

<u>Comet Vale Project – Western Australia</u>

Labyrinth lays foundation for growth with completion of Resource and exploration strategy

JORC 2012 Resource of 96,000oz highlights outstanding potential for further growth with mineralisation open in all directions and numerous under-explored gold trends

Key Points

Combined open pit and underground Indicated and Inferred Mineral Resource of 619,000t @ 4.8 g/t Au for 95,710oz

Underground Resource of 56,233oz @ 7g/t (2.5g/t cut-off) shows high grade nature of the mineralisation

Open pit Resource of 39,477oz @ 3.3g/t (0.5g/t cut-off) highlights the potential to establish significant high-grade, shallow inventory; This would open the door to near-term mining and cashflow options

Notable high-grade Indicated Mineral Resource component of 42,000oz @ 10g/t Au (above 5g/t Au cut-off)

Resource is open in all directions, demonstrating substantial growth potential through both the near-mine and regional drilling across other known gold trends

Previous mining conducted at the property showed recoveries of 95% through conventional CIL processing at nearby toll treatment facilities¹

Mineral Resource prepared by an independent Competent Person and classified and reported in accordance with the JORC Code (2012)

Resource is based on an extensive drilling database and rigorous modelling by independent consultants Right Solutions Australia

Next Steps:

Receipt of assays from recently completed RC drill program targeting near-surface resource growth

Planning of deeper drilling targeting down dip high grade mineralisation identified during the Resource estimate

Regional exploration drilling targeting additional known gold and copper/gold trends

Regional exploration drilling for other known commodities present on the property including nickel laterite

¹ Refer ASX announcement 30 January 2020

Labyrinth Resources Limited (**Labyrinth** or **the Company**) (ASX: LRL) is pleased to announce the completion of the first stage of its growth strategy at the Comet Vale Gold Project in WA.

As part of this first stage, Labyrinth has completed an updated Indicated and Inferred Mineral Resource of 619,489t @ 4.81 g/t Au for 95,710oz and identified numerous opportunities to grow the inventory.

The Mineral Resource was prepared by a Competent Person and classified and reported in accordance with the JORC Code (2012).

The Comet Vale project is situated within the Ora Banda Domain within the Yilgarn Craton and has been mined periodically over many decades, most recently between 2018 and 2020.

The Company has undertaken a review and compilation of all available historic data to facilitate the production of a Mineral Resource reported in accordance with the JORC Code (2012).

The Indicated and Inferred Mineral Resource includes mineralisation within 10 lodes: 2 lodes (Domains 1-2) in the Sand Queen trend and 8 lodes (Domains 3-10) in the Princess Grace and Sand George trend (Table 9). Collectively these 10 domains make up the Sovereign Trend. In addition to the known mineralisation, there is also immense potential to grow the Mineral Resource given that the key lodes remain open along strike and at depth (Figures 12 and 13).

Labyrinth Chief Executive Matt Nixon said: "This is a robust Mineral Resource which lays the foundations for ongoing resource growth.

"We have defined a significant resource at consistent high grade across the historically mined areas for both open pit and underground scenarios to reinvigorate the Comet Vale Project at an exciting period for the gold market.

"The underground resource grade of 7g/t shows the high-grade nature and genuine potential of this deposit in a world class gold belt.

"Importantly, the estimate shows high grade mineralisation continues at depth and along strike. This provides immediate high priority drill targets to further grow the Resource.

"This Mineral Resource covers only the Sovereign Trend of lodes to a maximum depth of 400m below surface. With 7 other known mineralised gold trends as well as the potential for parallel systems to be discovered, there is significant growth potential across the Project.

"Following on from the success of this Mineral Resource, the Company looks forward to conducting drilling both for future resource growth as well as exploration to bring new discoveries into the pipeline".

Table 1: Comet Vale March 2	2023 Depleted Resource (A	Au>=0.5g/t OP and >=2.5g/t UG)

Comet Vale Depleted Resource, Au>=0.5g/t (OP) and Au>=2.5g/t (UG)								
Category	Tonnage	Au Grade (g/t)	Au Ounces					
Indicated	310,868	5.61	56,027					
Inferred	308,620	4.00	39,683					
Total	619,489	4.81	95,710					

Note: Estimates are rounded to reflect the level of confidence in the Mineral Resource at present. All resource tonnages have been rounded to the first significant figure. Differences may occur in totals due to rounding.

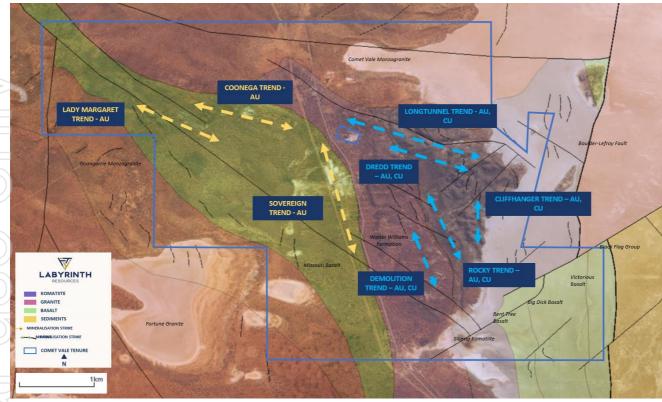


Figure 1 Comet Vale tenure highlighting known gold trends

Following the completion of the Mineral Resource Estimate, the global Indicated and Inferred Mineral Resource has been reported at two cut-off values to support both open pit and underground operations. A reporting cut-off value of 0.5g/t has been utilised for open pit (100m below surface) reporting while a reporting cut-off value of 2.5g/t has been utilised for underground. The combined reported Indicated and Inferred Mineral Resource is 619Kt at 4.81g/t for 96Koz of gold (**Au**) (Table 1).

- The global Inferred Mineral Resource estimate for open pit, at a reporting cut-off value of 0.5g/t:
 - o 369 Kt at 3.33 g/t for 39 Koz of Au (Table 2).
- The global Indicated and Inferred Mineral Resource Estimate for underground, at a reporting at a cut-off value of 2.5g/t:
 - \circ $\,$ 250 Kt at 6.98 g/t for 56 Koz of Au (
 - o Table 3).

Table 2: Comet Vale March 2023 Depleted Open Pit Resource (Au>=0.5g/t OP)

Comet Vale Depleted Resource, Au>=0.5g/t (OP)								
Category	Tonnage	Au Grade (g/t)	Au Ounces					
Indicated	182,478	4.34	25,455					
Inferred	186,482	2.34	14,022					
Total	368,960	3.33	39,477					

Comet Vale Depleted Resource, Au>=2.5g/t (UG)											
Category	Tonnage	Au Grade (g/t)	Au Ounces								
Indicated	128,390	7.41	30,572								
Inferred	122,138	6.53	25,661								
Total	250,528	6.98	56,233								

Table 3: Comet Vale March 2023 Depleted Underground Resource (Au>=2.5g/t UG)

Figure 2: Comet Vale Project Location Map

 \mathcal{Y} This announcement has been authorised and approved for release by the Board.

Investor Enquiries

Matt Nixon Chief Executive Officer admin@labyrinthresources.com Media Enquiries Paul Armstrong Read Corporate info@readcorporate.com.au

In compliance with the ASX Listing Rules 5.8.1 for the public reporting of a Mineral Resource, the Company provides the following information.

GEOLOGY AND GEOLOGICAL INTERPRETATION

Right Solutions Australia (**RSA**) have been engaged by Labyrinth Resources Limited (**LRL or the Company**) to complete a mineral resource estimate (**MRE**) for the Comet Vale Project in the Eastern Goldfields, Western Australia.

Comet Vale is situated 100km north-northwest of Kalgoorlie, Western Australia visible from the Goldfields Highway.

The focus of the MRE is on the Sovereign Trend within the Comet Vale Project (**CVP**). The CVP is currently on care and maintenance with previous underground mining ceasing in September 2020.

HISTORY

Gold was first discovered at the CVP in 1887, while the Sand Queen and Gladsome mines were not discovered until 1904. Mining occurred on these deposits intermittently for over 100 years with tenement ownership changing frequently with historic production is recorded as 245,000t for 185,000oz (ASX release Reed Resources Corporate Presentation dated 20 March 2003).

Labyrinth Resources acquired the Comet Vale Gold project in May 2018 as a joint venture with Sand Queen Gold Mines Pty Ltd.

GEOLOGY

The following regional and local Geology information has been taken from Cube Consulting Independent Technical Report (NI 43-101) for Reed Resources Limited.

REGIONAL GEOLOGY

The Comet Vale project is underlain by mafic-ultramatic volcanic rocks of the Ora Banda Domain and granitic rocks of the Goongarrie Monzogranite to the west and the Comet Vale Monzogranite to the north. The Ora Banda Domain is one of six tectono-stratigraphic domains that make up the Kalgoorlie Terrane and is host to several large gold deposits, including the Ora Banda and Mt Pleasant gold camps.

The mafic-ultramatic volcanic and meta-sedimentary rocks, and matic igneous sills, within the Ora Banda Domain are referred to as the Ora Banda Sequence. Comet Vale is on the eastern side of the Ora Banda Domain, along a 1 - 5 km wide arm that extends for about 30 km north of Menzies. This arm of the Ora Banda Sequence, known as the Menzies Greenstone Belt, is bound to the west by the Goongarrie Monzogranite and to the east by the regional scale Bardoc-Menzies Tectonic Zone.

LOCAL GEOLOGY

Mafic-ultramafic volcanic rocks in the Comet Vale area are a continuation of the lower part of the Ora Banda Sequence, though generally with a reduced thickness (Swager, 1994). The mafic-ultramafic volcanic sequence at Comet Vale is divided into three formations that are correlated with the Missouri Basalt, Walter Williams Formation and Siberia Komatiite. Only the Missouri Basalt and Walter Williams Formation crop out in the vicinity of and along strike from the Sand Queen-Gladsome mine.

The Wongi Basalt at the base of the Ora Banda Sequence apparently does not crop out in the project area (Swager, 1994). Younger formations such as the Big Dick Basalt and Bent Tree Basalt may underlie the eastern part of the project area.

The Comet Vale deposit is hosted in the Ora Banda Sequence of mafic-ultramatic volcanic and metasedimentary rocks. Economic gold mineralisation is predominantly within quartz boudins from 0.1 to 4.5m in width with free gold spatially associated with pyrite/marcasite, pyrrhotite and elevated base metal values (sphalerite, galena, chalcopyrite).

- Missouri Basalt hangingwall
- Ultramafic footwall
- Dolerite present inbetween Basalt and Ultramafics
- Porphyrys from ultramafic and upwards through basalt hangingwall

Figure 3: Geological map showing mineralised trends and tenure boundaries across Comet Vale with historical workings coloured by observed excavation depth.

MINERALISATION

Mineralisation within the Project is associated with quartz veining with free gold spatially associated with pyrite/marcasite, pyrrhotite and elevated base metal values (sphalerite, galena, chalcopyrite). Economic gold mineralisation is predominantly within veins ranging in thicknesses of between 0.1 to 2.5 m. At Comet Vale, quartz veining displays varying textures throughout the project area with higher grade gold values associated with zones of lamination. Additional observations have noted an increased in mineralisation at the intersection between quartz veining and porphyry units. Ten mineralised domains have been modelled throughout the Sovereign Trend within the Project area. Two continuous veins identified in the project area are referred to as Domains 1 and 2 and are located at a lithological boundary between the Missouri Basalt and ultramafic footwall.

The Sovereign Trend is comprised of multiple quartz veins across 1.3km of strike hosted within the Missouri Basalt. Gold mineralisation is hosted within quartz veins containing visible gold, pyrite, sphalerite and galena. Porphyry intrusions are present in between the Basalt and Ultramafic when in contact with the quartz veining, high gold grades are present.

Quartz veining varies in thickness and vein style with strongly laminated veins visible underground. Laminations within the quartz veining switched from hanging-wall to foot-wall alternating where the high grade lies within the quartz structure.

DRILLING AND SAMPLING

Since the acquisition of Comet Vale project, no drilling or sampling has been undertaken by LRL. The purpose of the MRE is to identify target areas for the planned surface drilling exploration program scheduled for Q2 2023. All drilling utilised in the MRE is considered historical. LRL have provided RSA with a data export for the CVP which has been used in all subsequent activities relating to the generation of the 2023 MRE. These activities included but not limited to:

- Regolith boundaries
- Geological interpretation
- Mineralisation interpretation

RSA is aware LRL are relying on the quality of work completed by previous owners of CVP. RSA is of the view that there is currently no evidence to contradict the assumptions made by LRL but recommends validation checks be made during future exploration activities.

DRILLING PROTOCOLS AND PRACTICE

Given the data for the CVP is historic in nature, assumptions on the drilling and sampling practices have been made. It is assumed historical drilling and sampling has been completed inline with industry standards.

TRANSFORMATION

All collar and down hole surveys were provided by LRL in MGA94_51. No mine grid transformations were made.

SAMPLING PREPARATION AND ANALYSIS

No data has been provided to RSA relating to the sampling methodology, quality assurance and quality control checks and the protocols for drilling and face data collection.

QAQC

It is assumed historical data collection has been completed in line with industry standards and QAQC was completed at the time.

No QAQC Report has been provided by LRL for the 2023 MRE.

RSA recommends the drilling of twinned holes alongside historical drilling providing an opportunity for LRL to complete validate on the neighbouring historic CVP drilling database while providing documented QAQC.

ESTIMATION METHODOLOGY

Gold grade has been estimated using ordinary kriging and inversed distance to the power of 2 on 5mE x 5mN x 5mRL blocks. The Mineral Resource model is classified as a combination of Indicated and Inferred. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, search volume and the average sample distance. The resource classification has been further refined for Domains 1 and 2 based on the spatial position of these veins. Where Domains 4 to 10 fall within the open pit boundary the resource classification has been downgrade to Inferred only based on reduced geological confidence.

