0.4 1.8 42.8 94.5 5.3 1.4 3.2 0.4 1.0 0.1 0.8 0.1 12 65 65 65 50.1 1.5 0.2 1.0 0.2 1.0 0.6 0.1 10.6 0.		56	60		21.5%	67.1	20.5	0.5		101.1	201.5	10.3		5.3		0.6	0.1	0.4	0.1	7.1
65 66 65 99 20.1% 8.3 2.2 0.2 1.1 2 10.6 20.1 1.7 0.8 1.5 0.3 0.8 0.1 0.6 0.1 10 66 66 67 434 20.4% 65.0 20.1 0.7 3.0 101.8 201.5 9.9 2.7 5.9 0.5 1.5 0.2 10.0 2 20 67 68 68 20.045 17.5% 239.1 55.5 10.1 52.6 445.7 536.8 47.7 26.1 77.0 10.8 29.3 3.2 17.4 3.0 480 68 69 70 281 21.1% 43.4 12.9 0.5 1.2 3 60.8 130.2 7.0 17.7 4.3 0.4 1.1 0.1 0.8 0.1 14 70 70 71 258 21.1% 40.8 12.4 0.3 0.9 59.8 127.8 60 1.1 2.8 0.1 0.4 0.0 0.2 20 0.5 1.7 70 71 72 411 21.6% 66.3 20.2 0.5 1.7 93.0 20.5 1.5 10.2 17.7 5.2 0.3 0.6 0.1 0.4 0.1 9.7 72 71 72 411 21.6% 66.3 20.2 0.5 1.7 93.0 20.5 5.2 0.8 11.1 2.7 5.7 0.3 0.7 0.1 0.5 0.1 15.7 7.7 7.4 5.1 1.1 1.2 1.6 1.2 2.3 1.1 1.1 1.2 1.1 1.1		60					7.5	0.2												3.4
NEGREDOS 66 67 434 20.4% 65.0 20.1 0.7 3.0 101.8 201.5 9.9 2.7 5.9 0.5 1.5 0.2 1.0 0.2 20.8 68 69 363 20.6% 51.9 13.7 1.6 7.8 67.8 132.7 11.7 3.7 11.1 1.4 3.6 0.5 2.7 0.5 52.8 69 70 281 21.1% 43.4 12.9 0.5 2.3 60.8 130.2 7.0 1.7 4.3 0.4 1.1 0.1 0.8 0.1 14.7 0.7 0.7 1.2 258 21.1% 40.8 12.4 0.3 0.9 59.8 127.8 60.0 1.1 2.8 0.1 0.4 0.0 0.2 0.0 5.7 7.7 7.2 411 21.6% 66.3 20.2 0.5 1.7 93.0 201.5 10.2 1.7 5.2 0.3 0.6 0.1 0.4 0.1 9.9 7.2 7.3 4.27 21.1% 67.1 20.5 0.6 2.0 95.5 20.8 11.1 2.7 5.7 0.3 0.6 0.1 0.4 0.1 0.5 0.1 1.4 7.5 7.5 0.5 7.5 7.5 0.3 0.6 0.1 0.5 0.1 1.5 0.2 1.0 0.2 2.4 1.5 0.																				12.1
Fig.																				10.4
Beauty B																				490.2
NEORBOOS 0																				52.4
The contract The		69	70							60.8						1.1	0.1			14.9
Tensor T		70	71	258	21.1%	40.8	12.4	0.3	0.9	59.8	127.8	6.0	1.1	2.8	0.1	0.4	0.0	0.2	0.0	5.5
73 74 581 22.3% 97.0 26.7 1.1 4.5 130.2 262.9 15.9 3.8 9.9 0.7 1.6 0.2 1.0 0.2 24.8 74 75 621 24.8% 114.0 35.9 0.8 3.2 132.5 288.7 15.5 3.2 8.3 0.5 1.2 0.1 0.7 0.1 16 75 76 676 20.4% 102.6 31.7 0.8 2.9 157.2 335.4 15.9 2.7 7.7 0.5 1.1 0.1 0.7 0.1 16 76 77 71 1.133 22.0% 185.5 57.0 1.3 4.9 263.9 544.2 27.9 3.4 12.9 0.8 2.0 0.3 1.5 0.2 26 77 78 405 20.8% 62.8 18.8 0.6 2.3 93.7 196.5 10.0 2.0 5.2 0.4 0.9 0.1 0.6 0.1 11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0																				9.5
NEORBOOS 0 4 488 20.7% 73.9 23.0 0.8 3.5 114.5 233.4 11.0 1.3 6.4 0.6 1.5 0.2 1.0 0.2 16 4 8 935 20.9% 145.8 44.6 1.1 4.1 220.5 466.6 19.9 1.9 10.0 0.6 1.4 0.2 0.9 0.1 18 0.2 1.2 0.2 19 11 11 12 745 21.3% 126.0 39.0 9.3 2. 184.1 398.0 17.5 2.1 18 11 12 745 21.5% 120.1 36.5 0.8 2.9 173.6 369.7 17.5 1.5 8.0 0.4 0.9 0.1 0.6 0.1 11 12 13 1,063 21.5% 170.3 52.8 1.2 4.2 255.7 518.4 25.4 30.0 11.6 0.6 1.4 0.9 0.1 0.6 0.1 11 16 0.2 0.9 0.1 0.6 0.1 11 16 0.0 0.2 15 16 16 16 0.0 0.1 1.3 14 15 252 21.2% 38.4 12.2 0.8 10.3 12.0 0.8 2.9 173.6 369.7 17.5 1.8 8.1 0.6 1.3 0.2 1.0 0.2 15 16 16 16 0.0 0.1 11 12 13 1,063 21.5% 170.3 52.8 1.2 4.2 255.7 518.4 25.4 30.0 11.6 0.6 1.4 0.1 1.0 0.1 0.6 0.1 11 1.0 0.1 1.0 0.2 15 16 16 16 0.0 0.1 11 1.0 0.0 0.0 0.1 16 0.0 0.1 11 1.0 0.0 0.0 0.1 1.0 0.0 0.0																				11.2
NEORBOOS NEORBOOS 75 76 676 676 20.4% 102.6 31.7 0.8 2.9 157.2 335.4 15.9 2.7 7.7 0.5 1.1 0.1 0.7 0.1 16 1.5 0.2 2.6 1.5 2.3 39.7 196.5 10.0 2.0 5.2 0.4 0.9 0.1 0.6 0.1 11 1.5 0.2 2.6 1.5 0.5 0.4 0.9 0.1 0.6 0.1 11 0.1 0.7 0.1 1.5 0.2 2.6 1.5 0.2 0.2 1.5 0.2 0.2 1.5 0.2 0.2 1.5 0.2																				16.8
NEORBOO5 NEORBOO5 The color of the colo																				16.5
NEORBOOS 0 4 488 20.7% 73.9 23.0 0.8 3.5 114.5 233.4 11.0 1.3 6.4 0.6 1.5 0.2 1.0 0.2 16 18 18 19 10 10 11 10 10 11 10 11 10 11 18 18 11 10 11 11 11 11 11 11 11 11 11 11 11																				26.8
4 8 935 20.9% 145.8 44.6 1.1 4.1 220.5 465.6 19.9 1.9 10.0 0.6 1.4 0.2 0.9 0.1 18 8 9 875 20.6% 133.0 41.8 1.0 4.2 205.2 437.3 17.5 1.8 9.1 0.7 1.8 0.2 1.2 0.2 1.2 0.2 1.9 10 7.7 1.8 0.2 1.2 0.2 1.2 0.2 1.9 1.0 0.2 1.5 1.0 0.2 1.5 1.0 0.2 1.5 1.0 0.2 1.5 1.0 0.2 1.5 1.1 0.1 0.2 1.5 1.0 0.2 1.5 1.0 0.2 1.5 1.2 1.2 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 <t< th=""><th></th><th>77</th><th>78</th><th>405</th><th>20.8%</th><th>62.8</th><th>18.8</th><th>0.6</th><th>2.3</th><th>93.7</th><th>196.5</th><th>10.0</th><th>2.0</th><th>5.2</th><th>0.4</th><th>0.9</th><th>0.1</th><th>0.6</th><th>0.1</th><th>11.4</th></t<>		77	78	405	20.8%	62.8	18.8	0.6	2.3	93.7	196.5	10.0	2.0	5.2	0.4	0.9	0.1	0.6	0.1	11.4
4 8 935 20.9% 145.8 44.6 1.1 4.1 220.5 465.6 19.9 1.9 10.0 0.6 1.4 0.2 0.9 0.1 18 8 9 875 20.6% 133.0 41.8 1.0 4.2 205.2 437.3 17.5 1.8 9.1 0.7 1.8 0.2 1.2 0.2 1.2 0.2 1.9 10 7.7 1.8 0.2 1.2 0.2 1.2 0.2 1.9 1.0 0.2 1.5 1.0 0.2 1.5 1.0 0.2 1.5 1.0 0.2 1.5 1.0 0.2 1.5 1.1 0.1 0.2 1.5 1.0 0.2 1.5 1.0 0.2 1.5 1.2 1.2 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																				
8 9 875 20.6% 133.0 41.8 1.0 4.2 205.2 437.3 17.5 1.8 9.1 0.7 1.8 0.2 1.2 0.2 19 9 10 781 20.9% 121.3 37.8 0.9 3.5 180.6 391.9 16.1 1.8 8.1 0.6 1.3 0.2 1.0 0.2 15 10 11 796 21.3% 126.0 39.0 0.9 3.2 184.1 398.0 17.5 2.1 8.5 0.5 1.1 0.1 0.8 0.1 13 11 12 745 21.5% 120.1 36.5 0.8 2.9 173.6 399.7 17.5 1.5 8.0 0.4 0.9 0.1 0.6 0.1 11 12 13 1,063 21.5% 170.3 52.8 1.2 4.2 255.7 518.4 25.4 3.0 11.6 0.6 1.4 0.1 <t< th=""><th>NEORB005</th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>16.6</th></t<>	NEORB005	_																		16.6
