ASX Announcement 9 May 2023 # MULTIPLE HIGH-PRIORITY REGIONAL VMS TARGETS IDENTIFIED AT PALMA #### HIGHLIGHTS - First comprehensive regional exploration program at Palma VMS Project identifies three high-priority near drill-ready targets through a combination of auger geochemistry sampling and geophysical surveys - Urubu: FLEM survey results show an extensive and coherent conductor with similar conductive and thickness values to C3, which closely coincides with the soil geochemistry and IP results - C5: Coincident soil sampling and IP anomalies, with historical CPRM reports referencing a single mineralised hole; to be followed up with FLEM surveys - Condor: Auger geochemical anomaly to be followed up with IP - Exploration to date has focused on only two of more than 20 late-time conductors identified through the VTEM survey flown in 2008 covering over 60km of prospective strike - In-house equipment purchases of mechanical auger drill rig, Electromagnetic ("EM"), Induced Polarisation ("IP") and X-Ray Fluorescence analysing ("XRF") allows for flexible, fast and efficient exploration to progress targets - First pass auger geochemical drilling planned at the new Afla VMS Project (earn-in recently announced 28 March 2023), covering the existing roads and open fence lines - In CY2023 Alvo aims to incorporate Phase 1 & 2 drilling into expanding and upgrading the Palma Project MRE of 4.6Mt @ 1.0% Cu, 3.9% Zn, 0.4% Pb & 20g/t Ag - Phase 1 drilling successfully confirmed and extended high-grade mineralisation at the C1 and C3 deposits, exceeding both grade and thickness expectations - Ongoing Phase 2 extensional drilling at C1 and C3 (completed) testing conductors identified by DHEM surveys that highlight the potential to significantly expand known mineralisation - Ongoing assessment of synergistic opportunities in proximity Palma to expand Alvo's project portfolio Alvo Minerals Limited (ASX: ALV) ("Alvo" or the "Company") is pleased to provide an update on its ongoing regional exploration program across the Palma Project ("Palma" or "the Project") located in Central Brazil. Rob Smakman, Alvo's Managing Director commented on the exploration underway at Palma: "Exploration is accelerating, we are generating and refining prospects with the clear aim of making new discoveries in CY2023. Regional prospects are being advanced through auger geochemistry and geophysics that is efficient and low-cost exploration through our use of in-house equipment. Whilst Phase 2 diamond drilling is ongoing at the C1 deposit following the successful program at C3, we have delivered exciting advances at regional prospects; Urubu, C5, Afla, Condor and C1 South. We are confident we will soon have a pipeline of new prospects to the stage where we are compelled to drill." REGISTERED ADDRESS Alvo Minerals Limited ACN 637 802 496 Level 4, 100 Albert Road, South Melbourne VIC 3205 Australia www.alvo.com.au **MANAGEMENT TEAM** Graeme Slattery – Non-Executive Chairman Rob Smakman – Managing Director Beau Nicholls – Non-Executive Director E: info@alvo.com.au P: +61 3 9692 7222 **PROJECT**Palma Project Shares on Issue ASX Code 72,830,314 ALV #### **Palma Regional Exploration Strategy** Alvo is advancing a regional exploration program across the Palma Project which covers over 850km² of contiguous and highly prospective ground in a known Volcanogenic Massive Sulphides ("VMS") district. The district is >80% controlled by Alvo has been largely idle for over 30 years since polymetallic mineralisation was first discovered in the 1970s. Exploration by the Brazilian Geological Survey (CPRM) was paused in the mid 1980's, after which no modern exploration has been undertaken. Alvo firmly believes the large, highly prospective and under-explored district is an extraordinary opportunity to make new discoveries by applying modern and systematic exploration programs. Exploration in CY2022 largely focused on successfully delivering exceptional results at the Company's existing deposits, C1 and C3. These two existing deposits are only two of more than 20 late-time conductors identified through the VTEM survey flown in 2008 that covers over 60km of prospective strike. VMS deposits typically occur in clusters, where multiple deposits can be located in similar geological districts. These districts can host tens of VMS deposits that range in size from less than 1Mt to exceeding 100Mt. Since estimating the Maiden Mineral Resource Estimate¹ ("MRE") at IPO in 2021 of **4.6Mt @ 1.0% Cu, 3.9% Zn, 0.4% Pb & 20g/t Ag** (based on historical drill results completed by the CPRM), Alvo has completed >19,500m of diamond drilling and 1,467m of Reverse Circulation ("RC") drilling. In addition, the Company has completed extensive geological logging, multiple geophysical surveys (IP, FLEM and DHEM) and completed over 4,100m of regional auger geochemical drilling across the 70+ km of prospective geology. This information gathered has enhanced Alvo's technical team's knowledge and understanding of the Palma VMS district, enabling the team to continue effective exploration across the regional target area. Exploration work is underway across multiple prospects with the aim of advancing a pipeline of prospects to drill-ready status. Field activities including geological mapping, soil sampling, auger geochemical drilling ("Auger"), IP surveys and fixed loop electromagnetic surveys ("FLEM") are being undertaken concurrently on various prospects within the district. Sampling (soils, trenching and auger geochemistry) is typically processed in Alvo's core shed where preparation includes drying (several drying ovens have been built), screening and then samples are tested with a hand-held XRF. Utilising the Company's in-house equipment allows for flexible, fast and efficient exploration that is significantly less expensive than contracted exploration, as the only material expense is labour. Figure 1: Exploration by Alvo at Palma VMS after the IPO in October 2021 ¹ Full details of the Palma Project MRE including JORC tables is contained within the Company's Prospectus lodged with ASX on 18 October 2021 2 Figure 2: Palma Regional map with tenement areas and selected prospects ## **Urubu Prospect – Possible Northern Extension of C3 Deposit** Exploration at the Urubu prospect has been ongoing over the last few months with recent data combining into a compelling near drill-ready exploration target. In Figure 3 below, a combined image of soil geochemistry and a series of IP surveys demonstrates the potential for Urubu to be an offset northern extension of the C3 deposit. The soil geochemical anomaly is weaker than C3, however transported cover in drainage (alluvium) inhibits effective soil sampling so auger geochemistry will be utilised. The IP survey illustrates