VALIDATION

Model validations have been completed including a model comparison with the MRE compiled in March 2010 by Cube Consulting for Reed Resources. The reported tonnes, in the March 2010 MRE, using a cut-off values of 5.0 g/t was 534 Kt at 10.8 g/t Au for 186 Koz of Au (refer to Cube Consulting's Technical Report (NI 43-101). This comparisons indicates, the Cube model reports significantly higher tonnes and grade then the updated MRE using a 5 g/t cut-off value. Without the original wireframes and MRE from March 2010 it is difficult to determine where the difference between both models is seen. Following the completion of the March 2010 MRE, underground mining at Comet Vale had been completed by numerous companies. The inclusion of face data is now available for utilisation in updating the interpretation and estimation. The updated interpretations supporting the geological models are predominantly based upon geological mapping and sampling from the development drives and airleg stoping. A minimum mining width of 0.3 meters has been applied.

DATABASE

DATABASE VALIDATION

The database was supplied by LRL. An extract from the maxgeo database resulting in six text files (collar, survey, lithology, assay, events and veins) were exported. Validation of the database has included:

- Visual checking of drillhole traces,
- Visual checking of geological and assay data, and
- Checking standard coding of geological data is consistent

The drillhole validations completed by RSA identified errors in the data set. These errors involved duplicate samples along duplicate holes following the identical collar and drill trace locations. Drill holes containing errors were removed from the dataset and were not included in the resource estimate. Holes excluded from the database are listed in Appendix 1.1.

No QAQC data is stored in the database therefore assumptions have been made that drillhole data stored in the database has been validated previously and required no additional work.

RSA recommend LRL follow up on the database export for estimation following RSA's validation checks with consideration to assigning priorities reflecting the data application within the CVP database.

DATA SUMMARY

DRILLHOLE DATA

A de-surveyed drillhole file was created in Datamine (cv_dh_230223.dm) using the following database extracts:

- Comet Vale collar
- Comet Vale survey
- Comet Vale tblDHLithology
- Comet Vale tbIVWDHAssays
- tbIDH_Events
- tbIDH_Veins

A summary of the holes removed from the database prior to estimation are as follows:

- Twelve sludge holes were removed from the dataset. Sludge holes are considered by the Competent Person to be of insufficient quality for use in mineral resource estimate without visual checks on drilling and sampling protocols.
- Eight holes were removed from the dataset. These holes demonstrated duplicate collar and drill trace information.

With the removal of the sludge and duplicate holes, a new drillhole file (cv_dh_230223_b.dm) was used for the estimation.

The total number of holes intersecting the mineralised domains in the 2023 MRE was 7,665 holes for 6,553m. The total drillholes in the estimate including the waste domain was 46,627 amounting to 74,606.73m in Table 4. The complete list of drillholes included in the resource is presented in Appendix 1.2.

Data Type	No. of Holes	Drilled Metres
Drilling	3,793	3,285
Face Sampling	3,872	3,269
TOTAL	7,665	6,553

Table 4: Drilling details, using combined drill file (DH_DOM)

INPUT DATA

DATA SETS

Varying data types are present in the CVP database, including:

- Diamond drilling (DDH),
- Reverse circulation with diamond tails (RC_DDT),
- Reverse circulation (RC),
- Air core (AC) and
- Underground face samples (Back, FS, PROBE, Rise, SH, Spot, Stope and Wall).

For the purpose of reporting, RSA combined the face sample types into one hole type. No AC samples were used in the estimation in the mineralised domains. Spatially, RC drilling is mainly concentrated in the upper parts of the deposit while diamond drilling tends to be deeper below development (Figure 4). As presented in Table 5.

the most common type of drilling data intersecting the resource is reverse circulation drilling an overall sample population of 60.69%. A statistical summary of the global dataset was completed prior to compositing, providing a high level review of the input data.

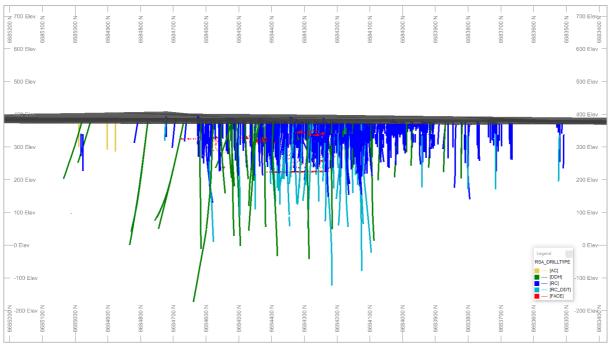


Figure 4: Spatial distribution of drilling types at Comet Vale Table 5: Drillhole Types at Comet Vale using dh_dom.dm file

Comeł Vale Drilling Types								
Туре	Meters	Percentage						
AC	241	0.32%						
DDH	11,249	15.08%						
RC	45,277	60.69%						
RC_DDT	13,830	18.54%						
FACE	4,009	5.37%						
TOTAL	74,606	100.00%						

Table 6: Univariate Summary Statistics Au (g/t) for all drill types and as a global dataset prior to compositing.

\int		AC	DDH	RC	RC_DDT	FACE	TOTAL
	Samples	239	4,748	27,893	8,275	5,472	46,627
	Mean	0.01	0.17	0.38	0.37	6.88	1.11
	Variance	0.00	2.96	20.51	13.47	1,855.60	237.15
	Std Dev	0.00	1.72	4.52	3.67	43.07	15.39
J	CV	2.32	10.26	12.01	9.95	6.26	13.80

DOMAINING

A total of ten mineralised domains were modelled for the 2023 MRE. Three domains, Domains 1, 2 and 3, represent the domains previously mined during underground operations and are located at the lithological contact between the Missouri Basalt and Ultramafic footwall contact. Domain 1 has a strike length of 1.3km and is open at depth. Seven domains, Domains 4 through to 10, have been intersected within the Missouri Basalt to the west of the historical underground development and have historically been mined through open pit operations.

INTERPRETATION

LRL provided RSA with three mineralised domain interpretations previously generated for the project. These interpretations referred to as Domains 1, 2 and 3 were generated during mining operations and were reviewed and updated by RSA. High-grade assay results in both drilling and face data, using a domaining cut-off value of 0.5g/t, were captured within the interpretation boundaries. A minimum domain width of 0.3m was utilised, an extension to the interpretation in the down-dip and along strike directions was included allowing for potential future exploration targets.

The interpretation for Domains 4, 5, 6, 7, 8, 9 and 10 commenced with the review of high grade areas when viewing in Datamine Studio RM, 3D modelling software. Drillhole and face data; lithology and analytical data, were used to determine geological continuity along strike and down dip.

A unique identifier was assigned to all domains referred to as a domain code. In the MRE file the field name is referred to DOM_CODE. The unique identifier is a numeric field and follows the numbering of the domain names.

A waste domain was generated surrounding the mineralised domains allowing for a background grade model to be estimated. The waste domain was assigned a domain code of 100.

ESTIMATION TECHNIQUE AND SEARCH PARAMETERS

All mineralised interpretations were prepared in MGA94_51. Mineralised interpretations are based upon underground mapping, geological logs (all sample data), and gold analytical data, were constrained by a minimum width of 0.3m and were generated using Datamine Studio RM. Individual mineralised interpretations were assigned a domain code as a unique identifier.

Sample data was composited to 1m intervals within the ore domains, top cuts were then applied to high gold values considered as outliers. Top-cut values were determined using statistical methods; quantiles, log histograms and log probability plots for Domains 1, 2 and 3 individually, with Domains 4 to 10 analysed as a domain group.

Kriging Neighbourhood Analysis (**KNA**) was completed on Domains 1 and 2. An inital estimate was generated using the KNA parameters, upon visual review, the block size and number of samples were adjusted across multiple estimations to determine the optimal parameters for the Comet Vale Project.

Ordinary Kriging (**OK**) was the primary estimation method for Domains 1 and 2. Domains 3 through to 10, were estimated with Inverse Distance Squared (**ID2**) due to an insufficient data population in each domain for conclusive variography (Appendix 1.8). The waste domain was estimated using ID2 methods. Additional estimation techniques were run in parallel to the primary estimation selected for each domain. For Domains 1 and 2, ID2, Inverse distance cubed (ID3) and nearest neighbour (NN) were completed providing additional validation checks of the final OK model. For Domains 3 through to 10, including the waste domain, ID3 and NN were completed providing additional validation checks of the final ID2 model.

Three search passes were estimated across all domains. A fourth search pass for Domains 1 and 2 was utilised to provide an estimation reflecting a potential exploration target for drill planning. The fourth search pass remains unclassified and was estimated using ID2 with a minimum of 1 sample and a maximum of 6 samples.

A maximum of 2 samples per hole has been flagged in the estimation process ensuring more than one hole was utilised to inform a block in the estimation of search pass one, two and three.

An average density was assigned to each domain based on historical density measurement data. Validation of the global model was completed via visual and analytical methods ensuring blocks were correctly coded for mineralised domains, with estimated grade values reflecting local input assay data.

BULK DENSITY

A single bulk density has been assigned in the MRE was based on a historical value of 2.7t/m³. This value has been historically used across all blocks in previous estimations on the Comet Vale Project. LRL supplied 60 bulk density measurements with an average of 2.71t/m³ supporting the historical value therefore a bulk density of 2.7t/m³ was applied to all rock types.

Approximate oxidation boundaries were generated for the CVP MRE based on logging codes. Limited intercepts for oxidation boundaries were stored in the CV database therefore boundary locations are an approximation only. A surface was generated by RSA representing the top of fresh (**TOF**) boundary based on the data supplied. The TOF surface was used to code regolith into the MRE with oxide (**OX**) and fresh (**FR**) being the only two codes assigned.

RSA recommends density measurements and the determination of regolith boundaries be a focus during data collection in future exploration drill programs completed by LRL. RSA identifies a potential risk to the project due to assign a single density value of 2.7t/m³ across both fresh and oxide regolith boundaries. This risk relates to the over reporting of tonnes in oxide material.

MODEL VALIDATION

WIREFRAME VOLUME

Wireframe volumes and blocks estimated were validated to ensure there was minimal loss in volume due to sub-celling block dimensions (Table). The percentage difference for domains 3 to 10 are considered to be within an acceptable range (~5%). The percentage difference for domains 1 and 2 reflects a volume loss of ~8%. If further sub-celling occurs, reducing the sub-cell dimensions from 0.325m to 0.1625m, to improve the volume loss identified, the resulting model file size will be significantly large and not practical for use. Therefore, the volume loss of ~8% is considered reasonable for this type of mineralisation style.

Wireframe Volume vs Sub-Celled Block Volume									
Domain	Wireframe Volumes	Sub-celled Block Volumes	Percentage Difference						
1	618,670	570,955	-7.7%						
2	378,800	349,881	-7.6%						
3	876	874	-0.2%						
4	11,360	10,887	-4.2%						
5	12,099	11,539	-4.6%						
6	4,274	4,047	-5.3%						
7	2,102	1,990	-5.3%						

Table 7: Wireframe volume vs sub-celled block volume

8	775	729	-5.9%
9	5,954	5,703	-4.2%
10	1,263	1,190	-5.8%
Total	1,036,173	957,795	-7.6%

MODEL VARIATIONS

Multiple model variations were completed to test the sensitivity of the search ranges, minimum and maximum samples and maximum samples per drillhole required to inform a block. Each model was reviewed visually in 3D with comparisons against drillhole composites and reviewed statistical in Snowden Supervisor software prior to selecting the optimal search parameters for each domain used in the 2023 MRE.

GRADE TREND PROFILES (SWATH PLOTS)

Sectional and elevation validation profiles were generated for each domain. The profiles compare the average of the estimated block grade to the average of the input composite grade for northing, easting, and elevation slices through the model. Figure 5 through to Figure 10 show grade trend profiles for domains 1 and 2 illustrating no concerns with the estimation parameters, with the estimation of grade reflecting the grade profile of the input data. Grade trend profiles for all domains are presented in Appendix 1.8. Cross sections every 100m and plan sections every 50m through the orebody were produced for visual validation of the block model grade with drill hole grade (Appendix 1.11), these sections and plans highlight no concerns with the estimation parameters.