9 10 781 20.9% 121.3 37.8 0.9 3.5 180.6 391.9 16.1 1.8 8.1 0.6 1.3 0.2 1.0 0.2 15 10 11 796 21.3% 126.0 39.0 0.9 3.2 184.1 398.0 17.5 2.1 8.5 0.5 1.1 0.1 0.8 0.1 11 12 745 21.5% 120.1 36.5 0.8 2.9 173.6 369.7 17.5 1.5 8.0 0.4 0.9 0.1 0.6 0.1 11 12 13 1,063 21.5% 170.3 52.8 1.2 4.2 255.7 518.4 25.4 3.0 11.6 0.6 1.4 0.1 1.0 0.1 16 13 14 615 22.2% 98.8 29.2 1.5 7.2 123.1 282.5 17.4 2.8 11.1 1.2 3.0 0.4 2.1 0.3 34 14 15 252 21.2% 39.4 12.2 0.4 1.5 57.6 121.9 6.3 0.9 3.2 0.3 0.6 0.1 0.5 0.1 7. 15 16 163 20.4% 24.3 7.8 0.3 1.0 37.8 79.8 4.4 0.7 2.3 0.1 0.4 0.0 0.3 0.0 4. 16 20 377 20.5% 57.6 17.9 0.4 1.4 90.5 189.2 8.2 1.3 3.9 0.2 0.5 0.1 0.3 0.1 5. 20 24 604 20.1% 89.0 27.5 0.9 3.9 145.4 293.6 12.8 1.8 7.4 0.6 1.6 0.2 1.2 0.2 17 24 28 687 20.3% 103.3 32.9 0.8 2.6 164.2 341.5 15.2 2.3 7.4 0.4 1.1 0.1 0.1 0.8 0.1 14 28 29 30 342 20.7% 52.1 16.9 0.3 1.4 73.7 175.7 7.1 1.6 3.3 0.2 0.6 0.1 0.5 0.1 0.5 0.1		-																		18.0
10 11 796 21.3% 126.0 39.0 0.9 3.2 184.1 398.0 17.5 2.1 8.5 0.5 1.1 0.1 0.8 0.1 13 11 12 745 21.5% 120.1 36.5 0.8 2.9 173.6 369.7 17.5 1.5 8.0 0.4 0.9 0.1 0.6 0.1 11 12 13 1,063 21.5% 170.3 52.8 1.2 4.2 255.7 518.4 25.4 3.0 11.6 0.6 1.4 0.1 1.0 0.1 1.6 13 14 615 22.2% 98.8 29.2 1.5 7.2 123.1 282.5 17.4 2.8 11.1 1.2 3.0 0.4 2.1 0.3 34 14 15 252 21.2% 39.4 12.2 0.4 1.5 57.6 121.9 6.3 0.9 3.2 0.3 0.6 0.1 0.5 0.1 7. 15 16 163 20.4% 24.3 7.8 0.3 1.0 37.8 79.8 4.4 0.7 2.3 0.1 0.4 0.0 0.3 0.0 4 1.6 20 377 20.5% 57.6 17.9 0.4 1.4 90.5 189.2 8.2 1.3 3.9 0.2 0.5 0.1 0.3 0.1 5. 20 24 604 20.1% 89.0 27.5 0.9 3.9 145.4 293.6 12.8 18.8 7.4 0.6 1.6 0.2 1.2 0.2 17 24 28 687 20.3% 103.3 32.9 0.8 2.6 164.2 341.5 15.2 2.3 7.4 0.4 1.1 0.1 0.8 0.1 1.9 9. 29 30 342 20.7% 52.1 16.9 0.3 1.4 73.7 175.7 7.1 1.6 3.3 0.2 0.6 0.1 0.5 0.1 0.5 0.1																				19.6 15.9
11 12 745 21.5% 120.1 36.5 0.8 2.9 173.6 369.7 17.5 1.5 8.0 0.4 0.9 0.1 0.6 0.1 11 12 13 1,063 21.5% 170.3 52.8 1.2 4.2 255.7 518.4 25.4 3.0 11.6 0.6 1.4 0.1 1.0 0.1 1.6 13 14 615 22.2% 98.8 29.2 1.5 7.2 123.1 282.5 17.4 2.8 11.1 1.2 3.0 0.4 2.1 0.3 34 14 15 252 21.2% 39.4 12.2 0.4 1.5 57.6 121.9 6.3 0.9 3.2 0.3 0.6 0.1 0.5 0.1 7. 15 16 163 20.4% 24.3 7.8 0.3 1.0 37.8 79.8 4.4 0.7 2.3 0.1 0.0 0.0<		_																		13.6
13																				11.7
14 15 252 21.2% 39.4 12.2 0.4 1.5 57.6 121.9 6.3 0.9 3.2 0.3 0.6 0.1 0.5 0.1 7. 15 16 163 20.4% 24.3 7.8 0.3 1.0 37.8 79.8 4.4 0.7 2.3 0.1 0.4 0.0 0.3 0.0 4. 16 20 377 20.5% 57.6 17.9 0.4 1.4 90.5 189.2 8.2 1.3 3.9 0.2 0.5 0.1 0.3 0.0 4. 20 24 604 20.1% 89.0 27.5 0.9 3.9 145.4 293.6 12.8 1.8 7.4 0.6 1.6 0.2 1.2 0.2 17 24 28 687 20.3% 103.3 32.9 0.8 2.6 164.2 341.5 15.2 2.3 7.4 0.4 1.1 0.1 0.8 0.1 19 29 30 342 20.7% 52.1 16.9 0.3 1.4 73.7 175.7 7.1 1.6 3.3 0.2 0.6 0.1 0.5 0.1 8 <th></th> <th></th> <th>13</th> <th>1,063</th> <th>21.5%</th> <th>170.3</th> <th>52.8</th> <th>1.2</th> <th>4.2</th> <th>255.7</th> <th>518.4</th> <th>25.4</th> <th>3.0</th> <th>11.6</th> <th>0.6</th> <th>1.4</th> <th>0.1</th> <th>1.0</th> <th></th> <th>16.8</th>			13	1,063	21.5%	170.3	52.8	1.2	4.2	255.7	518.4	25.4	3.0	11.6	0.6	1.4	0.1	1.0		16.8
15																				34.8
16 20 377 20.5% 57.6 17.9 0.4 1.4 90.5 189.2 8.2 1.3 3.9 0.2 0.5 0.1 0.3 0.1 5. 20 24 604 20.1% 89.0 27.5 0.9 3.9 145.4 293.6 12.8 1.8 7.4 0.6 1.6 0.2 1.2 0.2 17 24 28 687 20.3% 103.3 32.9 0.8 2.6 164.2 341.5 15.2 2.3 7.4 0.4 1.1 0.1 0.8 0.1 14 28 29 30 342 20.7% 85.7 27.3 0.4 1.5 131.4 278.8 11.8 1.9 5.0 0.2 0.6 0.1 0.4 0.1 9. 29 30 342 20.7% 52.1 16.9 0.3 1.4 73.7 175.7 7.1 1.6 3.3 0.2 0.6 0.1 0.5 0.1 8.																				7.4
20 24 604 20.1% 89.0 27.5 0.9 3.9 145.4 293.6 12.8 1.8 7.4 0.6 1.6 0.2 1.2 0.2 17 24 28 687 20.3% 103.3 32.9 0.8 2.6 164.2 341.5 15.2 2.3 7.4 0.4 1.1 0.1 0.8 0.1 14 28 29 555 20.7% 85.7 27.3 0.4 1.5 131.4 278.8 11.8 1.9 5.0 0.2 0.6 0.1 0.4 0.1 9. 29 30 342 20.7% 52.1 16.9 0.3 1.4 73.7 175.7 7.1 1.6 3.3 0.2 0.6 0.1 0.5 0.1 8.																				4.3 5.7
24 28 687 20.3% 103.3 32.9 0.8 2.6 164.2 341.5 15.2 2.3 7.4 0.4 1.1 0.1 0.8 0.1 14 28 29 555 20.7% 85.7 27.3 0.4 1.5 131.4 278.8 11.8 1.9 5.0 0.2 0.6 0.1 0.4 0.1 9. 29 30 342 20.7% 52.1 16.9 0.3 1.4 73.7 175.7 7.1 1.6 3.3 0.2 0.6 0.1 0.5 0.1 8.																				17.7
29 30 342 20.7% 52.1 16.9 0.3 1.4 73.7 175.7 7.1 1.6 3.3 0.2 0.6 0.1 0.5 0.1 8.																				14.6
			29							131.4							0.1		0.1	9.3
30 31 2,223 21.9% 356.9 110.2 3.7 16.2 484.4 1,047.8 56.4 11.1 30.1 2.8 7.2 0.9 5.1 0.8 89																				8.3
				,							,									89.1
																				152.4 29.5
																				29.5 7.7

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO	Nd₂O₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Tb ₄ O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)
	34	35	94	(%)	14.7	4.4	0.2	0.8	20.4	41.6	3.5	0.7	2.3	0.1	0.4	0.1	0.5	0.1	4.3
NEODDOO																			
NEORB006	0 4	4 8	320 359	21.8% 20.9%	51.8 56.1	15.7 17.8	0.5 0.3	1.8 0.9	75.4 90.8	149.9 175.7	8.2 8.3	0.8 0.7	4.6 3.9	0.3 0.1	0.8 0.3	0.1 0.0	0.7 0.1	0.1 0.0	9.4 3.6
	8 12	12 16	438 316	21.4% 21.4%	70.5 50.6	21.7 15.8	0.4 0.3	1.1 0.8	110.5 78.3	212.5 154.8	10.1 7.3	1.0 0.7	4.6 3.4	0.2 0.1	0.3 0.2	0.0 0.0	0.2 0.1	0.0 0.0	4.7 3.2
	16	20	206	19.9%	30.0	9.9	0.3	0.6	76.3 51.8	101.7	4.7	0.7	2.2	0.1	0.2	0.0	0.1	0.0	3.1
	20	24	276	21.5%	44.2	14.0	0.3	0.8	66.3	136.4	6.8	1.2	3.0	0.1	0.2	0.0	0.1	0.0	2.9
	24 28	28 29	435 109	20.3% 20.4%	65.8 16.6	20.8 5.2	0.4 0.1	1.2 0.4	111.8 27.9	213.7 52.6	9.9 2.6	1.0 0.5	4.6 1.3	0.2 0.1	0.4 0.1	0.0 0.0	0.2 0.1	0.0 0.0	4.9 1.8
	29	30	371	21.6%	59.8	18.7	0.4	1.2	88.4	181.8	9.5	1.4	4.3	0.2	0.4	0.0	0.3	0.0	4.8
