

Initial Mineral Resource Estimate of 4.5 Moz gold-equivalent¹ at CEL's 100% owned El Guayabo Project, Ecuador and Completion of \$10 million Placement

Highlights

- Initial Inferred Mineral Resource Estimate (MRE) of 270 mt at 0.52 g/t AuEq¹ for 4.5 Moz AuEq¹ at CEL's 100% owned El Guayabo Project in Ecuador (refer Table 1).
- The 4.5 Moz¹ MRE contains a significant higher-grade core of mineralisation (refer Table 2):
 - 1.45 Moz at 1.0 g/t AuEq¹ (0.65 g/t AuEq cut-off) including;
 - 1.01 Moz at 1.2 g/t AuEq¹ (0.8 g/t AuEq cut-off)) including;
 - 0.63 Moz at 1.5 g/t AuEq¹ (1.0 g/t AuEq cut-off).
- The MRE is predominantly based on drilling at the GY-A and GY-B anomalies and is constrained by drilling with mineralisation remaining open in both directions along strike and at depth.
- MRE does not include drill holes GYDD-23-039 (805.3m at 0.6 g/t AuEq) or GYDD-23-040 to 043 (assays pending) and will be updated upon the receipt of assays for these final five holes.
- Discovery Cost of approximately US\$1.20² per ounce.
- Transforms CEL into a two-project company with gold equivalent resources of 2.8 Moz⁴ in Hualilan and 4.5 Moz¹ in Ecuador, both of which remain open.
- Firm commitments received to raise \$10 million by way of an institutional placement, with strong support received from domestic and offshore institutional investors
- Funds from the capital raising to be primarily applied to:
 - Completion of a Pre-Feasibility Study (PFS) at CEL's Flagship Hualilan Gold Project;
 - Regional exploration activities and drilling at Hualilan.
 - ¹ Reported as Gold Equivalent (AuEq) values for requirements under the JORC Code see page 2

Commenting on the resource, CEL Managing Director, Mr Kris Knauer, said

"I would like to congratulate our Exploration team in Ecuador for this outstanding start. An initial resource of 4.5 million ounces¹, particularly given its higher-grade core of 1.5 Moz at 1.0 g/t AuEq, is a great start and has significant value in its own right.

It is, however, only our starting point. This resource is focused on 2 of the 7 targets at El Guayabo that have produced mineralised intercepts greater than 500 metres. Mineralisation on these two targets remains open in all directions along strike and at depth with the resource limited by a lack of drilling. Additionally, the final five holes in the program are yet to be included in the estimate which will be updated when assays for these holes are received."

² Discovery cost includes cost of drilling, assaying and all GA associated with the MRE

Challenger Gold (ASX: CEL) ("CEL" the "**Company**") is pleased to announce a first Mineral Resource Estimate (MRE) which is reported according to JORC (2012) for the Company's El Guayabo Gold Copper Project, in El Oro Province, Ecuador.

This 4.5 Moz gold-equivalent¹ MRE is based on 34 drill holes, for 22,572 metres, from the Company's Phase 1 and 2 diamond core drill program at its 100% owned El Guayabo concession. The final five holes in the program, including GYDD-23-039 (805.3m at 0.6 g/t AuEq including 546.7m at 0.8 g/t AuEq) and GYDD-23-040, GYDD-23-041, GYDD-23-042 and GYDD-23-043 (all assays pending) have not been included in the MRE. Accordingly, it should be regarded as an interim resource estimate which will be updated upon the receipt of assays for the final 5 holes which comprise 3,423 metres.

This initial resource drilling program, and resultant MRE, focused primarily on the GY-A and GY-B anomalies on the Company's 100% owned El Guayabo concession. Mineralisation remains open in both directions along strike and at depth at both GY-A and GY-B and there is clear potential for the MRE to grow significantly via additional drilling on these two anomalies.

GY-A and GY-B are the first two of seven large Au-Cu soil anomalies that have produced significant drill intercepts to be targeted with a resource drilling program. The other anomalies include:

GY-C (450 x 450m): 805.3m at 0.6 g/t AuEq including 231.2m at 1.5 g/t AuEq

CV-A (900 x 450m): 528.7m at 0.5 g/t AuEq including 397.1m at 0.6 g/t AuEq

CV-B (800 x 400m): 570.0m at 0.4 g/t AuEq including. 307.0m at 0.5 g/t AuEq

CP-A (300 x 300m): 778.2m at 0.3 g/t AuEq including 171.3m & 150.8m at 0.5 g/t AuEq

GY-D (400 x 300m) 311.7m at 0.3 g/t AuEq including 56.0m at 0.6 g/t AuEq

The El Guayabo Project adjoins the 17 million ounce Cangrejos Gold Project³ owned by Lumina Gold (TSX: LUM). Cangrejos and El Guayabo have the same geology, surface footprint, and mineralisation style, and are interpreted as being part of the same system. Lumina Gold recently released the results of a Pre-Feasibility Study for Cangrejos. Additionally, in May this year Lumina announced it had entered into an agreement with Wheaton Precious Metals for Wheaton to provide Lumina US\$300M financing via a Gold Stream for Cangrejos.

³ Source: Lumina Gold NI 43-101 PFS Report Cangrejos Project April 2023

Table 1 (next page) shows the classification of the Interim MRE and the breakdown between the inpit and underground component of the 4.5Moz MRE.. Importantly, there is a discrete higher-grade component to the resource on both the GY-A and GY-B anomalies. This higher-grade component of the MRE comprises:

1.5 Moz at 1.0 g/t AuEq1 - 45.1 Mt at 0.8 g/t Au, 3.8 g/t Ag, 0.12% Cu, 8.0ppm Mo (0.65 g/t AuEq cut-off)

1.0 Moz at 1.2 g/t AuEq1 - 26.4 Mt at 0.9 g/t Au, 4.6 g/t Ag, 0.16% Cu, 7.0ppm Mo (0.8 g/t AuEq cut-off)

0.6 Moz at 1.5 g/t AuEq1 - 13.1 Mt at 1.1 g/t Au, 6.2 g/t Ag, 0.23% Cu, 6.5ppm Mo (1.0 g/t AuEq cut-off)

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Domain	Category	Mt	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	AuEq (g/t)	AuEq (Mozs)
US\$1800 optimised shell > 0.3 g/t AuEq	Inferred	212.2	0.36	2.8	0.07	6.5	0.50	3.4
Below US\$1800 shell >0.4 g/t AuEq	Inferred	56.5	0.46	1.8	0.07	7.5	0.59	1.1
Total	Inferred	268.7	0.38	2.6	0.07	7.2	0.52	4.5

Note: Some rounding errors may be present

Table 1 El Guayabo Interim MRE

¹ Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1800 Oz, Ag US\$22 Oz, Cu US\$9,000/t, Mo US\$44,080/t
- Metallurgical recoveries are estimated to be Au (85%), Ag (60%), Cu (85%) Mo (50%) across all ore types (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) \times 0.012222] + [Cu (%) \times 1.555] + [Mo (%) \times 4.480026]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a
 reasonable potential to be recovered and sold.

Cut-off (g/t AuEq)	t	Au (g/t)	Ag (g/t)	Cu (%)	Mo (%)	Au Eq (g/t)	oz (AuEq)
0.20	450,477,303	0.30	2.2	0.06	6.3	0.42	6,011,670
0.25	361,372,832	0.33	2.4	0.07	6.3	0.46	5,384,520
0.30	268,733,011	0.38	2.6	0.07	7.2	0.52	4,483,435
0.35	203,701,681	0.43	2.7	0.08	7.3	0.58	3,816,672
0.40	163,925,581	0.48	2.8	0.08	6.7	0.64	3,351,283
0.45	119,827,891	0.53	3.1	0.09	7.4	0.71	2,721,294
0.50	91,356,720	0.59	3.3	0.10	7.3	0.78	2,288,199
0.55	70,319,340	0.65	3.4	0.11	7.6	0.86	1,934,466
0.60	55,271,580	0.72	3.6	0.12	8.0	0.93	1,649,860
0.65	45,088,680	0.77	3.8	0.12	8.0	1.0	1,452,225
0.70	37,690,380	0.82	4.0	0.13	7.8	1.1	1,281,627
0.75	31,747,170	0.86	4.3	0.14	7.8	1.1	1,149,427
0.80	26,434,590	0.91	4.6	0.16	7.0	1.2	1,013,656
0.85	21,924,630	0.95	4.9	0.17	7.0	1.3	891,349
0.90	18,555,810	0.99	5.3	0.19	7.2	1.3	796,251
0.95	15,631,980	1.03	5.8	0.21	6.5	1.4	711,302
1.00	13,150,410	1.08	6.2	0.23	6.5	1.5	631,332

Table 2 El Guayabo Interim MRE at various cut-off grades

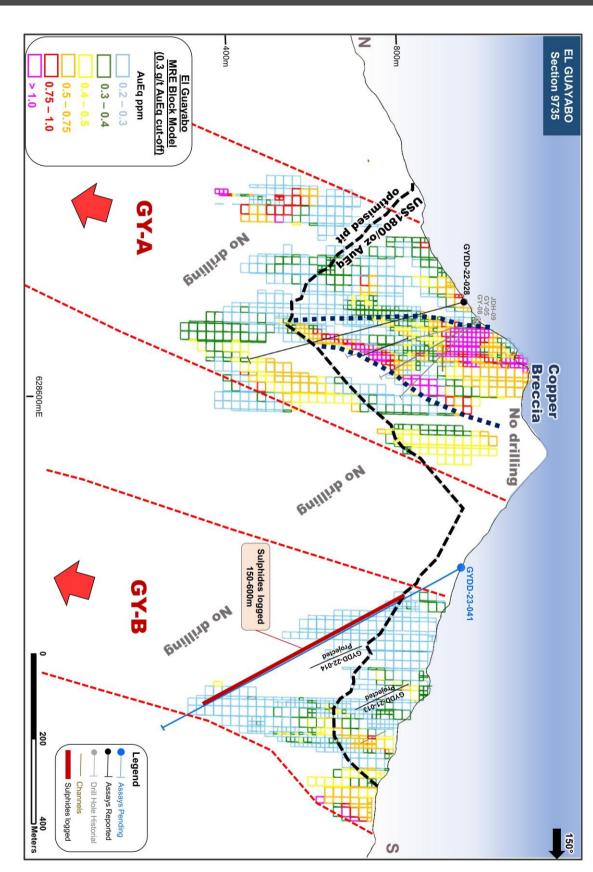


Figure 1 – Cross Section showing MRE Block Model GY-A and GY-B and high-grade Copper Breccia

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director Contact

PLACEMENT

The Company is also pleased to announce that it has received firm commitments for a A\$10 million placement to sophisticated, professional and institutional investors ("Placement"). Under the Placement the Company will issue approximately 83.3 million new fully paid ordinary shares In the Company at an Issue price of \$0.12 per share ("New Shares"). The Placement was strongly supported by domestic and international institutions, both new and existing.

New Shares will be issued pursuant to the Company's placement capacity under ASX Listing Rule 7.1 and rank pari passu with existing fully paid ordinary shares in the Company.

Canaccord Genuity (Australia) Limited and Henslow Pty Ltd acted as Joint Lead Managers and Bookrunners to the Placement.

Proceeds from the Placement will be used to accelerate exploration and development activities at the Company's projects, specifically:

Use of Funds	Amount (A\$m)
Hualilan Project – PFS/EIA/additional metallurgical testing	\$1.5 million
Hualilan Project – Other regional exploration	\$1.0 million
Hualilan Project – 12,600m drilling (regional exploration)	\$2.5 million
Hualilan Project – Land acquisition (20,000Ha)	\$0.5 million
El Guayabo Project – Exploration	\$0.6 million
Working Capital	\$3.9 million

Timetable

The indicative key dates for the Placement are outlined below:

Event	Time (AEST) / Date
Announce completion of the Placement bookbuild and trading halt lifted	Wednesday 14 June 2023
Settlement of the Placement	Tuesday, 20 June 2023
Allotment and quotation of New Shares issued under the Placement	Wednesday, 21 June 2023

Note: The above dates are indicative only and are subject to change, subject to compliance with the ASX Listing Rules and Corporations Act.

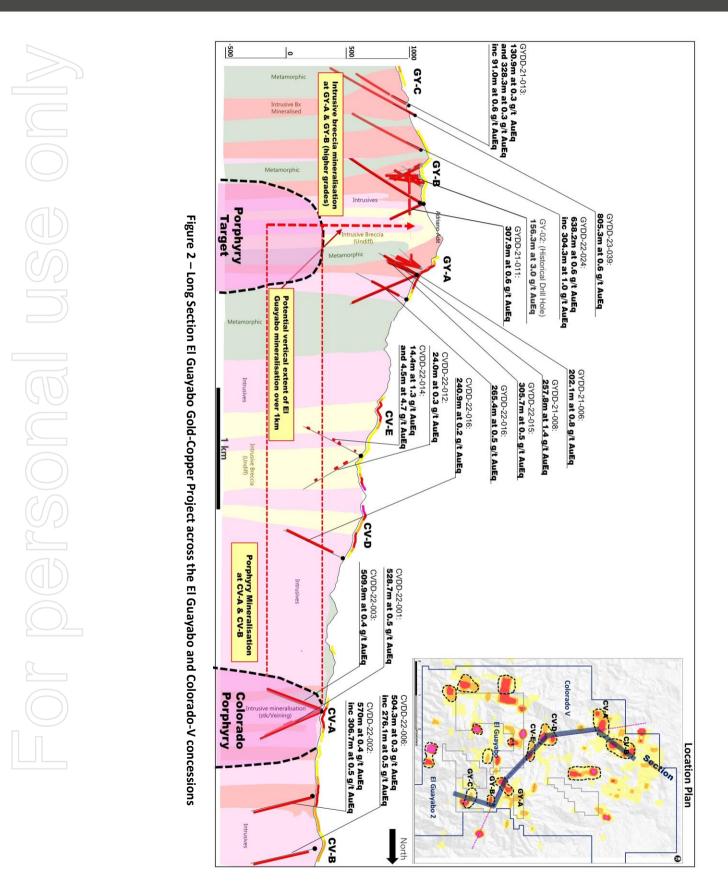
EL GUAYABO AU-CU PROJECT AND GEOLOGY

The El Guayabo Project comprises 3609 Ha (36.1 km²) of Exploitation (mining) Licenses valid for a period of 20 years (from 2008) with an automatic 20 year renewal. These mining licenses are held via a combination of; outright ownership; farmin agreements; and options to acquire as outlined below. The current 4.5 Moz Gold Equivalent Inferred MRE is located almost entirely on the Company's 100% owned El Guayabo concession with less than 10% of the MRE located on the Cerro Pelado concession where CEL has the option to acquire 100%.

- El Guayabo concession (257 Ha) 100% owned
- Cerro Pelado concessions (61 Ha) option to acquire 100%
- El Guayabo 2 concession (957 Ha) earning 80% with option to move to 100%
- Colorado V concession (2331 Ha) earning an initial 50% interest

The El Guayabo Project is located within the El Oro Province of southern Ecuador, 35 Kilometers southeast of the port city of Machala, Ecuador's fourth largest city and the capital of El Oro Province. Machala city lies on the Pan-American Highway linking Guayaquil to Lima in Peru. The port of Puerto Bolivar, a deepwater commercial port, Is located 9 km to the west of Machala.

Access to the project is via paved roads 30 kilometres from Machala to Torata, a town of approximately 2000 people where the Company has its exploration office and accommodation for all staff. Then approximately 5 kilometres by gravel roads. The project is coastal at an elevation of less than 1000 metres and is covered by a mix of pasture with some secondary regrowth forest. Exploration conditions are excellent with field exploration possible all year round as is exploration drilling 24 hours a day. The project has power, water and internet coverage to site.


Geology of El Guayabo Gold-Copper Project

The El Guayabo project geology comprises a metamorphic basement (El Oro Metamorphic Complex) of Cretaceous age intruded by nested intermediate alkaline intrusives which are Tertiary in age from 40 - 10 Ma (million years). The nested intrusions are commonly intruded by later mineralized intrusions, porphyry dykes and intrusive breccias of late Oligocene to Miocene age, suggesting deeper, evolving magmatic systems are feeding shallower systems.

The Project contains a "Low Sulphide" porphyry gold copper system. The Au-Ag-Cu-Mo mineralisation in the El Guayabo concession is associated with mineralized diorite intrusions exhibiting local porphyry stock work veining and associated intrusive breccias that are structurally controlled on a dominant NE/SW trend and many times on the intersection of NW/SE secondary trend. The Colorado V concession which is approximately 750 metres deeper in the system (Figure 2) contains typical porphyry style mineralisation and potassic alteration.

Gold and Copper soil geochemistry vectors the subsurface mineralisation in El Guayabo favourably as it has at the Cangrejos deposit. Soil geochemistry conducted by the Company produced 15 regionally significant Au-Cu soil anomalies.

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director Contact

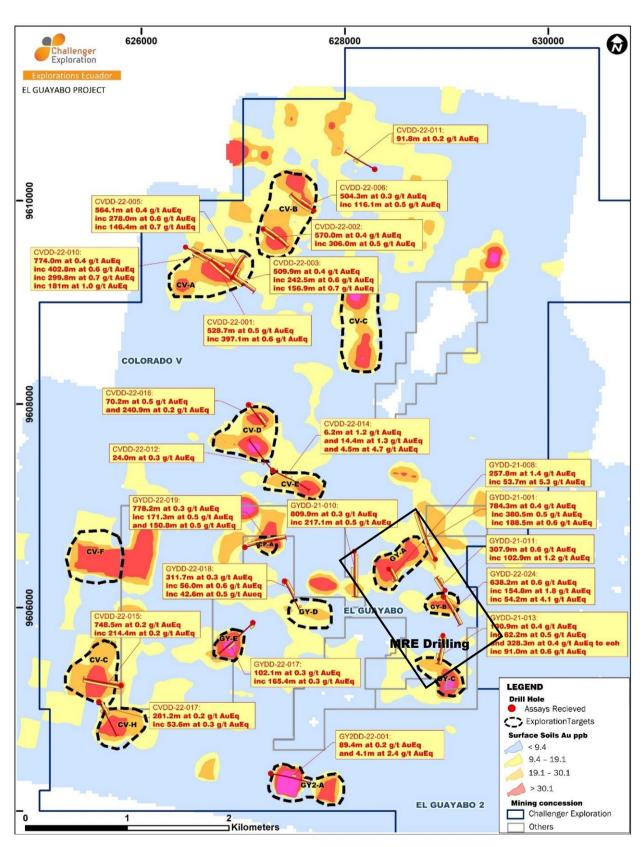


Figure 3 - El Guayabo Gold-Copper Project soil geochemistry and regional exploration drilling

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director

Exploration drilling of 13 of the soil anomalies has been completed to date, all holes intersecting mineralisation (Figure 3). Seven of these 13 anomalies drill tested have produced significant intercepts with six of these providing mineralised intercepts of over 500 metres. Table 3 shows selected drill intercepts and anomalies that were not included in the current MRE.

Drill Hole	From	То	Interval	AuEq	Anomaly	Gram x
(#)	(m)	(m)	(m)	(g/t)	,	Metres
GYDD-22-017	8.0	110.1	102.1	0.3	GY-E anomaly	26.1
and	406.1	443.8	37.8	0.3	(El Guayabo concession)	10.9
and	521.3	686.7	165.4	0.3		45.7
incl.	591.0	621.3	30.3	0.5		15.6
GYDD-22-018	4.0	734.1	730.1	0.2	GY-D anomaly	151.3
incl.	4.0	315.7	311.7	0.3	(El Guayabo concession)	79.0
incl.	4.0	60.0	56.0	0.6		31.8
and	583.9	626.5	42.6	0.5	ended in mineralisation	23.3
GYDD-22-019	77.3	855.5	778.2	0.3	CP-A anomaly	202.3
and	328.1	499.5	171.3	0.5	(Cerro Pelado concession)	84.0
incl.	328.1	426.5	98.4	0.7		64.7
incl.	688.2	839.0	150.8	0.5		71.8
incl.	796.5	839.0	42.5	1.4		60.4
GYDD-23-039	4.6	809.9	805.3	0.5	GY-C anomaly	470.3
inc	4.6	551.3	546.7	0.7	(El Guayabo concession)	429.4
inc	4.6	235.8	231.2	1.4		351.6
inc	108.0	117.9	9.9	1.0		10.6
and	190.5	202.8	12.3	21.4		263.9
inc	190.5	192.0	1.5	172.3		258.7
CVDD-22-010	114.5	888.4	773.9	0.4	CV-A anomaly	309.6
incl.	182.3	585.1	402.8	0.6	(Colorado V concession)	241.7
incl.	182.3	482.1	299.8	0.7		209.9
incl.	182.3	363.2	180.9	1.0		180.9
incl.	182.3	244.7	62.4	1.8		112.3
CVDD-22-001	4.50	533.20	528.70	0.5		260.8
incl.	4.50	401.60	397.10	0.6		222.4
incl.	6.00	114.00	108.00	0.7		73.8
and	166.60	296.80	130.20	0.7		87.8
incl.	273.50	284.30	10.80	3.3		35.6
CVDD-22-002	5.00	575.00	570.00	0.4	CV-B Anomaly	218.6
incl.	14.00	320.70	306.70	0.5	(Colorado V concession)	138.2
incl.	174.65	199.50	24.85	0.9		22.7
and	387.10	396.20	9.10	1.1		9.8

Table 3 - Selected drill intercepts (drill holes/anomalies not in the current MRE)

A series of type sections are shown in Figures 5 to Figures 8 across GY-A, GY-B and that portion of GY-C that where sufficient drilling was conducted to allow the calculation of an MRE. These sections are ordered from south to north.

The location of these sections is shown on Figure 4 (Plan View and grade profile Interim MRE showing the block model AuEq grade contours) and Figure 9 (underlying Au-Cu soil geochemistry).