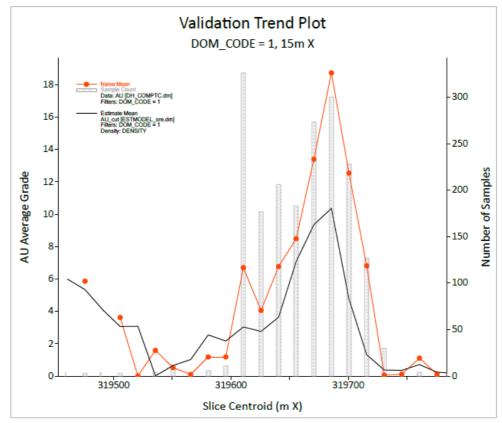


Figure 5: Grade trend profile plots by Easting for Domain 1

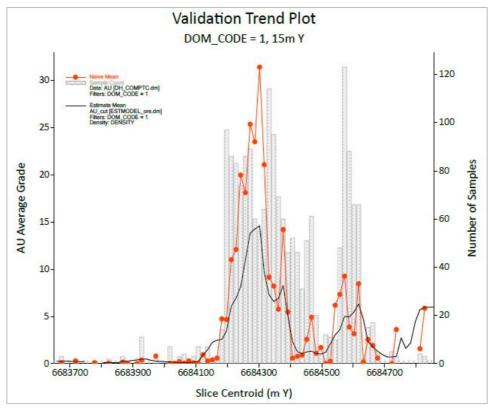


Figure 6: Grade trend profile plots by Northing for Domain 1

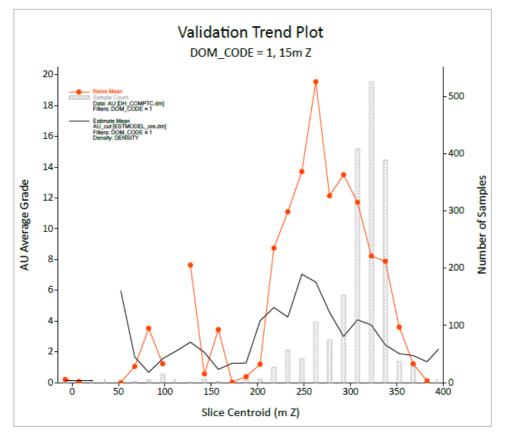


Figure 7: Grade trend profile plots by RL for Domain 1

Figure 8:Grade trend profile plots by Easting for Domain 2

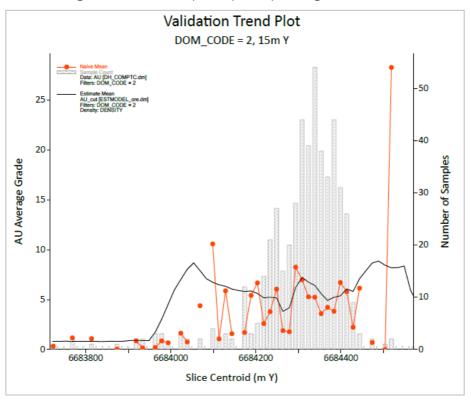


Figure 9:Grade trend profile plots by Northing for Domain 2

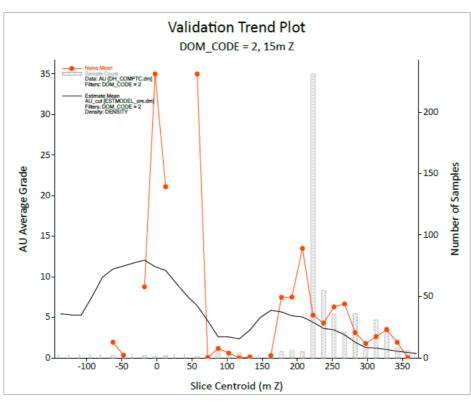


Figure 10: Grade trend profile plots by RL for Domain 2

RESOURCE CLASSIFICATION

The MRE has been classified as a combination of Indicated, Inferred and Unclassified. The classification of the MRE was determined based on geological confidence and continuity, drill density/spacing, search volume and the average sample distance informing a block. Perimeter strings outlining the Indicated and Inferred boundary extents were generated and used to code the MRE removing the patchwork nature of assigning resource categories based on block model statistics alone. To guide in the generation of the resource classification perimeter string, the criteria was as follows:

For domains 1 and 2:

- Indicated Resources; is defined by search pass 1 and 2, an average sample distance within 35m was required, and visual continuity of the input data and grade estimation.
- Inferred Resources; is defined by search pass 2 and 3, an average sampling distance within 70m was required and visual continuity of the input data and grade estimation.
- Unclassified Resources: is defined by search pass 4 due to the large search range and reduced search parameters required to inform a block.

For domain 3:

Unclassified Resources; is defined by search pass 1, 2 and 3. Domain 3 was given a resource category as unclassified due to the assumptions on input data providing reasonable doubt to the quality of the estimation.

For domains 4 to 10:

Inferred Resources; is defined by search pass 1, 2 and 3. These domains were generated based on RSA's interpretation of the input data, LRL did not supply supporting geological maps or documents to assist in the generation of the interpretation.

For the waste domain:

Unclassified Resources: is defined by search pass 1, 2 and 3 due to the large search range and reduced search parameters required to inform a block.

Resource classification codes included in the MRE are listed in Table 8 and the spatial distribution of the resource classification is displayed in long section in Figure 111 and Figure 12.

		Class	ificatio	n							Code	9		
	Measured							1						
	Indicated										2			
		Inf	erred								3			
		Uncl	assified								>=4			
– 600 Elev 00888899	6683900 N	6684000 N	6684100 N	6684200 N	6684300 N -	6684400 N	6684500 N	6684600 N -	6684700 N	6684800 N	6684900 N	6685000 N	6685100 N	 2 2600 Elev 55 69
— 500 Elev														500 Elev
— 400 Elev				-			1							
— 300 Elev									×			-		300 Elev
— 200 Elev					1		THE SHOP				1			200 Elev
— 100 Elev			Ň		بریاد الانداده.				ą					100 Elev
0 Elev													Legend	_
— -100 Elev													- [2 - [3	-100 Elev
Z 0088889 — -200 Elev99	6683900 N	6684000 N	6684100 N	6684200 N	6684300 N	6684400 N	6684500 N	6684600 N	6684700 N	6684800 N	6684900 N	6685000 N	6685100 N	N 00225899200 Elev

Table 8: Resource Classification Codes

Figure 11: Long section showing underground working and topography (grey) with domains 1, 2 and 3 indicated and inferred resource with Au>2.5g/t. Model displayed where Indicated = 2 and Inferred = 3

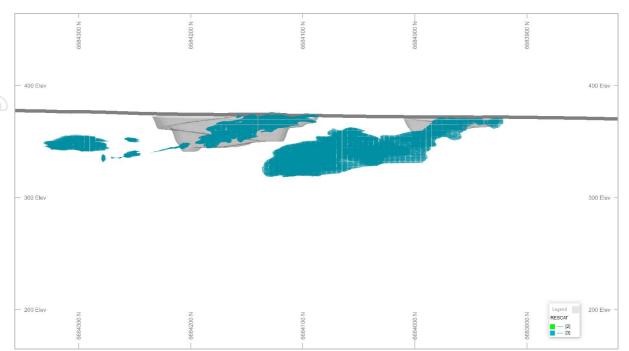


Figure 12: Long section showing underground working and topo (grey) with domains 4 to 10 inferred resource with Au>0.5g/t. Model displayed where Indicated = 2 and Inferred = 3

RESOURCE ESTIMATE

The Comet Vale 2023 MRE has produced an Indicated and Inferred Global Resource of 620Kt at 4.81g/t for 96Koz, at a reporting cut-off of 0.5g/t (OP) and 2.5g/t (UG) Au. A tonnes and grade summary at both the open pit reporting cut-off grade (0.5g/t) and the underground reporting cut-off grade (2.5g/t) has been included in Table to Table respectively.

Domain	Category	Tonnes	Grade	Ounces
1	Indiantad	175,543	6.28	35,426
2	Indicated	135,326	4.74	20,601
1		121,897	2.96	11,612
2		119,728	5.40	20,778
3		-	-	
4		25,211	3.85	3,124
5	Inferred	30,675	3.09	3,046
6	Interred	10,668	3.22	1,103
7		89	0.99	3
8		-	-	
9		274	1.33	12
10		78	1.96	5
Sub Total (Ind	.)	310,868	5.61	56,027
Sub Total (Inf	.)	308,620	4.00	39,683
Grand Total		619,489	4.81	95,710

Table 10: Comet Vale March 2023 Depleted Resource (Au>=0.5g/t OP and >=2.5g/t UG)

Comet Vale Depleted Resource as of 03/09/2020, Au>=0.5g/t (OP) and Au>=2.5g/t (UG)					
Category	Tonnage	Au Grade (g/t)	Au Ounces		
Indicated	310,868	5.61	56,027		
Inferred	308,620	4.00	39,683		
Total	619,489	4.81	95,710		

Table 11: Comet Vale March 2023 Depleted Resource (Au>=0.5g/t OP)

Comet Vale Depleted Resource as of 03/09/2020, Au>=0.5g/t (OP)					
Category	Tonnage	Au Grade (g/t)	Au Ounces		
Indicated	182,478	4.34	25,455		
Inferred	186,482	2.34	14,022		
Total	368,960	3.33	39,477		

Table 12: Comet Vale March 2023 Depleted Resource (Au>=2.5g/t UG)

Comet Vale Depleted Resource as of 03/09/2020, Au>=2.5g/t (UG)						
Category	Tonnage	Au Grade (g/t)	Au Ounces			
Indicated	128,390	7.41	30,572			
Inferred	122,138	6.53	25,661			
Total	250,528	6.98	56,233			

The Indicated and Inferred 2023 MRE is displayed in long section, Figure 13 and Figure 14, to illustrate the visual distribution of the grade estimation. The MRE has reported by amalgamating each domain to account for the inclusion of internal dilution. The MRE was depleted for mining as of 3 September 2020.

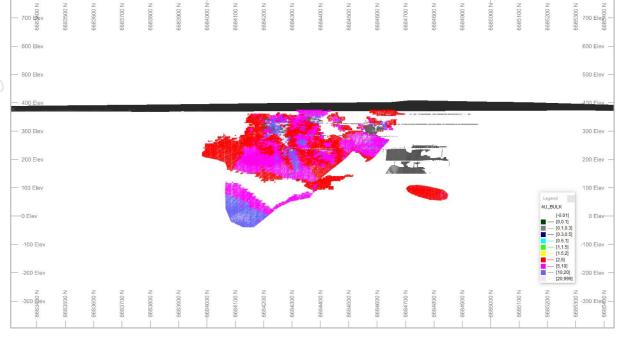


Figure 13: Long section showing underground working and topography (grey) with domains 1, 2 and 3 indicated and inferred resource with Au>2.5g/t. Model displayed with AU_cut.

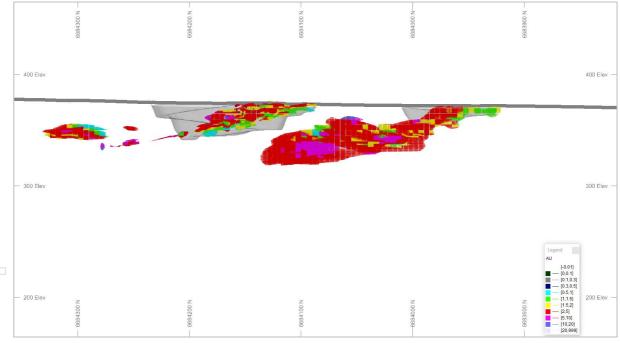


Figure 14: Long section showing underground working and topography (grey) with domains 4 to 10 inferred resource with Au>0.5g/t. Model displayed with AU_cut.

MINERAL INVENTORY

The global MRE for Comet Vale, as mineral inventory of indicated and inferred is 1.08Mt @ 2.99g/t Au for 104kOz, Table . The MRE is reported by amalgamating each domain at a cutoff of 0.0g/t Au. The model was depleted for mining on the 3rd of September 2020. Refer to Table for a breakdown of tonnes and grade for each domain.

Au Ounces

58,208

45,958

104,166

C	omet Vale Depleted Resourc	e as of 03/09/2020, Au>=0.0g	g/t
Category	Tonnage	Au Grade (g/t)	
Indicated	385,813	4.69	
Inferred	699,464	2.04	
Total	1,085,277	2.99	
COMPARISON WITH	H PREVIOUS RESOURCE ES	STIMATES	
Resource with a report 186,000 ounces. There MRE and the 2023 M model used for the 2 checks between mod Since the completion differences between	March 2010. The MRE ways orting cut-off of 5.0g/t A e is a noticeable different RE, however the grade 2010 MRE were not pro- lels other than a compa of the 2010 MRE, underg the two models may be ges and tables within Cul	to totalling 534,000t at nce in tonnes and oun is comparable. The int vided to RSA therefore rison between reported round mining has occur e attributed to depletic	10 ce: erp d re rrec ons.
Tabl	e 14: Comet Vale March 2023	B Depleted Resource (Au>=5.	.0g/
0	comet Vale Depleted Resourc	e as of 03/09/2020, Au>=5.0g	g/t
Category	Tonnage	Au Grade (g/t)	
Indicated	131,418	10.00	
Inferred	95,018	8.18	_
Total	226,436	9.24	
	ect Mineral Resource est ed by Mrs Jacinta Blinco		
evaluation. Jacinta is sufficient experience reporting of Exploratio Code, 2012). The Mineral Resources	ied geologist with over a member of the Austr to qualify as a Compe on Results, Mineral Reso quoted in this report are	ralian Institute of Geoso tent Person under the urces and Ore Reserve based on the information	cie Au es, on
	th Resources Limited an stimate, Mr Chirnside is	. ,	

Table 13: Comet Vale March 2023 Depleted Resource (Au>=0.0g/t)

ed Indicated and Inferred MRE was compiled by Cube Consulting for March 2010. The MRE was reported as Sand George Gold Mineral prting cut-off of 5.0g/t Au totalling 534,000t at 10.8g/t Au containing e is a noticeable difference in tonnes and ounces between the 2010 RE, however the grade is comparable. The interpretation and block 2010 MRE were not provided to RSA therefore additional validation lels other than a comparison between reported resource was difficult. of the 2010 MRE, underground mining has occurred therefore tonnage the two models may be attributed to depletions. Comparisons were ges and tables within Cube Consulting's technical report (NI 43-101).

0	0		0		•
	Table 14: Comet	Vale March 2023 Deplete	d Resource (Au	>=5.0a/t	

D	Comet Vale Depleted Resource as of 03/09/2020, Au>=5.0g/t						
	Category	Tonnage	Au Grade (g/t)	Au Ounces			
	Indicated	131,418	10.00	42,250			
	Inferred	95,018	8.18	24,991			
)	Total	226,436	9.24	67,241			

ect Mineral Resource estimate and associated statements have been ed by Mrs Jacinta Blincow (Senior Resource Geologist, Right Solutions

ied geologist with over 12 years' experience in geology and resource a member of the Australian Institute of Geoscientists (AIG) and has to qualify as a Competent Person under the Australasian Code for on Results, Mineral Resources and Ore Reserves, 2012 Edition (JORC

quoted in this report are based on the information supplied by Andrew th Resources Limited and compiled by Jacinta Blincow. At the time of stimate, Mr Chirnside is a full-time employee of Labyrinth Resources Limited.

COMPETENT PERSONS STATEMENTSDECLARATION 1

The Comet Vale Project Resources as presented in this report have been prepared under the guidelines of the JORC Code (2012).

Andrew Chirnside, confirm that I am the Competent Person for the report and:

- I have read and understood the requirement of the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resource and Ore Reserve (JORC Code, 2012);
- I the Competent Person as defined by the JORC Code (2012), having a minimum of five years' experience that is relevant to the style of mineralisation and type of deposit described in the report and to the activity for which I am accepting responsibility;
- I am a Member of AIG; and
- I have reviewed the report to which this Consent Statement applies.