	30 31	31 32	178 351	20.4% 21.5%	26.9 56.5	8.6 17.6	0.2 0.4	0.6 1.1	45.4 85.4	86.5 172.0	4.0 8.4	0.8 0.7	1.9 3.8	0.1 0.1	0.2 0.3	0.0 0.0	0.1 0.2	0.0 0.0	2.3 4.8
	32	33	280	20.7%	43.2	13.7	0.4	0.8	70.0	137.6	6.7	0.7	3.1	0.1	0.3	0.0	0.2	0.0	3.2
	33	34	1,181	17.2%	147.0	52.0	1.0	3.5	344.8	581.0	18.4	2.6	8.9	0.6	1.5	0.2	1.1	0.2	17.9
	34 35	35 36	919 756	20.2% 19.8%	136.5 109.8	44.3 35.8	1.0 0.9	3.4 3.2	238.1 195.9	444.7 367.3	18.6 15.0	2.3 1.7	9.0 8.0	0.6 0.5	1.5 1.4	0.2 0.2	1.1 1.0	0.1 0.1	17.9 15.0
	36	37	792	19.8%	115.6	37.0	0.9	3.4	207.6	382.0	15.7	1.9	8.6	0.6	1.5	0.2	1.1	0.2	15.9
	37 38	38 39	879 877	22.1%	144.6	45.1 42.9	1.0	3.6	209.9 211.1	422.6 422.6	19.5	2.3	9.4 10.0	0.6	1.5	0.2 0.2	1.1	0.2 0.2	17.9 18.7
	39	40	649	21.5% 20.1%	141.1 96.3	30.7	1.1 0.8	3.9 2.8	168.9	310.8	19.7 13.9	2.3 1.9	7.3	0.7 0.5	1.7 1.1	0.2	1.3 0.7	0.2	13.5
	40	41	709	21.5%	112.4	35.3	1.0	3.9	170.1	335.4	16.1	2.2	8.7	0.7	1.8	0.2	1.5	0.2	19.6
	41 42	42 43	931 1,185	21.1% 22.8%	144.6 200.6	46.4 62.0	1.2 1.6	4.2 5.5	226.4 258.0	449.6 577.3	19.9 29.6	3.3 5.5	10.1 13.5	0.7 1.0	1.7 2.4	0.2 0.3	1.3 1.9	0.2 0.3	21.1 25.5
	43	44	1,220	22.3%	203.0	62.0	1.6	6.0	267.4	595.8	28.2	5.2	14.1	1.0	2.8	0.4	2.5	0.4	29.3
	44	45	1,455	21.1%	227.4	71.5	1.9	6.7	348.3	707.6	31.2	4.5	16.3	1.1	3.2	0.4	2.7	0.4	31.4
	45 46	46 47	1,899 1,016	19.5% 25.5%	269.4 191.3	89.6 56.2	2.5 2.3	8.9 8.7	491.4 172.4	921.3 472.9	41.7 35.9	9.1 9.4	19.9 19.1	1.5 1.4	3.9 3.8	0.5 0.5	3.3 3.0	0.5 0.4	35.4 38.2
	47	48	916	21.0%	141.1	42.4	1.9	7.0	217.0	420.1	26.2	7.2	15.7	1.2	3.1	0.4	2.4	0.3	30.2
	48 49	49 50	1,023 1,014	18.6% 20.3%	137.6 149.3	44.1 44.8	1.7 2.4	6.9 9.5	282.6 241.6	475.4 450.8	23.3 26.6	6.7 8.6	14.3 19.8	0.9 1.7	2.4 4.5	0.3 0.6	1.7 3.4	0.2 0.5	24.6 50.2
	50	51	909	23.4%	156.3	46.0	2.2	8.0	180.6	421.3	29.1	8.5	18.2	1.3	3.3	0.5	2.7	0.4	30.9
	51	52	455	24.2%	81.5	23.7	1.1	3.9	85.1	212.5	15.5	4.5	9.4	0.6	1.5	0.2	1.3	0.2	14.3
	52 53	53 54	693 394	24.8% 23.0%	128.3 67.4	36.7 19.6	1.6 0.8	5.3 2.8	129.0 84.8	324.3 181.8	23.7 11.8	6.5 3.4	13.7 7.2	0.8 0.4	1.9 1.1	0.3 0.1	1.5 0.8	0.2 0.1	19.3 11.8
	54	55	534	23.2%	92.1	26.2	1.3	4.4	112.7	242.0	17.2	4.4	11.2	0.7	1.8	0.2	1.5	0.2	18.0
	55 56	56 60	610 381	23.3% 23.7%	105.4 66.8	29.1 18.1	1.4 1.0	5.9 4.3	131.4 81.4	270.2 163.4	18.6 12.1	4.9 3.3	12.8 9.1	0.9 0.6	2.0 1.6	0.3 0.2	1.5 1.5	0.2 0.2	25.1 17.5
	60	61	250	23.7%	43.9	11.9	0.7	2.7	51.3	106.5	9.5	1.5	7.0	0.4	1.1	0.2	1.1	0.2	11.8
	61	62	319	25.0%	59.3	15.2	1.0	4.3	65.2	129.0	11.7	2.9	9.2	0.6	1.7	0.2	1.4	0.2	17.7
	62 63	63 64	721 605	24.9% 24.6%	133.0 109.6	34.9 28.9	2.1 1.7	9.3 8.4	145.4 122.0	294.8 243.2	24.9 20.2	6.0 5.0	18.4 15.1	1.4 1.4	3.5 3.4	0.5 0.4	3.0 2.7	0.4 0.4	43.2 42.4
	64	65	369	21.4%	57.7	17.2	0.7	3.4	79.2	169.5	9.3	1.5	5.8	0.6	1.6	0.2	1.3	0.2	20.8
NEORB007	0 4	4 5	354 1,413	21.6% 21.3%	56.8 227.4	17.8 69.6	0.4 1.0	1.4 3.3	84.4 351.8	173.2 700.2	7.9 29.7	1.1 2.4	3.7 12.3	0.2 0.4	0.5 1.1	0.1 0.1	0.4 0.8	0.1 0.1	6.0 12.6
	5	6	508	21.9%	83.7	25.6	0.4	1.4	122.0	250.6	11.3	1.2	4.7	0.4	0.5	0.1	0.6	0.1	5.6
	6	7	612	21.4%	98.6	30.4	0.5	1.6	147.8	303.4	13.2	1.8	5.2	0.2	0.6	0.1	0.5	0.1	7.7
	7 8	8 12	367 399	21.0% 20.8%	57.7 61.7	18.0 19.7	0.3 0.4	1.1 1.3	91.2 99.2	180.6 196.5	8.2 8.2	1.1 1.4	3.7 3.7	0.1 0.2	0.3 0.5	0.0 0.1	0.2 0.4	0.0 0.1	4.4 6.1
	12	16	147	19.3%	20.9	6.7	0.2	0.6	39.2	70.8	3.0	1.4	1.4	0.1	0.2	0.0	0.1	0.0	2.3
	16 20	20 21	322 279	20.9% 23.4%	48.6 47.2	15.1 13.5	0.6 0.8	3.2 3.7	74.8 53.9	148.6 120.1	7.5 8.1	1.1 1.5	4.5 5.5	0.5 0.7	1.5 2.0	0.2 0.3	1.4 2.0	0.2 0.3	14.5 19.3
	20 21	22	299	24.3%	52.5	14.9	0.8	4.4	56.8	120.1	9.1	1.8	6.4	0.7	2.0	0.3	1.7	0.3	18.5
	22	23	281	24.0%	49.2	13.8	0.8	3.8	54.2	124.1	8.7	1.6	6.1	0.6	1.5	0.2	1.4	0.2	14.9
	23 24	24 28	255 252	23.9% 23.9%	44.6 44.0	12.7 12.6	0.7 0.6	3.0 2.9	52.3 52.2	112.4 111.2	8.0 7.6	1.0 1.0	5.6 5.5	0.4 0.4	1.1 1.1	0.1 0.2	1.1 1.2	0.2 0.2	11.9 11.2
	28	32	253	23.8%	44.1	12.8	0.7	2.9	51.8	112.3	7.6	1.1	5.3	0.5	1.1	0.2	1.1	0.2	11.8

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO	Nd₂O₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Tb ₄ O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)
	32	36	367	(%)	61.8	18.1	0.7	3.5	76.9	170.7	9.9	1.2	6.2	0.5	1.5	0.2	1.3	0.2	13.7
	36	40	274	23.3%	46.7	13.5	0.7	3.0	59.8	122.8	8.0	1.4	6.0	0.4	0.9	0.1	0.7	0.1	9.9
	40 41	41 42	1,049 294	22.0% 23.1%	165.6 49.9	47.1 14.1	2.8 0.7	15.1 3.1	224.0 62.9	442.2 132.7	26.6 8.7	5.1 1.6	21.7 5.9	2.7 0.4	7.1 1.0	0.9 0.1	6.0 0.8	0.9 0.1	81.0 11.6
	42	43	964	21.1%	142.3	39.9	3.1	17.8	199.4	378.3	24.0	4.7	21.7	3.3	9.2	1.2	7.6	1.2	110.4
	43 44	44 48	282 304	23.0% 22.5%	47.6 49.7	13.5 14.5	0.7 0.7	3.0 3.4	60.0 66.3	126.5 137.6	8.1 8.3	1.5 1.3	5.5 5.7	0.4 0.5	1.0 1.3	0.1 0.2	0.8 1.2	0.1 0.2	12.5 13.5
	48	49	873	24.4%	156.3	44.1	2.2	10.2	170.1	386.9	26.4	5.2	17.1	1.7	4.3	0.2	3.7	0.2	44.2
	49	50	635	24.1%	112.0	32.4	1.4	7.4	125.5	285.0	18.4	3.4	11.5	1.2	3.1	0.4	3.0	0.4	29.7
	50 51	51 52	531 510	22.8% 24.2%	87.6 90.0	26.3 25.6	1.1 1.3	5.8 6.7	105.8 98.0	245.7 224.8	14.3 15.0	2.4 2.9	8.7 9.8	1.0 1.1	2.6 2.7	0.4 0.4	2.3 2.3	0.4 0.4	26.4 29.3
	52	56	504	24.2%	88.4	25.5	1.3	6.8	95.3	222.3	15.0	3.1	9.6	1.1	2.9	0.4	2.5	0.4	28.8
	56 57	57 58	1,002 977	23.4% 24.6%	170.3 176.1	53.2 49.5	1.9 2.6	9.3 12.2	197.0 192.3	475.4 427.5	26.3 30.6	4.5 7.0	14.8 19.8	1.5 2.0	4.0 4.8	0.5 0.6	3.2 3.9	0.4 0.5	39.5 47.0
	58	59	540	24.1%	94.7	26.6	1.5	7.3	110.8	233.4	17.5	3.4	11.5	1.2	2.9	0.4	2.6	0.4	25.7