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus, Non Exec Director

Mr Brett Hackett Non Exec Director

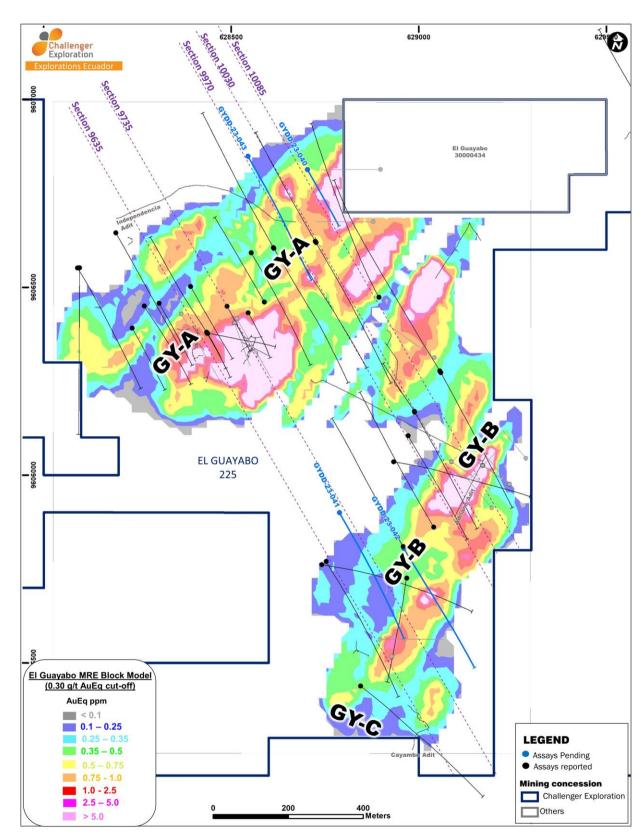


Figure 4 -Plan View Interim MRE showing Block Model grade distribution and Sections

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus, Non Exec Director
Mr Brett Hackett Non Exec Director

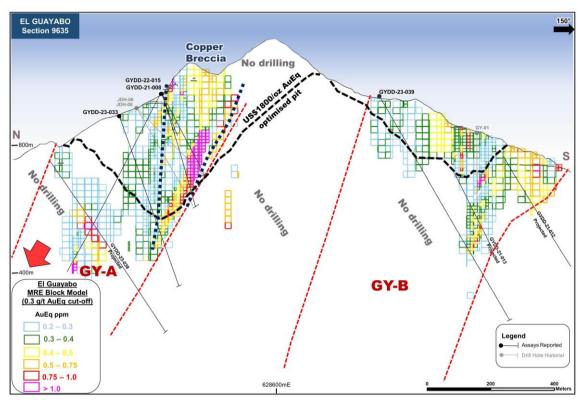


Figure 5 - Section 9635N: G-A and GY-B and high-grade Copper Breccia (GY-A)

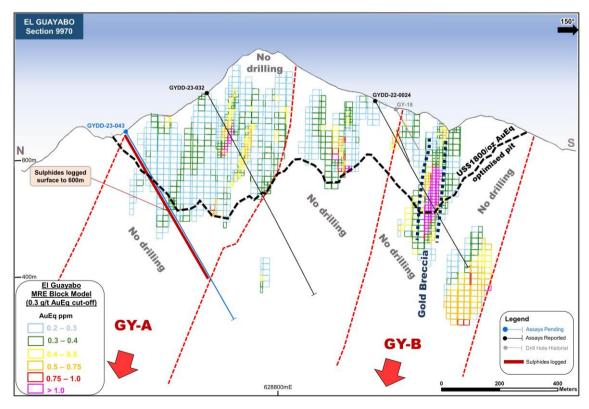


Figure 6 - Section 9970N: G-A and GY-B and high-grade Gold Breccia (GY-B)

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

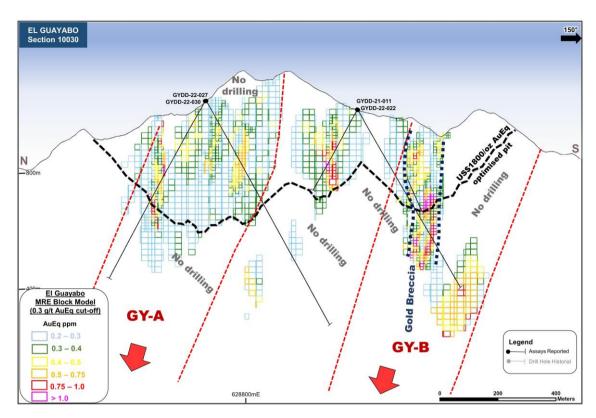


Figure 7 - Section 100300N: G-A and GY-B and high-grade Gold Breccia (GY-B)

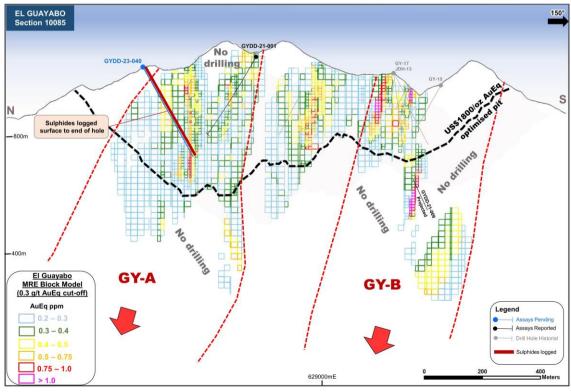


Figure 8 - Section 10085N: G-A and GY-B and drillhole GYDD-22-040 (GY-A assays pending)

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

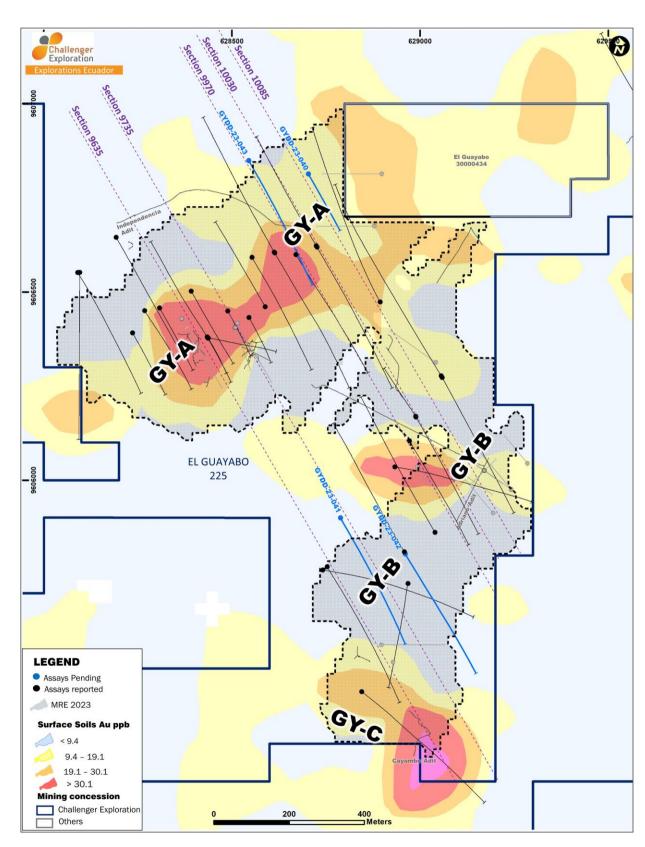


Figure 9 -Plan View Outline of Interim MRE and soil geochemistry

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus, Non Exec Director
Mr Brett Hackett Non Exec Director

NEXT STEPS

The results of drill hole GYDD-23-039 (805.3m at 0.6 g/t AuEq including 231.2m at 1.5 g/t AuEq) on the GY-C Anomaly was received after the MRE cut-off date and accordingly this hole was not included in the current MRE. Results for GYDD-23-040 (GY-A anomaly), GYDD-23-041 (GY-C anomaly), GYDD-23-042 (GY-C anomaly), and GYDD-23-043 (GY-A anomaly) are yet to be received and accordingly were also not included in the current MRE. The MRE will be updated upon the receipt of assays for these final four drill holes.

RESOURCE MODEL AND MINERAL RESOURCE ESTIMATE

Pit Optimisation Parameters

A 0.30 g/t AuEq lower cut-off grade inside an US\$1800 optimised pit shell has been used to report that part of the MRE that has reasonable prospects of future economic extraction via surface mining. The pit optimisation parameters are outlined in Table 4. They reflect internally researched costs and assumptions for similar style projects in Ecuador and are reasonable for the prospect of eventual extraction.

Value		
US\$1800 oz		
US\$22 oz		
U\$\$900t		
US\$20/lb		
U3\$2U/ID		
US\$2.00/t		
US\$7.00/t		
US\$0.80/t		
US\$0.60/t		
US\$8.40t		
0%		
0%		
47.5 degrees		
85%		
60%		
85%		
50%		
3% NSR		
\$60 oz AuEq		
2.73 g/cm ³		
2.73 g/cm ³		

Table 4 - Pit Optimisation Parameters

Pit slopes of 47.5° were used in the surface optimisation. In El Guayabo detailed geotechnical work has yet to be completed however the Company notes this is the Pit slope to be employed at Cangrejos which is interpreted as part of the same mineralised system as the El Guayabo Project.

The average metallurgical recoveries used for gold (85%), silver (60%), copper (85%), and molybdenum (50%) were derived by benchmarking nearby deposits in Ecuador most notably the Cangrejos Project. Concentrate payability was taken from ongoing discussions the company has had with concentrate off-takers including smelters and trades. The gold equivalents reflect the updated metal recoveries.

Resources below the optimised surface shell have been reported as an Inferred Resource at a 0.4 g/t AuEq cut-off. Based on the grade, distribution, orientation, and dimensions of the underground mineralisation this is considered to have reasonable prospects of future economic extraction via bulk underground mining methods.

Mineral Resource Estimate Model

The El Guayabo MRE has been generated from all available CEL diamond drill holes for which final assays had been returned on or before 10 May 2023. The Resource estimate also used results from a CEL surface and underground channel sampling campaign and historic drill holes results that have been verified by CEL re-assaying, drilling and geological modelling. Halved drill core is sampled over intervals from 0.5 to 2.0 metres according to lithology and alteration contacts.

Four separate mineralised domains were wireframed using drill hole data loaded in Micromine Origin and Leapfrog. Two lower-grade domains each with separate internal higher-grade domains which were designed to limit the influence of the high-grade assays. Each broad domain was constrained by interpreted geological continuity with mineralisation > 0.2 g/t AuEq and a 200 metre range to limit the extent of the mineralisation in each domain. The high-grade domains were constrained by interpreted geological continuity with sample mineralisation > 0.7 g/t AuEq.

The average length of a sample in the mineralised domains is approximately 1.5 metres. Three metre composites were used in the lower-grade domains with two metre composites in higher-grade subdomains with $10m \times 10m \times 10m$ blocks. Originally a pass was done using 4 metre composited data however inspection Indicated that this had oversmoothed the block model.

Not all drill holes intersected a mineralised domain and some drill holes were too far from nearby drill holes to allow confident interpretation between holes.

Within each domain, estimation was made for Au Ag, Cu and Mo being the elements of economic interest.

Assumed density is 2.73 g/cm³ (2.730 g/cc) which is the median SG value of 379 representative samples of core that were made during the core logging process. The SG values measured had a tight range which was independent of lithology and assay values.

No previous JORC Resource estimates or non-JORC Foreign Resource estimates were made with similar methods to compare to the current MRE. No production records are available to provide comparisons.

A block model was set up in $Surpac^{TM}$ V6.6 software with a parent cell size of 20m (E) x 20m (N) x 20m (RL) was used in the two broad lower-grade domains with sub-blocks to 10m (E) x 10m (N) x 10m (RL) to maintain the resolution of the mineralised domains. A parent cell size of 10m (E) x 10m (N) x 10m (RL) in the two higher-grade sub-domains. Variography was carried out using Leapfrog Edge software on the composited data from each of the 4 domains for each variable.

All of the relevant variables; Au, Ag, Cu and Mo in each domain were estimated by applying Ordinary Kriging using only data from within that domain. The orientation of the search ellipse and variogram model was controlled using surfaces designed to reflect the local orientation of the mineralized structures. An oriented "ellipsoid" search for each domain was used to select data for interpolation.

The estimation search strategy was undertaken in one pass with classification of the resource into Inferred category.

Validation checks included statistical comparison between drill sample grades and Ordinary Kriging block estimate results for each domain. Visual validation of grade trends for each element along the drill sections was also completed in addition to swath plots comparing drill sample grades and model grades for northings, eastings and elevation. These checks show good correlation between estimated block grades and drill sample grades.

A Lerchs-Grossman pit optimisation routine using inputs as described above was used to determine that blocks > 0.3 g/t AuEq have reasonable prospects of future economic extraction by surface mining. Further models using similar input variable were used to identify a near surface optimised shell that was used to report the MRE at > 0.3 g/t AuEq block cut-off. Below the optimised shell, blocks > 0.4 g/t AuEq are considered to have reasonable prospects of future economic extraction by bulk underground mining techniques.

COMPOSITE TOP CUTS

A statistical analysis was undertaken on the sample composites with top cuts initially applied to the Au, Ag, Cu and Mo composites on a domain-by-domain basis.

Top cuts were applied to the grouped domains in order to reduce the influence of extreme values on the MRE without downgrading the high-grade composites too severely. The top-cut values were chosen by assessing the high-end distribution (tail) of the grade population within each group and selecting the uppermost outlier value above which the distribution became too heavily skewed. The top cuts applied in each of the four domains are shown in Table 5.

Domain	Au Top-cut (g/t)	Ag Top-cut (g/t)	Cu Top-cut (%)	Mo Top-cu (ppm)t
2 - GY-A Low Grade Domain	5	11	n/a	100
3 - GY-B Low Gr4ade Domain	4	11	n/a	100
22 - GY-A High-Grade sub-domain	10	70	n/a	200
23 - GY-B High-grade sub domain	11	70	n/a	150

Table 5 - Top cuts Applied to each Domain

An alternative model using composites with no top cut was done to check the influence of the high grades and is shown in Table 6. With no top cuts applied the model shows an increase to 5.4 Moz AuEq (using a 0.3 g/t block cut-off) at a higher grade due to the influence of the outlier composites. It should be noted that this alterative model is not a MRE but has been done to analyse the influence of the higher-grade composites within the deposit. This un-cut model is outlined in Table 6.

Domain	Category	Mt	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	AuEq (g/t)	AuEq (Mozs)
US\$1800 optimised shell > 0.3 g/t AuEq	Inferred	212.2	0.48	2.83	0.073	0.0007	0.63	4.3
Below US\$1800 shell >0.4 g/t AuEq	Inferred	56.5	0.47	1.81	0.068	0.0008	0.60	1.1
Total	Inferred	268.7	0.48	2.62	0.072	0.0007	0.62	5.4

Note: Some rounding errors may be present

Table 6 Alternative block model at 0.3 g/t cut-off using composites with no top-cut

(See Table 1 Notes (page 3) for Gold Equivalent (AuEq) values - Requirements under the JORC Code)

This ASX release was approved by the CEL Board

For further information contact:

Kris Knauer Scott Funston Media Enquiries
Managing Director Chief Financial Officer Jane Morgan
+61 411 885 979 +61 413 867 600 +61 405 555 618

 $kris.knauer@challengerex.com \quad scott.funston@challengerex.com \quad jm@janemorganmanagement.com.au$

About Challenger Gold

Challenger Gold Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America with am MRE of **2.8 million ounces of gold equivalent** recently announced for the Hualilan Gold Project in San Juan, Argentina in 2022.

The Company strategy is for the 100% owned Hualilan Gold Project to provide a high-grade low capex operation in the near term while it prepares for much larger bulk gold operations at both Hualilan and El Guaybo in Ecuador.

- Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive drilling with over 150 historical and almost 800 CEL drill-holes. The Company has released an Interim JORC 2012 Compliant resource of 2,133,065 ounces which remains open in most directions. This resource contains a Skarn component 6.3 Mt at 5.6 g/t AuEq for 1.1 Moz AuEg and an intrusion/sediment-hosted component of 41.5Mt at 0.8 g/t AuEg for 1.0 Moz AuEq. The resource was based on 126,000 metres of CEL's 264,000 metre drill program. The project was locked up in a dispute for the 15 years prior to the Company's involvement and as a consequence had seen no modern exploration until CEL acquired the project in 2019. In the past 2 years CEL has completed almost 800 drill holes for more than 200,000 metres of drilling. Results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 67.7m @ 7.3 g/t Au, 5.7 g/t Ag, 0.6% Zn, and 63.3m @ 8.5 g/t Au, 7.6 g/t Ag, 2.8% Zn. This drilling intersected high-grade gold over 3.5 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 209.0m at 1.0 g/t Au, 1.4 g/t Ag, 0.1% Zn and 110.5m at 2.5 g/t Au, 7.4 g/t Au, 0.90% Zn in intrusives. CEL's current program which is fully funded will include an additional 60,000 metres of drilling, an updated JORC Compliant Mineral Resource Estimate, and Scoping Study followed by a PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and is located 5 kilometres along strike from the 22-million ounce Cangrejos Gold Project¹. Prior to CEL the project was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t Ag which have never been followed up. CEL's maiden drilling program confirmed the discovery of a major Au-Cu-Ag-Mo gold system spanning several zones of significant scale. results from CEL's maiden drill program included 257.8m at 1.4 g/t AuEq including 53.7m at 5.3 g/t AuEq and 309.8m at 0.7 g/t AuEq including 202.1m at 0.8 g/t AuEq, and 528.7m at 0.5 g/t AuEq from surface to the end of the hole including 397.1m at 0.6 g/t AuEq from surface. The Company has drilled thirteen regionally significant Au-soil anomalies with over 500 metres of mineralisation intersected at seven of these thirteen anomalies, confirming the potential for a major bulk gold system at El Guayabo. The Company completed 25,000 metres of diamond core drilling designed to allow the reporting of a maiden JORC 2012 Compliant resource for the main GY-A and GY-B discovery zone in the El Guayabo Concession.

¹ Source: Lumina Gold (TSX: LUM) July 2020 43-101 Technical Report

Mineral Resource Estimate - Hualilan Gold Project

Domain	Category	Mt	Au g/t	Ag g/t	Zn %	Pb %	AuEq g/t	AuEq (Mozs)
US\$1800 optimised shell > 0.30 ppm AuEq	Indicated	45.5	1.0	5.1	0.4	0.06	1.3	1.9
	Inferred	9.6	1.1	7.3	0.4	0.06	1.2	0.4
Below US\$1800 shell >1.0ppm AuEq	Inferred	5.5	2.1	10.7	1.0	0.06	2.6	0.5
	Total	60.6	1.1	6.0	0.4	0.06	1.4	2.8

Note: Some rounding errors may be present

Table 1 Hualilan MRE, March 2023

⁴ Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1900 Oz, Ag US\$24 Oz, Zn US\$4,000/t, Pb US\$2000/t
- Metallurgical recoveries are estimated to be Au (95%), Ag (91%), Zn (67%) Pb (58%) across all ore types (see JORC Table
 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: $AuEq(g/t) = Au(g/t) + [Ag(g/t) \times 0.012106] + [Zn(\%) \times 0.46204] + [Pb(\%) \times 0.19961]$
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND MINERAL RESOURCES

The information that relates to sampling techniques and data, exploration results, geological interpretation and Mineral Resource Estimate has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results and Mineral Resources. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

The Mineral Resource Estimate for the Hualilan Gold Project was first announced to the ASX on 1 June 2022 and updated 29 March 2023. The Company confirms it is not aware of any information or assumptions that materially impacts the information included in that announcement and that the material assumptions and technical parameters underpinning the Mineral Resource Estimate continue to apply and have not materially changed.

JORC Code, 2012 Edition – Table 1 Report Template

Section 1: Sampling Techniques and Data -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	El Guayabo: CEL Drilling: CEL have drilled HQ diamond core which is sampled by cutting the core longitudinal into two halves. One half in retained for future reference and the other half is sent for sampling. Sampling is done according to the geology. Sample lengths range from 0.5 to 2.5 metres. The average sample length is 1.5m. Samples are prepared at SGS Laboratories in Guayaquil for 30g fire assay and 4-acid digest ICPN and then assayed in SGS Lima. The sample size is considered representative for the geology and style of mineralisation intersected. All the condal collected material is sampled for assay. Historic Drilling: Newmont Mining Corp (NYSE: NEM) ("Newmont") and Odin Mining and Exploration Ltd (TSX: ODN) ("Odin") core drilled the property between February 1995 and November 1996 across two drilling campaigns. The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100% and appropriate duplicates and blanks use for determining assay precision and accuracy. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality Diamond drilling produced core that was sawed in half with one half sent to the laboratory for assaying per industry standards and the remaining core retained on site. Cu assays above 2% were not re-assayed using a technique calibrated to higher value Cu results hence the maximum reported assay for copper is 2%. All core samples were analysed using a standard fire assay with atomic absorption finish on a 30 g charge (30 g FAA). Because of concerns about possible reproducibility problems in the gol

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
		totaling 1,094.29m were collected. Sampling was done for Au analysis by fire assay of a 30g charge and 43 element 4-acid digest with ICP_AES determination. • Field mapping (creek traverse) by CEL includes collection of rock chip samples for assay for Au by fire assay (50g) with AAS determination and gravimetric determination for values > 10 g/t Au and assay for 48 elements by 4-acid digest with ICP-MS determination. Rock chip samples are taken so as to be as representative as possible of the exposure being mapped. Colorado V: • Soil sampling: A database of 4,495 soil analyses has been provided by Goldking Mining Company S.A. (GK) has been fully evaluated. No information has been provided on the method of sample collection or assay technique. The soil analyses include replicate samples and second split analyses. Pulps have been securely retained by Goldking Mining Company and have been made available to CEL for check assaying. Check assaying is planned, including collection of field duplicates. • Rock chip sampling during regional mapping has been done on selected exposures. Sampling involves taking 2-3 kg of rock using a hammer from surface exposures that is representative of the exposure. • Selected intervals of drill core have been cut longitudinally and half core were submitted for gold determination at GK's on-site laboratory prior to CEL's involvement with the Project. • Re-sampling of the core by CEL involves taking % core (where the core has previously been sampled) or % core (where the core has not previously been sampled). The core is cut longitudinally and sample intervals of 1 – 3 meters have been collected for analysis. ZKO-1 and ZK1-3 have been analysed for gold by fire assay (30g) with ICP determination and other elements by 4 acid digest with ICP-AES finish (36 elements) at SGS del Peru S.A.C. SAZKO-1, SAZKO-2, SAZK2-1, ZKO-2, ZK5-1, ZK3-1, ZK3-1, ZK3-4, ZK13-1 and ZK18-1 have been analysed for of gold by fire assay (30g) with ICP determination and other elements by 4 acid digest with ICP-M

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Directors

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	El Guayabo: CEL Drilling: Diamond core drilling collecting HQ core (standard tube). The core is not oriented. Historic Drilling: Diamond core drilling HQ size from surface and reducing to NQ size as necessary. The historical records do no indicate if the core was oriented Colorado V: Diamond drilling was done using a rig owned by GK. Core size collected includes HQ, NQ and NQ3. There is no indication that oriented core was recovered.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	El Guayabo: CEL Drilling: Core run lengths recovered are recorded against the drillers depth markers to determine core recovery. Core sample recovery is high using standard HQ and NQ drilling No relationship between sample recovery and grade has been observed. Historic Drilling: In a majority of cases core recovery was 100%. In the historical drill logs where core recoveries were less than 100% the percentage core recovery was noted. No documentation on the methods to maximise sample recovery was reported in historical reports however inspection of the available core and historical drilling logs indicate that core recoveries were generally 100% of the exception of the top few metres of each drill hole. No material bias has presently been recognised in core. Observation of the core from various drill holes indicate that the rock is generally fairly solid even where it has been subjected to intense, pervasive hydrothermal alteration and core recoveries are generally 100%. Consequently, it is expected that the samples obtained were not unduly biased by significant core losses either during the drilling or cutting processes Colorado V:
		 Core from Goldking has been re-boxed prior to sampling where boxes have deteriorated, otherwise the origin boxes have been retained. Core lengths have been measured and compared to the depth tags that are kept in the boxes from the drilling and recovered lengths have been recorded with the logging. Where re-boxing of the core is required, core has been placed in the new boxes, row-by row with care taken tensure all of the core has been transferred. No relationship has been observed between core recovery and sample assay values.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a 	 All drill current drill core and all available historic drill core has been logged qualitatively and quantitatively where appropriate. All core logged has been photographed after logging and before sampling.
nger Gold Limited 23 591 382	Issued Capital Australian Registere 1,106.6m shares Level 1 1,00 populors 1,205 Hay Street	d Office Directors Contact Mr Kris Knauer, MD and CEO T: +618 6380 9235 Mr Eletebor Quipp, Chairman F: admir@challenggrey.com

Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director E: admin@challengerex.com

www.challengerex.com

ASX: CEL

60m perf shares

10.0m options

35m perf rights

1205 Hay Street

West Perth WA 6005

iteria	JORC Code explanation	Commentary					
	level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	• 100% of	all core including of current and h	ng is done to check g all relevant inters istoric El Guayabo	ections are logge	•	re-sampling i
	- The total length and percentage of the	Thistoric EL Guayabe	, Drining		Core		Total
	relevant intersections logged.	Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
		GY-01	249.2	Complete	Complete	Partial	25
		GY-02	272.9	Complete	Complete	Partial	88
		GY-03	295.99	Pending	Complete	Pending	
		GY-04	172.21	Pending	Complete	Pending	
		GY-05	258.27	Partial	Complete	Partial	56
		GY-06	101.94	Pending	Complete	Pending	
		GY-07	127.0	Pending	Complete	Pending	
		GY-08	312.32	Pending	Complete	Pending	
		GY-09	166.25	Pending	Complete	Pending	
		GY-10	194.47	missing core	missing core	missing core	
		GY-11	241.57	Complete	Complete	Partial	84
		GY-12	255.7	Partial	Complete	Pending	
		GY-13	340.86	missing core	missing core	missing core	
		GY-14	309.14	missing core	missing core	missing core	
		GY-15	251.07	missing core	missing core	missing core	
		GY-16	195.73	missing core	missing core	missing core	
		GY-17	280.04	Complete	Complete	Partial	36
		GY-18	160.35	Pending	Complete	Pending	
		GY-19	175.42	Pending	Complete	Pending	
		Logged (m)	1,043.71	Re-logged		Samples Submitted	289
		Total (m)	4,185.01	Odin Drilled		-	

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary					
		JDH-01	236.89	missing core	missing core	missing core	
		JDH-02	257.62	missing core	missing core	missing core	
		JDH-03	260.97	missing core	missing core	missing core	
		JDH-04	219.00	missing core	missing core	missing core	
		JDH-05	210.37	missing core	missing core	missing core	
		JDH-06	302.74	Complete	Complete	Partial	98
		JDH-07	105.79	missing core	missing core	missing core	
		JDH-08	352.74	missing core	missing core	missing core	
		JDH-09	256.70	Complete	Complete	Partial	49
		JDH-10	221.64	Complete	Complete	Partial	43
		JDH-11	217.99	Pending	Complete	Pending	
		JDH-12	124.08	Complete	Complete	Partial	22
		JDH-13	239.33	Complete	Complete	Partial	21
		JDH-14	239.32	Complete	Complete	Partial	30
		Logged (m)	1,038.09	Re-logged		Samples Submitted	263
		Total (m)	3,245.18	Newmont Drill	ed		

CEL El Guayabo Drill Hole Processing Completed during Drill Camp #1, Phase #1 2021-2022

•			Core		Total
Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
GYDD-21-001	800.46	Complete	Complete	Complete	581
GYDD-21-002	291.70	Complete	Complete	Complete	204
GYDD-21-002A	650.58	Complete	Complete	Complete	282
GYDD-21-003	723.15	Complete	Complete	Complete	545
GYDD-21-004	696.11	Complete	Complete	Complete	513
GYDD-21-005	632.05	Complete	Complete	Complete	445
GYDD-21-006	365.26	Complete	Complete	Complete	258
GYDD-21-007	651.80	Complete	Complete	Complete	407
GYDD-21-008	283.68	Complete	Complete	Complete	214

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary					
		GYDD-21-009	692.67	Complete	Complete	Complete	517
		GYDD-21-010	888.60	Complete	Complete	Complete	620
		GYDD-21-011	314.46	Complete	Complete	Complete	227
		GYDD-21-012	797.65	Complete	Complete	Complete	588
		GYDD-21-013	517.45	Complete	Complete	Complete	388
		GYDD-22-014	783.60	Complete	Complete	Complete	546
		GYDD-22-015	368.26	Complete	Complete	Complete	265
		GYDD-22-016	469.75	Complete	Complete	Complete	314
		Logged (m)	9,927.23			Samples Submitted	6,915
		Total Drilled (m)	9,927.23				

CEL El Guayabo Drill Hole Processing Completed during Drill Camp #1, Phase # 2 2022-2023

•			Core		Total
Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
GYDD-22-017	860.75	Complete	Complete	Complete	601
GYDD-22-018	734.05	Complete	Complete	Complete	534
GYDD-22-019	861.05	Complete	Complete	Complete	632
GYDD-22-020	750.00	Complete	Complete	Complete	544
GY2DD-22-001	776.40	Complete	Complete	Complete	520
GYDD-22-021	812.85	Complete	Complete	Complete	596
GYDD-22-022	702.85	Complete	Complete	Complete	514
GYDD-22-023	795.55	Complete	Complete	Complete	573
GYDD-22-024	650.00	Complete	Complete	Complete	466
GYDD-22-025	1194.05	Complete	Complete	Complete	881
GYDD-22-026	1082.45	Complete	Complete	Complete	803
GYDD-22-027	875.35	Complete	Complete	Complete	658
GYDD-22-028	521.20	Complete	Complete	Complete	364
GYDD-22-029	528.95	Complete	Complete	Complete	382
GYDD-22-030	691.20	Complete	Complete	Complete	506

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

		Total Drilled (m)	20,350.60				
		Logged (m)	20,350.60			Samples Submitted	14,724
		GYDD-23-043	742.15	Complete	Complete	Complete	556
		GYDD-23-042	746.40	Complete	Complete	Complete	528
		GYDD-23-041	779.00	Complete	Complete	Complete	543
		GYDD-23-040	352.40	Complete	Complete	Complete	255
		GYDD-23-039	812.40	Complete	Complete	Complete	598
		GYDD-23-038	651.80	Complete	Complete	Complete	466
		GYDD-23-037	823.10	Complete	Complete	Complete	607
		GYDD-23-036	767.45	Complete	Complete	Complete	573
		GYDD-23-035	381.85	Complete	Complete	Complete	258
		GYDD-23-034	413.65	Complete	Complete	Complete	307
		GYDD-23-033	565.85	Complete	Complete	Complete	387
		GYDD-23-032	781.45	Complete	Complete	Complete	586
		GYDD-23-031	696.40	Complete	Complete	Complete	486
eria	JORC Code explanation	GYDD-23-031	696.40	Complete	Complete	Complete	2

- Core has been logged for lithology, alteration, mineralisation and structure. Where possible, logging is quantitative.
- Colorado V core re-logging and re-sampling is summarized below:

Historic Colorado V Drilling

			Core		Total
Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
ZK0-1	413.6	Complete	Complete	Samples Submitted	281
ZK0-2	581.6	Complete	Complete	Samples Submitted	388
ZK0-3	463.0	Complete	Complete	Samples Submitted	330
ZK0-4	458.0	Complete	Complete	Samples Submitted	350
ZK0-5	624.0	Complete	Complete	Samples Submitted	482
ZK1-1	514.6	Complete	Complete	Samples Submitted	288
ZK1-2	403.1	Complete	Complete	Not Re-Sampled	

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	n Com	mentary					
			ZK1-3	425.0	Complete	Complete	Samples Submitted	279
			ZK1-4	379.5	Complete	Complete	Samples Submitted	267
			ZK1-5	419.5	Complete	Complete	Samples Submitted	266
			ZK1-6	607.5	Complete	Complete	Samples Submitted	406
			ZK1-7	453.18	Complete	Complete	Samples Submitted	370
			ZK1-8	556.0	Complete	Complete	Not Re-Sampled	
			ZK1-9	220.0	Complete	Complete	Samples Submitted	140
			ZK2-1	395.5	Complete	Complete	Samples Submitted	320
			ZK3-1	372.48	Complete	Complete	Samples Submitted	250
			ZK3-1A	295.52	Pending	Pending	Pending	
			ZK3-2	364.80	Complete	Complete	Samples Submitted	235
			ZK3-4	322.96	Complete	Complete	Samples Submitted	156
			ZK4-1	434.0	Complete	Complete	Not Re-sampled	
			ZK4-2	390.5	Complete	Complete	Not Re-sampled	
			ZK4-3	650.66	Complete	Complete	Not Re-sampled	
			ZK4-4	285.0	Complete	Complete	Not Re-sampled	
			ZK5-1	321.90	Complete	Complete	Not Re-sampled	
			ZK5-2	321.0	Complete	Complete	Not Re-sampled	
			ZK5-3	446.5	Complete	Complete	Not Re-sampled	
			ZK5-4	508.0	Complete	Complete	Not Re-sampled	
			ZK5-5	532.0	Complete	Complete	Samples Submitted	378
			ZK6-1	552.6	Complete	Complete	Not Re-sampled	
			ZK6-2	531	Complete	Complete	Not Re-sampled	
			ZK10-1	454.0	Complete	Complete	Samples Submitted	229
			ZK10-2	318.82	Complete	Complete	Samples Submitted	206
			ZK10-3	331.52	Complete	Complete	Samples Submitted	220
			ZK11-1	237.50	Complete	Complete	Not Re-sampled	
			ZK12-1	531.50	Complete	Complete	Not Re-sampled	
			ZK12-2	510.6	Complete	Complete	Not Re-sampled	
gar Cold Limitad	Issued Capital	Australian Posistored Office	Directors		Contact			

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary					
		ZK13-1	394.0	Complete	Complete	Samples Submitted	246
		ZK13-2	194.0	Complete	Complete	Not Re-sampled	
		ZK16-1	324.0	Complete	Complete	Samples Submitted	212
		ZK16-2	385.83	Complete	Complete	Samples Submitted	223
		ZK18-1	410.5	Complete	Complete	Samples Submitted	286
		ZK19-1	548.60	Complete	Complete	Not Re-sampled	
		ZK100-1	415.0	Complete	Complete	Not Re-sampled	
		ZK103-1	524.21	Complete	Complete	Not Re-sampled	
		ZK105-1	404.57	Complete	Complete	Not Re-sampled	
		ZK205-1	347.0	Complete	Complete	Samples Submitted	211
		SAZKO-1A	569.1	Complete	Complete	Samples Submitted	396
		SAZK0-2A	407.5	Complete	Complete	Samples Submitted	260
		SAZK2-1	430.89	Complete	Complete	Samples Submitted	195
		SAZK2-2	354.47	Complete	Complete	Not Re-Sampled	
		CK2-1	121.64	missing core	missing core	missing core	
		CK2-2	171.85	missing core	missing core	missing core	
		CK2-3	116.4	missing core	missing core	missing core	
		CK2-4	146.12	missing core	missing core	missing core	
		CK2-5	357.56	Complete	Complete	Complete	
		CK2-6	392.56	Complete	Complete	Complete	
		CK3-1	185.09	missing core	missing core	missing core	
		CK3-2	21.75	missing core	missing core	missing core	
		CK3-3	138.02	missing core	missing core	missing core	
		CK5-1	273.56	Complete	Complete	Not Re-Sampled	
		CK5-2	273.11	Complete	Complete	Not Re-Sampled	
		CK13-1	227.1	Complete	Complete	Not Re-Sampled	
		CK13-2	231.16	Complete	Complete	Not Re-Sampled	
		CK13-3	197.06	Complete	Complete	Not Re-Sampled	
		CK13-4	176.57	Complete	Complete	Not Re-Sampled	
er Gold Limited	Issued Canital	Australian Registered Office Directors		Contact			

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary					
		CK13-5	184.70	Complete	Complete	Not Re-Sampled	
		CK21-1	143.47	Complete	Complete	Not Re-Sampled	
		Logged (m)	25,315.07	Re-logged		Samples Submitted	7,894
		Total (m)	24,414.20	Core Shack			
		Total (m)	26,528.26	Drilled			

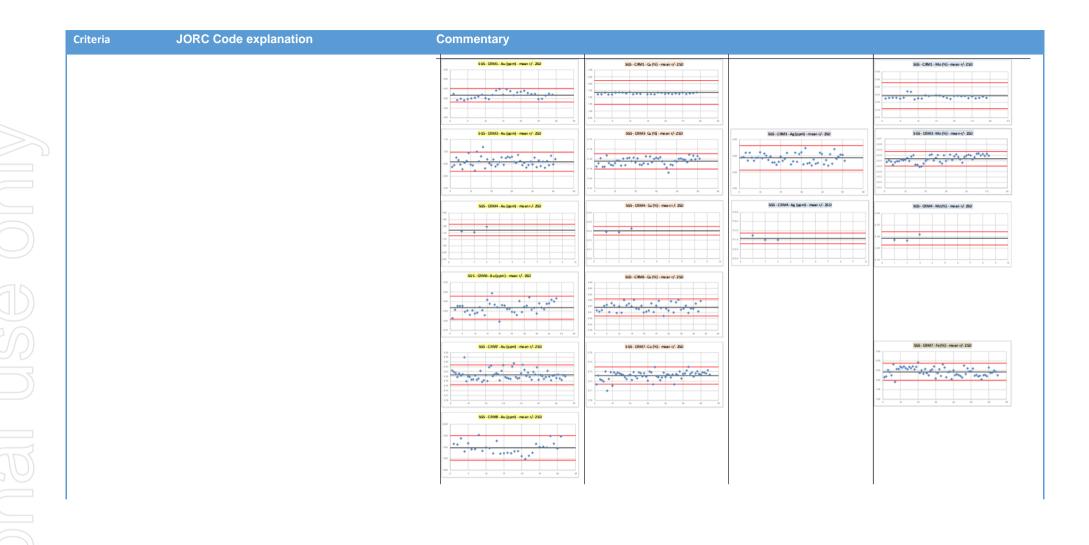
CEL Colorado V Drill Hole Processing Completed during Drill Camp #1, Phase #1 2022

			Core		Total
Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
CVDD-22-001	533.20	Complete	Complete	Complete	398
CVDD-22-002	575.00	Complete	Complete	Complete	412
CVDD-22-003	512.40	Complete	Complete	Complete	384
CVDD-22-004	658.95	Complete	Complete	Complete	478
CVDD-22-005	607.15	Complete	Complete	Complete	456
CVDD-22-006	600.70	Complete	Complete	Complete	427
CVDD-22-007	808.00	Complete	Complete	Complete	602
CVDD-22-008	535.70	Complete	Complete	Complete	306
CVDD-22-009	890.80	Complete	Complete	Complete	668
CVDD-22-010	890.20	Complete	Complete	Complete	645
CVDD-22-011	672.50	Complete	Complete	Complete	481
CVDD-22-012	756.70	Complete	Complete	Complete	556
CVDD-22-013	752.45	Complete	Complete	Complete	467
CVDD-22-014	863.40	Complete	Complete	Complete	642
CVDD-22-015	758.35	Complete	Complete	Complete	558
CVDD-22-016	558.45	Complete	Complete	Complete	380
CVDD-22-017	746.05	Complete	Complete	Complete	540
Logged (m)	11,720.00			Samples Submitted	8,400
Total (m)	11,720.00				

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street

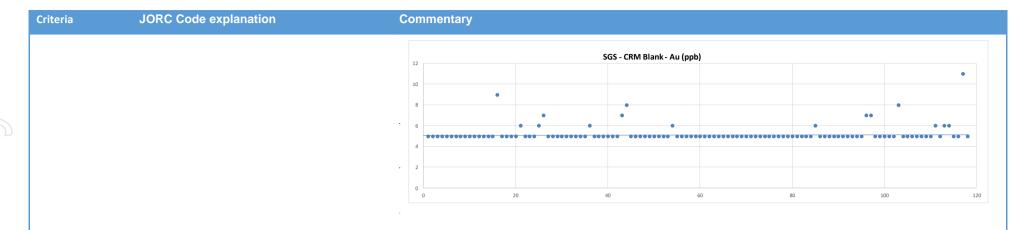
West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director


Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	El Guayabo: CEL: For sampling, all core is cut using a diamond saw, longitudinally into two halves. One half is sampled for assay and the other retained for future reference. Where duplicate samples are taken, % core is cut using a diamond saw to prepare two % core duplicates. The location of the cut is marked on the core by the geologist that logged the core to ensure the cut creates a representative sample. The sample preparation technique is appropriate for the material being sampled Historic: Core was cut with diamond saw and half core was taken All drilling was core drilling as such this is not relevant Sample preparation was appropriate and of good quality. Each 1-3 m sample of half core was dried, crushed to nominal – 10 mesh (ca 2mm), then 250 g of chips were split out and pulverized. A sub-sample of the pulp was then sent for analysis for gold by standard fire assay on a 30 g charge with an atomic absorption finish with a nominal 5 ppb Au detection limit. Measures taken to ensure that the sampling is representative of the in-situ material collected is not outlined in the historical documentation however a program of re-assaying was undertaken by Odin which demonstrated the repeatability of original assay results The use of a 1-3 m sample length is appropriate for deposits of finely disseminated mineralisation where long mineralised intersections are to be expected. CEL % core sampling was done by cutting the core with a diamond saw. Standards (CRM) and blanks were inserted into the batched sent for preparation and analysis. No duplicate samples were taken and % core was retained for future reference. The sample size is appropriate for the style of mineralisation observed. CEL rock chip samples of 2-3 kg are crushed to a nominal 2mm and a 500 g sub-sample is pulverized. The rock chips are collected from surface expose in creeks. Sampling is done so as to represent the material being mapped. The sample size is appropriate for the grain size of the material being sampled.
		 Selected intervals of drill core have been cut longitudinally using a diamond saw and ½ core has been sampled. Sample intervals range from 0.1m to 4.5m with an average length of 1.35m. The size of the samples is appropriate for the mineralisation observed in the core. Re-sampling of the core involves cutting of ¼ core (where previously sampled) or ½ core where not previously sampled. ¼ or ½ core over intervals of 1-3 metres provides an adequate sample size for the material being sampled.

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com


Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	El Guayabo: CEL: Camp #1, Phase#1 All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Sub-samples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample. Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses. different CRM pulp samples have been submitted with the core samples. All 6 are certified for Au, 2 are certified for Ag, 5 are certified for Cu, 1 is certified for Fe and 3 are certified for Mo. For Au, of 222 CRM pulp analyses, 215 are within +/- 2 SD (97%) For Ag, of 54 CRM pulp analyses, all are within +/- 2 SD (97%) For Mo, of 83 CRM pulp analyses, 125 are within +/- 2 SD (98%) For Fe, of 65 CRM pulp analyses, 63 are within +/- 2 SD (98%) For Fe, of 65 CRM pulp analyses, 63 are within +/- 2 SD (97%) 118 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 1 samples returned Au values of >5 ppb (up to 11 ppb) indicating only mild instrument calibration or contamination during fire assay. 337 % core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate samples have been submitted. The duplicate analyses providing assurance that the sample size and technique is appropriate.

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus, Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

CEL: Camp #1, Phase#2

- All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized
 to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by
 SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Subsamples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination
 (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample.
- Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses.
- 7 different CRM pulp samples have been submitted with the core samples. All 7 are certified for Au, 3 are certified for Ag, All 7 are certified for Cu, 1 is certified for Fe and 4 are certified for Mo.
- For Au, of 453 CRM pulp analyses, 445 are within +/- 2 SD (98%)
- For Ag, of 155 CRM pulp analyses, 150 are within +/- 2 SD (97%)
- For Cu, of 453 CRM pulp analyses, 444 are within +/- 2 SD (98%)
- For Mo, of 286 CRM pulp analyses, 272 are within +/- 2 SD (95%)
- For Fe, of 2 CRM pulp analyses, All are within +/- 2 SD (100%)
- 228 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 11 samples returned Au values of >5 ppb (up to 9 ppb) indicating only mild instrument calibration or contamination during fire assay.
- 671 % core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate sample analyses follow very closely the original analyses providing assurance that the sample size and technique is appropriate.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

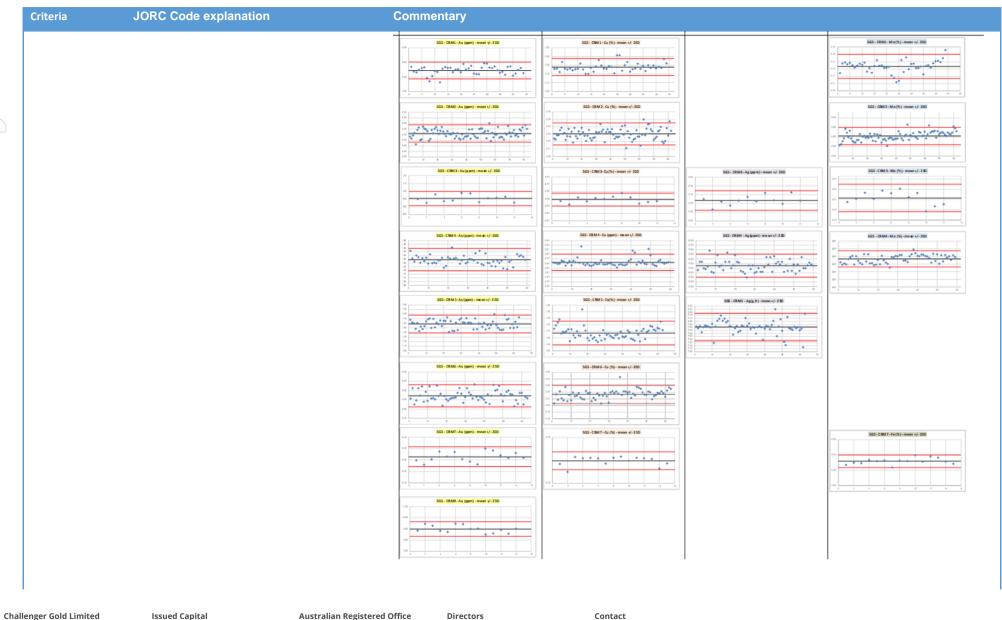
Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus, Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Historic:

- The nature, quality and appropriateness of the assaying and laboratory procedures used by Newmont and Odin are still in line with industry best practice with appropriate QA/QC and chain of custody and are considered appropriate.
- Available historical data does not mention details of geophysical tools as such it is believed a geophysical campaign was not completed in parallel with the drilling campaign.
- Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also
 inserted its own standards at 25 sample intervals as a control on analytical quality. Later Odin undertook a reassaying program of the majority of the higher-grade sections which confirmed the repeatability.
- Given the above, it is considered acceptable levels of accuracy and precision have been established
- CEL ¼ and ½ core samples were prepared for assay at SGS Del Ecuador S.A.in Quito, Ecuador with analysis completed by in Lima at SGS del in Peru S.A.C and by ALS Laboratories in Quito with analysis completed by ALS in Vancouver, Canada. Samples were crushed and a 500g sub-sample was pulverized to 85% passing 75 μm. The technique provides for a near total analysis of the economic elements of interest.
- CEL rock chip samples were prepared for assay at ALS Laboratories (Quito) with analysis being completed at ALS Laboratories (Peru). The fire assay and 4-acid digest provide for near-total analysis of the economic elements of interest. No standards or blanks were submitted with the rock chip samples.