Neither the author nor RSA have any material interest or entitlement, direct or indirect, in the securities of Labyrinth Resources Limited. RSA commenced providing geological services to Labyrinth Resources Limited in 2022.

verify that the Report is based on is fairly and accurately reflects the form and context in which it appears, information in my supporting documentation relating to Mineral Resources.

Andrew Chirnside

BSc (Mineral Exploration and Mining Geology), MAIG Chief Geologist - Labyrinth Resources Limited Level 1, Suite 5, 460 Roberts Road SUBIACO WA 6008

DECLARATION 2

The Comet Vale Project Mineral Resources as presented in this report have been prepared under the guidelines of the JORC Code (2012).

I, Jacinta Blincow, confirm that I am the Competent Person for the report and:

- I have read and understood the requirement of the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resource and Ore Reserve (JORC Code, 2012);
- I the Competent Person as defined by the JORC Code (2012), having a minimum of five years' experience that is relevant to the style of mineralisation and type of deposit described in the report and to the activity for which I am accepting responsibility;
- I am a Member of AIG; and
- I have reviewed the report to which this Consent Statement applies.

Neither the author nor Right Solutions Australia Pty Ltd have any material interest or entitlement, direct or indirect, in the securities of Labyrinth Resources Limited. Right Solutions Australia Pty Ltd commenced providing geological services to Labyrinth Resources Limited in 2022.

I verify that the Report is based on is fairly and accurately reflects the form and context in which it appears, information in my supporting documentation relating to Mineral Resources.

Jacinta Cook

BSc (Mineral Exploration and Mining Geology), MAIG Senior Resource Geologist - Right Solutions Australia Pty Ltd Suite 6, 20 Twickenham Road BURSWOOD WA 6100

APPENDIX

LIST OF EXCLUDED HOLES

BHID
CVRC004
RC7
3EL1S2NL3_01
3EL1S2NL3_02
RC6
4R7N-01
RC2
RC3
3.3L_ODS_Sludge_Ring51
3.3L_ODS_Sludge_Ring55
3.3L_ODS_Sludge_Ring59
3.3L_ODS_Sludge_Ring63
3.3L_ODS_Sludge_Ring67
3.3L_ODS_Sludge_Ring71
3.6L_ODS_Sludge_01
3.6L_ODS_Sludge_02
4.0L_ODS_sludgehole_face_01
4.0L_ODS_sludgehole_face_02
4.0L_ODS_sludgehole_face_03
4.0L_ODS_sludgehole_HW_01

HOLES INCLUDED IN THE RESOURCE

BHID	BHID	BHID	BHID
18DD001	4M3S2-07	4M3S3-03	4M3S3-09
18DD002	4M3S2-07A	4M3S3-03B	4M3S3-10
3EL1S1FW-08	4M3S2-08	4M3S3-04	4M3S5-07B
3EL1S1L3-01	4M3S2-08A	4M3S3-05	4M3S5-08B
3EL1S1RS-01	4M3S2-09	4M3S3-05A	4M6-07B
4M3FWR-01	4M3S2-10	4M3S3-06	4M6FM1-01
4M3FWR-02	4M3S2-11	4M3S3-061A	4M6FW-07C
4M3FWR-03	4M3S2F-01	4M3S3-062B	4M6FW-08A
4M3FWR-04	4M3S2FW-04A	4M3S3-063B	4M6FWL3-01
4M3S2-02	4M3S2FW-05A	4M3S3-07	4M6FWL3-02
4M3S2-03	4M3S2FW-06A	4M3S3-071A	4M6L2-01
4M3S2-03A	4M3S2FW-06C	4M3S3-072A	4M6R2FW-01
4M3S2-044	4M3S2FW-07A	4M3S3-07A	4M6R2FW-02
4M3S2-04A	4M3S2FW-08A	4M3S3-07D	4M6R2FW-03
4M3S2-05	4M3S2FW-09A	4M3S3-08	4M6S4-02
4M3S2-05A	4M3S2FW-10	4M3S3-081A	4M6S4-03
4M3S2-06	4M3S2R1-01	4M3S3-08A	4M6S4-06

BHID	BHID	BHID	BHID
4M6S4-10	4M7S3-06E	CVC014	DRC012
4M6S4-10A	4M7S3-07	CVC015	DRC013
4M6S4-11	4M7S3-07A	CVC016	DRC014
4M6S4-11A	4M7S3-07E	CVC017	DRC015
4M6S4-12	4M7S3-08	CVC018	DRC016
4M6S4-12A	4M7S3-08A	CVC019	DRC017
4M7S1-08	4M7S3-08D	CVC020	DRC018
4M7S12-01	4M7S3-09	CVC021	DRC019
4M7S12-02	4M7S3-09A	CVC022	DRC020
4M7S1L1-01	4M7S3-09B	CVC023	DRC021
4M7S2-04	4M7S3-09C	CVC024	DRC022
4M7S2-05	4M7S3-10	CVC025	DRC023
4M7S2-07	4M7S3-10A	CVOP001	DRC024
4M7S2-08	BSC001	CVOP002	DRC025
4M7S2-09	BSC002	CVOP003	DRC026
4M7S2-10	BSC003	CVOP004	DRC027
4M7S2-11	BSC004	CVOP005	DRC028
4M7S2-12	BSC005	CVOP006	DRC029
4M7S2L1-01	BSC006	CVOP007	DRC030
4M7S2L1-02	CGC01	CVRC001	DRC031
4M7S2L1-03	CGC02	CVRC002	DRC032
4M7S2L1-04	CGC03	CVRC003	DRC034
4M7S2L2-01	CGC04	CVRC005	DRC035
4M7S2R-03	CGC05	CVRC006	DRC036
4M7S2R-04	CV01	CVRC007	DRC037
4M7S3-02	CV01-W1	CVRC008	DRC039
4M7S3-02A	CV01-W2	CVRD004	DRC040
4M7S3-02B	CV01-W3	DGCVR01	DRC041
4M7S3-02C	CV02	DGCVR02	DRC042
4M7S3-03	CV02-W1	DGCVR03	DRC043
4M7S3-03A	CV02-W2	DGCVR04	DRC044
4M7S3-04	CV03	DGCVR05	DRC045
4M7S3-04A	CV04	DGCVR06	DRC046
4M7S3-04B	CV05	DGCVR07	DRC047
4M7S3-04C	CV06	DGCVR08	DRC048
4M7S3-05	CV07	DRC003	DRC049
4M7S3-05A	CV08	DRC004	DRC050
4M7S3-05B	CV11	DRC005	DRC051
4M7S3-05E	CV12	DRC006	DRC052
4M7S3-06	CVC001	DRC007	DRC053
4M7S3-06A	CVC003	DRC008	DRC054
4M7S3-06B	CVC010	DRC009	DRC055
4M7S3-06C	CVC012	DRC010	DRC056
4M7S3-06D	CVC013	DRC011	DRC057

BHID	BHID	BHID	BHID
DRC058	DRC102	DRC146	DRC191
DRC059	DRC103	DRC147	DRC192
DRC060	DRC104	DRC148	DRC193
DRC061	DRC105	DRC149	DRC194
DRC062	DRC106	DRC150	DRC195
DRC063	DRC107	DRC151	DRC196
DRC064	DRC108	DRC152	DRC197
DRC065	DRC109	DRC153	DRC198
DRC066	DRC110	DRC154	DRC199
DRC067	DRC111	DRC155	DRC200
DRC068	DRC112	DRC156	DRC201
DRC069	DRC113	DRC157	DRC202
DRC070	DRC114	DRC158	DRC203
DRC071	DRC115	DRC159	DRC204
DRC072	DRC116	DRC160	DRC205
DRC073	DRC117	DRC161	DRC206
DRC074	DRC118	DRC162	ELC02
DRC075	DRC119	DRC163	ELC03
DRC076	DRC120	DRC164	ELC04
DRC077	DRC121	DRC165	ELC05
DRC078	DRC122	DRC166	ELC06
DRC079	DRC123	DRC167	ELC07
DRC080	DRC124	DRC168	ELC08
DRC081	DRC125	DRC170	ELC09
DRC082	DRC126	DRC171	ELC10
DRC083	DRC127	DRC172	ELC11
DRC084	DRC128	DRC173	ELC12
DRC085	DRC129	DRC174	ELC13
DRC086	DRC130	DRC175	ELC14
DRC087	DRC131	DRC176	ETC001
DRC088	DRC132	DRC177	ETC002
DRC089	DRC133	DRC178	ETC003
DRC090	DRC134	DRC179	ETC004
DRC091	DRC135	DRC180	ETC005
DRC092	DRC136	DRC181	ETC006
DRC093	DRC137	DRC182	ETC007
DRC094	DRC138	DRC183	ETC008
DRC095	DRC139	DRC184	ETC009
DRC096	DRC140	DRC185	ETC010
DRC097	DRC141	DRC186	ETC011
DRC098	DRC142	DRC187	ETC012
DRC099	DRC143	DRC188	GRC01
DRC100	DRC144	DRC189	GRC02
DRC101	DRC145	DRC190	GRC03

BHID	BHID	BHID	BHID
GRC04	JVC014	JVC063	NLA002
GRC06	JVC015	JVC064	NLA003
GRC07	JVC016	JVC065	NLA004
GRC08	JVC017	JVC066	NLA005
GRC09	JVC018	JVC067	NLA006
GRC10	JVC019	JVC068	NLC001
GRC11	JVC020	JVC069	NLC002
GRC12	JVC021	JVC070	NLC003
GRC13	JVC022	JVC071	NLC004
GRC14	JVC023	JVCD040	NLC005
GRC15	JVC024	JVCD041	NLC006
GRC16	JVC025	JVCD050	NLC007
GRC17	JVC026	JVCD052	NLC008
GRC18	JVC027	JVCD056	NLC009
GRC19	JVC028	JVD002	NLC010
GRC20	JVC029	JVD003	NLC011
GRC21	JVC030	JVD004	NLC012
GRC22	JVC031	JVD005	NLC013
GRC23	JVC032	JVD006	NLC014
GRC24	JVC033	JVD007	NLC015
GRC25	JVC034	JVD008	NLC016
GRC26	JVC035	JVD009	NLC017
GRC27	JVC036	JVD010	PCV06
GRC28	JVC037	JVD011	PCV07
GRC29	JVC038	JVD012	PCV08
GRC30	JVC039	JVD013	PCV09
GRC31	JVC042	JVD014	PCV10
GRC32	JVC043	JVD015	PCV11
GRC33	JVC044	JVD016	PCV12
GRC34	JVC045	JVD017	PCV13
GRC35	JVC046	JVD018	PCV14
JVC001	JVC047	JVD019	PCV28
JVC002	JVC048	JVD020	PCV29
JVC003	JVC049	JVD021	PGDR001
JVC004	JVC051	JVD022	PGDR002
JVC005	JVC053	JVD023	PGDR003
JVC006	JVC054	JVD024	RC02
JVC007	JVC055	JVD025	RC03
JVC008	JVC057	JVD026	RC04
JVC009	JVC058	JVD027	RC05
JVC010	JVC059	JVD028	RC06
JVC011	JVC060	JVD029	RC07
JVC012	JVC061	JVD030	RC08
JVC013	JVC062	NLA001	RC09

BHID	BHID	BHID	BHID
RC10	RD043	WTC013	PGGC033
RD001	RD044	WTC014	PGGC034
RD002	RD045	WTC015	PGGC035
RD003	RD046	WTC016	PGGC036
RD004	RD047	WTC017	PGGC037
RD005	RD048	WTC018	PGGC038
RD006A	RD049	WTC019	PGGC039
RD006B	RD050	WTC020	PGGC040
RD007	WTA001	WTC021	PGGC041
RD008	WTA002	WTC022	PGGC042
RD009	WTA003	WTR001	PGGC043
RD010	WTA004	WTR002	PGGC044
RD011	WTA005	PGGC001	PGGC045
RD012	WTA006	PGGC002	PGGC046
RD013	WTA007	PGGC003	PGGC047
RD014	WTA008	PGGC004	PGGC048
RD015	WTA009	PGGC005	PGGC049
RD016	WTA010	PGGC006	PGGC050
RD017	WTA011	PGGC007	PGGC051
RD018	WTA012	PGGC008	PGGC052
RD019	WTA013	PGGC009	PGGC053
RD020	WTA014	PGGC010	PGGC054
RD021	WTA015	PGGC011	PGGC055
RD022	WTA016	PGGC012	PGGC056
RD023	WTA017	PGGC013	PGGC057
RD024	WTA018	PGGC014	PGGC058
RD025	WTA019	PGGC015	PGGC059
RD026	WTA020	PGGC016	PGGC060
RD027	WTA021	PGGC017	PGGC061
RD028	WTA022	PGGC018	PGGC062
RD029	WTA023	PGGC019	PGGC063
RD030	WTA024	PGGC020	PGGC064
RD031	WTA025	PGGC021	PGGC065
RD032	WTA026	PGGC022	PGGC066
RD033	WTA027	PGGC023	PGGC067
RD034	WTA028	PGGC024	PGGC068
RD035	WTA029	PGGC025	PGGC069
RD036	WTC006	PGGC026	PGGC070
RD037	WTC007	PGGC027	PGGC071
RD038	WTC008	PGGC028	PGGC072
RD039	WTC009	PGGC029	PGGC073
RD040	WTC010	PGGC030	PGGC074
RD041	WTC011	PGGC031	PGGC075
RD042	WTC012	PGGC032	PGGC076