	59 60	60 61	308 838	23.0% 21.5%	50.9 127.1	14.3 36.7	0.9 2.5	4.7 13.9	61.7 171.2	126.5 331.7	9.7 23.5	1.9	6.8 19.6	0.8 2.7	2.4 7.4	0.3 1.0	2.1 6.0	0.3 0.9	24.3 89.9
	61	62	723	23.2%	127.1	34.2	2.2	10.9	143.1	302.2	22.8	4.4 4.0	15.9	1.9	5.3	0.7	4.7	0.9	54.2
	62	63	497	22.9%	80.9	23.1	1.6	8.1	96.9	210.1	15.4	3.2	11.6	1.4	3.9	0.5	3.5	0.5	36.4
NEORB008	0	4	335	20.9%	49.7	15.0	0.9	4.5	73.9	147.4	8.8	1.5	6.2	0.8	2.2	0.3	1.9	0.3	22.1
	4	8	202	22.5%	32.2	9.4	0.6	3.3	40.3	86.4	6.0	1.0	4.5	0.6	1.7	0.3	1.8	0.3	13.7
	8 12	12 13	452 1,263	21.8% 19.8%	70.1 178.5	21.3 63.6	1.2 1.5	5.8 6.5	94.8 315.5	202.7 625.3	13.0 24.4	2.4 4.4	8.3 11.9	1.0 1.0	2.6 2.4	0.3 0.3	2.0 1.5	0.3 0.2	25.8 26.2
	13	14	879	21.1%	133.0	42.3	1.7	8.6	207.6	402.9	19.5	4.4	13.6	1.4	3.3	0.3	1.9	0.3	38.1
	14 15	15 16	701 1,104	21.2% 21.7%	104.6 172.6	30.0 52.3	2.2 2.3	11.7 11.8	150.1 252.2	285.0 488.9	18.8 27.8	5.1 6.2	15.6 18.4	2.1 2.0	5.8 5.3	0.8 0.7	4.7 4.3	0.6 0.6	64.0 58.2
	16	20	910	21.2%	141.1	43.6	1.5	7.0	206.4	428.7	21.9	4.9	12.7	1.1	3.0	0.4	2.2	0.3	34.7
	20 24	24 28	550 540	22.3% 23.1%	90.7 90.7	28.0 27.2	0.8 1.3	3.1 5.3	124.3 112.5	265.3 245.7	13.5 16.5	1.5 2.8	6.8 10.0	0.5 0.8	1.1 1.9	0.1 0.2	0.8 1.3	0.1 0.2	13.8 23.6
	28	29	399	24.5%	71.9	20.1	1.1	4.6	80.9	176.9	12.6	2.3	9.0	0.7	1.4	0.1	1.0	0.1	15.9
	29	30	395	24.2%	70.5	19.9	1.1	4.4	81.2 168.9	176.9 364.8	12.9	2.2	8.8	0.6	1.3	0.2	0.8	0.1	14.7
	30 31	31 32	810 393	23.7% 24.1%	141.1 69.6	40.4 19.6	2.1 1.1	8.5 4.4	82.2	174.4	26.4 12.9	4.6 2.4	17.4 9.3	1.1 0.6	2.4 1.3	0.2 0.1	1.4 0.7	0.2 0.1	29.8 14.5
	32	36	228	22.1%	36.3	10.7	0.6	2.6	49.0	101.6	6.5	1.6	4.7	0.4	1.0	0.1	0.9	0.1	11.4
	36 37	37 38	480 762	23.8% 23.5%	82.9 131.8	23.6 37.9	1.5 1.9	6.4 7.7	94.5 161.8	208.8 341.5	16.0 24.7	3.3 4.5	11.8 16.1	0.9 1.0	2.2 2.5	0.3 0.3	1.5 3.0	0.2 0.3	25.8 27.3
	38	39	514	24.1%	90.0	25.6	1.6	6.7	104.4	222.3	16.9	3.5	12.0	1.0	2.3	0.3	1.7	0.2	25.5
	39 40	40 41	564 603	23.3% 22.1%	96.1 95.1	28.2 29.0	1.4 1.6	6.0 7.5	118.5 130.2	255.5 271.5	16.6 16.6	3.4 4.2	10.9 12.0	0.9 1.1	2.0 2.8	0.2 0.3	1.5 2.3	0.2 0.4	23.1 28.8
	41	42	896	25.9%	165.6	43.1	4.1	19.5	152.5	350.1	36.1	12.4	27.5	3.0	7.7	1.0	7.2	1.0	65.7
	42 43	43 44	1,157 975	28.1% 27.6%	230.9 193.6	57.6 47.5	6.2 4.8	30.6 22.8	177.1 157.2	423.8 369.7	52.9 42.7	19.1 14.6	41.7 33.0	4.8 3.5	11.7 8.7	1.6 1.1	10.8 7.9	1.4 1.0	86.6 67.1
	43	45	687	25.6%	127.1	33.8	2.6	12.5	123.1	282.5	25.7	7.5	19.6	1.8	4.6	0.6	4.2	0.5	40.9
	45 46	46	910	27.5%	178.5	45.9	4.3	21.2	146.6	350.1	38.5	12.5	29.9	3.3	8.2	1.1	7.1	1.0	62.2
	46 47	47 48	516 504	27.3% 27.4%	101.0 97.3	25.1 24.0	2.5 2.8	12.1 13.9	83.4 75.3	196.5 183.0	22.0 22.5	7.1 8.4	17.2 19.5	1.9 2.1	4.8 5.5	0.6 0.8	4.3 5.1	0.5 0.7	36.7 43.2
	48	49	641	27.6%	124.8	30.4	3.8	17.8	92.7	229.7	29.0	11.1	25.8	2.8	7.0	1.0	6.6	0.8	57.1
	49 50	50 51	751 654	26.6% 25.3%	140.0 116.1	34.9 29.8	4.2 3.4	20.3 16.4	116.0 111.4	271.5 244.5	31.4 25.5	11.7 8.7	29.5 24.4	3.3 2.7	8.2 6.7	1.2 1.0	7.3 5.9	1.0 0.8	70.6 56.8
	51	52	493	25.6%	85.8	21.0	3.1	16.4	74.2	162.1	19.4	7.6	21.0	2.8	7.5	1.1	6.9	0.9	63.2
	52	53	529	26.2%	95.3	23.0	3.2	17.1	74.5	175.7	21.5	8.6	23.4	2.9	8.0	1.1	6.8	0.9	67.1
	53 54	54 55	481 173	26.8% 20.9%	90.9 25.4	23.1 7.8	2.6 0.5	12.4 2.3	72.0 38.0	173.2 74.6	20.9 4.9	7.9 0.9	18.9 3.7	2.1 0.4	5.6 1.1	0.8 0.2	4.9 1.2	0.7 0.2	44.6 11.3
	55	56	200	20.7%	28.9	9.0	0.6	3.0	42.7	84.3	5.6	1.0	4.3	0.6	1.9	0.3	2.2	0.3	15.7
	56 57	57 58	320 233	21.3% 20.6%	47.9 33.7	14.3 10.4	0.9 0.7	5.1 3.3	65.1 51.7	132.7 99.3	9.4 6.9	1.6 1.6	7.0 5.4	1.0 0.6	3.1 1.7	0.5 0.3	3.4 1.7	0.5 0.3	27.4 15.7
	58	59	254	20.6%	36.7	11.3	0.7	3.5	54.2	107.9	7.7	1.6	5.5	0.7	1.8	0.3	1.8	0.3	19.8

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO	Nd₂O₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Tb ₄ O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er ₂ O ₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)
	59	60	967	(%) 19.4%	134.1	44.3	1.6	7.9	245.1	445.9	19.8	3.6	12.8	1.4	3.9	0.6	3.9	0.6	41.1
	60	61	308	20.7%	45.3	13.5	0.9	4.2	70.4	130.2	9.1	2.0	6.7	0.7	2.4	0.3	2.0	0.4	19.8
	61 62	62 63	476 374	22.5% 22.4%	76.0 60.3	22.1 17.3	1.6 1.2	7.5 4.9	98.9 79.9	196.5 158.5	15.3 12.3	4.1 2.8	11.9 9.0	1.2 0.8	3.4 2.1	0.5 0.3	3.1 1.9	0.5 0.3	33.3 22.7
	63 64	64 65	448 379	22.1% 22.3%	71.2 60.8	21.3 17.9	1.3 1.2	5.5 4.6	100.6 81.9	192.9 165.8	13.9 12.2	3.3 2.4	10.4 8.8	0.8 0.7	2.0 2.0	0.3 0.2	1.6 1.3	0.3 0.2	23.0 18.9
	65	66	276	22.3%	44.6	17.9	0.9	3.6	57.9	120.1	8.8	1.7	6.8	0.7	1.3	0.2	1.3	0.2	15.6
	66 67	67 68	479 562	20.8% 21.3%	70.8 84.8	21.9 25.0	1.3 1.8	5.7 8.4	108.0 122.0	210.1 235.9	13.9 16.1	2.6 3.3	10.3 12.2	0.9 1.5	2.6 4.1	0.4 0.6	2.3 3.7	0.4 0.5	28.1 42.3
	68	69	466	21.5%	70.8	20.4	1.4	7.5	93.0	189.2	13.6	2.8	10.0	1.5	4.4	0.7	4.4	0.7	45.6
	69 70	70 71	425 363	22.1% 21.3%	66.7 53.8	19.0 15.5	1.3 1.3	6.9 6.9	85.7 67.1	174.4 140.0	11.8 10.5	2.8 2.3	9.4 9.1	1.3 1.5	3.7 4.6	0.5 0.7	3.5 4.6	0.5 0.7	37.3 44.6
	71	72	558	21.9%	87.2	26.1	1.5	7.1	119.6	242.0	15.0	3.1	11.3	1.3	3.4	0.5	3.1	0.4	36.3
	72 73	73 74	433 221	21.7% 21.3%	67.7 33.1	20.5 10.1	1.1 0.7	4.8 3.0	92.3 49.0	190.4 93.6	11.7 6.5	1.9 1.1	8.1 4.9	0.9 0.5	2.5 1.3	0.3 0.2	2.1 1.3	0.3 0.2	28.3 15.1
	74	75	261	21.8%	40.4	11.8	0.8	3.9	54.1	108.0	7.7	1.2	5.9	0.7	2.4	0.3	2.3	0.4	21.3
NEORB009	0	4	358	20.7%	54.1	17.0	0.5	2.4	87.0	167.1	8.7	1.6	4.8	0.4	1.1	0.2	1.0	0.2	12.2
	4 8	8 9	191 309	21.1% 22.2%	29.3 47.5	8.9 13.2	0.4 1.3	1.7 6.8	43.0 54.3	86.1 118.0	5.5 10.3	1.2 1.8	3.4 8.9	0.3 1.4	0.9 4.2	0.1 0.6	0.7 3.8	0.1 0.6	9.1 36.8