Challenger Gold Limited ACN 123 591 382 ASX: CEL


Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
		 Colorado V: CEL: Camp #1, Phase#1 All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Subsamples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample. Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses. 8 different CRM pulp samples have been submitted with the core samples. All 8 are certified for Au, 3 are certified for Ag, 7 are certified for Cu, 1 is certified for Fe and 4 are certified for Mo. For Au, of 352 CRM pulp analyses, 346 are within +/- 2 SD (98%) For Ag, of 134 CRM pulp analyses, 127 are within +/- 2 SD (95%) For Cu, of 338 CRM pulp analyses, 127 are within +/- 2 SD (95%) For Mo, of 197 CRM pulp analyses, 187 are within +/- 2 SD (95%) For Fe, of 15 CRM pulp analyses, all are within +/- 2 SD (100%) 162 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 24 samples returned Au values of >5 ppb (up to 11 ppb) indicating only mild instrument calibration or contamination during fire assay. 474 % core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate sample analyses follow very closely the original analyses providing assurance that the sample size and technique is appropriate.

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Offic Level 1 1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director T: +61 8 6380 9235 E: admin@challengerex.com

Criteria JORC Code explanation Commentary

- No information is available on the methods used to analyse the historic soil or drill core samples. Assay results are not provided in this report.
 - Soil samples have been analysed by GK for Au, Cu, Ag, Zn, Pb, As, Mn, Ni, Cr, Mo, Sn, V, Ti, Co, B, Ba, Sb, Bi and Hg. Pulps have been securely retained and check assaying is planned.

100

. .

120

140

160

180

Drill core was partially assayed for gold only with assays undertaken by Goldking's on site laboratory

SGS - CRM Blank - Au (ppb)

CEL samples of drill core re-sampled by CEL. Blanks and CRM (standards) were added to the batches to check sample preparation and analysis.

3 separate CRM's were included in the batches sent for analysis. All three have certified Au values. The results of the analysis of the CRM are shown below. With a few exceptions, the CRM has returned results within +/- 2 SD of the certified reference value. There is no bias in the results returned from either SGS or ALS laboratories. CRM3 analyses by fire assay at SGS did not include overlimit (>10 g/t).

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

- No duplicate samples have been submitted.
- Two different blanks have been included randomly within the sample batches. A CRM blank with a value of <0.01 ppm (10 ppb) Au was used initially. More recent batches have used a blank gravel material which has no certified reference value. The results are shown below. The first 4 gravel blanks show elevated Au values which is believed to be due to contamination of the blank prior to submission and not due to laboratory contamination. With one exception, the blanks have returned values below 10 ppb.

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus, Non Exec Director
Mr Brett Hackett Non Exec Director

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

El Guayabo: CEL Drilling:

- Samples from significant intersections have not been checked by a second laboratory. No holes have been twinned.
- Data from logging and assaying is compiled into a database at the Project and is backed up in a secure location.
 CEL GIS personnel and company geologists check and verify the data. No adjustments are made to any of the assay data.

Historic:

- All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" technique a screen type fire analysis based on a pulverized sample with a mass of about 5 kg. Additionally, Odin re-assayed the many of the higher-grade sections with re-assay results demonstrating repeatability of the original results.
- Neither Newmont nor Odin attempted to verify intercepts with twinned holes
- Data was sourced from scanned copies of original drill logs and in some cases original paper copies of assay sheets are available. This data is currently stored in a drop box data base with the originals held on site.
- No adjustments to assay data were made.
- CEL assay data has not been independently verified or audited. Data is stored electronically in MS Excel and PDF
 format from the Laboratory and entered into a Project database for analysis. There has been no adjustment of
 the data.

Colorado V:

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
		 There is no information available on the verification of sample and assay results. No assay data is provided in this report. Soil replicate samples and second split assay results have been provided but not fully analysed at this stage. Of the 4,495 soil samples in the GK database, 166 are replicate samples and 140 are second split re-analyses. 37 samples have no coordinates in the database. The remaining 4,152 have analyses for all 19 elements indicated above. Significant intersections have been internally checked against the assay data received. The data received has been archived electronically and a database of all drill information is being developed. There is no adjustment o the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	El Guayabo: CEL Drilling: Drill hole collars are surveyed after the drilling using a DGPS. The co-ordinate system used is PSAD 1956, UTM zone 17S. Down-hole surveys are performed at regular intervals down hole (nominally 50 metres or as required by the geologist) during the drilling of the hole to ensure the hole is on track to intersect planned targets. Down hole surveys are done using a magnetic compass and inclinometer tool fixed to the end of the wire line. Down hole surveys are recorded by the drillers and sent to the geologist and GIS team for checking and entry into the drill hole database.
		 Newmont undertook survey to located drill holes in accordance with best practice at the time. No formal check surveying has been undertaken to verify drill collar locations at this stage Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 Quality of topographic control appears to be+ - 1 meter which is sufficient for the exploration activities undertaken. Rock chip samples have been located using topographic maps with the assistance of hand-held GPS. Colorado V: Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 No information is available on the collar and down-hole survey techniques used on the Colorado V concession. Rock chip sample locations are determined by using a handheld GPS unit which is appropriate for the scale of th
Data spacing and distribution	- Data spacing for reporting of Exploration Results.	 mapping program being undertaken. Drilling is exploration based and a grid was not considered appropriate at that time. A JORC compliant Mineral Resource has not been estimated

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Sample compositing was not used
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 A sampling bias is not evident. Drill pads are located in the best possible location to ensure there is no bias introduced, subject to the topography and existing infrastructure. The steep terrain and thick vegetation often dictates where is it possible to place a drill collar.
Sample security	- The measures taken to ensure sample security.	El Guayabo: CEL Samples: All CEL samples are held in a secure compound from the time they are received from the drillers to the time they are loaded onto a courier truck to be taken to the laboratory. The logging and sampling is done in a fenced and gated compound that has day and night security. Samples are sealed in bags and then packed in secure poly weave bags for transport
		 Newmont sent all its field samples to the Bondar Clegg sample preparation facility in Quito for preparation. From there, approximately 100 grams of pulp for each sample was air freighted to the Bondar Clegg laboratory (now absorbed by ALS-Chemex) in Vancouver, for analysis. There is no record of any special steps to monitor the security of the samples during transport either between the field and Quito, or between Quito and Vancouver. However, Newmont did insert its own standards at 25 sample intervals as a control on analytical quality. CEL samples are kept in a secure location and prepared samples are transported with appropriate paperwork, securely by registered couriers. Details of the sample security and chain of custody are kept at the Project office for future audits.
		Colorado V: GK analysed samples in an on-site laboratory. It is understood that the samples have remained on site at all times. CEL have collected samples at the core shed at El Guayabo and secured the samples in polyweave sacks for

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
		transport by courier to SGS Laboratories in Guayaquil for preparation. SGS in Guayaquil courier the prepared sample pulps to SGS in Peru for analysis. Photographs and documentation are retained to demonstrate the chain of custody of the samples at all stages.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	El Guayabo: CEL drilling: There has been no audit or review of the sampling techniques and data Historic: The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. There have been no audits of reviews of CEL data for the El Guayabo. Colorado V: No audits or reviews of sampling techniques and data is known. Goldking did twin two earlier holes with results still being compiled.

Section 2: Reporting of Exploration Results -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to 	 The El Guayabo (Code. 225) mining concession is located within El Oro Province. The concession is held by Torata Mining Resources S.A (TMR S.A) and was granted in compliance with the Mining Act ("MA") in on April 27, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness or national park issues. The mining title grants the owner an exclusive right to perform mining activities, including, exploration, exploitation and processing of minerals over the area covered by the prior title for a period of 25 years, renewable for a further 25 years. Under its option agreement, the owner has been granted a negative pledge (which is broadly equivalent to a fixed and floating charge) over the concession. In addition, a duly notarized Irrevocable Promise to Transfer executed

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	obtaining a licence to operate in the area.	 by TMR S.A in favor of AEP has been lodged with the Ecuador Mines Department. The Colorado V mining concession (Code No. 3363.1) located in Bellamaria, Santa Rosa, El Oro, Ecuador was granted in compliance with the Mining Act ("MA") in on July 17, 2001. It is adjacent to El Guayabo concession to the north. The concession is held by Goldking Mining Company S.A. There are no overriding royalties on the project other than normal Ecuadorian government royalties.
		 The concession has no historical sites, wilderness or national park issues. The El Guayabo 2 (Code. 300964) mining concession is located Torata parish, Santa Rosa canton, El Oro province, Ecuador. The concession is held by T Mr. Segundo Ángel Marín Gómez and Mrs. Hermida Adelina Freire Jaramillo and was granted in compliance with the Mining Act ("MA") on 29April 29, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness, or national park issues.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	 Previous exploration on the project has been undertaken by Newmont and Odin from 1994 to 1997. This included surface pit and rock chip geochemistry, followed by the drilling of 33 drill holes for a total of 7605.52 meters) to evaluate the larger geochemical anomalies. The collection of all exploration data by Newmont and Odin was of a high standard and had appropriate sampling techniques and intervals, adequate QA/QC and custody procedures, and appropriate duplicates and blanks used for determining assay precision and accuracy. The geological interpretation of this data, including core logging and follow up geology was designed and directed by in-country inexperienced geologists. It appears to have been focused almost exclusively for gold targeting surface gold anomalies or the depth extensions of higher-grade gold zones being exploited by the artisanal miners. The geologic logs for all drill holes did not record details that would have been typical, industry standards for porphyry copper exploration at that time. Several holes which ended in economic mineralisation have never been followed up. In short, important details which would have allowed the type of target to be better explored were missed which in turn presents an opportunity to the current owner. Colorado V:
		 All exploration known has been completed by GK. Drilling has been done from 2016 to 2019. 56 drill holes, totaling 21,471.83m have been completed by GK. El Guayabo 2: Exploration work undertaken by the previous owner was limited to field mapping and sampling including assaying of a small number of samples for gold, silver, copper, lead and zinc. The report is only available in Spanish and assays were conducted in a local laboratory in Ecuador with the majority of this work undertaken in 2017.
Geology	 Deposit type, geological setting and style of mineralisation. 	 It is believed that the El Guayabo, El Guayabo 2, and Colorado V concessions contain a "Low Sulfide" porphyry gold copper system and intrusive-related gold. The host rocks for the intrusive complex is metamorphic basement and Oligocene – Mid-Miocene volcanic rocks. This suggests the intrusions are of a similar age to the host volcanic

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		sequence	, which also	suggests a	n evolving b	asement ma	agmatic sys	stem. Intrus	sions are de
					alization has		_		
		•			ia bodies (u	_	•	r) accodiator	d with intru
						p to 200 m	iii ulailletei	i j associatet	a with initia.
			•	nic host rocl					
		_	Porphyry st	yle veins ar	nd stockwor	k as well as	late Quartz	z/Calcite/sul	lfide veins a
		_	Disseminat	ed pyrite ar	nd pyrrhotite	e in the intr	usions and	in the meta	morphic ho
Drill hole	- A summary of all information material to the	El Guayabo	Historic dr	ill hole info	rmation is p	provided be	low.		
Information	understanding of the exploration results	DRILLHOLE			ELEVATION	AZIMUTH	DIP	FINAL	DRILLED
•	including a tabulation of the following	CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEPTHP	BY
	information for all Material drill holes:	DDHGY01	628928.09	9605517.20	839.01	360	-90.0	249.20	Odin
	, ,	DDHGY 02 DDHGY 03	629171.15 629041.84	9606025.55 9606312.81	983.16 1063.37	360.0 305.0	-90.0 -60.0	272.90 295.94	Odin Odin
	 easting and northing of the drill hole collar 	DDHGY 04	629171.68	9606025.18	983.2	125.0	-60.0	172.21	Odin
	 elevation or RL (Reduced Level – elevation 	DDHGY 05	628509.21	9606405.29	989.87	145.0	-60.0	258.27	Odin
	above sea level in metres) of the drill hole	DDHGY 06	629170.56	9606025.97	983.11	305.0	-60.0	101.94	Odin
	collar	DDHGY 07	629170.81	9606025.80	983.16	305.0	-75.0	127.00	Odin
	 dip and azimuth of the hole 	DDHGY 08	628508.95	9606405.74	989.86	145.0	-75.0	312.32	Odin
	 down hole length and interception depth 	DDHGY 09	629171.22	9606025.88	983.22	45.0	-75.0	166.25	Odin
	, ,	DDHGY 10 DDHGY 11	629170.77 628507.97	9606025.24 9606405.33	983.12 989.83	225.0 160.0	-75.0 -60.0	194.47 241.57	Odin Odin
	o hole length.	DDHGY 11	629087.18	9606035.53	989.83	125.0	-60.0	255.7	Odin
	 If the exclusion of this information is justified 	DDHGY 13	629242.46	9605975.42	997.292	320.0	-65.0	340.86	Odin
	on the basis that the information is not	DDHGY 14	629242.27	9605975.64	997.285	320.0	-75.0	309.14	Odin
	Material and this exclusion does not detract	DDHGY 15	629194.67	9605912.35	977.001	320.0	-60.0	251.07	Odin
	from the understanding of the report, the	DDHGY 16	629285.92	9606044.44	1036.920	320.0	-60.0	195.73	Odin
		DDHGY 17	629122.31	9606058.64	1021.053	125.0	-82.0	280.04	Odin
	Competent Person should clearly explain why	DDHGY18	628993.10	9606035.45	977.215	140.0	-60.0	160.35	Odin
	this is the case.	DDHGY 19	629087.23	9606034.98	997.332	45.0	-53.0	175.41	Odin

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary	
		DRILLHOLE EAST NORTH ELEVATION AZIMUTH DIP FINAL CODE (X) (N) (m.a.s.l) (°) (°) DEPTHP	DRILLED BY
		JDH01 627185.78 9606463.27 933.47 280.0 -60.0 236.89	Newmont
		JDH02 627260.37 9606353.12 921.56 280.0 -45.0 257.62	Newmont
		JDH03 627191.61 9606200.35 952.82 280.0 -45.0 260.97	Newmont
		JDH04 627429.81 9606324.00 933.80 280.0 -45.0 219.00	Newmont
		JDH05 627755.97 9606248.70 1066.24 280.0 -45.0 210.37	Newmont
		JDH06 628356.37 9606416.13 911.58 150.0 -45.0 302.74	Newmont
		JDH07 628356.37 9606416.13 911.58 150.0 -75.0 105.79	Newmont
		JDH08 628356.37 9606416.13 911.58 150.0 -60.0 352.74	Newmont
		JDH09 628507.01 9606408.43 990.18 150.0 -45.0 256.70	Newmont
		JDH10 628897.96 9606813.62 985.60 270.0 -45.0 221.64	Newmont
		JDH11 628878.64 9606674.39 1081.96 270.0 -45.0 217.99	Newmont
		JDH12 629684.61 9606765.31 993.45 150.0 -60.0 124.08	Newmont
		JDH13 629122.61 9606058.49 1020.98 125.0 -60.0 239.33	Newmont

JDH14

Historic Colorado V Drill Hole Information:

628897.15 9605562.77

Hole ID	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	Final depth	Driller
ZK0-1	626378.705	9608992.99	204.452	221	-60	413.60	Shandong Zhaojin
ZK0-2	626378.705	9608992.99	204.452	221	-82	581.60	Shandong Zhaojin
ZK0-3	626475.236	9609095.444	197.421	221	-75	463.00	Shandong Zhaojin
ZK0-4	626476.119	9609098.075	197.225	221	-90	458.00	Shandong Zhaojin
ZK0-5	626475.372	9609100.909	197.17	300	-70	624.00	Shandong Zhaojin
ZK1-1	626310.629	9608865.923	226.385	61	-70	514.60	Shandong Zhaojin
ZK1-2	626313.901	9608867.727	226.494	150	-70	403.10	Shandong Zhaojin
ZK1-3	626382.401	9608894.404	229.272	61	-70	425.00	Shandong Zhaojin
ZK1-4	626502.206	9608982.539	227.333	61	-70	379.50	Shandong Zhaojin
ZK1-5	626497.992	9608979.449	227.241	241	-70	419.50	Shandong Zhaojin
ZK1-6	626500.813	9608979.367	227.315	180	-70	607.50	Shandong Zhaojin
ZK1-7	626498.548	9608979.541	227.28	241	-82	453.18	Shandong Zhaojin
ZK1-8	626501.094	9608980.929	227.208	61	-85	556.00	Shandong Zhaojin
ZK1-9	626416.4	9609040.6	202.416	203	-23	220.00	Lee Mining
ZK2-1	626329.859	9609005.863	213.226	221	-90	395.50	Shandong Zhaojin
ZK3-1	628295.833	9608947.769	309.987	279	-38	372.48	
ZK3-1-A	626416.4	9609040.6	202.416	179	-29	295.52	Lee Mining
ZK3-2	628295.833	9608947.769	309.987	205	-30	364.80	
ZK3-4	628295.833	9608947.769	309.987	170	-30	322.96	
ZK4-1	626281.066	9609038.75	224.176	221	-90	434.00	Shandong Zhaojin

90.0

-45.0

239.32 Newmont

852.59

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus, Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary							
		ZK4-2	626281.066	9609038.75	224.176	221	-70	390.50	Shandong Zhaojin
		ZK4-3	626386.498	9609186.951	225.517	221	-70	650.66	Shandong Zhaojin
		ZK4-4	626287.7817	9609031.298	215	215	-05	285.00	
		ZK5-1	626377.846	9608790.388	273.43	221	-78	321.90	Shandong Zhaojin
		ZK5-2	626377.539	9608793.769	273.542	41	-78	319.00	Shandong Zhaojin
		ZK5-3	626383.556	9608800.999	273.622	330	-70	446.50	Shandong Zhaojin
		ZK5-4	626383.556	9608800.999	273.622	330	-78	508.00	Shandong Zhaojin
		ZK5-5	626432.795	9608847.735	242.572	61	-70	532.00	Shandong Zhaojin
		ZK6-1	626230.28	9609020.202	260.652	221	-70	552.60	Shandong Zhaojin
		ZK6-2	626165.623	9608991.594	271.928	221	-70	531.00	Shandong Zhaojin
		ZK10-1	626700.8538	9609675.002	126.617	221	-53	454.00	Lee Mining
		ZK10-2	626744.7	9609711	110.817	310	-30	318.82	
		ZK10-3	626744.7	9609711	110.817	310	-60	331.52	
		ZK11-1	626446.263	9608705.238	290.028	221	-78	237.50	Shandong Zhaojin
		ZK12-1	626088.326	9609034.197	314.552	221	-70	531.50	Shandong Zhaojin
		ZK12-2	626019.538	9608961.409	294.649	221	-70	510.60	Shandong Zhaojin
		ZK13-1	627763.877	9609906.484	197.899	180	-70	394.00	Shandong Zhaojin
		ZK13-2	627757.925	9609713.788	234.34	0	-70	194.00	Shandong Zhaojin
		ZK16-1	626432.95	9609539.705	207.288	153	-45	330.00	
		ZK16-2	626432.95	9609539.705	207.288	183	-45	394.00	
		ZK18-1	627123.327	9609846.268	142.465	180	-70	410.50	Shandong Zhaojin
		ZK19-1	626753.271	9608802.634	386.627	221	-70	548.60	Shandong Zhaojin
		ZK100-1	626170.882	9608923.778	251.177	131	-70	415.00	Shandong Zhaojin
		ZK103-1	628203.1453	9607944.85	535.324	215	-53	524.21	Lee Mining
		ZK105-1	628172.5923	9607826.055	541.244	183	-54	404.57	Lee Mining
		ZK205-1	626257.123	9608795.904	243.297	160	-70	347.00	Shandong Zhaojin
		SAZKO-1A	627477.062	9609865.618	217.992	180	-70	569.10	Shandong Zhaojin
		SAZKO-2A	627468.807	9609805.054	213.63	180	-70	407.50	Shandong Zhaojin
		SAZK2-1	627330.0126	9609556.466	201.145	76	-05	430.89	Lee Mining
		SAZK2-2	627330.0126	9609556.466	201.145	62	-05	354.47	Lee Mining
		CK2-1	626328.573	9609000.856	216.798	221	-45	121.64	Shandong Zhaojin
		CK2-2	626328.573	9609000.856	216.798	251	-45	171.85	Shandong Zhaojin
		CK2-3	626328.573	9609000.856	216.798	191	-45	116.40	Shandong Zhaojin
		CK2-4	626328.573	9609000.856	216.798	221	-70	146.12	Shandong Zhaojin
		CK2-5	626254.4315	9608931.693	190.593	342	-05	357.56	Lee Mining
		CK2-6	626298.1066	9608961.819	203.231	332	-18	392.56	Lee Mining
		CK3-1	626359.641	9608859.373	205.96	20	-15	185.09	Shandong Zhaojin
		CK3-2	626359.641	9608859.373	205.96	163	00	21.75	Shandong Zhaojin