BHID	BHID	BHID	BHID
PGGC077	SPWGC013	SPWGC057	SPWGC102
PGGC078	SPWGC014	SPWGC058	SPWGC103
PGGC079	SPWGC015	SPWGC059	SPWGC104
PGGC080	SPWGC016	SPWGC060	SPWGC105
PGGC081	SPWGC017	SPWGC061	SPWGC106
PGGC082	SPWGC018	SPWGC062	SPWGC107
PGGC083	SPWGC019	SPWGC063	SPWGC108
PGGC084	SPWGC020	SPWGC064	SPWGC109
PGGC085	SPWGC021	SPWGC065	SPWGC110
PGGC086	SPWGC022	SPWGC066	SPWGC111
PGGC087	SPWGC023	SPWGC067	SPWGC112
PGGC088	SPWGC024	SPWGC068	SPWGC113
PGGC089	SPWGC025	SPWGC069	SPWGC114
PGGC090	SPWGC026	SPWGC070	SPWGC115
PGGC091	SPWGC027	SPWGC071	SPWGC116
PGGC092	SPWGC028	SPWGC072	SPWGC117
PGGC093	SPWGC029	SPWGC073	SPWGC118
PGGC094	SPWGC030	SPWGC074	SPWGC119
PGGC095	SPWGC031	SPWGC075	SPWGC120
PGGC096	SPWGC032	SPWGC076	SPWGC121
PGGC097	SPWGC033	SPWGC077	SPWGC122
PGGC098	SPWGC034	SPWGC078	SPWGC123
PGGC099	SPWGC035	SPWGC079	SPWGC124
PGGC100	SPWGC036	SPWGC080	SPWGC125
PGGC101	SPWGC037	SPWGC081	SPWGC126
PGGC102	SPWGC038	SPWGC082	SPWGC127
PGGC103	SPWGC039	SPWGC083	SPWGC128
PGGC104	SPWGC040	SPWGC084	SPWGC129
PGGC105	SPWGC041	SPWGC085	SPWGC130
PGGC106	SPWGC042	SPWGC086	SPWGC131
PGGC107	SPWGC043	SPWGC087	SPWGC132
PGGC108	SPWGC044	SPWGC088	SPWGC133
SPWGC001	SPWGC045	SPWGC089	SPWGC134
SPWGC002	SPWGC046	SPWGC090	SPWGC135
SPWGC003	SPWGC047	SPWGC091	SPWGC136
SPWGC004	SPWGC048	SPWGC092	SPWGC137
SPWGC005	SPWGC049	SPWGC093	SPWGC138
SPWGC006	SPWGC050	SPWGC094	SPWGC139
SPWGC007	SPWGC051	SPWGC095	SPWGC141
SPWGC008	SPWGC052	SPWGC096	SPWGC142
SPWGC009	SPWGC053	SPWGC097	SPWGC143
SPWGC010	SPWGC054	SPWGC098	SPWGC144
SPWGC011	SPWGC055	SPWGC099	SPWGC145
SPWGC012	SPWGC056	SPWGC101	SPWGC146

BHID	BHID	BHID	BHID
SPWGC147	2.5L_ODN_007	2.5L_ODN_Backs_51m	2L_BP_Slot_003
SPWGC148	2.5L_ODN_008	2.5L_ODN_Backs_54m	2L_BP_Slot_004
SPWGC149	2.5L_ODN_009	2.5L_ODN_Backs_57m	2L_BP_Slot_005
SPWGC150	2.5L_ODN_010	2.5L_ODN_Backs_60m	2L_BP_Slot_006
SPWGC151	2.5L_ODN_011	2.5L_ODN_Backs_63m	2L_BP_Slot_007
SPWGC152	2.5L_ODN_012	2.5L_ODN_Backs_66m	2L_BP_Slot_008
SPWGC153	2.5L_ODN_013	2.5L_ODN_Backs_69m	2L_BP_Slot_009
SPWGC154	2.5L_ODN_014	2.5L_ODN_Backs_6m	2L_BYPASS_001
SPWGC155	2.5L_ODN_014	2.5L_ODN_Backs_9m	2L_BYPASS_002
SPWGC155	2.5L_ODN_016	2.5L_ODN_LH_SH001	2L_BYPASS_002
	2.5L_ODN_017		
SPWGC157		2.5L_ODN_LH_SH002	2L_BYPASS_004
SPWGC158	2.5L_ODN_018	2.5L_ODN_LH_SH003	2L_ESC_Rise_001
SPWGC159	2.5L_ODN_019	2.5L_ODN_LH_SH004	2L_ESC_Rise_002
SPWGC160	2.5L_ODN_020	2.5L_ODN_LH_SH005	2L_N_SQ_stope_001
SPWGC161	2.5L_ODN_021	2.5L_ODN_LH_SH006	2L_N_SQ_stope_002
SPWGC162	2.5L_ODN_022	2.5L_ODN_LH_SH007	2L_N_SQ_stope_003
SPWGC163	2.5L_ODN_023	2.5L_ODN_LH_SH009	2L_N_SQ_stope_004
SPWGC164	2.5L_ODN_024	2.5L_ODN_LH_SH010	2L_north_SH001
SPWGC165	2.5L_ODN_025	2.5L_ODN_Rise1	2L_north_SH002
SPWGC166	2.5L_ODN_026	2.5L_ODS_001	2L_north_SH003
SPWGC167	2.5L_ODN_027	2.5L_ODS_002	2L_north_SH004
SPWGC168	2.5L_ODN_028	2.5L_ODS_003	2L_north_SH005
SPWGC169	2.5L_ODN_029	2.5L_ODS_004	2L_north_SH006
SPWGC170	2.5L_ODN_030	2.5L_ODS_005	2L_north_SH007
SPWGC171	2.5L_ODN_031	2.5L_ODS_006	2L_ODN_001
SPWGC172	2.5L_ODN_032	2.5L_ODS_ALR_001	2L_ODN_002
SPWGC173	2.5L_ODN_033	2.5L_ODS_Backs_0m	2L_ODN_003
SPWGC174	2.5L_ODN_034	2.5L_ODS_Backs_12m	2L_ODN_004
SPWGC175	2.5L_ODN_035	2.5L_ODS_Backs_15m	2L_ODN_005
2.5_ACC_001	2.5L_ODN_Backs_0m	2.5L_ODS_Backs_18m	2L_ODN_006
2.5_ACC_002	2.5L_ODN_Backs_12m	2.5L_ODS_Backs_21m	2L_ODN_007
2.5_ACC_003	2.5L_ODN_Backs_15m	2.5L_ODS_Backs_24m	2L_ODN_008
ACC_004	2.5L_ODN_Backs_18m	2.5L_ODS_Backs_3m	2L_ODN_009
2.5_ACC_005	2.5L_ODN_Backs_21m	2.5L_ODS_Backs_6m	2L_ODN_010
2.5_ACC_006	2.5L_ODN_Backs_24m	2.5L_ODS_Backs_9m	2L_ODN_011
2.5_ESC_001	2.5L_ODN_Backs_27m	2.5L_SH_001	2L_ODN_012
2.5L_ACC_Backs_001	2.5L_ODN_Backs_30m	2.5L_SH_002	2L_ODN_013
2.5L_ACC_Backs_002	2.5L_ODN_Backs_33m	2.5L_SH_003	2L_ODN_014
2.5L_ODN_001	2.5L_ODN_Backs_36m	2.7_Refuge_cuddy_001	2L_ODN_015
2.5L_ODN_002	2.5L_ODN_Backs_39m	2.7_Refuge_cuddy_002	2L_ODN_016
2.5L_ODN_003	2.5L_ODN_Backs_3m	2L_ACC_001	2L_ODN_017
2.5L_ODN_004	2.5L_ODN_Backs_42m	2L_ACC_002	2L_ODN_018
2.5L_ODN_005	2.5L_ODN_Backs_45m	2L_BP_Slot_001	2L_ODN_019
2.5L_ODN_006	2.5L_ODN_Backs_48m	2L_BP_Slot_002	2L_ODN_020

BHID	BHID	BHID	BHID
2L_ODN_021	2L_ODS_003	2LM6S_06	2LR10S_09
2L_ODN_022	2L_ODS_004	2LM6S_08	2LR10S_10
2L_ODN_023	2L_ODS_005	2LM65_09	2LR105_11
2L_ODN_024	2L_ODS_006	2LM6S1N_03	2LR10S_12
2L_ODN_025	2L_ODS_007	2LR10L1_01	2LR10S_13
2L_ODN_026	2L_ODS_backs_strip_001	2LR10L1_02	2LR10S_14
2L_ODN_027	2L_ODS_backs_strip_002	2LR10L1_03	2LR10S_15
2L_ODN_028	2L_ODS_backs_strip_003	2LR10L1_04	2LR10S_16
2L_ODN_029	2L_ODS_backs_strip_004	2LR10L1_05	2LR10S2L1_01
2L_ODN_030	2L_ODS_backs_strip_005	2LR10L1_06	2LR10S2L1_02
2L_ODN_031	2L_ODS_backs_strip_006	2LR10L2_01	2LR10S2L1_03
2L_ODN_032	2L_ODS_backs_strip_007	2LR10L2_02	2LR10S2L1_04
2L_ODN_033	2L_ODS_backs_strip_008	2LR10L2_03	2LR10S2L2_02
2L_ODN_034	2L_ODS_MH6	2LR10L3_01	2LR10S2L2_04
2L_ODN_035	2L_ODS_MH6_ore_only	2LR10L3_02	2LR10S2L3_01
2L_ODN_036	2L_P1_001	2LR10L3_03	2LR10S2L3_02
2L_ODN_037	2L_P2_001	2LR10L4_01	2LR10S2N_01
2L_ODN_038	2L_P2_002	2LR10L4_02	2LR10S2N_02
2L_ODN_039	2L_P2_003	2LR10L4_03	2LR10S2N_03
2L_ODN_040	2L_P2_004	2LR10L5_01	2LR10S2N_04
2L_ODN_041	2L_P2_005	2LR10L5_02	2LR10S2N_05
2L_ODN_042	2L_P2_006	2LR10L5_03	2LR10S2N_06
2L_ODN_043	2L_P2_007	2LR10L6_01	2M6R2N_02
2L_ODN_044	2L_P2_008	2LR10L6_02	2M6S_07
2L_ODN_045	2L_P2_009	2LR10L6_03	2M7R_01
2L_ODN_046	2L_P2_010	2LR10L6_04	2M7R_02
2L_ODN_047	2L_P2_011	2LR10L6_05	2W67D_001
2L_ODN_2W22	2L_P2_lift01_backs_001	2LR10L6_06	2W67D_002
2L_ODN_AL_Strip_001	2L_P2_lift01_backs_002	2LR10L6_07	2W73_001
2L_ODN_AL_Strip_002	2L_P2_rise1_001	2LR10L6_08	2W73_002
2L_ODN_AL_Strip_003	2L_P2_rise1_002	2LR10L7_01	2W97R
2L_ODN_AL_Strip_004	2L_P2_Rise1_comp_01	2LR10L7_03	3.3_sub_historic_FW
2L_ODN_AL_Strip_005	2L_P2_SH001	2LR10N_01	3.3_sub_historic_HW
2L_ODN_stope_back_1	2L_P2_SH003	2LR10N_02	3.3L_ACC_001
2L_ODN_stope_back_2	2L_P2_SH004	2LR10N_03	3.3L_ACC_002
2L_ODN_stope_back_3	2L_P2_SH005	2LR10N_04	3.3L_acc_walls_overbreak_001
2L_ODN_stope_back_4	2L_P2_SH006	2LR10S_01	3.3L_acc_walls_overbreak_002
2L_ODN_stope_back_5	2L_S1_001	2LR10S_02	3.3L_acc_walls_overbreak_003
2L_ODN_stope_back_6	2L_S1_R1_001	2LR10S_03	3.3L_ODN_001
2L_ODN_stope_back_7	2I_South_stope_south	2LR10S_04	3.3L_ODN_001_re_0m
2L_ODN_stope_back_8	2L_SP_SH01	 2LR10S_05	3.3L_ODN_001_re_1m
2L_ODN_stope_back_9	2L_SP_SH02	 2LR10S_06	3.3L_ODN_001_re_2m
2L_ODS_001	2LM6S_03	2LR10S_07	
2L_ODS_002	 2LM6S_05	 2LR10S_08	3.3L_ODN_003