a consistent chargeability anomaly extending from C3 to the north. In Figure 4, FLEM survey results show an extensive and coherent conductor which closely coincides with the soil geochemistry and IP results. The conductive anomaly at Urubu has similar conductive and thickness values to C3. Once the inversion of the FLEM survey has been completed the conductive plates will be incorporated into the exploration plan. Auger Geochemistry is planned at Urubu and depending on the combined results, diamond drilling will be used to test the prospect. Figure 3: Geochemistry results and selected IP lines across C3 and the advancing Urubu prospect Figure 4: Urubu prospect FLEM survey results. Inversion underway to define the conductive plate locations # C5 Prospect – Advancing Towards Drill Ready Targets The C5 prospect presents an advanced prospect, first noted from CPRM historical reports. The CPRM reference a single mineralised drillhole at C5, however the location of this hole has yet to be discovered on the ground. Alvo is advancing exploration at C5 based on broad spaced soil geochemical and geophysical surveys, to be further detailed subject to success up until the point of drill readiness. To date, Alvo has conducted soil geochemical sampling (800 x 50m) and followed up on areas which returned positive results (400 x 50m). Two main coincident geochemical anomalies (Zn, Cu and Pb), separated by a mapped fault zone, extend for a combined 2.5km aligned in a north-south orientation (see Figure 5). Dipole-dipole lines of IP across the geochemical anomalies has confirmed a close association of the geochemical anomalies and IP chargeability and resistivity. This is seen as an encouraging sign for mineralisation and additional work is underway with a series of FLEM surveys planned to be executed in coming weeks. Auger drilling and trenching will be considered if FLEM surveys are successful in delineating a conductive anomaly. Figure 5: C5 prospect with geochemical anomalies and IP lines illustrating chargeability. #### **Afla Project – Exploration Program** Exploration at the Afla Project will follow the same methodical approach that Alvo is applying across the Palma Project. Alvo signed an earn-in agreement over 5 exploration permits 98km².² In Figure 6, first pass auger geochemistry has been planned across the tenements. Auger drilling will take advantage of existing roads and sample on 200m spacing, with priority 1 and priority 2 sampling defined. For soil geochemistry, priority 1 and 2 sampling programs have also been defined, based on historical soil sampling and VTEM anomalies. Figure 6: Afla earn-in area, preliminary Planned Auger and soil geochemistry work programs ## **Condor Prospect – Auger Geochemical Anomaly** Auger drilling to the north of C3 has highlighted a series of geochemical anomalies based on the regional broad spaced auger drilling program. At the Condor prospect, auger geochemistry on 5 consecutive holes on 200m spacing has intercepted anomalous samples (Cu, Zn and Pb) and additional work around closer spaced drilling, mapping and IP testing is planned based on ongoing positive results. To the best of Alvo's knowledge, the Condor
prospect has never been sampled. Auger geochemical drilling will utilise the existing roads and fence lines to quickly sample the Palma District and the initial sampling has highlighted several targets similar to Condor. ² See ASX Release "Earn-In on Afla Cu/Zn Project Consolidates Palma VMS Belt" dated 28 March 2023. Figure 7: Condor Prospect (top right) and location of auger drilling over geology with the anomalous Cu, Zn and Pb samples highlighted. Cross section through the Condor anomaly (bottom right) #### **Next Steps and Upcoming Newsflow** - Phase 2 Diamond Drilling at C1 Deposit Ongoing - Auger geochemical Drilling using Alvo's new truck mounted mechanical Auger Ongoing - DHEM surveys at C3 and C1 Ongoing - FLEM surveys on regional targets across Palma Ongoing - Geochemical sampling across known exploration prospects Ongoing - Metallurgical test work at C3 Ongoing - Metallurgical test work at C1- Ongoing - IP surveys at C3, C1 and regional targets Ongoing - Updated Mineral Resource Estimate at C3 Q3 CY2023 - Updated Mineral Resource Estimate at C1 Q4 CY2023 This announcement has been approved for release by the Board of Alvo Minerals Limited. #### **ENQUIRIES** For more information contact: Media or broker enquiries: **Rob Smakman** Managing Director Alvo Mineral Limited rob@alvo.com.au +61 402 736 773 **Fiona Marshall** Senior Communications Advisor White Noise Communications fiona@whitenoisecomms.com +61 400 512 109 #### **References to Previous ASX Announcements** Reference in this report is made to previous announcements including: As reported in the announcement "ALVO LAUNCHES MAIDEN DRILL PROGRAM AT C3" dated 26 October 2021 issued by Alvo Minerals Limited As reported in the announcement "ALVO INTERCEPTS BROAD ZONE IN TE FIRST HOLE AT C3" dated 4 November 2021 issued by Alvo Minerals Limited As reported in the announcement "ALVO TO INITIATE EM SURVEY AND SECURES ADDITIONAL RIG FOR 2022" dated 8 December 2021 issued by Alvo Minerals Limited As reported in the announcement "C3 DELIVERS EXCEPTIONAL DRILL RESULTS INCLUDING 10.57m @ 6.27% COPPER & 14.76% ZINC" dated 14 February 2022 issued by Alvo Minerals Limited As reported in the announcement "FURTHER OUTSTANDING DRILL RESULTS INCLUDING 36m @ 1.49% COPPER & 8.58% ZINC" dated 30 March 2022 issued by Alvo Minerals Limited As reported in the announcement "MULTIPLE DISCOVERY AND EXTENSIONAL TARGETS HIGHLIGHTED BY EM SURVEYS" dated 8 July 2022 issued by Alvo Minerals Limited As reported in the announcement "FLEM CONDUCTORS & MINERALISED GOSSANS DEFINE HIGH PRIORITY TARGETS, DRILLING UNDERWAY" dated 16 August 2022 issued by Alvo Minerals Limited As reported in the announcement "ALVO DELIVERS DRILLING INTERCEPTS UP TO 4.3% CU, 17% ZN & 184G/T AG" dated 30 August 2022 issued by Alvo Minerals Limited As reported in the announcement "DRILLING AT PALMA EXPANDS POLYMETALLIC POTENTIAL" dated 18 October 2022 issued by Alvo Minerals Limited As reported in the announcement "PRELIMINARY METALLURGICAL TESTWORK INDICATES EXCELLENT RECOVERIES" dated 9 November 2022 issued by Alvo Minerals Limited As reported in the announcement "Large Extension of High-Grade Copper and Zinc Mineralisation – 19 January 2023 issued by Alvo Minerals Limited In relation to the MRE and other exploration results or estimates cross-referenced above, these are extracted from the Independent Geologists' Report prepared by Target Latin America and others (the "IGR"), which is included in full in Alvo's prospectus dated 30 July 2021 (the "Prospectus") and which was announced to ASX within the Prospectus on 18 