	9 10	10 11	334 183	21.1% 21.3%	50.2 27.4	15.3 8.1	0.7 0.6	4.2 3.0	73.1 36.6	147.4 75.4	8.6 5.3	1.3 0.8	6.3 4.2	0.7 0.6	2.2 1.7	0.3 0.3	2.2 1.7	0.3 0.3	21.3 17.3
	11	12	67	19.9%	8.7	2.7	0.3	1.6	12.2	25.6	2.1	0.6	1.8	0.3	0.9	0.1	0.7	0.1	9.3
	12 13	13 14	276 151	21.0% 20.6%	41.6 22.3	12.8 6.8	0.6 0.3	3.0 1.7	60.3 32.8	125.3 68.5	7.3 4.1	1.4 0.8	4.9 2.6	0.5 0.3	1.3 0.7	0.2 0.1	1.0 0.6	0.2 0.1	15.9 8.9
	14	15	139	21.8%	21.0	6.1	0.5	2.8	27.0	55.9	4.2	0.8	3.4	0.5	1.3	0.2	1.2	0.2	13.8
NEORB010	0	4	207	20.8%	31.7	9.9	0.3	1.3	48.4	99.5	4.9	1.2	2.7	0.2	0.5	0.1	0.4	0.1	6.3
	4 5	5 6	256 1,240	21.0% 21.1%	40.1 194.8	12.2 62.3	0.3 1.1	1.1 3.6	62.4 304.9	124.1 613.0	5.9 28.6	1.3 2.2	3.0 13.5	0.1 0.5	0.3 0.9	0.0 0.1	0.3 0.5	0.0 0.1	5.0 14.1
	6	7	151	21.1%	23.6	7.2	0.2	0.9	35.4	71.7	3.7	1.2	1.9	0.1	0.3	0.0	0.3	0.0	4.2
	7 8	8 9	574 292	21.1% 20.7%	90.6 44.9	28.5 14.1	0.6 0.3	1.7 1.2	141.9 70.8	281.3 142.5	13.6 6.7	2.0 1.4	6.5 3.5	0.2 0.2	0.5 0.4	0.0 0.0	0.3 0.3	0.0 0.0	6.8 5.5
	9 10	10 11	215 136	20.7% 20.6%	33.0 20.6	10.4 6.5	0.2 0.2	0.8 0.6	52.7 33.1	103.9 65.5	5.0 3.1	1.6 1.4	2.5 1.7	0.1 0.1	0.3 0.2	0.0 0.0	0.2 0.1	0.0 0.0	3.8 2.4
	10	- 11						0.6								0.0			
NEORB011	0	1 2	634 592	20.9% 21.4%	99.1 94.9	30.7 29.7	0.5 0.5	1.8 1.5	158.3 145.4	312.0 293.6	13.8 12.5	2.0 1.7	6.6 5.5	0.3 0.2	0.7 0.4	0.1 0.1	0.4 0.3	0.1 0.0	7.2 5.4
	2	3	784	21.2%	124.8	39.1	0.6	1.9	192.3	388.2	17.5	2.3	7.7	0.3	0.6	0.1	0.4	0.1	7.7
	3 4	4 5	507 181	21.3% 21.4%	81.3 28.8	25.3 9.0	0.4 0.2	1.2 0.8	123.1 42.6	251.8 87.8	10.9 4.2	1.7 0.8	4.9 2.3	0.2 0.1	0.4 0.3	0.0 0.0	0.2 0.3	0.0 0.0	5.7 3.8
	5 6	6 7	529	21.5%	85.3	26.0	0.5	1.7	126.7	261.6	12.5	1.7	5.7	0.2	0.4	0.0	0.3	0.0	5.9
	7	8	791 88	21.2% 21.4%	126.0 13.4	39.1 3.9	0.7 0.2	2.2 1.4	194.7 17.1	390.6 36.4	18.7 2.5	1.6 0.5	8.6 1.9	0.3 0.3	0.6 0.9	0.1 0.1	0.4 0.9	0.1 0.2	8.0 8.5
	8	9	141	22.6%	22.5	6.3	0.4	2.7	26.2	58.5	4.2	0.6	3.4	0.5	1.3	0.2	1.4	0.2	13.0
	9 10	10 11	105 102	22.8% 22.2%	16.4 15.9	4.4 4.4	0.4 0.4	2.6 2.0	17.1 18.1	38.9 39.7	3.5 3.0	0.5 0.5	2.7 2.4	0.6 0.4	1.5 1.2	0.2 0.2	1.5 1.2	0.3 0.2	13.8 12.5
	11 12	12 13	114 116	22.7% 21.6%	18.3 17.6	4.9 4.8	0.4 0.4	2.3 2.2	19.9 20.2	44.2 43.4	3.6 3.2	0.5 0.7	2.9 2.8	0.6 0.5	1.4 1.8	0.2 0.3	1.3 1.7	0.2 0.3	13.5 16.4
	13	14	141	20.9%	21.2	6.5	0.3	1.4	31.8	62.9	3.4	0.6	2.4	0.3	0.7	0.1	0.7	0.1	8.1
	14 15	15 16	156 179	21.3% 21.9%	24.4 28.9	7.4 8.6	0.2 0.3	1.1 1.4	36.0 40.3	72.7 82.5	3.9 4.8	0.6 0.7	2.3 3.0	0.2 0.3	0.5 0.6	0.1 0.1	0.4 0.5	0.1 0.1	5.9 7.2
	16	17	159	21.9%	25.3	7.6	0.4	1.5	34.8	72.7	4.4	1.2	3.0	0.3	0.5	0.1	0.4	0.1	6.6
NEORB012	0	1	340	22.5%	54.4	16.1	1.0	5.0	77.2	137.6	9.8	2.1	7.2	0.9	2.3	0.3	1.8	0.3	24.3
	1 2	2	273 265	21.6% 19.2%	42.2 36.7	12.7 11.3	0.7 0.4	3.4 2.3	56.3 53.4	124.1 137.6	7.0 5.9	1.7 1.6	5.1 3.6	0.5 0.4	1.5 0.9	0.2 0.1	1.2 0.7	0.2 0.1	16.1 10.1
	3	4	256	21.3%	39.7	12.3	0.4	2.1	58.5	119.4	6.5	1.8	3.8	0.3	0.9	0.1	0.7	0.1	9.3

Hole ID	From	То	TREO	MREO:	Nd ₂ O ₃	Pr ₆ O ₁₁	Tb ₄ O ₇	Dy ₂ O ₃	La₂O₃	CeO ₂	Sm ₂ O ₃	Eu₂O₃	Gd₂O₃	Ho₂O₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu₂O₃	Y ₂ O ₃
	(m)	(m)	(ppm)	TREO (%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	4	5	594	21.5%	92.6	29.2	1.0	5.1	139.6	270.2	14.5	2.5	8.1	0.9	2.3	0.3	2.2	0.3	25.0
	5 6	6 7	849 666	22.5% 22.9%	138.8 112.3	43.3 33.0	1.6 1.4	7.0 6.1	193.5 144.3	386.9 305.9	22.0 18.3	3.3 2.9	12.6 11.0	1.2 0.9	3.1 2.3	0.4 0.3	2.7 1.7	0.4 0.2	32.1 25.4
	7	8	369	23.3%	62.4	19.2	0.8	3.6	82.6	163.4	10.7	2.3	6.6	0.5	1.2	0.1	0.8	0.1	14.6
	8 12	12 16	267 498	23.0% 22.6%	44.6 82.0	13.5 24.9	0.6 1.0	2.7 4.8	58.5 106.7	117.2 227.3	7.6 14.0	1.9 3.2	4.8 8.4	0.4 0.8	1.1 1.9	0.2 0.3	0.9 1.6	0.1 0.2	13.0 20.4
	16	17	320	22.5%	52.7	16.2	0.6	2.6	73.5	145.0	8.9	2.2	5.0	0.4	1.1	0.1	0.8	0.1	11.0
	17 18	18 19	596 496	22.2% 21.9%	98.1 79.5	29.7 24.2	0.9 0.8	3.6 3.8	137.2 113.5	278.8 227.3	15.4 12.3	2.6 2.6	7.8 6.8	0.6 0.7	1.5 1.9	0.2 0.3	1.4 1.8	0.2 0.2	18.0 20.1
	19	20	235	24.3%	41.2	11.9	0.7	3.3	50.7	94.6	7.5	2.3	5.4	0.5	1.3	0.2	1.2	0.2	14.5
	20 21	21 22	620 356	24.6% 22.6%	110.8 58.2	32.4 17.3	1.7 1.0	7.8 4.2	132.5 69.5	258.0 163.4	19.8 11.0	4.2 1.8	12.9 7.4	1.2 0.7	3.0 2.0	0.4 0.3	2.6 1.5	0.4 0.2	32.3 17.9
	22	23	433	21.3%	66.7	19.3	1.1	4.8	76.5	218.7	12.3	2.2	8.3	0.7	1.7	0.3	1.6	0.2	18.0
	23 24	24 25	362 755	24.0% 22.5%	62.9 123.6	18.6 36.7	1.0 1.8	4.5 7.7	72.5 164.2	159.7 337.8	11.6 20.9	2.2 4.2	7.6 13.3	0.7 1.3	1.6 3.1	0.2 0.4	1.4 2.6	0.2 0.4	17.3 36.7
	25	26	613	24.3%	106.6	31.4	1.8	8.8	120.8	255.5	19.4	4.7	13.3	1.5	3.9	0.5	3.5	0.5	40.5
	26 27	27 28	755 290	24.7% 23.2%	134.1 48.1	39.1 13.7	2.4 0.9	11.2 4.6	150.1 59.2	309.6 116.6	25.5 9.0	7.0 2.2	17.8 6.5	1.8 0.8	4.5 2.7	0.6 0.3	3.7 2.0	0.5 0.3	47.4 23.1
	28	32	182	23.5%	30.6	8.4	0.6	3.2	33.8	73.9	5.6	1.6	4.3	0.0	1.6	0.3	1.3	0.3	16.0
NEORB013	0	4	277	22.0%	44.8	14.0	0.4	1.7	63.7	130.2	6.9	1.1	3.7	0.3	0.9	0.1	0.7	0.1	8.4
	4 8	8 12	378 502	21.5% 21.8%	60.7 81.1	19.1 26.1	0.4 0.5	1.2 1.7	91.7 116.8	185.5 249.4	9.1 11.7	1.0 1.1	3.8 5.2	0.2 0.3	0.3 0.6	0.0 0.1	0.2 0.5	0.0 0.1	5.0 7.5
	12	16	457	21.6%	73.5	23.4	0.4	1.3	109.1	226.0	10.7	1.1	4.5	0.2	0.4	0.1	0.3	0.0	5.9
	16 20	20 24	463 700	21.6% 22.1%	73.8 114.5	23.7 36.5	0.5 0.8	1.9 2.9	105.3 158.3	230.9 346.4	10.4 16.4	1.1 1.4	4.9 7.5	0.3 0.4	0.7 1.1	0.1 0.1	0.5 0.8	0.1 0.1	8.8 12.5
	24	28	778	21.9%	126.0	40.7	0.8	3.0	178.3	386.9	16.9	1.6	7.7	0.5	1.1	0.1	0.8	0.1	13.0