BHID	BHID	BHID	BHID
3.3L_ODN_004	3.6L_ODN_006	3EL1S1HWS-01	3EL1S2S_01
3.3L_ODN_005A	3.6L_ODN_Rise1	3EL1S1HWS-02	3EL1S2S_02
3.3L_ODN_005B	3.6L_ODS_001	3EL1S1HWS-05	3EL1S2S_03
3.3L_ODN_005C	3.6L_ODS_002	3EL1S1HWS-07	3EL1S2S_05
3.3L_ODN_006	3.6L_ODS_003	3EL1-S1N-01	3EL1S2S_06
3.3L_ODN_007	3E1LS4FLBN_03	3EL1S2BS_01	3EL1S2S_07
3.3L_ODN_008	3E1S4NBS_01	3EL1S2BS_02	3EL1S2S_08
3.3L_ODN_009	3EL1FWLL_01	3EL1S2L6_01	3EL1S2S_09
3.3L_ODN_010	3EL1FWLL_01_02	3EL1S2L6_02	3EL1S2S_10
3.3L_ODN_011	3EL1FWLL_01_03	3EL1S2L6_03	3EL1S2S_11
3.3L_ODN_012	3EL1FWLL_02	3EL1S2L6_04	3EL1S2S_12
3.3L_ODN_013	3EL1FWLS_01	3EL1S2L7_01	3EL1S2S_13
_3.3L_ODN_Rise_01	3EL1FWLS_02	3EL1S2L7_02	3EL1S2S_14
3.3L_ODS_001	3EL1FWLS_03	3EL1S2L7_03	3EL1S2S_15
3.3L_ODS_002A	3EL1FWLS_04	3EL1S2L8_01	3EL1S2S_16
3.3L_ODS_002B	3EL1HWN-04	3EL1S2L9_01	3EL1S2S_17
3.3L_ODS_002C	3EL1L1S_01_01	3EL1S2L9_02	3EL1S2SL1_01
3.3L_ODS_003	3EL1L1S_02_01	3EL1S2L9_03	3EL1S2SL1_02
_3.3L_ODS_004	3EL1N_02	3EL1S2L9_04	3EL1S2SL1_03
3.3L_ODS_005	3EL1N_03	3EL1S2L9_05	3EL1S2SL2_01
3.3L_ODS_006	3EL1N_04	3EL1S2L9_06	3EL1S2SL2_02
3.3L_ODS_007	3EL1N_05	3EL1S2N_01	3EL1S2SL2_03
3.3L_ODS_008	3EL1NBS_01	3EL1S2N_02	3EL1S2SL2_04
3.3L_ODS_009	3EL1NBS_02	3EL1S2N_03	3EL1S2SL2_05
3.3L_ODS_010	3EL1NBS_03	3EL1S2N_04	3EL1S2SL2_06
3.3L_ODS_011	3EL1NBS_04	3EL1S2N_05	3EL1S4FLBL2N_01
3.3L_ODS_012	3EL1NBS_05	3EL1S2N_06	3EL1S4FLBL2N_02
_3.3L_ODS_Rise_01	3EL1S_01	3EL1S2N_07	3EL1S4FLBL2N_03
3.3L_south_face_001	3EL1S_02	3EL1S2N_08	3EL1S4FLBL2S_01
_3.5L_SP_01	3EL1S_03	3EL1S2NL1_01	3EL1S4FLBN_01
_3.6L_Lift3_01	3EL1S_04	3EL1S2NL1_02	3EL1S4FLBN_02
3.6L_Lift3_02	3EL1S_05	3EL1S2NL1_03	3EL1S4FLBN_03
<u>3.6L_Lift3_03</u>	3EL1S_06	3EL1S2NL1_04	3EL1S4FLBN_04
3.6L_Lift3_04	3EL1S_07	3EL1S2NL2_01	3EL1S4FWL_02
3.6L_Lift3_05	3EL1S_08	3EL1S2NL2_02	3EL1S4FWLN_03
3.6L_Lift5_01	3EL1S_09	3EL1S2NL2_03	3EL1S4N_02
3.6L_Lift5_02	3EL1S_10	3EL1S2NL2_04	3EL1S4N_03
3.6L_Lift5_03	3EL1S_11	3EL1S2NL3_03	3EL1S4N_04
3.6L_Lift5_04	3EL15_12	3EL1S2NL3_04	3EL1S4N_05
3.6L_ODN_001	3EL1S1FW-02	3EL1S2NL3_05	3EL1S4NBS_01
3.6L_ODN_002	3EL1S1HW-01	3EL1S2NL3_06	3EL1S4NFWL_01
3.6L_ODN_003	3EL1S1HW-02	3EL1S2NL4_01	3EL1S4NFWL_02
3.6L_ODN_004	3EL1S1HWN-03	3EL1S2NL4_03	3EL1S4NFWL_04
3.6L_ODN_005	3EL1S1HWN-06	3EL1S2NL5_03	3EL1S4NFWL_05

BHID	BHID	BHID	BHID
3EL1S4NFWL_06	3L_backs_6684214	3LR7N_04	3LR7S2NL2_01
3EL1S4NFWL_07	3L_backs_6684247	3LR7N_05	3LR7S2NL2_02
3EL1S4NL1_01	3L_backs_6684309	3LR7N_06	3LR7S2NL2_03
3EL1S4NL1_02	3L_backs_6684310	3LR7N_07	3LR7S2NL3_02
3EL1\$4NL2_01	3L_backs_6684320	3LR7N_08	3LR7S2NL3_03
3EL1 S4R2N_02	3L_backs_6684337	3LR7N_09	3LR7S2NL3_04
3EL1S4S_02	3L_backs_6684341	3LR7N_11	3LR7S2NL3_05
3EL1S4S_03	3L_backs_6684352	3LR7N_12	3LR7S2NL4_01
3ELIS4S_04	3L_backs_6684396	3LR7N_13	3LR7S2NL4_04
3EL1S4S_05	3L_backs_6684419	3LR7N_14	3LR7\$2NL5_03
3ED1S4S_06	3L_backs_6684438	3LR7N_15	3LR7S2S_03
3EL1S4S_07	3L_backs_6684451	3LR7N_16	3LR7S2S_04
3EL1S4S_08	3L_backs_6684478	3LR7N_17	3LR7S2S_05
3EL1S4S_09	3L_backs_6684538	3LR7N_18	3LR7S2S_06
3EL1S4S_10	3L_backs_6684545	3LR7S_01	3LR7S2S_07
3EL1S4S_11	3L_Esc_Rise_01	3LR7S_02	3LR7S2S_08
3EL1S4S_14	3L_fs_6684566	3LR7S_03	3LR7S2S_09
3EL1S4SBS_03	3L_south_face_001	3LR7S_04	3LR7S2S_10
3EL1S4SBS_04	3L_stope_panel_backs_0m	3LR7S_05	3LR7S2S_11
3EL1S4SBS_07	3L_stope_panel_backs_10m	3LR7S_06	3LR7S2SL1_01
3EL1S4SFWL_01	3L_stope_panel_backs_15m	3LR7S_07	3LR7S2SL1_02
3EL1 S4SFWL_02	3L_stope_panel_backs_20m	3LR7S_08	3LR7S2SL1_03
3EL1S4SFWL_03	3L_stope_panel_backs_5m	3LR7S_09	3LR7S2SL2_01
3EL1S4SFWL_04	3L3B4B_06	3LR7S_10	3LR7S2SL2_02
3EL1S4SFWL_06	3LEL1Nth_01	3LR7S_11	3LR7S2SL2_03
3EL1S4SFWL_07	3LN_01	3LR7S_12	3LR7S2SL2_04
3EL1S4SFWLFB_01	3LR7_01	3LR7S_13	3LR7S2SL2_05
3EL1SBS_01	3LR7_02	3LR7S_14	3LR7S2SL2_06
3EL1SBS_02	3LR7_03	3LR7S_15	3LR7S3L1S_03
3EL1SBS_03	3LR7_04	3LR7S_16	3LR7S3L1S_03A
3EL1SBS_04	3LR7_05	3LR7S_17	3LR7S3L1S_04
3EL1SBS_05	3LR7_06	3LR7S2BS_01	3LR7S3L1S_04A
3EL1SBS_06	3LR7B1L1_01	3LR7S2BS_02	3LR7S3L1S_05
3EL1SL_02_01			
3EL1SL_02_02	3LR7B1L1_03	3LR7S2BS_04	3LR7S3L1S_06
3EL1SL_02_03	3LR7B1L2_01	3LR7S2N_02	3LR7S3L2S_01
3EL1SRS-01	3LR7B2L1_01	3LR7S2N_03	3LR7S3L2S_02
3EL\$2NL3_01	3LR7B2L1_02	3LR7S2N_04	3LR7S3L2S_03
3ELS2NL3_02	3LR7B2L2_01	3LR7S2N_05	3LR7S3L2S_04
3ELS2NL3_05	3LR7B3L1_03	3LR7S2N_06	3LR7S3L3_07
3ELS2NL4_03	3LR7B3L1_04	3LR7S2NL1_01	3LR7S3L3S_01
3L_4L_escape_001	3LR7B3L2_01	3LR7S2NL1_02	3LR7S3L3S_02
3L_4L_escape_002	3LR7B3L2_02	3LR7S2NL1_03	3LR7S3L3S_03
3L_4L_escape_003	3LR7B3L3_01	3LR7S2NL1_04	3LR7S3L3S_04

BHID	BHID	BHID	BHID
3LR7S3L3S_05	3LR7S3S_10	3LS2B2L3_03	3LS2SBS_08
3LR7S3L3S_06	3LR7S3SBS_01	3LS2B2L3N_01	3LS2SBS_09
3LR7S3L4S_01	3LR7S3SBS_02	3LS2B2L4_01	3LS2SBS_10
3LR7S3L4S_02	3LS01	3LS2B2L4_02	3LS2SBS_11
3LR7S3L4S_03	3LS1B1Nth_01	3LS2B2L5_01	3LS3B1_02
3LR7S3L4S_04	3LS1B3_Sth	3LS2B2L6_01	3LS3B1_03
3LR7S3L5S_01	3LS1FW-02	3LS2B2L7_01	3LS3B1_04
3LR7S3L5S_02	3L\$1\$_01	3LS2B4L1_01	3LS3B1_05
3LR7S3L5S_03	3LS2 1L3_01	3LS2B4L1_02	3LS3B1_06
3LR7S3L5S_04	3LS2B1L1_01	3LS2B4L1_03	3LS3B1FWN_16
3LR7S3L5S_05	3LS2B1L1_02	3LS2B4L1_04	3LS3B1L1_01
3LR7S3L5S_06	3LS2B1L1_03	3LS2B4L1_05	3LS3B1L1_02
3LR7S3L6S_01	3LS2B1L1_04	3LS2B4L2_01	3LS3B1L1_03
3LR7S3L6S_02	3LS2B1L1_05	3LS2B4L2_02	3LS3B1L2_01
3LR7S3L6S_03	3LS2B1L1_06	3LS2B4L2_03	3LS3B1L2_02
3LR7S3L6S_04	3LS2B1L1_07	3LS2B4L3_01	3LS3B1L2_03
3LR7S3N	3LS2B1L1_08	3LS2B4L4_01	3LS3B1L2_04
3LR7S3N_01	3LS2B1L2_04	3LS2B4L5_01	3LS3B1L2_05
3LR7S3N_02	3LS2B1L2_05	3LS2BS_11	3LS3B1L3_01
3LR7S3N_03	3LS2B1L3_01	3LS2BS_12	3LS3B1L3_02
3LR7S3N_04	3LS2B1L3_02	3LS2BS_12a	3LS3B1L3_03
3LR7S3N_05	3LS2B1L4_01	3LS2BS_13	3LS3B1L3_05
3LR7S3NBS_01	3LS2B1L4_02	3LS2BS_13a	3LS3B1L3_06
3LR7S3NBS_02	3LS2B1L4_03	3LS2BS_14	3LS3B1L4_01
3LR7S3NBS_03	3LS2B1L5_01	3LS2BS_14a	3LS3B1L4_02
3LR7S3NBS_04	3LS2B1L5_02	3LS2BS_15	3LS3B1L4_03
3LR7S3NBS_05	3LS2B1L5_03	3LS2BS_15a	3LS3B1L4_04
3LR7S3NL1_01	3LS2B1L5_03A	3LS2BS_16	3LS3B1L4_05
3LR7S3NL1_02	3LS2B1L5_04	3LS2BS_16a	3LS3B1L4_06
3LR7S3NL1_03	3LS2B1L5_05	3LS2BS_17	3LS3B1L4_07
3LR7S3NL1_04	3LS2B1L5_06	3LS2BS_17a	3LS3B1L5_01
3LR7S3NL1_05	3LS2B1L5_07	3LS2HW_01	3LS3B1L5_02
3LR7S3NL2_01	3LS2B1L5_08	3LS2HW_02	3LS3B1L5_03
3LR7S3NL2_02	3LS2B1L5_09	3LS2HW_03	3LS3B1L5_04
3LR7S3NL3_02	3LS2B1L5_10	3LS2HW_04	3LS3B1L5_05
3LR7S3S_01	3LS2B1L5_11	3LS2HW_05	3LS3B1L6_01
3LR7S3S_02	3LS2B1L5_12	3LS2HW_06	3LS3B1L6_02
3LR7S3S_03	3LS2B2L2_01	3LS2HW_07	3LS3B1L6_03
3LR7S3S_04	3LS2B2L2_02	3LS2S_01	3LS3B1L6_04
3LR7S3S_05	3LS2B2L2_03	3LS2SBS_01	3LS3B1L7_01
3LR7S3S_06	3LS2B2L2_04	3LS2SBS_02	3LS3B1L7_02
3LR7S3S_07	3LS2B2L2_05	3LS2SBS_03	3LS3B1L7_03
3LR7S3S_08	3LS2B2L2_06	3LS2SBS_04	3LS3B1R_01
3LR7S3S_09	3LS2B2L3_02	3LS2SBS_07	3LS3B1R_02

BHID	BHID	BHID	BHID
3LS3B2L1_01	3LS3B3L7_02	3LS3B4L5_03	3LS3S_13
3LS3B2L1_02	3LS3B3L7_03	3LS3B4L5_04	3LS3S_14
3LS3B2L1_03	3LS3B3L7_05	3LS3B4L5_05	3LS3S_15
3L\$3B2L2_01	3LS3B3L7_06	3LS3B4L5_06	3LS3S_16
3L\$3B2L2_02	3LS3B3L7_07	3LS3B4L6_01	3LS3S_17
3L\$3B2L2_03	3LS3B3L7_08	3LS3B4L6_02	3LS3S_18
3LS3B2L2_04	3LS3B3L7_09	3LS3B4L6_03	3LS3S_19
3L\$3B2L2_05	3LS3B3L7_10	3LS3BS_02	3LS3S_20
3LS3B2L2_06	3LS3B3L8_01	3LS3BS_03	3LS3S_21
3LS3B2L3_01	3LS3B3L8_02	3LS3BS_04	3LS3S_22
3L\$3B2L3_02	3LS3B3L8_03	3LS3FWN_01	3LS3S_23
3L\$3B2L3_03	3LS3B3L8_07	3LS3FWN_02	3LS3S_24
3L\$3B2L3_04	3LS3B4B_01	3LS3FWN_03	3LS3S_25
3LS3B2L4_01	3LS3B4B_02	3LS3FWN_04	3LS3S_26
3L\$3B2L4_02	3LS3B4B_03	3LS3FWN_05	3LS3S_27
3LS3B2L5_01	3LS3B4B_04	3LS3FWN_06	3LS3S_28
3LS3B2L5_02	3LS3B4B_05	3LS3FWN_07	3LS3S_29
3LS3B2L6_05	3LS3B4B_07	3LS3FWN_08	3LS3S_30
3L\$3B3L1_01	3LS3B4L1_01	3LS3FWN_09	3LS3S_31
3L\$3B3L1_02	3LS3B4L1_02	3LS3FWN_10	3LS3S_32
3LS3B3L1_03	3LS3B4L1_03	3LS3FWN_11	3LS3S_33
3LS3B3L1_04	3LS3B4L1_04	3LS3FWS_01	3LS3S_34
3L\$3B3L2_01	3LS3B4L1_05	3LS3FWS_02	3\$1FW-03
3L\$3B3L2_02	3LS3B4L2_01	3LS3N_01	3S1FW-04
3L\$3B3L2_03	3LS3B4L2_02	3LS3N_02	4.0_sublevel_northern_rise_01
3LS3B3L2_04	3LS3B4L2_03	3LS3R3N_01	4.0_sublevel_northern_rise_02
3LS3B3L2_05	3LS3B4L2_04	3LS3R3S_01	4.0_sublevel_northern_rise_03
3L\$3B3L3_01	3LS3B4L2_05	3LS3R3S_02	4.0_sublevel_northern_rise_04
3L\$3B3L3_02	3LS3B4L2_06	3LS3R4N_01	4.0_sublevel_northern_rise_05
3L\$3B3L3_03	3LS3B4L2_07	3LS3R4N_02	4.0L_ACC_entry_vein
3LS3B3L4_01	3LS3B4L3_01	3LS3R7S_01	4.0L_FWS_001
3LS3B3L4_02	3LS3B4L3_02	3LS3R7S_02	4.0L_FWS_002
3LS3B3L4_03	3LS3B4L3_03	3LS3S_01	4.0L_FWS_003
3L\$3B3L4_04	3LS3B4L3_04	3LS3S_02	4.0L_FWS_004
3LS3B3L4_05	3LS3B4L3_05	3LS3S_03	4.0L_FWS_005
3LS3B3L4_06	3LS3B4L3_06	3LS3S_04	4.0L_FWS_006
3LS3B3L6_01	3LS3B4L4_01	3LS3S_05	4.0L_FWS_007
3LS3B3L6_02	3LS3B4L4_02	3LS3S_06	4.0L_FWS_Sub_001
3LS3B3L6_03	3LS3B4L4_03	3LS3S_07	4.0L_FWS_Sub_002
3LS3B3L6_04	3LS3B4L4_04	3LS3S_08	4.0L_FWS_Sub_003
		3LS3S_09	4.0L_FWS_Sub_004
3LS3B3L6_06	3LS3B4L4_06	3LS3S_10	4.0L_FWS_Sub_005
3LS3B3L6_07	3LS3B4L5_01	3L\$3\$_11	4.0L_FWS_Sub_006
3LS3B3L7_01	3LS3B4L5_02	3LS3S_12	4.0L_HWS_001