October 2021. Alvo confirms that it is not aware of any new information or data that materially affects the information included in the IGR and that all the material assumptions and technical parameters underpinning the Inferred Mineral Resource Estimate continue to apply and have not materially changed. #### **Forward Looking Statements** Statements regarding plans with respect to Alvo's Palma Project and its exploration program are forward-looking statements. Forward-looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside Alvo's control and actual values, results or events may be materially different to those expressed or implied herein. Alvo does not undertake any obligation, except where expressly required to do so by law, to update or revise any information or any forward-looking statement to reflect any changes in events, conditions, or circumstances on which any such forward-looking statement is based. #### **Competent Person's Statement** The information contained in this announcement that relates to recent exploration results is based upon information compiled by Mr Rob Smakman of Alvo Minerals Limited, a Competent Person and Fellow of the Australasian Institute of Mining and Metallurgy. Mr Smakman is a full-time employee of Alvo and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the "Australasian Code for Reporting of Mineral Resources and Ore Reserves" (or JORC 2012). Mr Smakman consents to the inclusion in this announcement of the matters based upon the information in the form and context in which it appears. #### **ABOUT ALVO** **Alvo Minerals (ASX: ALV)** is a base and precious metals exploration company, hunting high-grade copper and zinc at its flagship Palma Project, located in Central Brazil. The Palma Project has a JORC 2012 Inferred Mineral Resource Estimate - 4.6Mt @ 1.0% Cu, 3.9% Zn, 0.4% Pb & 20g/t Ag. Alvo's strategic intent is to aggressively explore and deliver growth through discovery, leveraging managements' extensive track record in Brazil. There are three phases to the exploration strategy — *Discover, Expand and Upgrade*. Alvo is committed to fostering best in class stakeholder relations and supporting the local communities in which it operates. Table 1: Collar details | HOLE_ID | EASTING | NORTHING | RL | Depth | |---------|---------|-----------|-----|-------| | PAG0001 | 793,020 | 8,567,727 | 393 | 12 | | PAG0002 | 793,074 | 8,567,709 | 393 | 8 | | PAG0003 | 792,974 | 8,567,741 | 393 | 16 | | PAG0004 | 793,043 | 8,567,788 | 391 | 12 | | PAG0005 | 792,939 | 8,567,645 | 396 | 10 | | PAG0006 | 792,999 | 8,567,886 | 389 | 10 | | PAG0007 | 793,077 | 8,567,864 | 387 | 5 | | PAG0008 | 793,149 | 8,567,835 | 387 | 4 | | PAG0009 | 793,129 | 8,567,932 | 393 | 3 | | PAG0010 | 793,032 | 8,567,966 | 394 | 9 | | PAG0011 | 792,985 | 8,567,985 | 394 | 9 | | PAG0012 | 792,868 | 8,567,884 | 393 | 5 | | PAG0013 | 792,824 | 8,567,901 | 395 | 4 | | PAG0014 | 792,772 | 8,567,906 | 396 | 4 | | PAG0015 | 792,961 | 8,567,852 | 391 | 10 | | PAG0016 | 792,914 | 8,567,867 | 392 | 3 | | PAG0017 | 793,008 | 8,567,832 | 390 | 11 | | PAG0018 | 793,054 | 8,567,815 | 389 | 14 | | PAG0019 | 793,102 | 8,567,796 | 389 | 4 | | PAG0020 | 793,190 | 8,567,885 | 392 | 4 | | PAG0021 | 793,224 | 8,567,853 | 394 | 8 | | PAG0022 | 793,324 | 8,567,823 | 399 | 8 | | PAG0023 | 793,089 | 8,567,905 | 389 | 9 | | PAG0024 | 793,041 | 8,567,926 | 391 | 6 | | PAG0025 | 792,993 | 8,567,942 | 392 | 8 | | PAG0026 | 792,945 | 8,567,960 | 393 | 7 | | PAG0027 | 792,926 | 8,567,754 | 393 | 8 | | PAG0028 | 792,884 | 8,567,772 | 394 | 3 | | PAG0029 | 793,116 | 8,567,687 | 393 | 6 | | PAG0030 | 792,986 | 8,567,628 | 395 | 12 | | PAG0031 | 793,033 | 8,567,611 | 394 | 8 | | PAG0032 | 793,080 | 8,567,594 | 394 | 10 | | PAG0033 | 793,128 | 8,567,576 | 394 | 10 | | PAG0034 | 793,163 | 8,567,550 | 395 | 10 | | PAG0035 | 793,188 | 8,567,450 | 395 | 7 | | PAG0036 | 793,143 | 8,567,464 | 395 | 7 | | PAG0037 | 793,094 | 8,567,483 | 395 | 11 | | PAG0038 | 793,046 | 8,567,500 | 396 | 10 | | PAG0039 | 793,000 | 8,567,515 | 396 | 12 | | PAG0040 | 792,955 | 8,567,533 | 397 | 14 | | PAG0041 | 792,921 | 8,567,558 | 398 | 8 | | PAG0042 | 792,785 | 8,567,811 | 396 | 10 | | HOLE_ID | EASTING | NORTHING | RL | Depth | |---------|---------|-----------|-----|-------| | PAG0043 | 792,962 | 8,567,424 | 398 | 10 | | PAG0044 | 793,011 | 8,567,406 | 397 | 7 | | PAG0045 | 793,058 | 8,567,389 | 397 | 10 | | PAG0046 | 793,106 | 8,567,372 | 396 | 10 | | PAG0047 | 793,153 | 8,567,355 | 396 | 8 | | PAG0048 | 793,208 | 8,567,346 | 396 | 10 | | PAG0049 | 792,983 | 8,567,313 | 398 | 16 | | PAG0050 | 793,006 | 8,567,205 | 399 | 8 | | PAG0051 | 792,605 | 8,567,446 | 405 | 18 | | PAG0052 | 792,569 | 8,567,354 | 408 | 14 | | PAG0053 | 792,615 | 8,567,338 | 409 | 10 | | PAG0054 | 792,661 | 8,567,318 | 400 | 12 | | PAG0055 | 794,471 | 8,542,526 | 448 | 6 | | PAG0056 | 794,575 | 8,542,511 | 448 | 8 | | PAG0057 | 794,674 | 8,542,501 | 446 | 7 | | PAG0058 | 794,773 | 8,542,488 | 445 | 7 | | PAG0059 | 794,876 | 8,542,475 | 442 | 6 | | PAG0060 | 794,979 | 8,542,478 | 439 | 13 | | PAG0061 | 795,181 | 8,542,484 | 430 | 11 | | PAG0062 | 795,418 | 8,542,493 | 423 | 8 | | PAG0063 | 795,630 | 8,542,559 | 423 | 8 | | PAG0064 | 795,822 | 8,542,622 | 416 | 10 | | PAG0065 | 796,008 | 8,542,692 | 408 | 8 | | PAG0066 | 796,204 | 8,542,752 | 401 | 10 | | PAG0067 | 796,404 | 8,542,742 | 392 | 12 | | PAG0068 | 796,575 | 8,542,856 | 387 | 16 | | PAG0069 | 796,718 | 8,542,981 | 386 | 8 | | PAG0070 | 796,908 | 8,543,053 | 381 | 10 | | PAG0071 | 797,097 | 8,543,100 | 381 | 12 | | PAG0072 | 797,291 | 8,543,068 | 383 | 12 | | PAG0073 | 797,474 | 8,542,986 | 385 | 10 | | PAG0074 | 797,656 | 8,542,898 | 382 | 16 | | PAG0075 | 797,845 | 8,542,867 | 383 | 16 | | PAG0076 | 798,034 | 8,542,926 | 381 | 16 | | PAG0077 | 798,226 | 8,542,982 | 380 | 16 | | PAG0078 | 798,425 | 8,543,055 | 377 | 14 | | PAG0079 | 798,608 | 8,543,099 | 379 | 16 | | PAG0080 | 798,802 | 8,543,158 | 374 | 14 | | PAG0081 | 798,988 | 8,543,221 | 376 | 10 | | PAG0082 | 799,185 | 8,543,295 | 375 | 14 | | PAG0083 | 799,357 | 8,543,247 | 371 | 16 | | PAG0084 | 799,511 | 8,543,122 | 363 | 16 | | PAG0085 | 799,678 |