	28 32	32 36	639 348	21.9% 22.0%	102.5 56.3	33.6 17.6	0.7 0.5	2.9 2.0	144.3 77.5	315.7 167.1	14.4 9.0	1.4 1.2	6.7 4.6	0.5 0.3	1.2 0.8	0.1 0.1	0.9 0.7	0.1 0.1	13.7 9.9
	36	40	500	20.4%	74.3	24.4	0.6	2.6	120.8	246.9	10.7	1.2	5.5	0.4	0.9	0.1	0.7	0.1	10.4
	40 44	44 48	874 579	22.0% 21.6%	143.5 93.4	44.3 28.8	1.0 0.6	3.9 2.3	204.1 132.5	426.3 287.4	19.0 14.1	2.1 1.6	9.1 6.5	0.6 0.3	1.5 0.8	0.2 0.1	1.2 0.8	0.2 0.1	17.3 9.2
	48	52	1,143	21.0%	177.3	57.6	1.2	4.4	278.0	560.2	24.1	3.5	11.4	0.7	1.8	0.1	1.3	0.1	21.2
	52 56	56	524 594	21.1%	82.3 93.9	26.0	0.6	1.9	129.0 148.9	253.1	12.3	1.9	5.7	0.3	0.7	0.1	0.6	0.1	9.2
	56 60	60 61	594 845	21.2% 21.3%	133.0	29.5 41.2	0.6 1.2	1.9 5.0	202.9	287.4 398.0	13.5 20.2	1.9 3.6	6.1 9.4	0.3 0.8	0.7 2.1	0.1 0.3	0.5 1.9	0.1 0.3	8.9 25.4
	61 62	62 63	604	19.1%	80.5	24.9	1.6	8.5	137.2 39.9	249.4	14.4	2.3	10.5	1.7	4.5	0.6	3.7	0.6	63.5 15.5
	02	63	200	21.9%	31.5	9.2	0.6	2.5	39.9	84.9	7.7	1.0	4.4	0.5	1.2	0.2	1.0	0.2	15.5
NEORB014	0 4	4 5	351 208	21.3% 20.6%	55.1 31.8	17.4 10.1	0.4 0.2	2.0 0.6	86.0 52.0	167.1 102.7	8.3 4.5	1.0 0.7	3.8 1.7	0.3 0.1	0.8 0.2	0.1 0.0	0.6 0.1	0.1 0.0	8.4 2.6
	5	6	537	21.2%	84.4	26.9	0.5	1.7	131.4	265.3	13.0	1.0	5.0	0.2	0.5	0.1	0.3	0.0	6.9
	6 7	7 8	526 839	21.3% 21.5%	83.0 134.1	26.8 43.1	0.5 0.8	1.6 2.5	126.7 202.9	262.9 416.4	12.1 19.6	1.0 1.2	4.4 7.6	0.2 0.3	0.4 0.7	0.0 0.1	0.9 0.4	0.0 0.0	5.3 9.3
	8	9	559	21.5%	89.1	27.7	0.6	2.5	132.5	277.6	13.8	1.0	7.6 5.6	0.3	0.7	0.1	0.4	0.0	7.4
	9	10	669	21.5%	106.8	34.0 54.4	0.7	2.3	160.7 255.7	331.7 524.5	15.4	1.2	6.2 9.9	0.3	0.6 0.8	0.1	0.4	0.1	9.0 10.9
	10 11	11 12	1,067 1,502	22.2% 21.8%	178.5 244.9	76.1	1.0 1.5	3.2 4.6	255.7 363.6	738.3	25.4 36.9	2.1 1.7	14.3	0.4 0.6	1.2	0.1 0.1	0.6 0.9	0.1 0.1	16.9
	12	16	490	21.2%	76.6	24.4	0.6	2.3	112.6	244.5	11.8	1.3	5.0	0.3	0.8	0.1	0.6	0.1	9.4
	16 17	17 18	764 2,189	20.5% 21.3%	115.4 345.3	36.4 111.6	1.0 2.0	3.8 7.0	183.0 538.3	373.4 1.071.2	17.9 50.4	3.1 4.7	8.3 19.9	0.6 1.0	1.5 2.4	0.2 0.3	1.1 1.8	0.2 0.3	18.3 32.6
	18	19	1,210	21.4%	192.5	60.9	1.3	4.6	289.7	593.3	29.1	2.7	11.5	0.7	1.6	0.2	1.4	0.2	20.7
	19 20	20 21	1,503 1.062	23.3% 25.1%	261.3 198.3	80.6 55.1	1.9 2.5	6.6 10.8	336.6 204.1	722.3 460.7	42.7 40.1	4.1 4.9	16.1 20.1	0.9 1.7	2.2 4.5	0.3 0.6	1.7 3.6	0.2 0.5	25.4 55.1
	21	22	2,827	27.5%	587.9	163.1	5.4	20.5	472.6	1,314.4	107.7	8.2	45.0	3.1	7.5	1.0	6.1	0.9	83.6
	22 23	23 24	454 1,157	21.4% 22.2%	72.0 190.1	22.5 59.9	0.6 1.4	2.4 5.1	103.3 262.7	219.9 565.1	11.4 28.6	1.7 4.1	5.1 11.3	0.4 0.8	1.0 2.0	0.1 0.3	0.8 1.6	0.1 0.2	13.1 23.2
	23 24	24 25	932	21.0%	190.1	59.9 46.5	1.4	3.7	202.7	458.2	26.6 19.7	2.7	8.0	0.6	2.0 1.4	0.3	1.0	0.2	23.2 15.4

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO	Nd ₂ O ₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Tb ₄ O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO ₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)
				(%)															
	25	26	1,245	20.5%	189.0	60.8	1.1	4.0	320.2	609.3	26.7	2.9	10.8	0.6	1.4	0.2	1.0	0.1	17.0
	26	27	797	21.4%	128.3	39.7	0.6	1.7	197.0	396.8	18.0	2.2	6.2	0.2	0.4	0.0	0.4	0.0	5.2
	27	28	1,116	21.5%	178.5	54.5	1.3	5.3	273.3	525.8	27.3	5.7	12.0	0.8	2.1	0.3	1.8	0.3	27.7
	28	29	1,439	21.4%	229.8	73.7	1.1	3.1	360.0	710.0	32.7	3.0	11.6	0.4	0.9	0.1	0.7	0.1	11.7
	29	30	929	21.8%	151.6	47.7	0.8	2.2	221.7	464.3	22.4	2.0	7.8	0.3	0.6	0.1	0.4	0.1	7.0
	30	31	1,944	21.6%	316.1	98.6	1.5	4.0	477.3	968.0	45.0	2.8	15.9	0.5	0.9	0.1	0.7	0.1	12.2
	31	32	635	21.1%	99.4	31.7	0.6	2.1	148.9	320.6	14.8	1.5	5.7	0.3	0.6	0.1	0.4	0.1	7.8
	32	36	913	21.7%	147.0	46.8	1.0	3.6	215.8	448.4	20.8	2.2	8.3	0.5	1.3	0.2	1.1	0.1	15.6
	36	37	825	21.8%	133.0	42.2	0.9	3.8	191.2	407.8	17.7	2.0	7.5	0.6	1.4	0.2	1.1	0.2	15.4
	37	38	942	21.5%	150.5	46.6	1.1	4.3	220.5	465.6	21.2	2.3	8.9	0.7	1.6	0.2	1.3	0.2	17.3
	38	39	924	21.9%	150.5	46.6	1.1	4.4	218.1	448.4	19.6	2.4	8.6	0.7	1.8	0.2	1.3	0.2	20.3
	39	40	765	21.5%	121.3	37.2	1.0	4.6	171.2	374.7	18.0	1.9	9.1	0.7	2.0	0.2	1.4	0.2	21.5
	40	41	818	21.1%	127.1	39.6	1.1	4.7	184.1	405.4	18.9	1.9	9.8	0.7	1.9	0.3	1.5	0.2	20.6
	41	42	842	21.5%	134.1	42.0	0.9	3.9	188.8	421.3	19.5	1.9	9.5	0.6	1.4	0.2	1.0	0.2	16.5
	42	43	434	20.6%	66.0	21.1	0.5	1.9	101.6	216.2	9.8	1.5	4.7	0.3	0.7	0.1	0.6	0.1	9.1
	43	44	625	21.3%	99.1	30.4	0.7	3.0	137.2	314.5	14.8	1.8	7.1	0.4	1.0	0.1	0.9	0.1	13.2
	44	48	643	21.8%	104.4	32.3	0.7	3.0	137.2	325.5	14.8	2.3	7.0	0.4	1.2	0.2	1.0	0.1	12.8
	48	52	786	21.8%	127.1	39.3	1.0	3.9	168.9	394.3	19.6	3.3	9.1	0.6	1.4	0.2	1.0	0.1	16.3
	52	53	1,525	20.3%	223.9	73.1	2.1	10.1	360.0	739.5	32.8	4.6	17.3	1.7	4.9	0.7	4.0	0.6	49.8
	53	54	551	21.6%	87.5	26.9	0.9	3.7	120.8	265.3	14.3	3.2	7.8	0.6	1.5	0.2	1.0	0.2	17.3
	54	55	404	21.3%	63.8	19.9	0.4	1.8	92.4	199.0	9.2	2.1	4.3	0.3	0.9	0.1	0.6	0.1	9.0
	55	56	2,122	21.3%	335.9	106.4	2.2	8.3	492.6	1,054.0	49.9	5.5	22.7	1.3	3.2	0.4	2.7	0.4	36.6
	56	57	1,082	21.5%	173.8	53.9	1.0	3.8	248.6	539.3	24.8	2.8	11.0	0.6	1.5	0.2	1.2	0.2	19.3
	57	58	872	21.3%	138.8	42.6	0.9	3.5	197.0	438.5	19.7	2.9	8.9	0.5	1.3	0.2	1.2	0.2	16.1
	58	59	244	18.0%	31.8	10.0	0.4	1.7	66.4	113.9	5.6	1.2	3.4	0.3	0.7	0.1	0.5	0.1	8.1
	59	60	140	21.2%	21.6	6.6	0.2	1.2	32.1	64.0	4.1	1.1	2.5	0.2	0.5	0.1	0.4	0.1	5.1

Appendix B JORC Tables

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

	ction apply to all succeeding sections.)	Community