BHID	BHID	BHID	BHID
4.0L_HWS_002	4.3L_ODN_005	4.3L_ODS_015	4.3L_ODS_058
4.0L_HWS_003	4.3L_ODN_006	4.3L_ODS_016	4.3L_ODS_059
4.0L_HWS_004	4.3L_ODN_007	4.3L_ODS_017	4.3L_ODS_060
4.0L_HWS_005	4.3L_ODN_008	4.3L_ODS_018	4.3L_ODS_061
4.0L_HWS_006	4.3L_ODN_009	4.3L_ODS_019	4.3L_ODS_062
4.0L_HWS_007	4.3L_ODN_010	4.3L_ODS_020	4.3L_ODS_063
4.0L_ODN_Millhole1	4.3L_ODN_011	4.3L_ODS_021	4.3L_ODS_064
4.0L_ODS_001	4.3L_ODN_012	4.3L_ODS_022	4.3L_ODS_065
4.0L_ODS_uphole_01	4.3L_ODN_Rise1_1m	4.3L_ODS_023	4.3L_ODS_066
4.0L_ODS_uphole_02	4.3L_ODN_Rise1_1m_A	4.3L_ODS_024	4.3L_ODS_067
4.0L_ODS_uphole_03	4.3L_ODN_Rise1_2m	4.3L_ODS_025	4.3L_ODS_068
4.2_ODN_001	4.3L_ODN_Rise1_2m_A	4.3L_ODS_026	4.3L_ODS_069
4.2_ODN_002	4.3L_ODN_Rise1_3m	4.3L_ODS_027	4.3L_ODS_070
4.2L_ODN_003	4.3L_ODN_Rise1_3m_A	4.3L_ODS_028	4.3L_ODS_071
4.3L_ACC_001	4.3L_ODN_Rise1_4m_A	4.3L_ODS_028A	4.3L_ODS_072
4.3L_ACC_002	4.3L_ODN_Rise1_5m_A	4.3L_ODS_029	4.3L_ODS_073
4.3L_HWS_001	4.3L_ODN_Rise1_6m_A	4.3L_ODS_030	4.3L_ODS_074
4.3L_HWS_002	4.3L_ODN_Rise1_7m_A	4.3L_ODS_031	4.3L_ODS_075
4.3L_HWS_003	4.3L_ODN_Rise2_10m_A	4.3L_ODS_032	4.3L_ODS_076
4.3L_HWS_004	4.3L_ODN_Rise2_1m	4.3L_ODS_033	4.3L_ODS_left_wall_1m_comp
4.3L_HWS_005	4.3L_ODN_Rise2_1m_A	4.3L_ODS_034	4.3L_ODS_right_wall_1m_com
4.31_HWS_006	4.3L_ODN_Rise2_2m	4.3L_ODS_035	4.3L_ODS_SH01
4.3L_HWS_007	4.3L_ODN_Rise2_2m_A	4.3L_ODS_036	4.3L_ODS_SH02
4.3L_HWS_008	4.3L_ODN_Rise2_3m_A	4.3L_ODS_037	4.3L_ODS_SH03
4.3L_HWS_009	4.3L_ODN_Rise2_4m_A	4.3L_ODS_038	4.3L_ODS_SH04
4.3L_HWS_010	4.3L_ODN_Rise2_5m_A	4.3L_ODS_039	4.3L_ODS_\$H05
4.3L_HWS_011	4.3L_ODN_Rise2_6m_A	4.3L_ODS_040	4.3L_ODS_\$H06
4.3L_HWS_012	4.3L_ODN_Rise2_7m_A	4.3L_ODS_041	4.3L_ODS_\$H07
4.3L_HWS_013	4.3L_ODN_Rise2_8m_A	4.3L_ODS_042	4.3L_ODS_SH08
4.3L_HWS_014	4.3L_ODN_Rise2_9m_A	4.3L_ODS_043	4.3L_ODS_SH09
4.3L_HWS_015	4.3L_ODS_001	4.3L_ODS_044	4.3L_ODS_SH10
4.3L_HWS_016	4.3L_ODS_002	4.3L_ODS_045	4.3L_ODS_SH11
4.3L_HWS_017	4.3L_ODS_003	4.3L_ODS_046	4.3L_ODS_SH12
4.3L_HWS_018	4.3L_ODS_004	4.3L_ODS_047	4.3L_ODS_SH13
4.3L_HWS_019	4.3L_ODS_005	4.3L_ODS_048	4.3L_ODS_SH14
4.3L_HWS_020	4.3L_ODS_006	4.3L_ODS_049	4.3L_RAR_North_face
4.3L_HWS_021	4.3L_ODS_007	4.3L_ODS_050	4.3L_RAR_North_Face_02
4.3L_HWS_022	4.3L_ODS_008	4.3L_ODS_051	4.3L_RAR_South_face
4.3L_HWS_023	4.3L_ODS_009	4.3L_ODS_052	4.3L_RAR_South_Face_02
4.3L_HWS_024	4.3L_ODS_010	4.3L_ODS_053	4B1L10-01
4.3L_ODN_001	4.3L_ODS_011	4.3L_ODS_054	4B1L10-02
4.3L_ODN_002	4.3L_ODS_012	4.3L_ODS_055	4B1L10-03
4.3L_ODN_003	4.3L_ODS_013	4.3L_ODS_056	4B1L10-04
4.3L_ODN_004	4.3L_ODS_014	4.3L_ODS_057	4B1L10-05

HID	BHID	BHID	BHID
B1L11-01	4LUG_03A	4M7S1-03	JVC050
B1L11-02	4LUG03	4M7S1-04	JVC052
B1L12-01	4M3FWN-01	4M7S1-05	JVC056
4B1L3-01	4M3FWN-02	4M7S1-07	RC4
4B1L3-02	4M3FWN-06A	4R3M7-01	RC5
4B1L3-03	4M3FWN-07	4R6FW-N-01	RC8
4 <u>B1</u> L5-01	4M3FWN-08	4R6FWN-02	SG_2A_328.5_13259
4B1L5-02	4M3FWN-09	4R6FW-S-01	SG_2A_333.5_13217.4
4B1L5-03	4M3FWN-10	4R6FW-S-03	SG_2A_333.5_13233
4B1L5-04	4M3FWN-11	4R7N_01	SG_2A_333.5_13238.14
4B1L6-01	4M3FWN-12	4R7N-02	SG_2A_333.5_13238.6
4B1L6-02	4M3FWN-14	4R7N-03	SG_2A_333.5_13246.6
4B1L7-01	4M3FWN-15	4R7S-01	SG_2A_333.5_13251.6
4B1L7-02	4M3FWN-16	4R7S-04	SG_2A_333.5_13258
4BL3-03	4M3HWNS1-02	4R7S1-01	SG_2A_333.6_13264
4L_ACC_001	4M3NRHW-01	4R7S2-01	SG_2A_333.61_13228
4L_ACC_002	4M3R2S1-01	4R7S2-02	SG_2A_333.62_13265.8
4L_FWS_wall_01	4M3RT-01	4SD-27	SG_2A_333.64_13224.2
4L_FWS_wall_02	4M3RW-02	4SQRW-01	SG_2A_333.66_13222.6
4L_UG_02	4M3S1-05	CV011	SG_2A_333.7_13218.6
4LB\$_01	4M3S1-06	CVDEC001	SG_2A_333.7_13268.3
4LBS_02	4M3S2P1-01	CVDEC003	SG_2A_334.8_13285.69
ILBS_04	4M3S3-01	CVDEC004	SG_2A_335.4_13260.6
1LBS_05	4M3ST1-01	CVDEC005	SG_2A_335.6_13269.99
LBS_06	4M3SUB1-02	CVDEC006	SG_2A_335.6_13272.84
4LBS_07	4M3SUB1-03	CVDEC007	SG_2A_335.6_13274.92
4LBS_08	4M4FWV-01	CVDEC008	SG_2A_335.6_13276.92
1LDS-25	4M5L4B1-03	CVDEC009	SG_2A_335.6_13278.77
4LMA_02	4M5L4B1-04	CVDEC010	SG_2A_335.6_13284.19
4LMA_03	4M6_FWN_04	CVDEC011	SG_2A_335.8_13217.45
4LMB_01	4M6FNL-01	CVDEC012	SG_2A_335_13255
1LMCN_01	4M6FW-05	CVRC18_001	SG_2A_336.5_13266.63
4LMCS_01	4M6FWN-03	CVRC18_002	SG_2A_336.5_13268.51
4LMDN_01	4M6FWN-05	CVRC18_003	SG_2A_336.5_13270.39
4LMDN_02	4M6FWN-06	CVRC18_004	SG_2A_336.5_13271.33
4LMDS_01	4M6FWN-07	CVRC18_005	SG_2A_336.5_13272.27
1LMHA_01	4M6FWNL-01	CVRC18_006	SG_2A_336.9_13218
4LS_05	4M6FWNR-01	 CVRC18_007	SG_2A_337.1_13253.3
4LS1N_01	4M6FWNR-02	CVRC18_008	SG_2A_337.2_13246.3
4LS1s_01	4M6FW-S-02	 CVRC18_009	SG_2A_337.2_13249.6
4LSD-26	4M6FWS-06	 CVRC18_010	SG_2A_337.2_13251.4
4LSD-28	4M7R2S-01	EL1S4SBS_07	SG_2A_337.6_13214.03
4LSDLH-01	4M7S-02	JVC040	SG_2A_338.2_13215.75
4LSQLW-01	4M7S1-02	JVC041	SG_2A_338.3_13244.6