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		CK3-3	626359.641	9608859.373	205.96	50	-15	138.02	Shandong Zhaojin
		CK5-1	626460.1233	9608906.592	202.124	194	-74	273.56	Lee Mining
		CK5-2	626457.0999	96089.8.4999	202.126	251	-69	273.11	Lee Mining
		CK13-1	626610.0642	9608838.445	202.556	41	-05	227.10	Lee Mining
		CK13-2	626610.0642	9608838.445	202.556	41	-40	231.16	Lee Mining
		CK13-3	626605.2307	9608833.471	202.556	221	-59	197.06	Lee Mining
		CK13-4	626604.0848	9608836.544	203.013	209	-45	176.57	Lee Mining
		CK13-5	626607.5245	9608832.296	203.013	136	-45	184.70	Lee Mining
		CK21-1	626693.536	9608691.062	204.927	41	00	143.47	Lee Mining
					1				
			Project (Guayabo						D.:!!!
		Hole ID	East (m)	North (m)	Elevation	Azimuth	Dip	Final depth	Driller
		CVDD 31 001	C20002 FC	0000472-01	1074.00	(°)	(°)	000.46	CEL
		GYDD-21-001	628893.56	9606473.61	1074.98	330	-60	800.46	CEL
		GYDD-21-002	629648.12	9606889.41	913.03	330	-60	291.70	CEL
		GYDD-21-002A	629648.91	9606888.00	913.71	330	-60	650.58	CEL
		GYDD-21-003	628613.31	9606603.66	1031.61	149	-60	723.15	CEL
		GYDD-21-004	628612.169	9606605.66	1031.91	330	-60	696.11	CEL
		GYDD-21-005	628433.90	9606380.35	962.07	329	-60	632.05	CEL
		GYDD-21-006	628435.80	9606380.46	962.58	100	-60	365.26	CEL
		GYDD-21-007	628087.05	9606555.24	840.093	150	-60	651.80	CEL
		GYDD-21-008	628435.62	9606377.74	962.24	150	-60	283.68	CEL
		GYDD-21-009	628932.60	9606035.43	987.81	100	-60	692.67	CEL
		GYDD-21-010	628088.44	9606552.79	839.92	180	-60	888.60	CEL
		GYDD-21-011	628987.88	9606169.64	1018.56	330	-60	314.46	CEL
		GYDD-21-012	628844.64	9605438.73	870.24	129	-60	797.65	CEL
		GYDD-21-013	628967.42	9605725.52	901.76	190	-60	517.45	CEL
		GYDD-22-014	628741.17	9605761.53	955.53	100	-60 -72	783.60	CEL
		GYDD-22-015	628436.64	9606377.19	961.88	150	-72	368.26	CEL
		GYDD-22-016	628267.60	9606450.31	872.25	150	-62	469.75	CEL
		CEL: El Guayabo	Project (Guayabo	Concession), Cam	np #1, Phase #	#2 Drill Hole I	nformation	1	
		Hole ID	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	Final depth	Driller
		GYDD-22-017	627096.13	9605850.15	885.89	225	-60	860.75	CEL
		GYDD-22-018	627408.50	9606259.17	961.10	150	-60	734.05	CEL

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

iteria	JORC Code explanation	Commentary							
		GYDD-22-019	627018.22	9606591.53	860.80	075	-60	861.05	CEL
		GYDD-22-020	627410.33	9606261.79	961.50	225	-60	750.00	CEL
		GY2DD-22-001	627271.92	9604368.13	496.50	100	-60	776.40	CEL
		GYDD-22-021	629039.50	9605861.33	893.20	330	-60	812.85	CEL
		GYDD-22-022	628988.58	9606167.81	1017.10	150	-60	702.85	CEL
		GYDD-22-023	629058.43	9606272.80	1045.70	150	-60	795.55	CEL
		GYDD-22-024	628971.40	9606104.67	1003.00	150	-60	650.00	CEL
		GYDD-22-025	629055.83	9606277.30	1045.50	330	-60	1194.05	CEL
		GYDD-22-026	628949.34	9606571.90	1062.60	345	-60	1082.45	CEL
		GYDD-22-027	628725.86	9606619.12	1047.88	150	-60	875.35	CEL
		GYDD-22-028	628488.59	9606449.24	961.82	150	-75	521.20	CEL
		GYDD-22-029	628391.57	9606502.21	904.05	150	-65	528.95	CEL
		GYDD-22-030	628723.89	9606622.50	1047.60	330	-60	691.20	CEL
		GYDD-23-031	628552.90	9606591.85	988.40	150	-60	696.40	CEL
		GYDD-23-032	628669.96	9606599.34	1030.39	150	-60	781.45	CEL
		GYDD-23-033	628307.35	9606457.68	891.75	150	-70	565.85	CEL
		GYDD-23-034	628544.67	9606432.20	987.21	150	-70	413.65	CEL
		GYDD-23-035	628235.55	9606391.22	879.35	150	-60	381.85	CEL
		GYDD-23-036	628588.16	9606460.88	975.68	330	-70	767.45	CEL
		GYDD-23-037	628958.10	9605809.79	900.54	330	-60	823.10	CEL
		GYDD-23-038	628191.89	9606645.00	753.18	150	-55	651.80	CEL
		GYDD-23-039	628752.96	9605770.05	954.41	150	-60	812.40	CEL
		GYDD-23-040	628702.92	9606813.34	1040.18	150	-60	352.40	CEL
		GYDD-23-041	628788.051	9605899.887	955.430	150	-60	779.00	CEL
		GYDD-23-042	628960.507	9605803.955	898.063	150	-60	746.40	CEL
		GYDD-23-043	628544.25	9606848.97	898.569	150	-60	742.15	CEL
		CEL: El Guayabo P	Project (Colorado	V Concession), Ca	amp #1, Phase	e #1 Drill Hole	e Informat	tion	
		Hole ID	East (m)	North (m)	Elevation	Azimuth	Dip	Final depth	Driller
						(°)	(°)	•	
		CVDD-22-001	626891.522	9609246.373	199.393	300	-60	533.20	CEL
		CVDD-22-002	627198.352	9609719.449	198.970	120	-60	575.00	CEL
		CVDD-22-003	626894.633	9609244.452	199.514	120	-60	512.40	CEL
		CVDD-22-004	627209.772	9609873.677	203.018	120	-60	658.95	CEL
		CVDD-22-005	626893.119	9609246.715	199.383	030	-65	607.15	CEL
		CVDD-22-006	627698.461	9609900.275	180.879	300	-60	600.70	CEL

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		CVDD-22-008	627444.177	9610249.652	191.069	120	-60	535.70	CEL
		CVDD-22-009	626664.672	9609635.445	179.594	120	-60	890.80	CEL
		CVDD-22-010	626436.552	9609542.080	244.110	120	-60	890.20	CEL
		CVDD-22-011	628295.444	9610306.768	156.815	300	-60	672.50	CEL
		CVDD-22-012	627329.632	9607382.048	524.050	315	-60	756.70	CEL
		CVDD-22-013	626906.497	9609603.539	174.956	120	-60	752.45	CEL
		CVDD-22-014	627294.523	9607344.459	518.531	115	-60	863.40	CEL
		CVDD-22-015	625799.563	9605232.572	428.500	280	-60	758.35	CEL
		CVDD-22-016	627053.570	9607990.935	377.253	140	-60	558.45	CEL
		CVDD-22-017	625582.100	9605073.535	384.291	150	-60	746.05	CEL
Data	 In reporting Exploration Results, weighting 	No grade cut	ting has been use	ed to derive the w	eighted avera	ge grades re	ported.		
aggregation	averaging techniques, maximum and/or	Minimum cu	t of grade of 0.2	g/t Au Equivalent	(AuEq) was use	ed for deteri	mining inter	cepts.	
methods	minimum grade truncations (eg cutting of high			en reported with I					faggregation. A
	grades) and cut-off grades are usually Material	00 0	•	alent has been us	0 0			•	00 0
	and should be stated.					J	J		ger lengths of low-
	- Where aggregate intercepts incorporate short					_		_	=
	lengths of high grade results and longer lengths	_		large impact. For			01 136111 @ 2	z.o g.t Au III III	DIE GGT-UZ.
	5 , 5 5			prises gold grades		_			
	of low grade results, the procedure used for	 only 20% of 	the intercept incl	udes grades betw	een 0.2 and 0.	5 g/t Au			

The assumptions used for any reporting of

such aggregation should be stated and some

typical examples of such aggregations should be

- metal equivalent values should be clearly stated.
- only 20% of the intercept includes grades between 0.2 and 0.5 g/t Au
- over one third includes gold grades in excess of 2 g/t Au.
- Au Eq assumes a gold price of USD 1,780/oz, a silver price of USD 22 /oz, a copper price of USD 9,650 /t, and a Molybdenum price of US\$40,500/t
- Metallurgical recovery factors for gold, silver, copper, and Molybdenum are assumed to be equal. No metallurgical factors have been applied in calculating the AuEq at this early stage of the Project, hence the formula for calculating the Au Eq is: Au (g/t) + $(Ag (g/t) \times 22/1780)$ + $(1.68604 \times Cu (\%) + (7.07612 \times Mo (\%))$.
- CEL confirms that it is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold

Guayabo:

A cut-off grade of 0.1 g/t Au was used to report the assays of re-samples core and channel samples from underground development with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated.

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1.106.6m shares 10.0m options 60m perf shares 35m perf rights

shown in detail.

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Comm						_					
								ayabo	drilling are shown				
		Drillhole	- 1		ised Inte		Gold	Ag			Azimuth	Incl	TD
		(#)		From	То	(m)	(g/t)	(g/t) (%)	(g/t)	(deg)	(deg)	(m)
		JDH-001	from	183	190.6	7.6 m @	0.3 g/t A	u +	not assayed	n/a	280	-60	236.9
		JDH-002	from	7.6	152.9	145.3 m @	0.4 g/t A	u +	not assayed	n/a	280	-45	257.5
		72.1.002	and	199	243		0.4 g/t A		not assayed	n/a	200		20110
		JDH-003		35.95	71.6		0.5 g/t A		not assayed	n/a	280	-45	261
		3511-003	and	120.4		134.2 m @			not assayed	n/a	200	-45	201
				146.81		77.3 m @	_		not assayed	n/a			
		JDH-004	from	3.96	21.95		0.4 g/t A				280	-45	219
		JUN-004		79.74		40.7 m @	_		not assayed not assayed	n/a n/a	200	-40	219
			and	150.9	203.7		0.4 g/tA 0.7 g/tA		not assayed	n/a			
		1011 005	=								200	45	240.4
		JDH-005		5.2	81.4		0.4 g/t A		not assayed	n/a	280	-45	210.4
			and	169.7	208.5		0.2 g/t A		not assayed	n/a			
		JDH-006	from		89.6		-		g/t Ag + 0.10 % Cu		150	-45	302.7
			and	164.8			_		g/t Ag + 0.40 % Cu				
			inc	227.8					2 g/t Ag + 0.62 % Cu				
		JDH-007	from	39.7	84.45	44.8 m @	0.3 g/t A	u + 1.4	1 g/t Ag + 0.04 % Cu	0.38	150	-75	105.8
		JDH-008	from	104.7	136.7	32.0 m @	0.1 g/t A	u + 3.6	5 g/t Ag + 0.13 % Cu	0.41	150	-60	352.7
			and	249.08	316.15	67.1 m @	0.2 g/t A	u + 5.7	7 g/t Ag + 0.21 % Cu	0.62			
			and	291.76	316.15	24.4 m @	0.5 g/t A	u + 9.2	2 g/t Ag + 0.34 % Cu	1.13			
		JDH-009	from	10.3	122.03	111.7 m @	0.7 q/t A	u + 14.6	5 g/t Ag + 0.58 % Cu	1.85	150	-45	256.7
			inc	34.6	91.54		_		I g/t Ag + 0.82 % Cu				
			and	201.4	205.4	4.0 m @	11.4 g/t A	u + 9.7	7 g/t Ag + 0.01 % Cu	11.54			
			and	255.1	eoh				5 g/t Ag + 0.02 % Cu				
		JDH-10	from	1.5	50.9	49.4 m @	0.5 a/t A	u + 2.5	5 g/t Ag + 0.09 % Cu	0.68	270	-45	221.6
			and	90.54	119		-		g/t Ag + 0.10 % Cu				
			and	140	203				3 g/t Ag + 0.07 % Cu				
		JDH-011	from	100.7	218				5 g/t Ag + 0.10 % Cu		270	-45	218.0
			_					_	-			-60	
		JDH-012	_	12.2	53.96				5 g/t Ag + 0.02 % Cu		150		124.1
		JDH-013			69.6				2 g/t Ag + 0.01 % Cu		150	-60	239.3
			and	89.9	154.9				3 g/t Ag + 0.06 % Cu				
			inc	114.32	142.76	28.4 m @	2.8 g/t A	u + 4.9	g/t Ag + 0.10 % Cu	3.03			
		JDH-014		26.96	75.69		-		2 g/t Ag + 0.10 % Cu		90	-60	239.4
									2 g/t Ag + 0.1 % Cu				
				128.52			-		3 g/t Ag + 0.08 % Cu				
			and	179.35	217.98	38.6 m @	0.1 g/t A	u + 2.5	5 g/t Ag + 0.08 % Cւ	0.26			

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commenta		and Do see	اندام المدروم	Loone from: El	Cuevek -	عمامط النبا		
		Drill hole	tersections from Historic	and Ke-ass	sayea arii	Total	Au		Cu	Au Ed
		(#)		From	То	(m)	(g/t)	Ag (g/t)	(%)	(g/t)
		GY-001	historical intercept	139	249.2	110.2m	0.4	1.1	0.06	0.5
		G1-001	(re-assayed section)	141	249.2 177	36.0m	0.4	2.30	0.08	0.5
			(original assays)	141	1//	36.0m	0.54	2.50 1.51	0.08	0.7
			(re-assayed section)	205	236	31.0m	0.36	0.89	0.08	0.7
				205 '	230 '	31.0m	0.19	0.89	0.03	0.3
		GY-002	(original assays)			156.3m	2.6	9.7	0.03	3.0
		GY-002	historical intercept	9.7	166 102					5.9
			(re-assayed section)	40	102	62.0m 62.0m	5.22 4.83	21.33 19.96	0.25 0.23	5.5
			(original assays)							
			historical intercept	114	166	52.0m	1.3	3.3	0.18	1.6
			(re-assayed section)	114	171	57.0m	1.20	3.44	0.18	1.5
		CV 005	(original assays)			57.0m	1.24	3.53	0.17	1.6
		GY-005	historical intercept	12	162	150.0m	0.4	11.0	0.30	1.
			(re-assayed section)	10	60	50.0m	0.45	19.23	0.33	1.
			(original assays)			50.0m	0.51	21.74	0.44	1.
			(re-assayed section)	64	98	34.0m	0.10	5.25	0.16	0.
			(original assays)	,	1	34.0m	0.84	6.22	0.16	1.
			(re-assayed section)	132	162	30.0m	0.10	6.35	0.33	0.
			(original assays)	′	′	30.0m	0.07	6.18	0.31	0.7
		GY-011	historical intercept	14	229	215.0m	0.2	9.6	0.36	0.
			(re-assayed section)	14	126	112.0m	0.17	10.89	0.30	0.
			(original assays)	•	′	112.0m	0.18	11.73	0.36	0.
			(re-assayed section)	166	206	40.0m	0.09	5.08	0.22	0.
			(original assays)	′	′	40.0m	0.09	4.90	0.22	0.
			(re-assayed section)	218	231	13.0m	0.22	8.52	0.41	1.
			(original assays)	•	•	13.0m	0.34	19.48	0.96	2.2
		GY-017	historical intercept	69	184	115.0m	0.5	2.1	0.03	0.
			(re-assayed section)	94	129	35.0m	0.45	2.76	0.04	0.
			(original assays)	•	•	35.0m	0.30	4.01	0.03	0.
			(re-assayed section)	206	258	52.0m	0.37	2.00	0.06	0.
			(original assays)	•	•	52.0m	0.26	1.42	0.06	0.
		JDH-006	historical intercept	17.99	89.6	71.6m	0.2	2.0	0.10	0.4
			(re-assayed section)	10.3	81.3	71.0m	0.18	1.38	0.03	0.2

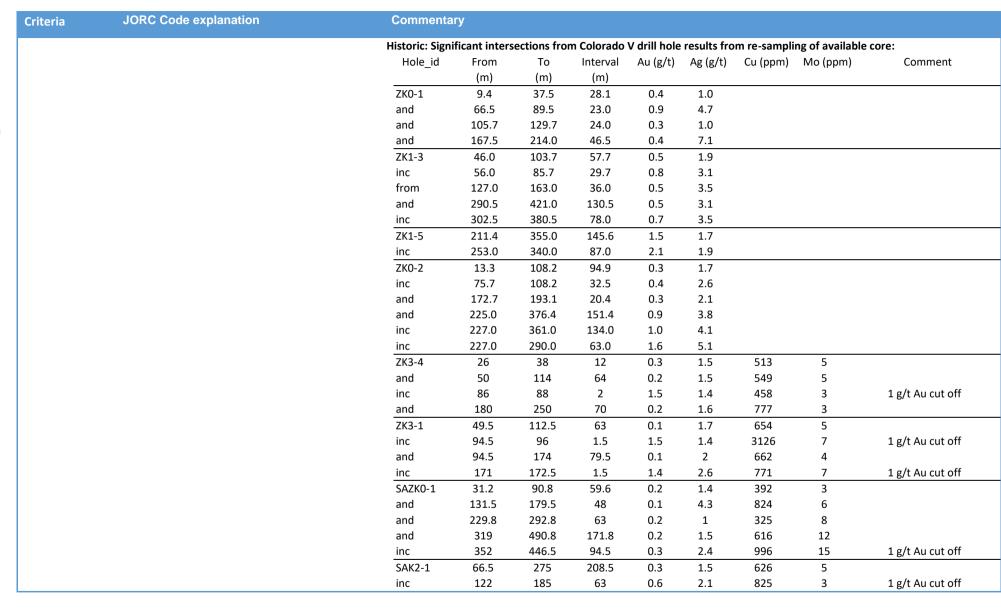
1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	ry							
			(original assays)	,	,	71.0m	0.20	1.59	0.07	0.3
			historical intercept	164.8	281	116.2m	0.6	8.9	0.40	1.4
			(re-assayed section)	150.6	281.1	130.5m	0.26	7.21	0.26	0.8
			(original assays)	•	•	130.5m	0.42	8.02	0.36	1.1
		JDH-009	historical intercept	10.3	122	111.7m	0.7	14.6	0.58	1.8
			(re-assayed section)	6.7	107.8	101.1m	0.21	13.80	0.36	1.0
			(original assays)	•	•	101.1m	0.22	15.08	0.59	1.4
		JDH-10	historical intercept	1.5	50.9	49.4m	0.5	2.5	0.09	0.7
			(re-assayed section)	15.2	50.9	35.7m	0.44	2.88	0.10	0.6
			(original assays)	•	•	35.7m	0.41	2.96	0.10	0.6
			historical intercept	140	203	81.6m	0.4	1.3	0.07	0.5
			(re-assayed section)	150.5	203.4	52.9m	0.36	1.34	0.07	0.5
			(original assays)	•	•	52.9m	0.39	1.24	0.06	0.5
		JDH-012	historical intercept	12.2	53.96	41.8m	0.6	6.5	0.02	0.7
			(re-assayed section)	18.3	54	35.7m	0.68	7.62	0.02	0.8
			(original assays)	•	•	35.7m	0.69	7.36	0.02	0.8
		JDH-013	historical intercept	89.9	154.9	65.0m	1.4	2.8	0.06	1.5
			(re-assayed section)	112.3	155	42.7m	2.11	2.84	0.05	2.2
			(original assays)	′	′	42.7m	2.00	3.70	0.08	2.2
		JDH-014	historical intercept	26.96	75.69	48.7m	0.4	5.2	0.10	0.6
			(re-assayed section)	27	61.5	34.5m	0.64	5.99	0.13	0.9
			(original assays)	′	′	34.5m	0.52	6.25	0.13	0.8
			historical intercept	128.52	175.3	46.8m	0.46	3.3	0.08	0.6
			(re-assayed section)	140.7	167.2	26.5m	0.26	2.24	0.07	0.4
			(original assays)		′	26.5m	0.65	2.91	0.08	0.8
		Colorado V:								


A cut-off grade of 0.1 g/t Au was used to report the assays of re-samples core and channel samples from underground development with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated.

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commenta	iry							
		and	225.5	227	1.5	1.6	1.4	638	2	1 g/t Au cut off
		and	288.5	330.5	42	0.2	2	454	1	
		inc	288.5	291.5	3	1.3	5.6	1136	1	1 g/t Au cut off
		SAZK0-2	0	80.7	80.7	0.4	1.9	478	3	-
		inc	30.7	51.2	20.5	1	2.5	460	5	1 g/t Au cut off
		and	136	148	12	0.6	0.4	61	14	
		inc	137.5	140.5	3	1.4	0.3	10	4	1 g/t Au cut off
		and	200.5	403.8	203.3	0.3	1.3	588	15	Hole ends in
										mineralisation
		inc	293.5	399.3	105.8	0.5	1.3	635	16	
		inc	214	215.5	1.5	1.8	2.1	681	12	1 g/t Au cut off
		inc	344.5	399.3	54.8	0.7	1.5	767	12	
		inc	361.8	366.3	4.5	5.5	0.8	502	61	1 g/t Au cut off
		and	397.8	399.3	1.5	1.3	2.3	770	2	1 g/t Au cut off
		ZK1-13	46.2	73.2	27	0.1	0.8	306	1	
		and	140	141.5	1.5	1.9	0.7	236	1	1 g/t Au cut off
		and	161	196	35	0.1	1.4	391	2	
		ZK0-5	6.1	19.8	13.7	0.2	1.3	313	10	
			46.3	130.1	83.8	0.5	1.2	356	7	
		inc	67	118	51	0.7	1.4	409	5	0.5 g/t Au cut of
		inc	75.7	76.8	1.1	1.2	1.4	483	2	1 g/t Au cut off
		and	80.7	81.7	1	1.8	2.2	549	4	1 g/t Au cut off
		and	93.7	94.7	1	13.9	3.4	354	7	1 g/t Au cut off
		and	146.5	296.5	150	0.2	1	310	3	
		and	370	371.5	1.5	0.9	5.2	1812	3	
		and	414.3	415.8	1.5	1.2	0.3	127	1	
		and	560.5	562	1.5	2.3	0.6	189	2	
		and	596	598.2	2.2	1.7	2.1	391	4	
		and	607	608.5	1.5	2	0.8	190	2	
		ZK18-1	NSI							
		ZK0-4	3.70	458.00	454.30*	0.20	1.3	0.04	5.9	
		inc	42.60	154.25	111.65	0.39	1.9	0.05	7.6	0.5 g/t AuEq cut o
		inc	69.70	97.20	27.50	0.66	1.7	0.05	8.6	1.0 g/t AuEq cut o
		ZK10-1	25.02	151.00	125.98	0.16	1.1	0.06	17.9	0.1 g/t AuEq cut o
		and	309.00	326.00	17.00	0.16	0.91	0.07	6.1	0.1 g/t AuEq cut o

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	ry							
		and	354.02	451.00	96.98*	0.17	1.2	0.06	15.8	
		inc	435.02	451.00	15.98*	0.32	1.8	0.07	2.6	
		ZK16-2	19.00	267.31	248.31	0.33	2.7	0.07	2.6	0.1 g/t AuEq cut of
		inc	140.00	254.00	114.00	0.53	2.9	0.09	3.3	0.5 g/t AuEq cut of
		inc	224.00	254.00	30.00	0.85	3.6	0.12	3.4	1.0 g/t AuEq cut of
		* Mineralisati			m Colorado V	V channel	samnle resi	ults from u	nderground ex	nosure
		Channel id		Interval	AuEq (g/t)		Ag (g/t)	Cu (%)	Mo (ppm)	Comment
		Chamici_ia		cci vai	, 1914 (8)	, 10 (8)	1 181 81	Ca (70)	me (ppm)	Comment
				(m)						

0.0

0.0

276.0

20.0

74.0

84.0

150.0

112.0

32.0

39.1

56.0

46.0

inc

inc

and Main Adit

(west drive)

and

inc

CEL: Guayabo and Colorado V Concessions_Camp 1, Phase #1 & Phase #2 Drilling Intercepts:

0.60

0.71

0.29

0.30

0.69

0.81

0.46

0.55

0.21

0.28

0.64

0.76

2.4

2.7

1.4

2.3

1.8

2.1

0.07

0.08

0.04

0.03

0.01

0.01

9.8

9.3

5.1

4.5

2.8

3.0

0.5 g/t AuEq cut off

1 g/t AuEq cut off

0.1 g/t AuEq cut off

0.1 g/t AuEq cut off

0.5 g/t AuEq cut off

1.0 g/t AuEq cut off

A cut-off grade of 0.1 g/t Au was used to report the assays of core samples with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated (e.g. 0.2g/t Au Eq, 0.5g/t AuEq, 1.0g/t AuEq, 10.0g/t AuEq).