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Historical and recent AC/RB/RC drill samples were collected at 1m intervals and composited to 4m lengths for analysis. The 4m composite or 1m sample (where submitted) were crushed and a sub-fraction obtained for pulverisation. Rock chip samples were taken as individual rocks representing an outcrop (or grab samples). Surface rock samples can be biased towards higher grade mineralisation. Historical drillcore sampling was completed throughout drillholes by compositing variable widths (predominantly 5m) with a representative 5cm half core sample, representing each respective drill meter. Drillholes were located using hand-held GPS. Sampling was carried out under Voltaic Strategic Resources Ltd protocols and QAQC procedures as per current industry practice. RC drilling was used to obtain 1m samples collected through a splitter into buckets and placed in bags as 1m samples, in rows of 20. Sample quality was supervised with any sample loss or moisture recorded. Composite samples were collected with a scoop to generate composite samples. Samples will be or have been dispatched to LabWest laboratories in Perth. All samples will be analysed using Microwave digest (MD), Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) to finish. 62 element analysis including REEs by ICP-MS/OES.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 AC/RC drilling was completed by PNC Exploration/ESSO/Cameco utilising AC/RC drill methods. Historical drilling by Cameco used Wallis Drilling to undertake diamond drilling using a UDR-1000 drill rig. The drilling was completed using HQ (63.5mm) & NQ (47.6mm) from surface for the collection of drill core samples. Current RB drilling was carried out utilising a slimline AC rig combining RC drill rod string with a blade from surface to basement. Prior Auger Vacuum (AV) drilling was carried out with an auger mounted tractor
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery & grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Cameco reported drill recoveries as being close to 100% for the historical drilling. Historical drill core sample bias has occurred given only 5cm of respective 1m core sample interval run was submitted through composite sampling. A review is being undertaken to assess the potential to re-submit entire mineralised intervals where drill core has been found & identified, & interval runs remain complete.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Current drilling is being logged to industry standard capturing recoveries, regolith logging, mineralisation, pXRF and CPS (radiation) monitoring Cameco logged drill holes for geology, mineralisation, structure, and alteration. The geological and geotechnical logging is consistent with industry standards.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample 	 Current sampling includes comprehensive and industry standard QAQC inclusive of split and duplicate samples, and applicable and representative REE standards. Historical drillcore sampling was completed throughout drillholes by compositing variable widths (predominantly 5m) with a representative a 5cm half core sample, representing each respective drill

Criteria	JORC Code explanation	Commentary
	 preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	meter. Sampling measured spectral parameters using the PIMA II spectrometer and also assayed as lithology-based composites. <u>pXRF Analysis</u> pXRF analysis of AV/RB/RC sample piles is deemed fit for purpose as a preliminary exploration technique. pXRF provides a spot reading on sample piles with variable grain sizes and states of homogenisation. High grade results were repeated at multiple locations to confirm repeatability. The competent person considers this acceptable within the context of reporting preliminary exploration results.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Recent drill samples were analysed by Labwest Minerals Analysis Pty Ltd in Perth. The sample analysis uses multi-acid microwave digest with an Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) finish. Historical Cameco drill core samples were analysed by Chemnorth using four assay methods, ICP-OES, ICP-MS, AAS and gravity to analyse 32-53 elements. pXRF screening of samples and soil points preliminary analysis is obtained with an Olympus Vanta portable XRF NOTE 1: pXRF (portable x-ray fluorescence) assay results are semi-quantitative only. NOTE 2: pXRF - Only 5 elements analysed with pXRF analyser: Ce, La, Nd, Pr, Y Scanning electron microscope (SEM) analysis was undertaken by RSC Consulting Limited at their West Perth office using a Hitachi SU-3900 instrument which is capable of delivering automated mineralogy using the Advanced Mineral Identification and Characterisation System (AMICS). The instrument has detectors for analysing energy dispersive spectrometry (EDS), backscatter electron (BSE), secondary electron (SE) and can run on ultra-variable pressure (UVD). RSC undertook an initial characterisation study of eleven (11) smear clay, three (3) epoxy resin embedded clay and two (2) basement rock samples of historical drillcore (GAD0004 hole) from the company's Paddys Well REE project to investigate the mineralogical distribution of REE within the mineralised clay and vein horizons. RSC used their optical microscope and SEM for this work. Microcharacterisation of the samples provide an understanding of REE distribution and the potential implications for eventual metallurgical performance.