BHID	BHID	BHID	BHID
SG_2A_339.7_13222.9	SG_2C_334.3_13143.85	SG_2SD_13173.45	SG_3A_294.4_13151
SG_2A_341.1_13232.1	SG_2C_334.3_13146.84	SG_2SD_13177.04	SG_3SD_13102.57
	SG_2C_334.3_13149.83	SG_2SD_13186.27	
SG_2A_341.2_13226.9			SG_3SD_13108.5
SG_2A_341.8_13214.5	SG_2C_335.8_13135.12	SG_2SD_13187.67	SG_3SD_13110.5
SG_2A_341.8_13214.6	SG_2C_335_13104.9	SG_2SD_13201.86	SG_3SD_13112.6
SG_2A_341.8_13214.7	SG_2C_335_13110.3	SG_2SD_13204.93	SG_3SD_13114.6
SG_2A_342.2_13208.2	SG_2C_335_13112.2	SG_2SD_13212.65	SG_3SD_13116.6
<u>SG_2B_333.3_13159.01</u>	SG_2C_335_13114.3	SG_2SD_13216.39	SG_3SD_13118.6
SG_2B_333.3_13159.35	SG_2C_335_13119.85	SG_2SD_13220.22	SG_3SD_13121.6
SG_2B_333.3_13164.01	SG_2C_335_13139.84	SG_2SD_13222.15	SG_3SD_13123.1
<u>SG_2B_333.3_13168.04</u>	SG_2C_336.3_13146.85	SG_2SD_13222.16	SG_3SD_13134.79
SG_2B_333.3_13169.72	SG_2C_337.5_13134.88	SG_2SD_13227.47	SG_3SD_13142.18
SG_2B_333.3_13186.5	SG_2C_337.7_13115.3	SG_2SD_13233.34	SG_3SD_13145.2
SG_2B_333.3_13192.07	SG_2C_338.7_13114.5	SG_2SD_13236.89	SG_3SD_13147.38
SG_2B_334.3_13168.89	SG_2C_341_13110	SG_2SD_13238.26	SG_3SD_13156.52
<u>SG_2B_334.3_13170.93</u>	SG_2C_341_13111	SG_2SD_13244.88	SG_3SD_13167.04
SG_2B_334.3_13173.04	SG_2C_341_13112	SG_2SD_13248.4N	SG_3SD_13171.54
SG_2B_334.5_13182.42	SG_2C_341_13113.5	SG_2SD_13251.8	SG_3SD_13177.104
SG_2B_334.5_13182.94	SG_2SD_13089.81	SG_3A_292.2_13119.2	SG_3SD_13179.13
SG_2B_334.5_13184.41	SG_2SD_13093.41	SG_3A_292.2_13173.67	SG_3SD_13207.04
SG_2B_334.5_13184.82	SG_2SD_13094.41	SG_3A_292.2_13178.33	SG_3SD_13209.48
SG_2B_334.5_13186.41	SG_2SD_13095.25	SG_3A_292.2_13185.22	SG_3SD_13214.1
SG_2B_334.51_3188.31	SG_2SD_13096.39	SG_3A_292.2_13187.52	SG_3SD_13218.32
SG_2B_342.6_13185.8	SG_2SD_13098.38	SG_3A_292.2_13195.44	SG_3SD_13228.18
SG_2B_342_13183.83	SG_2SD_13098.39	SG_3A_292.2_13204.95	SG_3SD_3216.28
SG_2B_342_13184.7	SG_2SD_13100.37	SG_3A_292.2_13207.9	SG_R1_330.8_13146.6
SG_2B_342_13189.03	SG_2SD_13101.32	SG_3A_292.5_13168.28	SG_R1_331.7_13146.7
SG_2B_342_13189.89	SG_2SD_13108.8	SG_3A_293.1_13170.65	SG_R1_332.5_13145
SG_2B_343.1_13185.2	SG_2SD_13111.59	SG_3A_293.2_13174.57	SG_R1_332.5_13146.9
SG_2B_343.5_13184.7	SG_2SD_13113.35	SG_3A_293.4_13168.7	SG_R2_332.4_13139.6
SG_2C_331.1_13135.79	SG_2SD_13120.16	SG_3A_293.4_13196.1	SG_R2_332.5_13141.4
SG_2C_332.4_13135.6	SG_2SD_13129.25	SG_3A_293.4_13198.06	SG_R2_333.4_13141.5
<u>G_SG_2C_333.5_13121.88</u>	SG_2SD_13130.83	SG_3A_293.4_13200.07	SG_R2_333.6_13140.9
SG_2C_333.8_13102.2	SG_2SD_13134.24	SG_3A_293.4_13202.05	SG_R2_333_13139.1
SG_2C_333.8_13106.1	SG_2SD_13137.22	SG_3A_293.4_13204.06	SG_R4_331.2_13130.7
SG_2C_333.8_13116.8	SG_2SD_13143.46	SG_3A_293.4_13206.01	SG_R4_331.2_13132.1
SG_2C_334.1_13135.36	SG_2SD_13148.45	SG_3A_293.4_13208.05	SG_R4_332_13130.8
SG_2C_334.3_13113.93	SG_2SD_13150.17	SG_3A_293.6_13164.72	SG_R4_332_13132.1
SG_2C_334.3_13115.93	SG_2SD_13155.64	SG_3A_293.7_13162.75	SG_R4_333.2_13130.3
SG_2C_334.3_13137.85	SG_2SD_13159.25	SG_3A_293.8_13160.7	SG_R4_333.6_13131.6
SG_2C_334.3_13140.84	SG_2SD_13162.77	SG_3A_294.1_13158.72	SG_R4_333_13132.7
SG_2C_334.3_13142.84	SG_2SD_13166.27	SG_3A_294.2_13152.79	SG3A_300.65_13214.2
SG_2C_334.3_13142.85	SG_2SD_13168.07	SG_3A_294.3_13154.77	SG3A_301.3_13202.95
SG_2C_334.3_13143.84	SG_2SD_13169.86	SG_3A_294.3_13156.74	SGP05
	_	· <u>-</u>	

BHID	BHID	BHID	BHID
SGP06	SPW_N_OD_008	SPW_Nth_Strike_007	SQ_2L_SD_R01_002
SGP07	SPW_N_OD_009	SPW_Nth_Strike_008	SQ_2L_SD_R01_003
SGP08	SPW_N_OD_010	SPW_Nth_strike_009	SQ_2L_SD_R01_004
SK_2A_331.5_13341.52	SPW_N_OD_011	SPW_OD3_SH001	SQ_2L_SD_R01_005
SK_2A_332.0_13335.46	SPW_N_OD_012	SPW_OD3_SH002	SQP01
SK_2A_332.2_13337.68	SPW_N_OD3.3_001	SPW_OD3_SH003	SQP02
SK_2A_332.3_13343.41	SPW_N_OD3.3_002	SPW_OD3_SH004	SQS_2A_329.7_13506
	 SPW_N_OD3.3_003	 SPW_ODN_013	 SQS_2A_330_13484
SK_2A_333.3_13345.24	 SPW_N_OD3.3_004	 SPW_ODN_014	 SQS_2A_330_13485
SK_2A_334.15_13347.1	 SPW_N_OD3.3_005	 SPW_S_Comp_001	 SQS_2A_330_13486
SK_2A_334.85_13348.3	SPW_N_OD3.3_006	SPW_S_Comp_002	SQS_2A_330_13487
SK 2A 335.1 13348.84	SPW_N_OD3.3_007	SPW_S_Comp_003	SQS_2A_330_13488
SK_2A_336.6_13352.54	SPW_N_OD3.3_008	SPW_S_OD_001	SQS_2A_330_13489
SK_2FWD_13299.9	SPW_N_OD3.3_LW01	SPW_S_OD_002	SQS_2A_330_13490
SK_2FWD_13344.5	SPW_N_OD3.3_LW02	SPW_S_OD_003	SQS_2A_330_13491
SK_2FWD_13359.9	SPW_N_OD3.3_LW03	SPW_S_OD_004	SQS_2A_330_13492
SK 2SD 13317.9	SPW_N_OD3.3_RW01	SPW_S_OD_005	SQS_2A_330_13493
SK_2SD_13322.8	SPW_N_OD3.3_RW02	SPW_S_OD_006	SQS_2A_330_13494
SK_2SD_13341.4	SPW_N_OD3.3_RW03	SPW_S_OD_007	SQS_2A_330_13495
SK_2SD_13344.1N	SPW_N_OD3.3_RW04	SPW_S_OD_008	SQS_2A_330_13496
SK_2SD_13348.26N	SPW_N_OD3_001	SPW_S_OD_009	SQS_2A_330_13497
SK_2SD_13377.6N	SPW_N_OD3_002	SPW_S_OD_010	SQS_2A_330_13498
SK_2SD_13384	SPW_N_OD3_003	SPW_S_OD_11	SQS_2A_330_13499
SKP01	SPW_N_OD3_004	SPW_S_OD_12	SQS_2A_330_13500
SKP02	SPW_N_OD3_005	SPW_S_OD_13	SQS_2A_330_13501
SPW_ACC_001	SPW_N_OD3_006	SPW_S_OD_SH01	SQS_2A_330_13502
SPW_ACC_002	SPW_N_OD3_007	SPW_S_OD_SH02	SQS_2A_330_13503
SPW_ACC_003	SPW_N_OD3_008	SPWRC18_001	SQS_2A_330_13504
SPW_ACC_004	SPW_N_OD3_009	SPWRC18_002	SQS_2A_330_13505
SPW_ACC_005	SPW_N_OD3_010	SPWRC18_003	SQS_2A_334_13490
SPW_ACC_006	SPW_N_OD3_LW_Comp	SPWRC18_004	SQS_2A_334_13491
SPW_ACC_007	SPW_N_OD3_RW_Comp	SPWRC18_005	SQS_2A_334_13492
SPW_ACC_008	SPW_N_South_strike_LW_0_1n		SQS_2A_334_13493
SPW_ACC_009	SPW_N_South_strike_LW_1_2n		SQS_2A_334_13494
SPW_ACC_010	SPW_N_South_strike_RW_0_1r		SQS_2A_334_13495
SPW_ACC_011	SPW_N_South_strike_RW_1_2r		SQS_2A_334_13496
SPW_ACC_012	SPW_NOD_left_wall_comp	SQ_2L_SD_003	SQS_2A_334_13497
SPW_N_OD_001	SPW_NOD_right_wall_comp	SQ_2L_SD_004	SQS_2A_334_13498
SPW_N_OD_002	SPW_Nth_Strike_001	SQ_2L_SD_005	SQS_2A_334_13499
SPW_N_OD_003	SPW_Nth_Strike_002		SQS_2A_334_13500
SPW_N_OD_004	SPW_Nth_Strike_003		SQS_2A_334_13501
SPW_N_OD_005	SPW_Nth_Strike_004	SQ_2L_SD_007	SQS_2A_337_13492
		JQ_ZL_JD_000	JUJ_27_JJ/_IJ47Z
SPW_N_OD_006	SPW_Nth_Strike_005	SQ_2L_SD_009	SQS_2A_337_13493

			•
BHID	BHID	BHID	BHID
SQS_2A_337_13495	SQS_2B_328_13471.4	SQS_2SD_13511.82	SQS_3A_310.2_13479.9
SQS_2A_337_13496	SQS_2B_328_13472.4	SQS_2SD_13515.52	SQS_3A_310.2_13482.0
SQS_2A_337_13497	SQS_2B_330.5_13451.7	SQS_2SD_13522.11	SQS_3A_311_13470.9
SQS_2A_337_13498	SQS_2B_330.5_13452.7	SQS_2SD_13523.74	SQS_3A_311_13475.3
SQS_2A_337_13499	SQS_2B_330.5_13453.7	SQS_2SD_13526.91	SQS_3A_319.2_13488.3
SQS_2A_337_13500	SQS_2B_330.5_13454.7	SQS_2SD_13528.42	SQS_3FWD_13511.19
SQS_2A_337_13501	SQS_2B_330.5_13455.7	SQS_2SD_13533.72	SQS_3FWD_13513.19
SQS_2A_337_13511	SQS_2B_330.5_13456.7	SQS_2SD_13535.86	SQS_3FWD_13519.18
SQS_2A_338_13502	SQS_2B_330.5_13457.7	SQS_2SD_13537.92	SQS_3FWD_13521.18
SQS_2A_338_13503	SQS_2B_331_13468	SQS_2SD_13539.68	SQS_3FWD_13523.18
SQS_2A_338_13504	SQS_2B_331_13470	SQS_2SD_13541.05	SQS_3FWD_13524.18
SQS_2A_338_13505	SQS_2B_331_13472	SQS_3A_13477.9	SQS_3SD_13309.79
SQS_2A_338_13506	SQS_2B_331_13474	SQS_3A_288.6_13451.3	SQS_3SD_13315.45
SQS_2A_338_13507	SQS_2B_331_13476	SQS_3A_288.6_13453.0	SQS_3SD_13319
	SQS_2B_331_13478	SQS_3A_289.4_13454.9	SQS_3SD_13326
SQS_2A_338_13509	SQS_2B_331_13480	SQS_3A_289.4_13457.0	UG_01
SQS_2A_338_13510	SQS_2ND_13552.18	SQS_3A_294_13468.52	ETA001
SQS_2B_13468.5	SQS_2ND_13554.12	SQS_3A_295.6_13469.6	ETA002
SQS_2B_13476.5N	SQS_2ND_13555.98	SQS_3A_297.1_13470.8	ETA003
SQS_2B_13477.2	SQS_2ND_13557.69	SQS_3A_299.8_13467.1	ETA004
SQS_2B_328_13447.7	SQS_2ND_13559.37	SQS_3A_299.8_13472.1	ETA005
SQS_2B_328_13448.7	SQS_2ND_13562.65	SQS_3A_299.8_13473.9	ETA006
SQS_2B_328_13449.6	SQS_2SD_13404.1	SQS_3A_299.8_13474.9	ETA007
SQS_2B_328_13450.7	SQS_2SD_13414.2	SQS_3A_299.8_13475.9	ETA008
SQS_2B_328_13451.7	SQS_2SD_13417.6	SQS_3A_299_13479.7	ETA009
SQS_2B_328_13452.6	SQS_2SD_13422.9N	SQS_3A_299_13480.5	ETA010
SQS_2B_328_13453.6	SQS_2SD_13439.8N	SQS_3A_299_13482.77	17WB1
SQS_2B_328_13454.6	SQS_2SD_13439N	SQS_3A_300.9_13476.9	17WB3
SQS_2B_328_13455.6	SQS_2SD_13441.99	SQS_3A_300.9_13479.8	WTA030
SQS_2B_328_13456.6	SQS_2SD_13443.6N	SQS_3A_300.9_13483.7	WTA031
	SQS_2SD_13449	SQS_3A_301.1_13481.7	WTA032
SQS_2B_328_13458.7	SQS_2SD_13461.02	SQS_3A_301.1_13486.6	WTA033
<u>SQS_2B_328_13459.7</u>	SQS_2SD_13466.16	SQS_3A_301.1_13490.7	WTA034
SQS_2B_328_13460.6	SQS_2SD_13468.4	SQS_3A_301.7_13491.4	WTA035
	SQS_2SD_13471.81N	SQS_3A_303.4_13488.4	WTA036
SQS_2B_328_13462.5	SQS_2SD_13475.15	SQS_3A_309.2_13472.2	WTA037
SQS_2B_328_13463.4	SQS_2SD_13476.94	SQS_3A_309.2_13479.6	WTA038
SQS_2B_328_13464.4	SQS_2SD_13482.11	SQS_3A_309.4_13462.4	WTA039
SQS_2B_328_13465.5	SQS_2SD_13485.3N	SQS_3A_309.4_13486.8	WTA040
SQS_2B_328_13466.5	SQS_2SD_13488.9	SQS_3A_309.5_13470.6	WTA041
SQS_2B_328_13467.6	SQS_2SD_13495.93	SQS_3A_309.5_13484.9	WTA042
SQS_2B_328_13468.6	SQS_2SD_13497.6N	SQS_3A_309.9_13477.9	WTA043
SQS_2B_328_13469.5	SQS_2SD_13499.54	SQS_3A_310.2_13474	WTA044

BHID	BHID	BHID	BHID	
WTA046	WTA050	WTC025	WTC029	
WTA047	WTA051	WTC026	WTC030	
WTA048	WTC023	WTC027	WTC031	
WTA049	WTC024	WTC028	WTC032	