CEL: Significant intersections from El Guayabo Project (Guayabo Concession)_Camp #1, Phase #1 Drilling completed

Drill Hole (#)	From (m)	To (m)	Interval (m)	Gold (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	AuEq (g/t)	Comments	Total intercept (gram metres)
GYDD-									0.1 g/t cut-off	
21-001	16.2	800.5	784.3	0.2	1.6	0.1	12.0	0.4	0.1 g/t cut-011	282.4
inc	167.5	548.0	380.5	0.3	2.0	0.1	18.4	0.5	1.0 g/t cut-off	178.8
inc	359.5	548.0	188.5	0.4	2.4	0.1	29.5	0.6	1.0 g/t cut-off	115.0
inc	403.0	431.0	28.0	0.5	6.9	0.2	104.4	1.0	1.0 g/t cut-off	26.6
inc	403.0	424.0	21.0	8.0	3.0	0.2	138.9	1.1	1.0 g/t cut-off	22.9
and	468.5	498.5	30.0	8.0	2.6	0.2	24.8	1.1	1.0 g/t cut-off	31.8

Challenger Gold Limited ACN 123 591 382 ASX: CEL

1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director

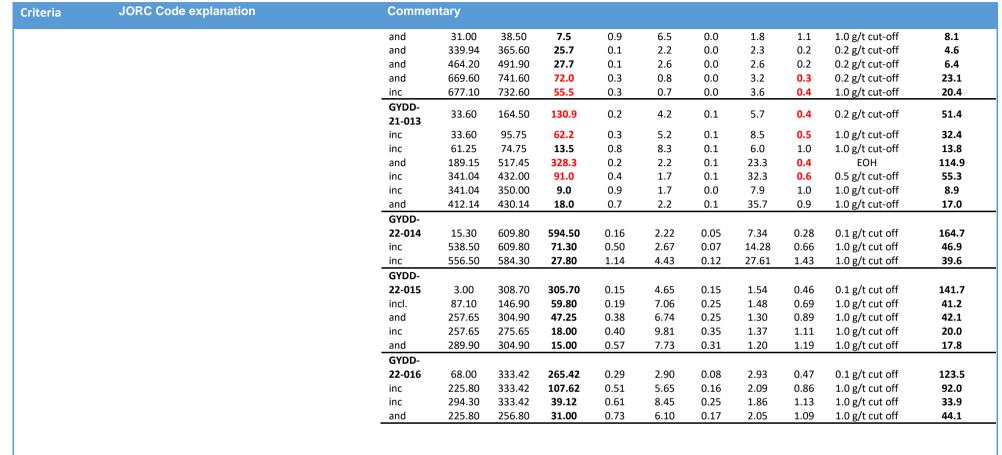
Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commo	entary									
		GYDD- 21-002	85	131.5	46.5	0.32	3.99	0.04	5.72	0.4	0.1 g/t cut-off	20.0
		incl.	112	114.3	2.3	1.33	33.17	0.12	5.1	2.0	1.0 g/t cut-off	4.5
		incl.	129.75	131.5	1.75	2.05	7.36	0.01	1.29	2.2	1.0 g/t cut-off	3.8
		and	279.45	306.5	27.05	1.49	0.82	0.02	2.21	1.5	0.1 g/t cut-off	41.4
		inal	205	200 5	1 -	10.16	1.00	0.02	2 24	10.2	10.0 g/t cut-	
		incl.	305	306.5	1.5	19.16	1.89	0.03	3.21	19.2	off	28.8
		and	378.5	392	13.5	0.44	0.21	0.01	1.45	0.5	0.1 g/t cut-off	6.2
		and	447.9	448.8	0.9	0.74	4.85	0.06	1.92	0.9	0.1 g/t cut-off	0.8
		and	499.8	557.8	58	0.14	0.3	0.01	1.53	0.2	0.1 g/t cut-off	9.3
		incl.	547.8	554.8	7	0.39	0.21	0.01	1.74	0.4	0.5 g/t cut-off	2.9
		incl.	554.1	554.8	0.7	1.06	0.2	0.01	1.08	1.1	1.0 g/t cut-off	0.8
		GYDD-									0.4 //	
		21-003	71.85	191.06	119.2	0.4	0.8	0.0	2.2	0.5	0.1 g/t cut-off	53.9
		inc	76.35	153.56	77.2	0.5	0.5	0.0	1.1	0.6	1.0 g/t cut-off	45.6
		inc	76.35	102.56	26.2	1.1	0.9	0.0	1.7	1.1	1.0 g/t cut-off	29.3
		inc	101.80	102.56	0.8	20.6	4.9	0.0	0.6	20.7	10.0 g/t cut	15.7
		and	356.50	371.50	15.0	0.3	0.4	0.0	5.0	0.4	0.1 g/t cut-off	5.3
		inc	361.00	362.50	1.5	1.0	0.5	0.0	3.9	1.1	1.0 g/t cut-off	1.6
		and	575.80	597.20	21.4	0.1	2.6	0.1	57.7	0.3	0.1 g/t cut-off	6.7
		and	662.20	723.15	61.0	0.1	0.9	0.0	24.5	0.2	0.1 g/t cut-off	12.3
		GYDD-									0.4 //	
		21-004	37.10	375.75	338.7	0.2	1.0	0.0	6.5	0.3	0.1 g/t cut-off	84.7
		inc	223.46	375.75	152.3	0.2	1.3	0.0	7.3	0.3	0.1 g/t cut-off	50.0
		inc	348.75	375.75	27.0	0.5	1.8	0.0	7.3	0.6	1.0 g/t cut-off	16.9
		and	613.50	646.50	33.0	0.2	0.6	0.1	18.7	0.3	0.1 g/t cut-off	8.6
		inc	639.00	646.50	7.5	0.5	0.5	0.0	10.7	0.5	1.0 g/t cut-off	4.1
		GYDD-										
		21-005	16.10	597.75	581.7	0.3	0.9	0.0	2.5	0.3	0.1 g/t cut-off	194.3
		inc	389.80	478.15	88.4	0.6	1.8	0.1	1.5	0.8	1.0 g/t cut-off	66.7
		inc	476.50	478.15	1.7	25.1	1.8	0.0	4.0	25.2	10.0 g/t cut	41.5
		and	567.34	597.75	30.4	1.4	0.9	0.0	5.1	1.5	1.0 g/t cut-off	45.6
		inc	592.59	597.75	5.2	7.1	2.0	0.0	3.9	7.2	1.0 g/t cut-off	36.9
		inc	596.15	597.15	1.0	22.0	3.9	0.0	10.9	22.2	10 g/t cut-off	22.2
		GYDD-										
		21-006	3.30	313.10	309.8	0.2	6.3	0.2	3.0	0.7	0.1 g/t cut-off	207.1
		inc	17.40	276.50	259.1	0.2	7.3	0.2	3.3	0.8	0.1 g/t cut-off	195.9
											based on	
		inc	74.40	276.50	202.1	0.3	6.5	0.3	3.6	0.8	lithology	165.7
		inc	74.40	107.40	33.0	0.3	15.5	0.5	3.7	1.3	1.0 g/t cut-off	43.4
											- 0,	
hallenger Gold Limited	Issued Canital	Australian Registered Office	Directors			ontact						

1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director


Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commer	ntary									
		and	231.90	285.50	53.6	0.7	8.8	0.4	1.1	1.5	1.0 g/t cut-off	81.7
		GYDD- 21-007	85.30	94.00	8.7	0.4	3.6	0.1	4.6	0.6	1.0 g/t cut-off	5.5
		and	149.50	509.60	360.1	0.1	0.9	0.1	9.6	0.3	0.2 g/t cut off	95.1
		inc	253.50	265.50	12.0	0.4	2.0	0.1	10.3	0.5	1.0 g/t cut-off	6.1
		and	309.50	316.70	7.2	0.4	2.6	0.2	16.6	0.8	0.5 g/t cut-off	5.7
		and	450.20	493.20	43.0	0.4	1.0	0.1	21.3	0.6	0.5 g/t cut-off	24.1
		and	628.77	651.80	23.0	0.1	0.7	0.4	5.5	0.2	0.2 g/t cut-off	4.6
		inc	649.25	651.80	2.6	0.6	2.4	0.1	2.1	0.8	EOH	1.9
		GYDD- 21-008	5.30	263.10	257.8	0.8	7.9	0.3	1.5	1.4	0.1 g/t cut-off	361.0
		inc	184.10	263.10	79.0	2.4	17.5	0.7	1.6	3.8	1.0 g/t cut-off	298.6
		inc	209.40	263.10	53.7	3.5	23.9	0.9	1.7	5.3	5.0 g/t cut-off	285.7
		inc	248.80	255.60	6.8	16.9	50.1	1.9	1.6	20.6	10 g/t cut-off	104.2
		GYDD- 21-009	0.00	692.70	692.7	0.2	2.0	0.1	7.7	0.3	ЕОН	191.9
		inc	220.50	441.00	220.5	0.3	4.3	0.1	8.7	0.6	0.5 g/t cut-off	128.3
		inc	282.80	303.50	20.7	0.3	16.5	0.3	5.5	1.0	0.5 g/t cut-off	20.5
		inc	359.00	439.50	80.5	0.5	1.3	0.2	5.8	0.9	1.0 g/t cut-off	68.8
		inc	359.00	371.00	12.0	1.4	3.1	0.2	6.3	1.7	1.0 g/t cut-off	20.1
		and	398.00	439.50	41.5	0.5	7.2	0.2	5.7	1.0	1.0 g/t cut-off	41.0
		inc	421.20	439.50	18.3	0.9	14.4	0.5	5.3	1.8	1.0 g/t cut-off	33.4
		GYDD- 21-010	70.20	880.10	809.9	0.2	1.1	0.1	11.9	0.3	0.2 g/t cut-off	227.6
		inc	124.10	536.30	412.1	0.2	1.2	0.1	14.0	0.4	0.2 g/t cut-off	153.7
		inc	318.70	536.30	217.6	0.3	1.6	0.1	19.9	0.5	0.5 g/t cut-off	102.9
		inc	319.70	358.40	38.7	0.5	1.8	0.1	8.4	0.7	1.0 g/t cut-off	28.6
		and	468.10	536.30	68.2	0.4	2.2	0.1	31.8	0.7	1.0 g/t cut-off	45.4
		and	581.60	880.10	298.5	0.1	1.0	0.0	10.3	0.2	0.2 g/t cut-off	61.8
		inc	650.00	660.50	10.5	0.5	3.3	0.1	16.9	0.7	1.0 g/t cut-off	6.9
		GYDD- 21-011	3.00	310.90	307.9	0.5	2.4	0.0	13.6	0.6	0.2 g/t cut-off	191.5
		inc	13.00	21.00	8.0	0.7	12.4	0.1	2.0	0.9	0.5 g/t cut-off	7.3
		and	156.05	258.90	102.9	1.1	2.7	0.0	19.1	1.2	0.5 g/t cut-off	122.7
		inc	156.05	213.05	57.0	1.7	3.6	0.0	9.0	1.8	1.0 g/t cut-off	104.3
		GYDD- 21-012	2.00	226.84	224.8	0.3	2.4	0.0	2.7	0.4	0.2 g/t cut-off	83.6
		inc	2.00	44.50	42.5	0.6	2.3	0.0	1.9	0.7	1.0 g/t cut-off	31.1
		inc	2.00	6.50	4.5	1.8	0.8	0.0	1.8	1.9	1.0 g/t cut-off	8.4
		ınc	2.00	0.30	7.3	1.0	0.0	0.0	1.0	1.3	1.0 8/1 (41-011	0.4

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

CEL: Significant intersections from El Guayabo Project (Guayabo Concession)_Camp #1, Phase #2 Drilling completed

Drill Hole	From	То	Interval	Gold	Ag	Cu	Мо	AuEq	Comments	Total intercept (gram
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		metres)
GYDD- 22-017	8.00	110.12	102.12	0.22	1.13	0.01	1.30	0.26	0.1 g/t AuEq cut off	26.1
incl.	8.00	70.40	62.40	0.30	1.57	0.02	1.30	0.36	0.1 g/t AuEq cut off	22.2
incl.	9.50	24.50	15.00	0.71	3.65	0.04	2.43	0.82	1.0 g/t AuEq cut off	12.4

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commen	tary									
		and	153.96	172.03	18.07	0.47	2.63	0.02	1.82	0.53	1.0 g/t AuEq cut off	9.6
		and	380.75	382.75	2.00	1.21	0.46	0.02	1.30	1.25	1.0 g/t AuEq cut off	2.5
		and	406.06	443.82	37.76	0.25	0.54	0.02	1.26	0.29	1.0 g/t AuEq cut off	10.9
		and	521.25	686.65	165.40	0.21	0.73	0.04	2.85	0.28	0.1 g/t AuEq cut off	45.7
		incl.	544.50	552.00	7.50	0.43	1.26	0.54	1.61	0.54	0.5 g/t AuEq cut off	4.0
		and	591.00	621.25	30.25	0.45	0.86	0.03	1.22	0.52	0.5 g/t AuEq cut off	15.6
		and	644.65	652.15	7.50	0.49	1.43	0.10	1.87	0.68	0.5 g/t AuEq cut off	5.1
		and	667.15	668.65	1.50	1.18	0.41	0.01	0.70	1.21	1.0 g/t AuEq cut off	1.8
		and	818.50	821.00	2.50	0.43	2.84	0.91	0.58	0.62	0.5 g/t AuEq cut off	1.5
		GYDD- 22-018	4.00	734.05	730.05	0.14	0.67	0.03	5.85	0.21	0.1 g/t AuEq cut off	151.3
		incl.	4.00	315.71	311.71	0.20	0.73	0.03	7.37	0.25	0.1 g/t AuEq cut off	79.0
		incl.	4.00	60.00	56.00	0.53	0.66	0.02	5.67	0.57	1.0 g/t AuEq cut off	31.8
		incl.	32.00	60.00	28.00	0.82	0.78	0.02	5.83	0.86	1.0 g/t AuEq cut off	24.1
		and	129.00	130.50	1.50	1.96	0.26	0.01	2.50	1.98	1.0 g/t AuEq cut off	3.0
		and	177.30	178.80	1.50	1.12	1.11	0.05	5.60	1.20	1.0 g/t AuEq cut off	1.8
		and	243.30	244.80	1.50	1.05	1.28	0.04	4.50	1.13	1.0 g/t AuEq cut off	1.7
		and	383.25	388.65	5.40	0.14	1.45	0.09	3.20	0.32	0.1 g/t AuEq cut off	1.7
		and	423.15	434.40	11.25	0.24	0.84	0.03	6.58	0.31	0.1 g/t AuEq cut off	3.5
		and	583.90	626.50	42.60	0.44	0.95	0.06	5.43	0.55	1.0 g/t AuEq cut off	23.3
		and	698.30	701.30	3.00	0.51	0.54	0.04	1.68	0.59	0.5 g/t AuEq cut off	1.8
		GYDD- 22-019	77.30	855.50	778.20	0.23	0.58	0.01	0.79	0.26	0.1 g/t AuEq cut off	202.3
		incl.	77.30	92.10	14.80	0.30	3.75	0.02	3.30	0.38	0.1 g/t AuEq cut off	5.6
		and	292.30	570.00	277.70	0.33	0.75	0.01	2.59	0.36	0.1 g/t AuEq cut off	100.0
		incl.	328.13	499.47	171.34	0.46	0.89	0.01	2.13	0.49	1.0 g/t AuEq cut off	84.0
		incl.	328.13	426.50	98.37	0.63	0.64	0.01	2.34	0.66	1.0 g/t AuEq cut off	64.7
		incl.	328.13	334.92	6.79	1.87	4.70	0.07	1.28	2.05	1.0 g/t AuEq cut off	13.9
		and	384.47	426.50	42.03	0.85	0.36	0.01	3.08	0.87	1.0 g/t AuEq cut off	36.6
		incl.	384.47	408.50	24.03	1.30	0.46	0.02	3.54	1.34	1.0 g/t AuEq cut off	32.1
		and	463.50	465.00	1.50	1.51	4.49	0.02	1.90	1.60	1.0 g/t AuEq cut off	2.4
		and	497.04	499.47	2.43	3.13	24.21	0.16	2.51	3.70	1.0 g/t AuEq cut off	9.0
		and	538.50	540.00	1.50	2.13	5.89	0.13	2.30	2.42	1.0 g/t AuEq cut off	3.6
		and	688.20	855.50	167.30	0.40	0.53	0.02	3.67	0.45	0.5 g/t AuEq cut off	74.4
		incl.	688.20	839.00	150.80	0.43	0.56	0.02	3.09	0.48	0.5g/t AuEq cut off	71.8
		incl.	796.50	839.00	42.50	1.31	1.20	0.05	2.35	1.42	1.0 g/t AuEq cut off	60.4
		incl.	796.50	819.00	22.50	2.26	1.94	0.08	2.36	2.42	1.0 g/t AuEq cut off	54.5
		GYDD- 22-020	0.00	12.00	12.00	0.31	0.53	0.02	4.55	0.35	0.1 g/t AuEq cut off	4.2
		and	69.72	75.72	6.00	0.69	0.69	0.02	3.47	0.74	1.0 g/t AuEq cut off	4.4

1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commen	tary									
		and	95.17	242.80	147.63	0.18	1.02	0.02	5.45	0.23	0.5g/t AuEq cut off	33.4
		incl.	119.17	200.79	81.62	0.20	1.09	0.03	6.24	0.26	1.0 g/t AuEq cut off	21.0
		and	290.50	445.50	155.00	0.13	1.70	0.05	3.65	0.24	0.1 g/t AuEq cut off	37.4
		incl.	292.00	299.50	7.50	0.46	3.75	0.16	4.06	0.78	0.5g/t AuEq cut off	5.9
		and	385.00	433.50	48.50	0.19	2.59	0.08	4.59	0.35	0.1g/t AuEq cut off	16.9
		incl.	385.00	409.50	24.50	0.22	2.83	0.08	5.55	0.39	0.5g/t AuEq cut off	9.5
		and	623.50	750.00	126.50	0.28	0.98	0.04	5.73	0.37	0.1g/t AuEq cut off	47.2
		incl.	635.50	661.00	25.50	0.75	1.81	0.09	2.88	0.92	0.5g/t AuEq cut off	23.5
		incl.	637.00	652.00	15.00	1.03	2.24	0.12	3.54	1.27	1.0 g/t AuEq cut off	19.0
		incl.	729.00	731.00	2.00	0.94	1.24	0.08	3.50	1.10	1.0 g/t AuEq cut off	2.2
		GYDD- 22-021	5.20	646.00	640.80	0.11	1.88	0.06	9.45	0.25	0.1g/t AuEq cut off	158.3
		incl.	56.13	339.70	283.57	0.14	2.04	0.07	6.22	0.29	0.5g/t AuEq cut off	83.2
		incl.	56.13	129.30	73.17	0.19	2.14	0.09	8.30	0.38	0.5g/t AuEq cut off	27.4
		and	703.00	760.00	57.00	0.11	0.96	0.04	14.35	0.20	0.1g/t AuEq cut off	11.4
		GYDD- 22-022	0.00	702.85	702.85	0.16	2.75	0.05	6.65	0.29	0.1g/t AuEq cut off	204.4
		incl.	23.90	52.00	28.10	0.18	30.43	0.04	1.44	0.63	1.0 g/t AuEq cut off	17.6
		and	278.20	395.80	117.60	0.22	3.16	0.09	5.67	0.42	0.1 g/t AuEq cut off	49.7
		incl.	292.40	307.75	15.35	0.43	4.27	0.09	5.95	0.65	0.5g/t AuEq cut off	9.9
		incl.	352.00	365.70	13.70	0.29	4.60	0.16	3.29	0.62	0.5g/t AuEq cut off	8.5
		incl.	378.18	385.30	7.12	0.59	2.50	0.11	8.98	0.82	0.5g/t AuEq cut off	5.8
		and	446.50	523.60	77.10	0.42	2.74	0.12	5.68	0.67	1.0 g/t AuEq cut off	51.3
		incl.	446.50	450.53	4.03	2.14	5.01	0.19	7.16	2.52	1.0 g/t AuEq cut off	10.2
		and	492.20	520.60	28.40	0.63	3.59	0.18	9.96	0.99	1.0 g/t AuEq cut off	28.0
		GYDD- 22-023	15.50	795.55	780.05	0.18	2.07	0.04	6.36	0.31	0.1 g/t AuEq cut off	240.0
		incl.	15.50	305.70	290.20	0.34	2.70	0.04	5.11	0.45	0.1 g/t AuEq cut off	130.9
		incl.	35.00	44.00	9.00	0.95	1.20	0.03	0.76	1.02	1.0 g/t AuEq cut off	9.2
		incl.	144.70	161.20	16.50	0.73	3.21	0.06	7.09	0.87	1.0 g/t AuEq cut off	14.4
		and	195.30	196.80	1.50	0.79	56.00	0.03	1.80	1.53	1.0 g/t AuEq cut off	2.3
		and	222.80	277.00	54.20	0.73	4.72	0.07	10.75	0.91	0.5g/t AuEq cut off	49.5
		incl.	224.30	252.70	28.40	1.05	3.45	0.05	7.54	1.17	1.0 g/t AuEq cut off	33.3
		and	441.50	557.85	116.35	0.35	3.97	0.08	4.39	0.54	0.1 g/t AuEq cut off	62.4
		incl.	461.00	462.50	1.50	0.99	13.40	0.22	4.50	1.53	1.0 g/t AuEq cut off	2.3
		incl.	510.60	545.85	35.25	0.74	6.76	0.14	6.64	1.06	1.0 g/t AuEq cut off	37.4
		GYDD- 22-024	10.10	648.25	638.15	0.30	2.07	0.13	10.53	0.55	0.1 g/t AuEq cut off	351.2
		incl.	10.10	53.70	43.60	0.19	3.17	0.02	3.16	0.26	0.1 g/t AuEq cut off	11.5
		and	94.80	118.80	24.00	0.17	0.39	0.03	11.41	0.23	0.1 g/t AuEq cut off	5.5