8,542,993 | 355 | 20 | | | HOLE_ID | EASTING | NORTHING | RL | Depth | |----------|---------|---------|-----------|-----|-------| | | PAG0086 | 799,815 | 8,542,857 | 350 | 7 | | - | PAG0087 | 799,949 | 8,542,705 | 341 | 10 | | | PAG0088 | 800,139 | 8,542,742 | 332 | 6 | | | PAG0089 | 800,334 | 8,542,700 | 332 | 10 | | | PAG0090 | 800,512 | 8,542,613 | 334 | 6 | | | PAG0091 | 800,663 | 8,542,482 | 336 | 10 | | | PAG0092 | 800,832 | 8,542,378 | 328 | 8 | | | PAG0093 | 801,030 | 8,542,417 | 329 | 6 | | | PAG0094 | 801,887 | 8,542,878 | 333 | 6 | | | PAG0095 | 801,943 | 8,543,070 | 340 | 10 | | 90 | PAG0096 | 802,091 | 8,543,200 | 351 | 12 | | | PAG0097 | 802,104 | 8,543,392 | 358 | 17 | | 26 | PAG0098 | 802,072 | 8,543,588 | 349 | 12 | | (U/) | PAG0099 | 802,092 | 8,543,785 | 350 | 10 | | | PAG0100 | 802,242 | 8,543,916 | 361 | 20 | | | PAG0101 | 802,409 | 8,544,031 | 361 | 8 | | | PAG0102 | 802,457 | 8,544,209 | 359 | 10 | | | PAG0103 | 802,614 | 8,544,223 | 362 | 16 | | ODE | PAG0104 | 802,803 | 8,544,184 | 357 | 12 | | | PAG0105 | 803,006 | 8,544,168 | 352 | 14 | | 7 | PAG0106 | 803,200 | 8,544,167 | 345 | 12 | | | PAG0107 | 803,388 | 8,544,108 | 339 | 8 | | | PAG0108 | 803,600 | 8,544,048 | 332 | 8 | | | PAG0109 | 803,778 | 8,543,994 | 329 | 8 | | 16 | PAG0110 | 803,890 | 8,543,846 | 327 | 8 | | (O/) | PAG0111 | 803,979 | 8,543,688 | 321 | 4 | | | PAG0112 | 804,143 | 8,543,868 | 324 | 10 | | | PAG0113 | 804,340 | 8,543,909 | 319 | 6 | | | PAG0114 | 804,906 | 8,544,482 | 310 | 4 | | | PAG0115 | 804,584 | 8,544,684 | 322 | 8 | | | PAG0116 | 804,532 | 8,544,878 | 338 | 6 | | | PAG0117 | 804,407 | 8,544,940 | 335 | 8 | | ~ | PAG0118 | 804,015 | 8,544,909 | 332 | 8 | | | PAG0119 | 803,822 | 8,544,913 | 341 | 10 | | | PAG0120 | 803,615 | 8,544,926 | 354 | 16 | | | PAG0121 | 803,422 | 8,544,923 | 353 | 14 | | Пп | PAG0122 | 803,220 | 8,544,927 | 354 | 12 | | | PAG0123 | 803,026 | 8,544,932 | 359 | 12 | | | PAG0124 | 802,798 | 8,544,931 | 373 | 20 | | <u> </u> | PAG0125 | 802,620 | 8,544,953 | 374 | 14 | | _ | PAG0126 | 802,426 | 8,544,996 | 380 | 12 | | <u>-</u> | PAG0127 | 802,224 | 8,545,035 | 378 | 2 | | _ | PAG0128 | 802,032 | 8,545,064 | 379 | 8 | | | PAG0129 | 801,834 | 8,545,084 | 381 | 6 | | HOLE_ID | EASTING | NORTHING | RL | Depth | |---------|---------|-----------|-----|-------| | PAG0130 | 801,630 | 8,545,105 | 381 | 12 | | PAG0131 | 801,437 | 8,545,138 | 388 | 5 | | PAG0132 | 794,538 | 8,544,276 | 400 | 10 | | PAG0133 | 794,697 | 8,544,350 | 403 | 10 | | PAG0134 | 794,878 | 8,544,440 | 405 | 12 | | PAG0135 | 795,052 | 8,544,346 | 396 | 10 | | PAG0136 | 795,212 | 8,544,232 | 384 | 4 | | PAG0137 | 795,528 | 8,544,347 | 387 | 4 | | PAG0138 | 795,338 | 8,544,312 | 382 | 8 | | PAG0139 | 795,708 | 8,544,398 | 392 | 6 | | PAG0140 | 795,891 | 8,544,327 | 400 | 8 | | PAG0141 | 796,058 | 8,544,235 | 408 | 10 | | PAG0142 | 796,256 | 8,544,238 | 404 | 10 | | PAG0143 | 796,410 | 8,544,341 | 398 | 4 | | PAG0144 | 796,577 | 8,544,452 | 395 | 12 | | PAG0145 | 796,746 | 8,544,562 | 387 | 10 | | PAG0146 | 796,906 | 8,544,674 | 385 | 10 | | PAG0147 | 797,084 | 8,544,771 | 381 | 10 | | PAG0148 | 797,273 | 8,544,832 | 375 | 10 | | PAG0149 | 797,406 | 8,544,680 | 374 | 8 | | PAG0150 | 797,549 | 8,544,591 | 365 | 6 | | PAG0151 | 797,699 | 8,544,703 | 360 | 8 | | PAG0152 | 797,910 | 8,544,784 | 355 | 2 | | PAG0153 | 798,063 | 8,544,812 | 352 | 6 | | PAG0154 | 798,190 | 8,544,986 | 361 | 5 | | PAG0155 | 798,273 | 8,545,148 | 372 | 6 | | PAG0156 | 798,739 | 8,553,782 | 369 | 6 | | PAG0157 | 798,578 | 8,553,644 | 372 | 8 | | PAG0158 | 798,436 | 8,553,515 | 373 | 10 | | PAG0159 | 798,273 | 8,553,390 | 378 | 10 | | PAG0160 | 798,095 | 8,553,311 | 379 | 7 | | PAG0161 | 797,890 | 8,553,266 | 379 | 12 | | PAG0162 | 797,707 | 8,553,226 | 380 | 10 | | PAG0163 | 797,526 | 8,553,187 | 378 | 6 | | PAG0164 | 797,317 | 8,553,142 | 389 | 6 | | PAG0165 | 797,144 | 8,553,040 | 388 | 8 | | PAG0166 | 796,997 | 8,552,902 | 388 | 6 | | PAG0167 | 796,874 | 8,552,748 | 391 | 8 | | PAG0168 | 796,729 | 8,552,622 | 391 | 8 | | PAG0169 | 796,566 | 8,552,498 | 395 | 8 | | PAG0170 | 796,405 | 8,552,377 | 394 | 10 | | PAG0171 | 796,243 | 8,552,238 | 397 | 8 | | PAG0172 | 796,083 | 8,552,147 | 397 | 12 | | PAG0173 | 795,884 | 8,552,138 | 403 | 12 | | | HOLE_ID | EASTING | NORTHING | RL | Depth | |------|---------|---------|-----------|-----|-------| | | PAG0174 | 795,678 | 8,552,158 | 406 | 12 | | | PAG0175 | 795,478 | 8,552,176 | 415 | 14 | | | PAG0176 | 795,297 | 8,552,245 | 421 | 10 | | | PAG0177 | 795,116 | 8,552,344 | 424 | 14 | | | PAG0178 | 794,953 | 8,552,438 | 426 | 14 | | | PAG0179 | 794,779 | 8,552,540 | 424 | 8 | | | PAG0180 | 794,605 | 8,552,632 | 423 | 6 | | | PAG0181 | 794,409 | 8,552,683 | 429 | 6 | | | PAG0182 | 794,065 | 8,552,897 | 424 | 2 | | | PAG0183 | 793,903 | 8,552,982 | 419 | 2 | | 9 | PAG0184 | 793,762 | 8,553,123 | 419 | 10 | | | PAG0185 | 793,604 | 8,553,242 | 419 | 6 | | 00 | PAG0186 | 793,466 | 8,553,355 | 413 | 6 | | | PAG0187 | 792,309 | 8,558,002 | 413 | 6 | | | PAG0188 | 792,416 | 8,558,174 | 413 | 10 | | | PAG0189 | 792,526 | 8,558,344 | 412 | 8 | | | PAG0190 | 792,631 | 8,558,512 | 405 | 6 | | | PAG0191 | 792,737 | 8,558,683 | 403 | 8 | | GD | PAG0192 | 792,843 | 8,558,851 | 393 | 6 | | (GU) | PAG0193 | 792,996 | 8,558,915 | 386 | 6 | | | PAG0194 | 793,145 | 8,558,885 | 379 | 4 | | | PAG0195 | 797,129 | 8,557,925 | 351 | 10 | | | PAG0196 | 796,965 | 8,557,823 | 355 | 10 | | | PAG0197 | 796,771 | 8,557,756 | 354 | 16 | | 46 | PAG0198 | 796,605 | 8,557,648 | 350 | 8 | | (O/) | PAG0199 | 796,450 | 8,557,541 | 343 | 4 | | | PAG0200 | 796,308 | 8,557,392 | 342 | 6 | | | PAG0201 | 796,174 | 8,557,269 | 335 | 5 | | | PAG0202 | 796,242 | 8,557,084 | 340 | 6 | | | PAG0203 | 796,269 | 8,556,904 | 342 | 6 | | | PAG0204 | 796,091 | 8,556,816 | 349 | 8 | | | PAG0205 | 795,907 | 8,556,740 | 347 | 8 | | | PAG0206 | 795,725 | 8,556,659 | 357 | 8 | | | PAG0207 | 795,540 | 8,556,579 | 362 | 8 | | | PAG0208 | 795,341 | 8,556,600 | 361 | 10 | | | PAG0209 | 795,147 | 8,556,622 | 359 | 8 | | Пп | PAG0210 | 794,943 | 8,556,645 | 354 | 6 | | | PAG0211 | 794,745 | 8,556,669 | 358 | 8 | | | PAG0212 | 794,549 | 8,556,694 | 362 | 10 | | | PAG0213 | 794,349 | 8,556,718 | 364 | 6 | | | PAG0214 | 794,153 | 8,556,736 | 370 | 12 | | | PAG0215 | 793,952 | 8,556,773 | 373 | 10 | | | PAG0216 | 793,758 | 8,556,813 | 377 | 6 | | | PAG0217 | 793,561 | 8,556,855 | 382 | 6 | | HOLE_ID | EASTING | NORTHING | RL | Depth | |---------|---------|-----------|-----|-------| | PAG0218 | 793,366 | 8,556,894 | 380 | 4 | | PAG0219 | 793,178 | 8,556,936 | 389 | 4 | | PAG0220 | 792,972 | 8,556,959 | 390 | 6 | | PAG0221 | 792,764 | 8,556,945 | 385 | 6 | | PAG0222 | 793,171 | 8,562,509 | 407 | 6 | | PAG0223 | 792,988 | 8,562,410 | 411 | 6 | | PAG0224 | 792,814 | 8,562,343 | 410 | 8 | | PAG0225 | 792,617 | 8,562,398 | 419 | 6 | | PAG0226 | 792,434 | 8,562,390 | 429 | 6 | | PAG0227 | 792,269 | 8,562,281 | 437 | 10 | | PAG0228 | 792,127 | 8,562,136 | 439 | 4 | | PAG0229 | 791,970 | 8,562,187 | 456 | 6 | | PAG0230 | 791,790 | 8,562,274 | 454 | 8 | | PAG0231 | 791,593 | 8,562,314 | 451 | 10 | | PAG0232 | 791,392 | 8,562,314 | 450 | 8 | | PAG0233 | 791,292 | 8,562,313 | 448 | 6 | | PAG0234 | 790,993 | 8,562,310 | 447 | 6 | | PAG0235 | 790,797 | 8,562,314 | 450 | 12 | | PAG0236 | 790,588 | 8,562,313 | 454 | 8 | | PAG0237 | 790,399 | 8,562,312 | 459 | 5 | | PAG0238 | 789,675 | 8,563,766 | 441 | 14 | | PAG0239 | 789,777 | 8,563,928 | 439 | 6 | | PAG0240 | 789,881 | 8,564,073 | 433 | 6 | | PAG0241 | 790,026 | 8,564,252 | 433 | 10 | | PAG0242 | 790,143 | 8,564,403 | 432 | 8 | | PAG0243 | 790,268 | 8,564,566 | 429 | 8 | | PAG0244 | 790,401 | 8,564,700 | 428 | 10 | | PAG0245 | 790,559 | 8,564,813 | 421 | 6 | | PAG0246 | 790,677 | 8,564,974 | 419 | 4 | | PAG0247 | 790,837 | 8,565,087 | 418 | 6 | | PAG0248 | 791,000 | 8,565,204 | 417 | 8 | | PAG0249 | 791,165 | 8,565,318 | 421 | 8 | | PAG0250 | 791,285 | 8,565,481 | 429 | 8 | | PAG0251 | 791,378 | 8,565,659 | 422 | 8 | | PAG0252 | 791,475 | 8,565,827 | 425 | 8 | | PAG0253 | 791,608 | 8,565,943 | 425 | 8 | | PAG0254 | 791,809 | 8,565,973 | 419 | 8 | | PAG0255 | 796,167 | 8,572,179 | 351 | 4 | | PAG0256 | 796,040 | 8,572,014 | 345 | 8 | | PAG0257 | 795,994 | 8,571,865 | 348 | 6 | | PAG0258 | 795,803 | 8,571,843 | 358 | 16 | | PAG0259 | 795,614 | 8,571,838 | 356 | 8 | | PAG0260 | 795,442 | 8,571,729 | 357 | 6 | | PAG0261 | 795,275 | 8,571,636 | 356 | 6 | | | HOLE_ID | EASTING | NORTHING | RL | Depth | |--------------|---------|---------|-----------|-----|-------| | | PAG0262 | 795,118 | 8,571,510 | 348 | 6 | | | PAG0263 | 794,958 | 8,571,389 | 350 | 6 | | | PAG0264 | 794,804 | 8,571,269 | 364 | 6 | | | PAG0265 | 794,650 | 8,571,138 | 368 | 8 | | | PAG0266 | 794,507 | 8,571,003 | 370 | 8 | | | PAG0267 | 794,352 | 8,570,865 | 369 | 18 | | | PAG0268 | 794,181 | 8,570,745 | 362 | 12 | | | PAG0269 | 793,998 | 8,570,679 | 363 | 16 | | | PAG0270 | 793,836 | 8,570,549 | 362 | 8 | | | PAG0271 | 793,735 | 8,570,381 | 356 | 6 | | <i>a</i> | PAG0272 | 793,652 | 8,570,166 | 358 | 4 | | | PAG0273 | 793,565 | 8,569,977 | 361 | 8 | | 26 | PAG0274 | 793,486 | 8,569,807 | 373 | 10 | | (U/2) | PAG0275 | 793,383 | 8,569,631 | 373 | 8 | | | PAG0276 | 793,244 | 8,569,509 | 379 | 14 | | | PAG0277 | 793,042 | 8,569,385 | 381 | 6 | | | PAG0278 | 792,860 | 8,569,083 | 384 | 4 | | | PAG0279 | 792,795 | 8,568,890 | 385 | 6 | | | PAG0280 | 792,657 | 8,568,748 | 392 | 6 | | $(\zeta(U))$ | PAG0281 | 792,485 | 8,568,661 | 393 | 4 | | 7 | PAG0282 | 792,239 | 8,568,651 | 397 | 4 | | | PAG0283 | 792,086 | 8,568,653 | 398 | 4 | | | PAG0284 | 791,887 | 8,568,644 | 406 | 5 | | | PAG0285 | 791,689 | 8,568,636 | 414 | 8 | | | PAG0286 | 791,538 | 8,568,509 | 416 | 4 | | | PAG0287 | 791,361 | 8,568,410 | 423 | 6 | | | PAG0288 | 792,580 | 8,564,576 | 396 | 8 | | | PAG0289 | 791,644 | 8,564,674 | 396 | 6 | | (0) | PAG0290 | 791,836 | 8,564,688 | 392 | 6 | | | PAG0291 | 789,903 |
8,569,377 | 341 | 6 | | | PAG0292 | 790,010 | 8,569,348 | 351 | 6 | | | PAG0293 | 790,172 | 8,569,296 | 362 | 6 | | | PAG0294 | 790,323 | 8,569,172 | 381 | 4 | | | PAG0295 | 790,371 | 8,568,996 | 387 | 4 | | | PAG0296 | 790,560 | 8,568,948 | 405 | 3 | | | PAG0297 | 790,720 | 8,568,845 | 412 | 4 | | Пп | PAG0298 | 790,891 | 8,568,733 | 422 | 6 | | | PAG0299 | 791,081 | 8,568,679 | 427 | 5 | | | PAG0300 | 793,668 | 8,572,165 | 315 | 6 | | | PAG0301 | 793,838 | 8,572,144 | 309 | 6 | | | PAG0302 | 790,899 | 8,549,179 | 466 | 4 | | | PAG0303 | 790,994 | 8,549,141 | 457 | 4 | | | PAG0304 | 791,089 | 8,549,129 | 447 | 6 | | | PAG0305 | 791,181 | 8,549,100 | 445 | 4 | | HOLE_ID | EASTING | NORTHING | RL | Depth | |---------|---------|-----------|-----|-------| | PAG0306 | 791,265 | 8,549,046 | 436 | 6 | | PAG0307 | 791,361 | 8,549,042 | 432 | 10 | | PAG0308 | 791,464 | 8,549,063 | 429 | 8 | | PAG0309 | 791,564 | 8,549,073 | 427 | 8 | | PAG0310 | 791,682 | 8,549,030 | 427 | 10 | | PAG0311 | 791,729 | 8,549,103 | 429 | 6 | | PAG0312 | 791,786 | 8,549,142 | 431 | 8 | | PAG0313 | 791,882 | 8,549,166 | 430 | 14 | | PAG0314 | 791,965 | 8,549,217 | 433 | 8 | | PAG0315 | 792,066 | 8,549,247 | 440 | 6 | | PAG0316 | 792,160 | 8,549,277 | 443 | 6 | | PAG0317 | 792,251 | 8,549,304 | 452 | 6 | | PAG0318 | 792,355 | 8,549,334 | 459 | 6 | | PAG0319 | 792,446 | 8,549,368 | 459 | 8 | | PAG0320 | 792,559 | 8,549,390 | 464 | 4 | | PAG0321 | 792,667 | 8,549,402 | 468 | 6 | | PAG0322 | 792,741 | 8,549,409 | 469 | 4 | | PAG0323 | 792,840 | 8,549,403 | 466 | 6 | | PAG0324 | 792,943 | 8,549,396 | 463 | 6 | | PAG0325 | 793,042 | 8,549,388 | 461 | 2 | | PAG0326 | 793,149 | 8,549,380 | 460 | 3 | | PAG0327 | 793,213 | 8,549,342 | 462 | 3 | | PAG0328 | 793,287 | 8,549,276 | 465 | 10 | | PAG0329 | 793,365 | 8,549,207 | 466 | 12 | | PAG0330 | 793,430 | 8,549,148 | 466 | 10 | | PAG0331 | 793,514 | 8,549,078 | 463 | 10 | | PAG0332 | 793,589 | 8,549,012 | 459 | 10 | | PAG0333 | 793,660 | 8,548,943 | 453 | 8 | | PAG0334 | 793,737 | 8,548,877 | 452 | 10 | | PAG0335 | 793,818 | 8,548,818 | 449 | 10 | | PAG0336 | 793,897 | 8,548,758 | 447 | 10 | | PAG0337 | 793,978 | 8,548,700 | 446 | 9 | | PAG0338 | 794,061 | 8,548,634 | 448 | 2 | | PAG0339 | 794,146 | 8,548,576 | 446 | 3 | | PAG0340 | 794,225 | 8,548,522 | 445 | 6 | | PAG0341 | 794,293 | 8,548,454 | 446 | 4 | | PAG0342 | 794,367 | 8,548,388 | 447 | 7 | | PAG0343 | 794,445 | 8,548,315 | 443 | 10 | | PAG0344 | 791,455 | 8,547,928 | 435 | 10 | | PAG0345 | 791,527 | 8,547,991 | 434 | 10 | | PAG0346 | 791,553 | 8,548,093 | 429 | 10 | | PAG0347 | 791,611 | 8,548,174 | 424 | 10 | | PAG0348 | 791,685 | 8,548,231 | 419 | 6 | | PAG0349 | 791,762 | 8,548,302 | 414 | 4 | | | HOLE_ID | EASTING | NORTHING | RL | Depth | |------------------|---------|---------|-----------|-----|-------| | | PAG0350 | 791,976 | 8,548,630 | 408 | 6 | | | PAG0351 | 791,932 | 8,548,715 | 418 | 14 | | | PAG0352 | 791,887 | 8,548,795 | 424 | 8 | | | PAG0353 | 791,819 | 8,548,888 | 427 | 10 | | | PAG0354 | 791,755 | 8,548,954 | 427 | 10 | | | PAG0355 | 793,967 | 8,547,559 | 412 | 4 | | | PAG0356 | 793,895 | 8,547,733 | 406 | 6 | | | PAG0357 | 793,730 | 8,547,874 | 407 | 10 | | | PAG0358 | 793,551 | 8,547,898 | 419 | 12 | | | PAG0359 | 793,412 | 8,547,942 | 427 | 8 | | G15 | PAG0360 | 793,180 | 8,548,018 | 429 | 10 | | | PAG0361 | 793,090 | 8,548,066 | 432 | 10 | | 20 | PAG0362 | 793,044 | 8,548,147 | 428 | 6 | | \mathbb{Q}^{2} | PAG0363 | 793,006 | 8,548,234 | 434 | 12 | | | PAG0364 | 792,957 | 8,548,321 | 438 | 12 | | | PAG0365 | 792,886 | 8,548,392 | 440 | 8 | | | PAG0366 | 792,783 | 8,548,433 | 439 | 12 | | | PAG0367 | 792,704 | 8,548,482 | 441 | 12 | | ODE | PAG0368 | 792,623 | 8,548,533 | 442 | 11 | | 60 | PAG0369 | 795,634 | 8,552,158 | 408 | 20 | | | PAG0370 | 795,575 | 8,552,166 | 411 | 14 | | | PAG0371 | 795,533 | 8,552,169 | 413 | 16 | | | PAG0372 | 795,431 | 8,552,177 | 417 | 14 | | | PAG0373 | 795,371 | 8,552,201 | 419 | 18 | | 20 | PAG0374 | 795,342 | 8,552,217 | 420 | 11 | | | PAG0375 | 795,250 | 8,552,270 | 422 | 14 | | | PAG0376 | 795,203 | 8,552,297 | 423 | 9 | | | PAG0377 | 795,162 | 8,552,314 | 424 | 18 | | | PAG0378 | 795,048 | 8,552,380 | 425 | 16 | | | PAG0379 | 794,993 | 8,552,416 | 426 | 14 | | | PAG0380 | 794,908 | 8,552,458 | 427 | 22 | | | PAG0381 | 794,864 | 8,552,486 | 423 | 16 | | 7 | PAG0382 | 794,818 | 8,552,509 | 423 | 16 | | | PAG0383 | 794,730 | 8,552,563 | 423 | 12 | | | PAG0384 | 792,521 | 8,548,540 | 435 | 6 | | | PAG0385 | 792,422 | 8,548,539 | 425 | 6 | | Пп | PAG0386 | 792,321 | 8,548,534 | 420 | 6 | | | PAG0387 | 792,232 | 8,548,541 | 411 | 6 | | | PAG0388 | 797,400 | 8,569,540 | 334 | 8 | | | PAG0389 | 797,602 | 8,569,511 | 341 | 8 | | | PAG0390 | 797,810 | 8,569,473 | 351 | 10 | | | PAG0391 | 797,989 | 8,569,468 | 350 | 8 | | | PAG0392 | 798,137 | 8,569,591 | 344 | 6 | | | PAG0393 | 798,286 | 8,569,728 | 335 | 6 | | HOLE_ID | EASTING | NORTHING | RL | Depth | |---------|---------|-----------|-----|-------| | PAG0394 | 798,427 | 8,569,869 | 327 | 8 | | PAG0395 | 798,772 | 8,569,925 | 326 | 6 | | PAG0396 | 798,966 | 8,569,873 | 335 | 6 | | PAG0397 | 799,160 | 8,569,892 | 348 | 6 | | PAG0398 | 796,532 | 8,569,782 | 347 | 6 | | PAG0399 | 796,732 | 8,569,857 | 340 | 6 | | PAG0400 | 796,908 | 8,569,945 | 333 | 6 | | PAG0401 | 797,093 | 8,570,032 | 333 | 6 | | PAG0402 | 797,204 | 8,570,243 | 336 | 10 | | PAG0403 | 797,356 | 8,570,320 | 337 | 8 | | PAG0404 | 796,382 | 8,567,216 | 373 | 6 | | PAG0405 | 796,587 | 8,567,185 | 375 | 8 | | PAG0406 | 796,778 | 8,567,166 | 376 | 6 | | PAG0407 | 796,975 | 8,567,198 | 375 | 8 | | PAG0408 | 797,174 | 8,567,234 | 376 | 8 | | PAG0409 | 797,371 | 8,567,266 | 377 | 8 | | PAG0410 | 797,570 | 8,567,296 | 374 | 8 | | PAG0411 | 797,761 | 8,567,221 | 374 | 8 | | PAG0412 | 797,943 | 8,567,148 | 373 | 8 | | PAG0413 | 798,128 | 8,567,077 | 373 | 6 | | PAG0414 | 798,330 | 8,566,996 | 372 | 6 | | PAG0415 | 798,499 | 8,566,927 | 372 | 6 | | PAG0416 | 798,681 | 8,566,901 | 370 | 6 | | PAG0417 | 798,856 | 8,567,020 | 369 | 6 | | PAG0418 | 799,010 | 8,567,124 | 369 | 8 | | PAG0419 | 799,172 | 8,567,251 | 367 | 8 | | PAG0420 | 799,324 | 8,567,378 | 366 | 8 | | PAG0421 | 799,472 | 8,567,509 | 368 | 8 | | PAG0422 | 799,615 | 8,567,652 | 361 | 6 | | PAG0423 | 799,770 | 8,567,769 | 358 | 6 | | PAG0424 | 799,952 | 8,567,851 | 367 | 8 | | PAG0425 | 800,092 | 8,567,997 | 374 | 6 | | PAG0426 | 800,283 | 8,567,955 | 374 | 8 | | PAG0427 | 784,802 | 8,576,352 | 443 | 8 | | PAG0428 | 784,959 | 8,576,356 | 444 | 8 | | PAG0429 | 785,159 | 8,576,323 | 443 | 6 | | PAG0430 | 785,341 | 8,576,265 | 442 | 6 | | PAG0431 | 785,529 | 8,576,180 | 424 | 10 | | PAG0432 | 785,694 | 8,576,055 | 417 | 8 | | PAG0433 | 785,797 | 8,575,906 | 428 | 6 | | PAG0434 | 785,872 | 8,575,724 | 426 | 6 | | PAG0435 | 786,029 | 8,575,616 | 424 | 6 | | PAG0436 | 786,170 | 8,575,480 | 437 | 6 | | PAG0437 | 786,252 | 8,575,298 | 444 | 6 | | | HOLE_ID | EASTING | NORTHING | RL | Depth | |-----|---------|---------|-----------|-----|-------| | Ī | PAG0438 | 786,429 | 8,575,362 | 436 | 6 | | | PAG0439 | 786,624 | 8,575,406 | 437 | 6 | | | PAG0440 | 786,819 | 8,575,383 | 439 | 6 | | - | PAG0441 | 786,997 | 8,575,398 | 444 | 6 | | Ī | PAG0442 | 787,159 | 8,575,519 | 437 | 6 | | Ī | PAG0443 | 787,314 | 8,575,643 | 439 | 6 | | | PAG0444 | 787,484 | 8,575,770 | 442 | 10 | | | PAG0445 | 787,638 | 8,575,870 | 439 | 10 | | | PAG0446 | 787,818 | 8,575,965 | 431 | 10 | | Ī | PAG0447 | 787,995 | 8,576,055 | 423 | 8 | | Ī | PAG0448 | 788,173 | 8,576,150 | 420 | 4 | |) [| PAG0449 | 788,704 | 8,576,184 | 417 | 8 | | | PAG0450 | 788,883 | 8,576,101 | 420 | 8 | | | PAG0451 | 789,084 | 8,576,097 | 414 | 8 | | | PAG0452 | 789,281 | 8,576,080 | 408 | 6 | | | PAG0453 | 789,471 | 8,576,120 | 395 | 6 | | | PAG0454 | 789,661 | 8,576,178 | 383 | 10 | | Ī | PAG0455 | 789,864 | 8,576,155 | 376 | 8 | | | PAG0456 | 790,052 | 8,576,127 | 380 | 8 | | | PAG0457 | 790,246 | 8,576,094 | 370 | 6 | | 1 | PAG0458 | 790,448 | 8,576,093 | 359 | 8 | | Ì | PAG0459 | 790,643 | 8,576,090 | 353 | 6 | | Ī | PAG0460 | 790,844 | 8,576,086 | 346 | 12 | | | PAG0461 | 791,043 | 8,576,071 | 339 | 10 | | 1 | PAG0462 | 791,235 | 8,576,006 | 335 | 6 | | | PAG0463 | 791,366 | 8,575,857 | 335 | 8 | | | PAG0464 | 791,562 | 8,575,821 | 332 | 8 | | | PAG0465 | 791,941 | 8,575,724 | 335 | 8 | | | PAG0466 | 792,149 | 8,575,732 | 336 | 8 | | | PAG0467 | 792,329 | 8,575,717 | 334 | 8 | | ٠ľ | PAG0468 | 794,614 | 8,565,191 | 388 | 10 | | HOLE_ID | EASTING | NORTHING | RL | Depth | |---------|---------|-----------|-----|-------| | PAG0469 | 794,808 | 8,565,190 | 384 | 8 | | PAG0470 | 795,011 | 8,565,173 | 386 | 10 | | PAG0471 | 795,209 | 8,565,166 | 383 | 10 | | PAG0472 | 795,411 | 8,565,150 | 381 | 12 | | PAG0473 | 795,613 | 8,565,135 | 370 | 10 | | PAG0474 | 796,477 | 8,564,858 | 354 | 8 | | PAG0475 | 796,659 | 8,564,847 | 344 | 6 | | PAG0476 | 795,768 | 8,565,009 | 367 | 10 | | PAG0477 | 795,843 | 8,564,826 | 367 | 8 | | PAG0478 | 795,945 | 8,564,624 | 369 | 6 | | PAG0479 | 796,129 | 8,564,693 | 363 | 6 | | PAG0480 | 796,301 | 8,564,782 | 363 | 8 | | PAG0481 | 797,068 | 8,564,785 | 343 | 4 | | PAG0482 | 797,241 | 8,564,684 | 345 | 6 | | PAG0483 | 797,429 | 8,564,630 | 346 | 4 | | PAG0484 | 797,616 | 8,564,648 | 346 | 6 | | PAG0485 | 797,824 | 8,564,669 | 344 | 4 | | PAG0486 | 798,025 | 8,564,712 | 342 | 4 | | PAG0487 | 798,410 | 8,564,732 | 337 | 4 | | PAG0488 | 798,607 | 8,564,717 | 335 | 4 | | PAG0489 | 798,786 | 8,564,621 | 342 | 6 | | PAG0490 | 798,954 | 8,564,509 | 341 | 8 | | PAG0491 | 799,131 | 8,564,414 | 339 | 6 | | PAG0492 | 799,303 | 8,564,315 | 339 | 8 | | PAG0493 | 799,477 | 8,564,217 | 335 | 10 | | PAG0494 | 799,647 | 8,564,117 | 332 | 10 | | PAG0495 | 796,796 | 8,548,841 | 429 | 12 | | PAG0496 | 796,996 | 8,548,843 | 425 | 10 | | PAG0497 | 797,184 | 8,548,836 | 424 | 10 | #### **JORC Tables** **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all
succeeding sections, note data in this section is extracted from historic reports) | Criteria | JORC Code explanation | Commentary | |------------------------|---|--| | Sampling techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse Nickel that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Half diamond core was sampled and submitted for analysis, ensuring representivity of the sample zones. Sampling was typically 1m in mineralised zones unless the geologist determined a different length was appropriate. Areas away from the main mineralised zones may have been sampled as 2m composite samples. Sampling was supervised by Alvo geologists who selected the sampling zones. Geologists log the mineralisation as massive, semi-massive disseminated, stringer, brecciated or barren. These logs were used to determine the main mineralisation zones, which dictated the sampling. Mineralisation was also logged as potentially supergene mineralised in the oxidised zone. | | Drilling techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). | Standard-tube diamond drilling by independent drill contractor. Drillhole