Criteria	JORC Code explanation	Commentary				
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Analytical QC is monitored by the laboratory using standards and repeat assays. Independent standards were submitted by the Company at a rate of 1:25 samples. Independent field duplicates were not conducted for and were not considered necessary for this early stage of exploration. The procedures used for verification of historical Cameco sampling and assaying are not known. Rare earth element analyses were originally reported in elemental form but have been converted to relevant oxide concentrations as per industry standards: TREO = La₂O₃ + CeO₂ + Pr₆O₁₁+Nd₂O₃ + Sm₂O₃ + Eu₂O₃ + Gd₂O₃ + Tb₄O₇ + Dy₂O₃ + Ho₂O₃ + Er₂O₃ MREO = Pr₆O₁₁ + Nd₂O₃ + Dy₂O₃ + Tb₄O₇ Conversion factors used to convert from element to oxide: 				
			Element	Oxide Conversion Factor	Equivalent Oxide	
			Се	1.2284	CeO ₂	
			Dy	1.1477	Dy ₂ O ₃	
			Er	1.1435	Er ₂ O ₃	
			Eu	1.1579	Eu ₂ O ₃	
			Gd	1.1526	Gd ₂ O ₃	
			Но	1.1455	Ho ₂ O ₃	
			La	1.1728	La ₂ O ₃	
			Lu	1.1371	Lu ₂ O ₃	
			Nd	1.1664	Nd ₂ O ₃	
			Pr	1.2082	Pr ₆ O ₁₁	
			Sc	1.5338	Sc ₂ O ₃	
			Sm	1.1596	Sm ₂ O ₃	
			Tb		Tb ₄ O ₇	
				1.1762		
			Tm Y		Tm₂O₃	
			Yb	1.2699	Y ₂ O ₃	
		•	10	1.1387	Yb ₂ O ₃	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	were not reDownhole s	eported. surveys were con	rveyed using the UTM coordin npleted using an Eastman dow ia GPS on GDA Z50 coordinate		
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	lateral exteNeo drill sp	nts of uranium mi		previous explorers interpretation and pursue e 200 x 80m	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. The drilling that has been completed to date has not been structurally reviewed or validated to determine the orientation of interpreted mineralisation 				gy, alteration and mineralisation. The samples understanding of the geology and exploration	

Criteria	JORC Code explanation	Commentary
		perpendicular as possible. Oxide regolith drilling is vertical
Sample security	The measures taken to ensure sample security.	Sample security was not reported by Cameco. Samples were given individual samples numbers fo tracking.
		Recent drilling and surface sample security and integrity is in place to industry standards
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The sampling techniques and analytical data are monitored by the Company's geologists.
		 A review of the historical core and compiled data is being undertaken to confirm historical results and assist in interpretation and targeting of further exploration.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The project area is located approximately 60km northeast of the Gascoyne Junction and 220km east of Carnarvon. The Paddys Well project comprises one granted Exploration Licence, E09/2414 (where all of the current reported activities too place) and four Exploration Licence Applications E 09/2663, E 09/2669, E 09/2774, E 09/2744, E 09/2773. The tenements lie within Native Title Determined Areas of the Yinggarda, Baiyungu and Thalanyji People and Gnulli People. All the tenements are in good standing with no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Numerous exploration campaigns have been completed in the general area since the early 1970's focusing predominantly on uranium and diamonds, however work within tenement area E09/2414 has been limited and there is no documented exploration targeting rare earth elements or lithium. From 1974-1983 companies including Uranerz, Agip Nucleare, AFMECO, ESSO Minerals and Urangesellschaft explored the Gascoyne Region for uranium with little success. Most anomalies identified were limited to secondary uranium occurrences in basement metamorphic sequences (including some occurrences associated with pegmatites) and surficial groundwater calcrete sheets (WAMEX REPORT A 87808). Subsequently from 1992 – 1996, PNC Exploration explored the southern Gascoyne area actively targeting basement-hosted uranium mineralisation within the Morrissey Metamorphics (WAMEX REPORT A 46584). The exploration focussed on determining the source of U anomalies and their association with EM conductors. This led PNC to undertake nearly 100-line km of a Questem airborne EM survey as a follow-up to five regional traverses across regional geological trends. Additional EM was flown, as well as detailed airborne radiometrics, which identified several anomalies (WAMEX REPORT A 49947). Eleven (11) shallow percussion holes (average depth of -60m) intersected strongly chloritised and graphitic metasedimentary rocks within a broader marble-calc-silicate gneiss sequence. The RC drilling program returned numerous +100 ppm U intercepts, including:

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 and whole-rock characterisation. The presence of coincidently elevated U, V, Zn, and Sr values in sample 471 is consistent with a strongly weathered black shale (WAMEX REPORT A 84272). The project area has historically been considered prospective for unconformity vein style uranium, although it equally considered prospective for rare earth element (REE) mineralisation hosted in iron-rich carbonatite dykes or intrusions, or lithium-caesium-tantalum (LCT) pegmatites. The project area encompasses a portion of the Gascoyne Province of the Capricorn Orogen. This geological belt is positioned between the Archaean Yilgarn Craton to the south, and the Archaean Pilbara Craton to the north, and largely consists of a suite of Archaean to Proterozoic gneisses, granitic and metasedimentary rocks. REE discoveries in the Gascoyne area, such as Yangibana, are associated with ironstone (weathered ferrocarbonatite) host rocks whereby weathering has enriched the REEs in situ. Yangibana is approximately 100km NE from the Paddys Well/West Wel project area and contains widespread occurrence of ironstone dykes that are spatially associated with the ferrocarbonatite intrusions. The deposit overlays the Gifford Creek Ferrocarbonatite Complex, which is located in the Neoarchean-Palaeoproterozoic Gascoyne Province, and comprises sills, dykes, and veins of ferrocarbonatite intruding the Pimbyana Granite and Yangibana Granite of the Durlacher Supersuite and metasedimentary rocks of the Pooranoo Metamorphics. The ironstone dykes are commonly surrounded by narrow haloes of fenitic alteration, and locally associated with quartz veining. Fenite is a metasomatic alteration associated particularly with carbonatite intrusions
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Drill collar and survey data are provided, along with various respective metadata. Historic drill holes collar and interval data were previously reported by Cameco and are available in open file (WAMEX REPORT A 61566).
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intervals that comprise more than one sample have been reported using length-weighted averages. A cut-off grade of 250ppm TREO (with a maximum 2m of internal waste) has been used for the reported drill intercepts.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 The orientation of the mineralisation is interpreted and yet to be structurally validated. All reported intervals, therefore intercepts, are down hole lengths.

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Historical map plan figures were registered utilising 2-D software and respective coordinate datums. Hole drill collar ground truthing is expected to fine-tune actual collar positions. Workspaces of current and historical exploration have been constructed utilising 2&3D GIS software.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 No inference to economic mineralisation has been stated. A cut-off of 250ppm TREO was used in reporting of exploration results, to aid dismissing interpreted unrealistic anomalous mineralised sub-zones.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All of the relevant historical exploration data has been included in this report. All historical exploration information is available via WAMEX.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 On-going field reconnaissance exploration in the area continues and is a high priority for the Company. Exploration is likely to include further lithological and structural mapping; rockchip sampling; acquisition of high-resolution geophysical radiometric and magnetic data to assist geological interpretation, target identification; as well as auger and percussion drilling of ranked drill targets.