1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commen	tary									
		and	144.80	146.30	1.50	7.89	2.85	0.02	2.10	7.96	1.0 g/t AuEq cut off	11.9
		and	332.16	648.25	316.09	0.49	3.31	0.24	14.53	0.95	0.1 g/t AuEq cut off	298.8
		OR	344.00	648.25	304.25	0.50	3.37	0.25	14.46	0.98	0.1 g/t AuEq cut off	296.9
		incl.	332.16	487.00	154.84	0.92	5.72	0.45	18.96	1.76	0.1 g/t AuEq cut off	272.5
		incl.	344.00	452.50	108.50	1.28	7.78	0.62	20.00	2.44	1.0 g/t AuEq cut off	264.3
		incl.	369.25	418.75	49.50	2.36	13.96	1.13	26.35	4.45	1.0 g/t AuEq cut off	220.4
		OR	369.25	423.43	54.18	2.20	12.91	1.04	24.70	4.14	1.0 g/t AuEq cut off	224.1
		GY2DD- 22-001	191.00	202.20	11.20	0.74	14.46	0.01	2.26	0.94	0.5 g/t AuEq cut off	10.5
		and	290.40	291.30	0.90	1.26	2.56	0.00	1.20	1.30	1.0 g/t AuEq cut off	1.2
		and	403.10	492.50	89.40	0.13	6.71	0.01	3.13	0.22	0.5 g/t AuEq cut off	19.9
		incl.	403.10	412.80	9.70	0.41	15.24	0.01	1.84	6.06	0.5 g/t AuEq cut off	58.8
		and	592.60	596.68	4.08	0.85	120.96	0.01	4.05	2.37	0.1 g/t AuEq cut off	9.7
		GYDD-									0.1 g/t AuEq cut off	
		22-025	4.0	EOH	1190.0	0.2	1.3	0.1	12.6	0.3		357.0
		Incl.	4.0	515.1	511.1	0.3	2.1	0.1	11.9	0.4	0.1 g/t AuEq cut off	204.4
		Incl.	65.0	434.5	369.5	0.3	2.2	0.1	13.3	0.5	0.1 g/t AuEq cut off	184.8
		Incl.	65.0	243.3	178.8	0.5	2.4	0.1	8.8	0.6	0.3 g/t AuEq cut off	107.3
		Incl.	65.0	166.0	101.0	0.6	2.8	0.1	5.9	8.0	1.0 g/t AuEq cut off	80.8
		Incl.	65.0	101.0	36.0	8.0	2.5	0.1	5.1	0.9	1.0 g/t AuEq cut off	32.9
		GYDD-									1 g/t AuEq cut off	
		22-026	93.3	94.5	1.3	231.3	10.7	0.0	1.8	231.5		301.0
		and	94.5	1045.1	960.0	0.1	1.4	0.1	14.7	0.3	0.1 g/t AuEq cut off	212.7
		Incl.	208.5	563.6	355.1	0.2	1.9	0.1	24.3	0.4	0.1 g/t AuEq cut off	142.0
		and	208.5	239.0	30.5	0.4	5.3	0.1	26.6	0.6	1.0 g/t AuEq cut off	18.3
		Incl.	377.5	416.0	38.5	0.4	1.4	0.1	32.4	0.6	1.0 g/t AuEq cut off	23.1
		GYDD-									0.1 g/t AuEq cut off	
		22-027	0.0	eoh	871.9	0.2	1.3	0.0	14.2	0.3		261.6
		Incl.	92.6	367.9	275.3	0.3	1.8	0.0	8.3	0.4	0.1 g/t AuEq cut off	110.1
		Incl.	92.6	106.0	13.4	0.6	3.0	0.1	31.8	0.8	1.0 g/t AuEq cut off	10.2
		and	202.6	270.5	67.9	0.5	3.2	0.1	7.7	0.6	1.0 g/t AuEq cut off	40.7
		and	302.0	317.8	15.8	0.6	0.5	1.4	0.0	0.6	1.0 g/t AuEq cut off	40.8
		and	360.0	367.9	7.9	0.8	5.3	0.0	2.8	0.9	1.0 g/t AuEq cut off	6.8
		GYDD-									0.1 g/t AuEq cut off	
		22-028	4.5	379.7	375.2	0.2	2.5	0.1	1.6	0.4		150.1
		Incl.	4.5	23.3	18.8	0.7	1.2	0.0	4.7	0.7	1.0 g/t AuEq cut off	14.1
		and	172.3	366.6	194.3	0.2	3.4	0.1	1.3	0.5	0.1 g/t AuEq cut off	87.8
		and	318.0	366.6	48.6	0.5	6.4	0.3	1.1	1.0	1.0 g/t AuEq cut off	48.6
		GYDD-									0.1 g/t AuEq cut off	
		22-029	7.0	389.2	382.2	0.2	2.7	0.1	2.0	0.3		114.7

1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commen	tary									
		Incl.	153.3	360.5	207.3	0.2	3.8	0.1	2.2	0.5	0.1 g/t AuEq cut off	103
		Incl.	192.3	226.8	34.5	0.2	8.3	0.2	3.5	0.7	1.0 g/t AuEq cut off	24
		and	342.2	360.5	18.3	0.6	4.4	0.2	1.6	1.0	1.0 g/t AuEq cut off	18
		GYDD-									0.1 g/t AuEq cut off	
		22-030	0.0	eoh	689.5	0.2	1.4	0.1	9.0	0.3	<i>o,</i> 1	23
		Incl.	75.4	393.0	317.7	0.4	1.2	0.1	15.0	0.5	0.1 g/t AuEq cut off	15
		Incl.	76.9	80.6	6.0	1.5	1.7	0.0	7.3	1.6	1.0 g/t AuEq cut off	9
		and	280.5	334.5	54.0	0.9	1.7	0.1	13.6	1.0	1.0 g/t AuEq cut off	5
		and	370.5	393.0	22.5	1.1	1.7	0.1	9.1	1.3	1.0 g/t AuEq cut off	2
		GYDD-									0.1 g/t AuEq cut	
		23-031	1.0	532.0	531.0	0.2	0.5	0.0	1.2	0.3	5 0, 5 5 1, 5 5	1!
		Incl.	1.0	24.9	23.9	0.9	0.5	0.1	0.8	0.9	1 g/t AuEq cut	2
		and	152.6	185.7	33.1	0.5	1.5	0.0	1.7	0.6	1 g/t AuEq cut	1
		and	292.1	308.1	16.0	0.6	0.5	0.0	1.5	0.6	1 g/t AuEq cut	9
		GYDD-										
		23-032	0.0	781.5	781.5	0.2	1.3	0.0	8.6	0.3		2
		Incl.	120.3	377.2	257.0	0.4	1.8	0.0	6.5	0.5		1
		Incl.	120.3	270.7	150.5	0.6	2.4	0.0	7.9	0.7		10
		Incl.	120.3	188.3	68.1	1.0	3.6	0.1	9.3	1.1		7
		and	162.7	188.3	25.7	1.7	5.3	0.1	13.9	1.9		4
		GYDD-										
		23-033	7.0	449.2	442.2	0.2	2.1	0.1	3.7	0.3		13
		Incl.	164.3	411.9	247.6	0.2	3.0	0.1	4.6	0.4		9
		Incl.	216.2	367.6	151.4	0.2	4.0	0.1	4.1	0.5		7
		Incl.	216.8	225.0	8.2	0.5	11.8	0.1	1.6	0.7		(
		and	264.3	290.0	25.8	0.4	4.9	0.2	7.8	0.7		1
		and	335.0	364.6	29.6	0.3	5.8	0.2	1.8	0.6		1
		GYDD-										
		23-034	108.9	273.5	164.6	0.2	3.8	0.2	1.3	0.6		9
		Incl.	161.6	182.6	21.0	0.5	3.5	0.2	1.1	0.9		1
		and	224.2	250.9	26.7	0.3	7.0	0.3	1.4	1.0		2
		and	375.2	411.2	36.0	0.5	0.8	0.0	1.1	0.5		1
		GYDD-										
		23-035	0.0	268.7	268.7	0.1	0.7	0.0	4.6	0.2		5
		Incl.	55.8	84.0	28.2	0.4	1.0	0.0	1.4	0.4		1
		and	240.5	255.2	14.7	0.4	1.1	0.1	6.0	0.5		7
		GYDD-										
		23-036	65.9	67.4	1.5	2.9	1.7	0.0	0.8	2.9		4
		and	80.9	99.8	19.0	0.7	1.7	0.0	1.5	0.7		1
		and	189.9	767.5	577.6	0.1	1.0	0.0	4.5	0.2		12

1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact

teria	JORC Code explanation	Commen	itary									
		Incl.	189.9	353.2	163.3	0.3	0.8	0.0	2.4	0.4		63.7
		Incl.	189.9	253.3	63.4	0.6	0.7	0.0	1.2	0.7		42.6
		GYDD-										
		23-037	0.0	767.2	767.2	0.1	1.4	0.0	12.7	0.2		149.5
		Incl.	81.9	183.7	101.8	0.2	1.9	0.0	4.3	0.3		32.4
		Incl.	150.7	173.2	22.5	0.3	2.1	0.1	3.4	0.5		11.3
		and	390.5	438.8	48.3	0.1	2.5	0.1	16.4	0.3		14.5
		GYDD-										
		23-038	157.7	235.3	77.6	0.1	2.0	0.1	1.1	0.3		20.9
		Incl.	212.2	235.3	23.1	0.2	2.0	0.1	1.1	0.4		9.8
		and	321.9	483.3	161.4	0.1	2.1	0.1	2.7	0.3		40.7
		Incl.	321.9	376.5	54.7	0.2	3.4	0.1	3.3	0.4		21.9
		Incl.	360.3	376.5	16.2	0.5	4.5	0.1	4.0	0.8		12.2
		GYDD-										
		23-039	4.6	809.9	805.3	0.5	1.6	0.0	4.2	0.6		470.3
		Incl.	4.6	551.3	546.7	0.7	2.0	0.1	3.5	0.8		429.4
		Incl.	4.6	235.8	231.2	1.4	2.5	0.1	3.7	1.5		351.6
		Incl.	108.0	117.9	9.9	1.0	3.3	0.0	2.5	1.1		10.6
		and	190.5	202.8	12.3	21.4	1.5	0.0	1.9	21.5		263.9
		Incl.	190.5	192.0	1.5	172.3	8.0	0.0	1.3	172.4		258.7
		CEL: Signif	ficant inter	sections fr	om El Guay	abo Proj	ect (Colora	ado V Coi	ncession)_	Camp #1,	Phase #1 drilling co	mpleted Total
		Hole	From	То	Interval	Gold	Ag	Cu	Мо	AuEq	Comments	intercep (gram
		(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		metres)
		CVDD-										
		22-001	4.50	533.20	528.70	0.30	2.30	0.09	13.22	0.49	1.0 g/t cut off	260.8
		incl.	4.50	401.60	397.10	0.34	2.76	0.11	14.31	0.56	1.0 g/t cut off	222.4
		incl.	6.00	114.00	108.00	0.42	2.83	0.13	15.75	0.68	1.0 g/t cut off	73.8
		and	166.60	296.80	130.20	0.42	3.33	0.12	15.55	0.67	1.0 g/t cut off	87.8
		incl.	273.50	284.30	10.80	2.51	14.93	0.35	9.16	3.29	1.0 g/t cut off	35.6

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

5.00

14.00

174.65

309.30

387.10

490.20

CVDD-22-002

incl.

incl.

and

incl.

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

575.00

320.70

199.50

319.20

396.20

504.20

Contact

0.21

0.22

0.40

0.97

0.75

0.77

1.99

2.27

4.54

6.14

6.91

1.29

0.08

0.12

0.25

0.26

0.14

0.03

11.43

13.59

53.36

15.83

8.93

24.72

0.38

0.45

0.91

1.50

1.08

0.85

0.1 g/t cut off

0.5 g/t cut off

1.0 g/t AuEq cut off

218.6

138.2

22.7

14.8

9.8

11.9

570.00

306.70

24.85

9.90

9.10

14.00

T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commen	tary									
		CVDD-	2.5	eoh	509.90	0.24	1.41	0.07	31.30	0.4	0.1 g/t AuEq cut off	203
		22-003										
		incl.	2.5	246.5	244.00	0.36	1.76	0.09	44.80	0.6	0.5 g/t AuEq cut off	14
		incl.	2.5	159.4	156.90	0.44	1.76	0.10	54.70	0.7	1.0 g/t AuEq cut off	10
		incl.	2.5	75.8	73.30	0.55	1.81	0.11	59.10	0.8	1.0 g/t AuEq cut off	58
		incl.	66.3	75.8	9.50	0.85	1.40	0.13	146.00	1.2	1.0 g/t AuEq cut off	1
		CVDD-	203	eoh	456.20	0.13	0.91	0.05	10.90	0.25	0.1 g/t AuEq cut off	11
		22-004										
		incl.	443.9	649.3	205.40	0.19	1.00	0.06	11.10	0.3	0.5 g/t AuEq cut off	6:
		incl.	448.4	504.5	56.10	0.23	1.13	0.07	8.30	0.4	1.0 g/t AuEq cut off	2
		incl.	593	602	9.00	0.58	0.87	0.04	6.70	0.7	1.0 g/t AuEq cut off	(
		CVDD-	8.1	572.2	564.10	0.21	2.30	0.09	44.10	0.4	0.1 g/t AuEq cut off	22
		22-005										
		incl.	8.1	286.1	278.00	0.30	3.21	0.11	68.20	0.6	0.5 g/t AuEq cut off	1
		incl.	25.8	154.5	128.70	0.39	3.36	0.11	112.10	0.7	1.0 g/t AuEq cut off	9
		CVDD-										
		22-006	96.4	600.7	504.3	0.31	1.43	0.07	1.8	0.3	0.1 g/t AuEq cut off	15
		incl.	97.9	374.0	276.1	0.25	1.54	0.07	1.9	0.4	1.0 g/t AuEq cut-off	11
		incl.	200.2	209.1	8.9	0.63	1.24	0.07	1.1	0.8	1.0 g/t AuEq cut-off	7
		and	257.9	374.0	116.1	0.39	2.56	0.14	2.0	0.5	1.0 g/t AuEq cut-off	5
		incl.	257.9	288.9	31.0	0.32	3.99	0.16	1.4	0.6	1.0 g/t AuEq cut-off	1
		and	365.0	374.0	9.0	1.51	1.98	0.22	1.7	1.9	1.0 g/t AuEq cut-off	1
		CVDD-										
		22-007	73.9	806.1	732.2	0.20	1.16	0.04	8.1	0.3	0.1 g/t AuEq cut off	21
		incl.	251.0	589.3	338.3	0.30	1.49	0.06	6.8	0.4	1.0 g/t AuEq cut-off	13
		incl.	251.0	498.2	247.2	0.37	1.72	0.06	5.8	0.5	1.0 g/t AuEq cut-off	12
		incl.	251.0	301.7	50.7	0.78	1.79	0.06	5.1	0.9	1.0 g/t AuEq cut-off	4
		and	422.5	438.3	15.8	0.62	1.59	0.06	4.0	0.7	1.0 g/t AuEq cut-off	1
		CVDD-										
		22-008	129.8	179.2	49.5	0.20	0.66	0.02	1.3	0.25	0.1 g/t AuEq cut off	1
		and	431.1	448.8	17.7	0.15	1.18	0.05	4.0	0.25	0.1 g/t AuEq cut off	4
		CVDD-										
		22-009	1.0	195.4	194.4	0.12	1.22	0.04	11.1	0.2	0.1 g/t AuEq cut off	3
		and	259.3	397.8	136.5	0.08	1.15	0.06	12.4	0.2	0.1 g/t AuEq cut off	2
		and	812.5	886.5	74.3	0.10	0.56	0.04	13.0	0.2	0.1 g/t AuEq cut off	14
		CVDD-										
		22-010	114.5	888.4	773.9	0.27	1.30	0.06	11.8	0.4	0.1 g/t AuEq cut off	30
		incl.	182.3	585.1	402.8	0.40	1.65	0.08	10.9	0.6	1.0 g/t AuEq cut off	24
		incl.	182.3	482.1	299.8	0.50	1.83	0.09	11.7	0.7	1.0 g/t AuEq cut off	20
		incl.	182.3	363.2	180.9	0.73	2.43	0.11	9.5	1.0	1.0 g/t AuEq cut off	18

1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61.8 6380 923

riteria	JORC Code explanation	Commen	tary									
		incl.	182.3	244.7	62.4	1.53	2.70	0.12	7.0	1.8	1.0 g/t AuEq cut off	112
		CVDD- 22-011	168.25	174.25	6.00	0.07	0.77	0.07	15.18	0.21	0.1 g/t AuEq cut off	1.
		and	194.45	201.95	7.50	0.06	0.70	0.06	11.53	0.17	0.1 g/t AuEq cut off	1
		and	363.20	455.00	91.80	0.13	0.56	0.04	4.03	0.20	0.1 g/t AuEq cut off	18
		incl.	363.20	367.70	4.50	0.33	0.62	0.05	11.91	0.42	0.1 g/t AuEq cut off	1
		and	397.70	433.70	36.00	0.24	0.61	0.04	3.03	0.32	0.1 g/t AuEq cut off	1:
		CVDD- 22-012	46.12	48.75	2.63	0.63	1.89	0.02	1.92	0.68	0.1 g/t AuEq cut off	1
		and	123.85	153.85	30.00	0.17	1.03	0.01	1.78	0.20	0.1 g/t AuEq cut off	5
		and	215.44	239.44	24.00	0.19	4.70	0.01	1.86	0.26	0.1 g/t AuEq cut off	6
		and	413.87	429.69	15.82	0.23	0.58	0.00	1.54	0.24	0.1 g/t AuEq cut off	3
		CVDD- 22-013	227.00	472.75	245.75	0.16	1.37	0.01	2.65	0.20	0.1 g/t AuEq cut off	4
		incl.	265.00	291.00	26.00	0.20	2.50	0.01	1.32	0.25	0.1 g/t AuEq cut off	6
		and	319.00	333.00	14.00	0.23	4.16	0.02	2.91	0.31	0.1 g/t AuEq cut off	4
		and	366.40	367.40	1.00	1.56	1.19	0.01	1.80	1.59	1.0 g/t AuEq cut off	1
		and	396.00	449.90	53.90	0.27	2.02	0.01	2.47	0.28	0.1 g/t AuEq cut off	1
		incl.	434.50	435.90	1.40	1.72	11.00	0.08	0.90	1.99	1.0 g/t AuEq cut off	2
		and	731.70	733.20	1.50	0.30	0.39	0.01	1425.60	1.32	1.0 g/t AuEq cut off	1
		CVDD- 22-014	59.65	65.85	6.20	1.13	1.30	0.01	1.80	1.15	0.1 g/t AuEq cut off	7
		and	171.20	172.10	0.90	11.63	16.10	0.03	1.60	11.8 8	1.0 g/t AuEq cut off	1
		and	198.20	216.00	17.80	0.44	1.18	0.01	1.94	0.48	0.1 g/t AuEq cut off	8
		incl.	210.20	215.25	5.05	0.90	1.33	0.01	1.83	0.94	1.0 g/t AuEq cut off	4
		and	256.80	271.15	14.35	1.17	4.73	0.03	2.22	1.28	1.0 g/t AuEq cut off	1
		and	344.65	346.15	1.50	1.46	0.39	0.01	1.60	1.48	1.0 g/t AuEq cut off	2
		and	401.10	405.60	4.50	4.58	9.62	0.02	1.76	4.73	1.0 g/t AuEq cut off	2
		and	486.70	506.20	19.50	0.39	0.71	0.01	2.79	0.41	0.1 g/t AuEq cut off	8
		incl.	504.70	506.20	1.50	3.04	4.11	0.03	1.70	3.14	1.0 g/t AuEq cut off	4
		and	605.10	606.60	1.50	1.11	2.53	0.01	1.40	1.16	1.0 g/t AuEq cut off	1
		and	687.60	693.60	6.00	0.71	3.66	0.01	1.56	0.77	1.0 g/t AuEq cut off	4
		and	845.60	846.33	0.73	8.59	4.57	0.00	1.80	8.65	1.0 g/t AuEq cut off	6
		CVDD- 22-015	9.10	757.57	748.47	0.10	0.42	0.04	9.15	0.17	0.1 g/t AuEq cut off	12
		incl.	23.20	23.80	0.60	2.24	6.04	0.22	16.30	2.70	1.0 g/t AuEq cut off	1
		and	77.40	233.69	156.29	0.13	0.75	0.06	17.80	0.25	0.5 g/t AuEq cut off	39
		OR	77.40	291.75	214.35	0.13	0.68	0.06	18.05	0.24	0.1 g/t AuEq cut off	5:
		incl.	169.62	171.12	1.50	0.97	0.64	0.06	8.40	1.09	1.0 g/t AuEq cut off	1

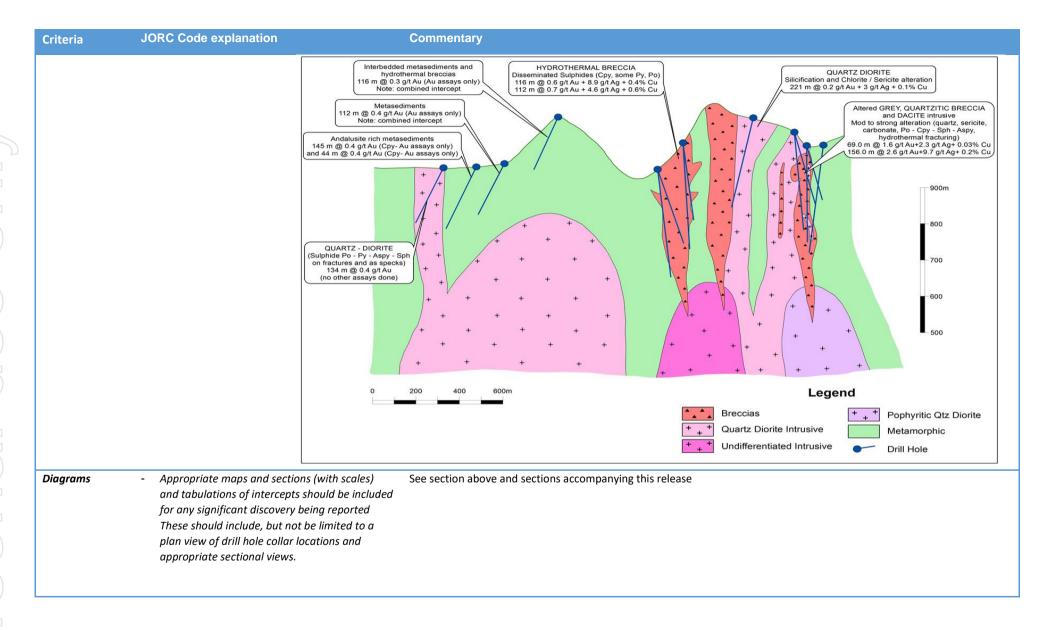
Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commen	tary									
		and	364.20	365.70	1.50	0.88	1.11	0.15	8.40	1.15	1.0 g/t AuEq cut off	1.73
		and	440.70	442.20	1.50	1.25	0.71	0.05	0.80	1.35	1.0 g/t AuEq cut off	2.02
		and	646.57	648.07	1.50	5.96	0.22	0.02	1.50	6.00	1.0 g/t AuEq cut off	8.99
		CVDD- 22-016	10.80	81.00	70.20	0.42	7.15	0.01	4.08	0.53	0.5 g/t AuEq cut off	37.49
		incl.	10.80	22.80	12.00	0.58	5.86	0.02	2.14	0.68	1.0 g/t AuEq cut off	8.18
		and	36.30	48.70	12.40	1.48	18.52	0.01	14.33	1.74	1.0 g/t AuEq cut off	21.5
		and	275.00	515.90	240.90	0.11	2.26	0.02	3.34	0.16	0.1 g/t AuEq cut off	39.0
		incl.	312.50	326.00	13.50	0.14	5.42	0.04	5.66	0.27	0.1 g/t AuEq cut off	3.64
		and	397.50	436.50	39.00	0.20	2.60	0.01	2.44	0.26	0.1 g/t AuEq cut off	9.99
		CVDD- 22-017	20.30	301.50	281.20	0.08	0.62	0.05	4.56	0.17	0.1 g/t AuEq cut off	47.0
		incl.	53.20	54.70	1.50	0.33	4.75	0.43	2.90	1.13	1.0 g/t AuEq cut off	1.6
		and	167.95	221.50	53.55	0.14	0.88	0.06	8.94	0.25	0.1 g/t AuEq cut off	13.3
		and	388.50	445.50	57.00	0.10	0.36	0.03	3.01	0.16	0.1 g/t AuEq cut off	8.9
		incl.	388.50	390.00	1.50	1.17	0.20	0.01	1.00	1.19	1.0 g/t AuEq cut off	1.7
		and	648.10	664.60	16.50	0.02	1.19	0.10	1.32	0.21	0.1 g/t AuEq cut off	3.4


Relationship between mineralisation widths and intercept lengths

- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').