diameter was variable- HW for collar and friable material, HQ diameter
was generally used until the base of complete oxidation and then the
diameter reduced to NQ. All holes are down-hole oriented using Reflex
Gyro tool. Drill core is oriented using NQ ACT 3 orienting tool from Reflex. | | —Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Recoveries are recorded by both the driller's assistant (on site) and Alvo field assistant once the core has been received at the core shed. Recoveries are measured by comparing the length of the drill run with the amount of core actually recovered. Recovery has averaged >95% for all drilling to date. Drillers are penalised for poor recovery and are constantly supervised at the rig to ensure care is taken to ensure high recoveries. No relationship is believed to exist between recovery and grade. | | Criteria | JORC Code explanation | Commentary | |--|--|--| | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | All holes have been geologically logged by Alvo geologists, to a detail relevant for inclusion in an MRE. Care is taken to ensure metallurgical factors are included (specifically the % of and type of sulphides present). Basic geotechnical logging is standard. Logging and core processing is both qualitative and quantitative. Core is photographed wet and dry, measured for magnetic susceptibility, conductivity, density, RQD and basic geotechnical logging. All core is structurally logged by geologists to look for planar and linear features. Measurements of these are taken on both oriented and non-oriented core. All drilling results reported have been logged onsite by Alvo geologists. Logs include hole number, hole location, date drilled, collar, dip and azimuth as well as qualitative data such as rock type, and descriptions of the colour, alteration, weathering, grainsize, mineralisation and texture. The Phase 2 drill program targeting the C3 deposit, 4,895m in 15 holes have been drilled to date. Drilling at Mafico (5 holes for 1,165m), Ema (4 holes for 1,150m), Pelicano (1 hole for 403m) and Pombo (1 hole for 202m). All metreage reported has been logged. | | Sub-sampling techniques and sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Drill core is sawn in half and one half (consistently the same half) of the core is sampled. The remaining half is stored by Alvo in its dedicated facility. Sample size, being generally 1m sample intervals, is
appropriate to the material being sampled and considered to be representative. | | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | SGS Geosol Laboratorios Ltda (SGS) are used for multi element and gold analyses on half diamond core. The lab techniques described below are considered appropriate for the style of mineralisation at the Palma Project Half drill core samples are dried, crushed until 75% pass 3mm, homogenised and split with 250-300g pulverised until 95% passing 150# Gold is determined by 30g fire assay Multi element (including Cu, Zn, Pb and Ag) are determined by multiacid digestion and ICP-OES. Samples ab ove 1% Zn, Cu, Pb or 100 g/t Ag are re-tested using a higher lower detection limit. Samples above 5% Pb are re-tested using a higher detection limit. The QA/QC data includes standards, blanks, duplicates and laboratory checks. Alvo inserts internationally certified standards at a rate of 1 in 10 samples, blanks 1 in ~25 samples. Duplicates are selected from the crushed samples at a rate of 1 in 20 samples and follow the same assaying procedure. Alvo has reviewed the QA/QC data for all lab samples and are satisfied the results are within acceptable limits | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Significant intercept tables are prepared by Alvo personal and checked by at least one other geologist. No twinned holes are being reported. All data is received from the laboratories and uploaded into exce spreadsheets where it is checked and uploaded into cloud storage. Once QA/QC procedures have been completed, the data is loaded into an Access database. No adjustments to the data were made. Weighted averages were used to calculate significant intercepts. For duplicates, the first sample is recorded for intercepts. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Alvo is using GPS to locate and record the drillhole collar locations. All drillholes are downhole surveyed using the Gyro tool from Reflex. All location data has been recorded SIRGAS 2000 UTM zone 22S. Topographic control is adequate for the exploration at Palma. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Drillholes were variably spaced- Phase 2 drilling at C3 has targeted stepouts from the 2021 JORC (2012) MRE and other holes considered important for any future MRE update. Drilling at Mafico, Ema and Pelicano are new targets and there is no grid for drilling at these prospects as yet. Drill spacing is considered sufficient to complement the previously reported Inferred JORC 2012 MRE. Results will improve the geological and grade continuity. No compositing has been applied to the results (beyond weight averaging the results). Some sampling at 2m intervals was applied in areas away from the main VMS mineralisation. | | Orientation of data in
relation to geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Drilling was oriented to intercept mineralisation as perpendicular as possible. No bias is believed to have occurred however geological and geophysical evidence suggests folding and faulting has occurred. Sampling lengths were generally 1m downhole, unless there was a specific geological control required by the geologist. Several 'scissor holes' (holes drilled in the opposite azimuth to the normal) were drilled in order to aid understanding of geological continuity and or ore-body orientation. C3 is generally planar in overall geometry, however ongoin interpretation has noted faults, folds and shear zones in the drilling which may have altered the geometry. All intercepts recorded are downhole intervals and may not equal true width. Scissor holes are reported the same and normally oriented holes. | | Sample security | The measures taken to ensure sample security. | Drillcore is transported from the field to a locked facility by Alvo or
drilling staff daily. Samples are prepared in the coreshed by Alvo staff
and transported to the lab by a dedicated transport company. | | Audits or reviews | The results of any audits or
reviews of sampling techniques
and data. | No audits of the techniques or data has been undertaken at this stage. | #### Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section) | Criteria | JORC Code explanation | Commentary | |---|---|--| | Mineral tenement and land tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The C3 prospect is located on exploration tenement 800.744/1978 which is a part of the agreement Alvo has with the CPRM (Geological Survey of Brazil). Alvo has the right to
explore and eventually transfer 100% of this and other tenements, subject to several staged payments, drilling and payment of 1.71% royalty (above statutory government royalties). Alvo is confident the tenement is in good standing and no known impediments exist for further exploration or eventual mining, apart from normal statutory reporting, local access agreements and state and federal approvals. | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Exploration was mainly completed by the CPRM . The work was completed to a high standard for the time and Alvo was able to estimate an inferred JORC compliant Mineral Resource Estimate based on the information and work completed by the CPRM. The interpretation of this historical work has guided much of the drilling and exploration to date which has been successful in upgrading and extending the geological potential. | | Geology | Deposit type, geological setting
and style of mineralisation. | The Palma polymetallic project is located principally in the Palmeiropolis volcano-sedimentary sequences (PVSS), composed of a series of bimodal volcanic rocks and associated sedimentary units, regionally metamorphosed to amphibolite facies. The mineralisation is of a Volcanogenic Massive Sulphide (VMS) type, occurring at or near the contact between a metamafic volcanic unit and meta-sedimentary schist and comprises pyrite, pyrrhotite, sphalerite, chalcopyrite, galena, occurring as disseminated, brecciated and massive form. | | Drill hole Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | See Table 2- Collar table. All drilling from C3 is included in Table 2. | | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and | The significant intercepts were calculated using minimum sample length of 1m, with up to 2m of consecutive dilution, samples included with values > 0.2%Cu or >0.5% Zn or >0.1g/t Au. No upper cuts were considered. Weighted averages were calculated for all intercepts. Copper equivalent grades are reported. Parameters for this calculation are; CuEq and ZnEq: Copper and Zinc Equivalent Calculation The metal equivalent grades are based on copper, zinc, silver, lead and gold prices of US\$7,782/t Copper, US\$3,189/t Zinc, US\$1,980/t Lead, US\$19.30/oz Silver, and US\$1,696/oz Gold ((price deck based on 3-month LME as 7/11/22) Recoveries of 81%, 83%, 70%, 50% and 50% respectively, (recoveries based on ASX Metallurgical testwork released 9 November 2022). The copper equivalent calculation is as follows: Cu Eq = | | Criteria | JORC Code explanation | Commentary | |--|---|--| | | some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Cu grade% * Cu recovery + ((Pb grade % * Pb recovery % * (Pb price \$/t/Cu price\$/t)) + (Zn grade % * Zn recovery % * (Zn price \$/t/Cu price \$/t)) + (Ag grade g/t /31.103 * Ag recovery % * (Ag price \$/oz/Cu price \$/t) + (Au grade g/t /31.103 * Au recovery % * (Au price \$/oz/Cu price \$/t). Reported on 100% Basis. | | Relationship between
mineralisation widths and
intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | At C3, the mineralised domain dips moderately to steeply towards east-southeast with the drill holes planned to cut the mineralised domain in a perpendicular manner. The downhole depths are reported, true width is not accurately known at this stage. The downhole depths are reported, true widths* is not accurately known at this stage. | | Diagrams | Appropriate maps and sections
(with scales) and tabulations of
intercepts should be included for
any significant discovery being
reported. These should include,
but not be limited to a plan view
of drill hole collar locations and
appropriate sectional views. | See diagrams reported in the announcement | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | All results are reported above the cut-offs described above. Not all of the holes are sampled. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Extensive exploration data and information has been completed at the Palma Project and previously reported. A summary is provided below; Airborne geophysics. There have been several combined aeromagnetic and radiometric surveys which cover the area, generally flown by Brazilian Government Agencies. These are generally broad spaced and useful for regional context. In 2008, private groups Lara Minerals and Voltorantim SA flew an heli-borne VTEM survey across the area which highlighted multiple conductors. These may be related to massive sulphide accumulations, however most of these potential conductors were not followed up. Drilling: Drilling by the CPRM was completed in the '70's and '80's and is included in this summary for the C1 and C3 prospects. CPRM also drilled other targets at C2, C4 and C5 where they discovered mineralisation. CPRM also drilled several targets that did not intersect economic mineralisation. JICA drilled 7 holes in the 1980's mainly around the C4 target. Lara/Votorantim drilled 11 holes into targets they defined from the VTEM survey. Metallurgical testwork: The CPRM completed several phases of metallurgical testwork including bench and pilot plant scale. This testwork | | | | is summarised in the Prospectus issued by Alvo Minerals Ltd in 2021. Alvo estimated a JORC compliant MRE for the C1 and C3 prospects. Ground geophysics has been completed by Alvo across these prospects | | | | Surveys have included fixed loop electromagnetic surveys (FLEM) Downhole electromagnetic surveys (DHEM) and Induced Polarisation Surveys (IP). | | Criteria | JORC Code explanation | Commentary | |--------------|---
--| | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Alvo will continue the diamond drilling program targeting the C1 depsoit. The program will evolve as results are received and will focus on upgrading and expanding the inferred MRE. Potential exists both along strike and at depth. Alvo has also started drilling on new prospects that have high geological probability of hosting mineralised sulphides. Alvo has in-house electromagnetic and Induced polarisation survey equipment and is performing FLEM, DHEM and IP surveys. It is expected these surveys will enhance the drilling program by delineating possible extensions of the highly conductive mineralisation. Alvo has purchased a truck mounted mechanical Auger drill rig allowing fast and effective Geochem sampling across the companies tenure. Alvo routinely soil sampling across the tenure, geologically maps and occasionally trenches prospects to better understand the under-surface geology and geochemistry. | | | | | | | | | | | | |