- The geometry of the breccia hosted mineralisation appears to be predominantly near-vertical pipes while the geometry of the intrusive hosted mineralisation is sub-vertical.
- The preliminary interpretation is that the breccia hosted mineralisation occurs in near vertical breccia pipes. Thus, intersections in steeply inclined holes may not be representative of the true width of this breccia hosted mineralisation. The relationship between the drilling orientation and some of the key mineralised structures and possible reporting bias in terms of true width is illustrated in the figure below.

Challenger Gold Limited ACN 123 591 382 ASX: CEL

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The reporting is fair and representative of what is currently understood to be the geology and controls on mineralisation at the project.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	El Guayabo: Quantec Geophysical services conducted a SPARTAN Broadband Magnetotelluric and TITAN IP/EMAP surveys completed February 3rd to April 1st, 2019 over the El Guayabo property by Quantec Geoscience Ltd. on behalf of AAR Resources. The survey covered 16 square kilometersa with data collected on 300m 3D spacing on a gride oriented at 10 degerees and 100 degerees. The grid was moved 10 degrees so the survey could be orineted perpendicu;lar to the main geological srtuctures. The survey involved a total of 205 Magnetotelluric (MT) sites and 2 test TITAN IP/EMAP profiles were surveyed The final survey results to which will be delivered will consist of: Inversion 2D products DC resistivity model; Pc hargeability model using the DC resistivity model as a reference; Pc hargeability model using a half-space resistivity model as a reference; MT(EMAP) resistivity model; Joint MT+DC resistivity model; IP chargeability model using the MT+DC resistivity model; Inversion 3D products MT model; Cross-sections and Elevation Plan maps of the 3D MT models;
		Figures showing Survey Locations and Results are included in the boidy of this release DCIP INVERSION PROCEDURES
		DCIP is an electrical method that uses the injection of current and the measurement of voltage difference along with its rate of decay to determine subsurface resistivity and chargeability respectively. Depth of investigation is mainly controlled by the array geometry but may also be limited by the received signal (dependent on transmitted current) and ground resistivity. Chargeability is particularly susceptible to data with a low signal-to-noise ratio. The differences in penetration depth between DC resistivity and chargeability are a function of relative property contrasts and relative signal-to-noise levels between the two measurements. A detailed introduction to DCIP is given in Telford, et al. (1976). The primary tool for evaluating data is through the inversion of the data in two or three dimensions. An inversion model depends not only on the data collected, but also on the associated data errors in the reading and the "model norm". Inversion models are not unique and may contain "artefacts" from the inversion process. The inversion model may not accurately reflect all the information apparent in the

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

JORC Code explanation Criteria Commentary actual data. Inversion models must be reviewed in context with the observed data, model fit, and with an understanding of the model norm used. The DC and IP inversions use the same mesh. The horizontal mesh is set as 2 cells between electrodes. The vertical mesh is designed with a cell thickness starting from 20 m for the first hundred metres to accommodate the topographic variation along the profiles, and then increases logarithmically with depth. The inversions were generally run for a maximum of 50 iterations. The DC data is inverted using an unconstrained 2D inversion with a homogenous half-space of average input data as starting model. For IP inversions, the apparent chargeability \square is computed by carrying out two DC resistivity forward models with conductivity distributions $\sigma(xi,zj)$ and $(1-\eta)\sigma(xi,zj)$ (Oldenburg and Li, 1994), where (xi,zj) specifies the location in a 2D mesh. The conductivity distributions used in IP inversions can be the inverted DC model or a half space of uniform conductivity. Two IP inversions are then calculated from the same data set and parameters using different reference models. The first inversion of the IP data uses the previously calculated DC model as the reference model and is labelled the IP dcref model. The second IP inversion uses a homogeneous half-space resistivity model as the reference model and is labelled IP hsref model. This model is included to test the validity of chargeability anomalies, and to limit the possibility of inversion artefacts in the IP model due to the use of the DC model as a reference. The results of this second IP inversion are presented on the digital archived attached to this report. MAGNETOTELLURIC INVERSIONS The Magnetotelluric (MT) method is a natural source EM method that measures the variation of both the electric (E) and magnetic (H) field on the surface of the earth to determine the distribution at depth of the resistivity of the underlying rocks. A complete review of the method is presented in Vozoff (1972) and Orange (1989). The measured MT impedance Z, defined by the ratio between the E and H fields, is a tensor of complex numbers. This tensor is generally represented by an apparent resistivity (a parameter proportional to the modulus of Z) and a phase (argument of Z). The variation of those parameters with frequency relates the variations of the resistivity with depth, the high frequencies sampling the sub-surface and the low frequencies the deeper part of the earth. However, the apparent resistivity and the phase have an opposite behaviour. An increase of the phase indicates a more conductive zone than the host rocks and is associated with a decrease in apparent resistivity. The objective of the inversion of MT data is to compute a distribution of the resistivity of the surface that explains the variations of the MT parameters, i.e. the response of the model that fits the observed data. The solution however is not unique and different inversions must be performed (different programs, different conditions) to test and compare solutions for artefacts versus a target anomaly. An additional parameter acquired during MT survey is the Tipper. Tipper parameters Tzx and Tzy (complex numbers) represent the transfer function between the vertical magnetic field and the horizontal X (Tzx), and Y (Tzy) magnetic fields respectively (as the impedance Z represent the transfer function between the electric and magnetic fields). This tipper is a 'local' effect, mainly defined by the lateral contrast of the resistivity. Consequently, the tipper can be used to estimate the geological strike direction. Another important use of the tipper is to display its components as vectors, named induction vectors. The induction vectors (defined by the real components of Tzx and Tzy) plotted following the Parkinson-Real-Reverse-Angle convention will point to conductive zones. The tipper is then a good mapping tool to delineate more conductive zones.

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

individual sounding may easily exceed 20 km. However, the the array is comparable to the depth of investigation. The inversion model is dependent on the data, but also or models are not unique, may contain artefacts of the inve information apparent in the actual data. Inversion models n The user must understand the model norm used and evalua For this project, 2D inversions were performed on the TITAI direction is perpendicular to the profile for all sites: the TM field); no TE mode (cross line E-field) were used in the 2D in	N/EMAP profiles data. For each profile, we assume the strike mode is then defined by the inline E-field (and cross line H-
individual sounding may easily exceed 20 km. However, the the array is comparable to the depth of investigation. The inversion model is dependent on the data, but also or models are not unique, may contain artefacts of the inve information apparent in the actual data. Inversion models n The user must understand the model norm used and evalua For this project, 2D inversions were performed on the TITAI direction is perpendicular to the profile for all sites: the TM field); no TE mode (cross line E-field) were used in the 2D in	the data can only be confidently interpreted when the aperture of the associated data errors and the model norm. The inversion ersion process and may not therefore accurately reflect all the need to be reviewed in context with the observed data, model fit. The whether the model is geologically plausible. N/EMAP profiles data. For each profile, we assume the strike mode is then defined by the inline E-field (and cross line H-
assuming 10% and 5% error for the resistivity and phase recomponent Z. No static shift of the data has been applied on The 3D inversion was carried out using the CGG RLM-3D inversion was carried out using the CGG RLM-3D inversion was completed using a sub sample of the latence of the substitution of the s	istivity and phase data interpolated at 6 frequencies per decade, respectively, which is equivalent to 5% error on the impedance on the data. version code. The 3D inversions of the MT data were completed on this current survey were used for the 3D inversion. MT data with a maximum of 24 frequencies at each site covering a frequencies per decade. At each site, the complete MT complex uput data with an associated error set to 5% on each parameter. It data with an associated error set to 0.02 on each parameter. At used as the starting model for this 3D MT inversion. A uniform ections in the resistivity model. The vertical mesh was defined to tion to accommodate the inversion for boundary conditions. The less were analysed to measure the resistivity (Rho (Ohm*m) and y (SCPT 0.001 SI). The equipment used for the analyses was the EDD Inc. It should be noted that these measures should be taken use as readings by the field crew were not repeated and potentially
soil anomalies, drill hole geological and assay information a Exploration Target Anomaly A	Unit Low estimate High Estimate
Surface area (100 ppb Au in soil envelope):	m ² 250000 250000
Depth Bulk Density	m 400 400 kg/m³ 2600 2750

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary			
		Tonnage	Mt	260	275
		Grade Au	g/t	0.4	0.7
		Grade Ag	g/t	1.5	2.5
		tonnage above cut-off	%	70%	90%
		Contained Au	Moz	2.3	5.6
		Contained Ag	Moz	8.8	19.9
		Exploration Target Anomaly B	Unit	Low estimate	High Estimate
		Surface area (100 ppb Au in soil envelope):	m ²	175000	175000
		Depth	m	400	400
		Bulk Density	kg/m³	2600	2750
		Tonnage	Mt	182	193
		Grade Au	g/t	0.4	0.7
		Grade Ag	g/t	1.5	2.5
		% Tonnage above cut-off	%	70%	90%
		Contained Au	Moz	1.6	3.9
		Contained Ag	Moz	6.1	13.9
		Total of Target A & B	Unit	Low estimate	High Estimate
		Tonnage	Mt	442	468
		Contained Au	Moz	4.0	9.5
		Contained Ag	Moz	14.9	33.8
		The potential quantity and grade of the Colorado V Explo exploration to estimate a Mineral Resource and that it is Mineral Resource.	-		
		 The following is an explanation of the inputs used in form Surface Area: The surface area of the target has be vertically to the surface. The surface projection of gold-in-soil anomaly contour. This area has been u Depth: A depth of 400 metres from surface has be underground bulk tonnage mining project would be controlled by steeply plunging / dipping intrusions from surface. 	een estimated by pro the intersections in t sed to estimate the h en used as an estima e expected to extend	jecting drill hole gold he drill holes coincide norizontal extent of the depth that and the mineralization.	es with the 100 ppb Ai ne mineralization. an open pit and at Colorado V is
		 Bulk Density: The bulk density is based on geologic bulk densities for these rock types are in the range 		e rocks that host the	mineralization. Typic

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
		 Gold and Silver grades: The gold and silver grade range has been estimated from the weighted average and median sample grades and deviations from mean from drill core and underground panel sampling. Proportion of tonnage above cut-off grade: These values are estimates based on drill hole intersection grade continuity down-hole assuming that not all of the Target volume, if sampled would be above the economic cut-off grade.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Drill test priority targets identified through exploration reported previously on both the EL Guayabo and Colorado V targets, centered on surface soil and rock chip sampling, underground channel sampling and previously completed drilling which has been relogged and resampled. Interpretation of magnetic survey data following calibration with drilling. Undertake additional IP and/or EM surveys subject to a review of the appropriateness of the techniques and calibration with drill hole data.

Section 3: Estimation and Reporting of Mineral Resources-El Guayabo Project

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral 	The database includes both drilling completed by previous explorers, drill holes recently completed by the Company and underground channel samples completed by the Company.
	Resource estimation purposes. - Data validation procedures used.	Drill core from historic drilling has been recently re-logged and re-sampled. These data are transcribed by the database / GIS team into a database held on site at EMSA offices in Totara, Ecuador. Only the drill hole collar and down-hole survey from the historic data has been directly transcribed from the historic data. All other data is newly generated.
		Logging data from channel samples and drill holes completed by the Company (Phase 1 and Phase 2) are transcribed into the same database as the historic data. Drill hole collar, survey, logging is captured directly into MS Excel and peer reviewed before being given to the database team. Final assay data received from the labs is reviewed (blanks, duplicates and standards) and then added to the database. Backup copies of all data are retained in separate files.
		The drill hole data is backed up and is updated periodically.

Challenger Gold Limited ACN 123 591 382 ASX: CEL 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus, Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The Competent Person has undertaken site visits from 2019, during early-stage exploration and drilling. Early site visits were undertaken to review the progress of exploration prior to drilling and to review historic drill core. The most recent site visit was in June 2022 to review the geology, drilling program, collection of data, sampling procedures, sample submission and exploration program.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The geological interpretation and understanding of the controls on mineralisation has been used to model the geometry of the mineralised system. El Guayabo is a high-level porphyry intrusive and intrusive-related breccia complex with mineralisation controlled by regional scale and local scale fault-fracture zones and lithology contacts. Multiple pulses of mineralisation are evident in the alteration and vein overprinting relationships. Given the available data and understanding of the geological controls on mineralisation, the Competent Person has confidence in the geological model that has been used to constrain the high grade and low grade mineralised domains. At the El Guayabo deposits, continuity of grade between drill holes is determined by the intensity of fracturing, the host rock contacts (particularly intrusive – metamorphic sediment contacts). The high-grade mineralised domains have been built using explicit wireframe techniques using a nominal cut-off grade over a 2,0 metre interval of 0.7 – 1.0 g/t AuEq mineralised intersections, joined between holes using the AuEq grade, geology and controlling structure. The Low-grade domain surrounding the high-grade has been generated using Leapfrog to build a 0.2 g/t AuEq isosurface, following the main NE to ENI strike, dipping steeply NW with a nominal range of 200m. No alternative interpretations have been generated that form the basis for a Mineral Resource Estimate.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	The Mineral Resource consists of 3 sub-parallel zones. GY-A has a NE strike of 0.9 kilometres dipping NW at 80 degrees, width of 0.4 kilometres and is estimated to a depth of 650 metres below surface. GY-B has a strike of 0.5 kilometres, dipping NW at 80 degrees, with of 0.2 kilometres and is estimated to a depth of 400 metres below surface. GY-C has a ENE strike of 0.8 kilometres, dipping NNW at 80 degrees, with of 0.2 kilometres and is estimated to a depth of 450 metres below surface. All 3 zones remain open in all directions.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates 	Estimation was made for Au Ag, Cu and Mo being the elements of economic interest. No previous Resource Estimation has been done to compare to the current Resource estimate. No production records are available to provide comparisons. A 2 metre composite length in the high-grade domain and a 3 metre composite length in the low-grade domain was selected after reviewing the composite statistics. A statistical analysis was undertaken on the sample composites top cuts for Au, Ag, Cu and Mo composites for each domain. The top-cut values were chosen by assessing the high-end distribution of

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
	 and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade 	the grade population within each domain and selecting the value above which the distribution became rratic. The following table shows the top cuts applied to each group Domain Au (ppm) Ag (ppm) Cu (%) Mo (ppm)									
	variables of economic significance (eg sulphur for acid	High-grade (GY-A, GY-B)	10	70 70	-	200					
	mine drainage characterisation).	High-grade (GY-C)	11	70	_	150					
	- In the case of block model interpolation the block size in	Low-grade (GY-A, GY-B) 10									
	relation to the average sample spacing and the search	Low-grade (GY-C) 8									
	 employed. Any assumptions behind modelling of selective mining units. 	Block modelling was undertaken in Surpac™ Vo		0m (N) v 10m ((RL) for the h	nigh-grade					
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	domains and 20m (E) x 20m (N) x 20m (RL) for			inc) for the r	iigii-grauc					
	 Discussion of basis for using or not using grade cutting or capping. 	domains for each variable.									
	 The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	Variables in each domain were estimated using Ordinary Kriging. The orientation of the search ellip variogram model was controlled using surfaces designed to reflect the local orientation of the mineralized structures.									
		An oriented "ellipsoid" search for each domain was used to select data for interpolation. Estimation search ellipse ranges were adjusted for each element in each domain based on the variog ranges.									
		Validation checks included statistical comparison between drill sample grades and Ordinary Kriging b estimate results for each domain. Visual validation of grade trends for each element along the drill sections was also completed in addition to swath plots comparing drill sample grades and model grad on a range of northings. These checks show good correlation between estimated block grades and dr sample grades.									
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	Tonnage is estimated on a dry basis.									
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	The following metals and metal prices have be 1800 / oz Ag US\$22 /oz, Cu US\$ 9,000 /t and N	1o US 44,080/t.								
-		Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from similar projects in Ecuador. No metallurgical test work has been completed on the mineralisation at El Guayabo.									

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		For the AuEq calculation average metallurgical recovery is estimated as 85% for gold, 60% for silver, 85% for Cu and 50% for Mo. Accordingly, the formula used for Au Equivalent is: $AuEq = Au g/t + (Ag g/t \times 0.01222 \times [60/85]) + (Cu \% \times [90/57.8778] \times \{85/85]) + (Mo \% \times 440.8/57.8778) \times [50/85], or AuEq = Au g/t + (Ag g/t \times 0.008627) + (Cu \% x 1.555) + (Mo \% x 4.480)$
		Based on the break-even grade for an optimised pit shell for gold equivalent, a AuEq cut-off grade of 0.30 ppm is used to report the resource within an optimised pit shell run at a gold price of US\$1,800 per ounce and allowing for Ag, Cu and Mo credits. Under this scenario, blocks with a grade above the 0.25 g/t Au Eq cut off are considered to have reasonable prospects of mining by open pit methods. A AuEq cut-off grade of 0.40 ppm was used to report the resource beneath the optimised pit shell run as these blocks are considered to have reasonable prospects of future mining by bulk underground methods.
Mining factors or assumptions	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.	The Resource estimate has assumed that near surface mineralisation would be amenable to open pit mining. A surface mine optimiser has been used to determine the proportion of the Resource Estimate model that would be amenable to eventual economic extraction by open pit mining methods. The surface mine optimiser used the following parameters with prices in USD: - Au price of \$1,800 per oz, Ag price of \$22 per oz, Cu price of \$9,000 per tonne and Mo price of \$44,080 per tonne - Average metallurgical recoveries of 85 % for Au, 60 % for Ag and 85 % for Cu and 50 % for Mo. - Ore and waste mining cost of \$2.00 per tonne - Processing cost of \$7.60 per tonne - GA cost of \$0.80 per tonne - Refining, transport and marketing of \$60 / oz of AuEq - Royalty net of transport cost – 3% NSR - \$52.20/oz AuEq. - 47.5° overall pit slopes Blocks above a 0.30 g/t AuEq within the optimised open pit shell are determined to have reasonable prospects of future economic extraction by open pit mining and are included in the Resource estimate on that basis. Blocks below the open pit shell that are above 0.40 g/t AuEq are determined to have reasonable prospects of future economic extraction by underground mining methods and are included in the Resource Estimate on that basis.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential 	No metallurgical test work has been completed on the El Guayabo mineralisation. Metallurgical assumptions are based on recovery by floatation of separate Cu-Au-Ag and Mo concentrates as is proposed for similar projects in Ecuador with transport and shipping of the concentrates from ports nearby to the Project. The following assumptions are based on test work

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	reported by Lumina Gold at the nearby Cangrejos Project, which is part of the same intrusive complex as El Guayabo. Gold – 85% (Lumina Gold PFS) Copper – 85% (PFS recovery is 79% but this is based on a mix of fresh (87%) and part oxidised (50%) whereas there is minimal oxidised material at El Guayabo - Lumina 43-101 report June 2022) Silver – 60% (PFS recovery is 55% but this is based on a mix of fresh (60%) and part oxidised (50%) whereas these is minimal oxidised material at El Guayabo) - Lumina 43-101 report June 2022) Molybdenum – 50% (Lumina 43-101 report June 2022)
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	It is considered that there are no significant environmental factors which would prevent mining. Mining is assumed to be crush, grind and sequential flotation with appropriate waste dump and tailings disposal. No detailed environmental impact studies have been completed.
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	The Company has collected 379 specific gravity (SG) measurements from drill core, which have been used to estimate block densities for the Resource Estimate. Measurements we determined on a dry basis by measuring the difference in sample weight in water and weight in air. The SG values across the different rock types and mineralisation styles are stable and so an average SG was applied for the whole block model to estimate the density. Of the SG values measure the range is 1.83 to 3.63 g/cc. The average value is 2.74 g/cc and the median value is 2.73 g/cc. A bulk density value of 2.73 g/cc (2,730 kg/m3) was applied to the blocks to estimate tonnage.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in 	The Mineral Resource has been classified based on the guidelines specified in the JORC Code. The classification level is based upon semi-qualitative assessment of the geological understanding of the deposit, geological and mineralisation continuity, drill hole spacing, QC results, search and interpolation parameters and an analysis of available density information. The estimation search strategy was undertaken in one pass with classification of the resource into

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director
Mr Brett Hackett Non Exec Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	continuity of geology and metal values quality quantity and distribution of the data). - Whether the result appropriately reflects the Competent Person's view of the deposit.	Inferred. The potential open pit resource was constrained within an optimised pit shell run using a gold price of \$1,800 per ounce. Blocks inside the pit shell were reported above a AuEq cut-off grade of 0.30 ppm and blocks outside the pit shell were reported above a AuEq cut-off grade of 0.40 ppm. The Resource Estimate is classified 100% Inferred. The Competent Person has reviewed the result and determined that these classifications are appropriate given the drill hole spacing, domain constraints and confidence in the geology, data and results from drilling.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	The Mineral Resource estimate has not been independently audited or reviewed.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data where available. 	There is sufficient confidence in the data quality, drilling methods and analytical results that they can be relied upon for the estimation technique applied. No alternative techniques have been applied to test the accuracy of the estimate. The approach and procedure applied is deemed appropriate given the confidence limits and Resource Category applied. The main factors which could affect relative accuracy are: - domain boundary extent and assumptions - orientation of the controlling structure - grade continuity and range modelling - composite top cuts. No production data is available for comparison with block grades.

1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director
Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director