

## Silica Sand An Emerging Mining Sector

Western Australian Silica Sand Projects

Future Facing Commodities Conference Singapore - April 2023







## Important information

#### Disclaimer

This document has been prepared by VRX Silica Limited. The information contained in this document is for information purposes only and has been prepared for use in conjunction with a verbal presentation and should be read in that context.

The information contained in this document is not investment or financial product advice and is not intended to be used as the basis for making an investment decision In preparing and providing this document, VRX has not considered the objectives, investment profile, financial position or needs of any particular recipient Mineral exploration is subject to significant risk. There is no guarantee of exploration success, and even if exploration success is achieved, there is no guarantee that development of any mineral deposit will be economically viable VRX strongly suggests that investors consult a financial advisor prior to making an investment decision.

No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this presentation To the maximum extent permitted by law, none of VRX, its related bodies corporate, or their shareholders, directors, officers, employees, contractors, agents or advisors, nor any other person accepts any liability, including, without limitation, any liability arising out of fault or negligence for any loss arising from the use of information contained in this document.

This document may include "forward looking statements" within the meaning of securities laws of applicable jurisdictions Forward looking statements can generally be identified by the use of the words "anticipate", believe", expect", project", forecast", estimate", likely", intend", should", could", and other similar expressions Indications of, and guidance on, revenue models, pricing, earnings and financial position and performance are also forward looking statements.

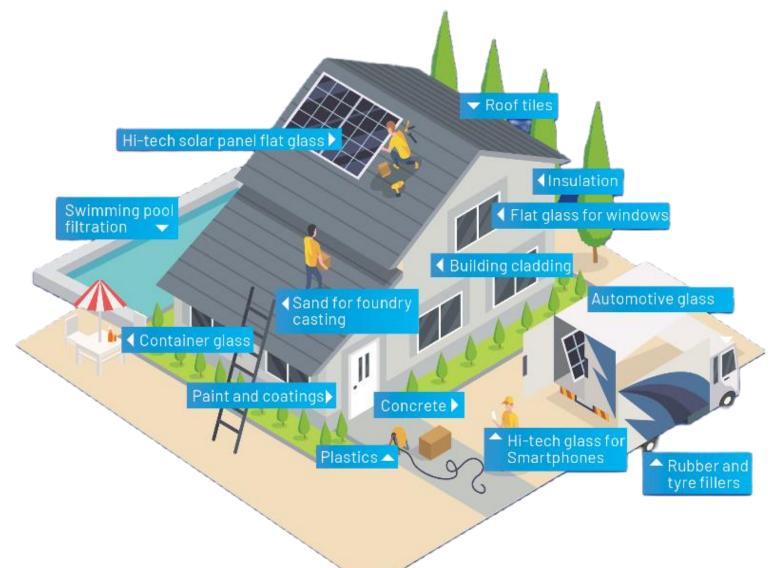
Such forward looking statements are not guarantees of future pricing, performance and events, and involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of VRX, its related bodies corporate, and their directors, officers, employees, contractors, agents and advisors, that may cause actual results to differ materially from those expressed or implied in such statement. Actual results, performance or achievements may vary materially from any projections and forward looking statements and the assumptions on which those statements are based In particular, potential revenue opportunities and guideline pricing models set out in this document are based on certain assumptions which may in time prove to be false, inaccurate or incorrect Readers are cautioned not to place undue reliance on forward looking statements and VRX assumes no obligation to update such information.

This document is not, and does not constitute, an offer to sell or the solicitation, invitation or recommendation to purchase any securities in any jurisdiction, and neither this presentation nor anything contained in it forms the basis of any contract or commitment. Without limiting the foregoing, this document does not constitute an offer to sell, or a solicitation of an offer to buy, any securities in the United States The securities of VRX have not been, and will not be, registered under the US Securities Act of 1933 as amended (Securities Act) or the securities laws of any state or other jurisdiction of the United States, and may not be offered or sold in the United States except in compliance with the registration requirements of the Securities Act and any other applicable securities laws or pursuant to an exemption from, or in a transaction not subject to, the registration requirements of the Securities laws.

#### **Competent Persons Statement**

The information in this document that relates to Arrowsmith North, Arrowsmith Central and Muchea Exploration Results and Muchea Aircore Drilling Area Mineral Resources are based on data collected and compiled under the supervision of Mr David Reid, who is a full-time employee of VRX Silica. Mr Reid, BSc (Geology), is a registered member of the Australian Institute of Geoscientists and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and the activity being undertaken to qualify as a Competent Person under the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr Reid consents to the inclusion of the data in the form and context in which it appears.

The information in this report that relates to Arrowsmith North, Arrowsmith Central and Muchea Auger area Mineral Resources is based on information compiled by Mr Grant Louw who is a full-time employee of CSA Global, under the direction and supervision of Dr Andrew Scogings, who is an Associate of CSA Global. Dr Scogings is a Member of the Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. He is a Registered Professional Geologist in Industrial Minerals. Dr Scogings has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Mineral Resources, and Ore Reserves (JORC Code). Dr Scogings consents to the disclosure of information in this report in the form and context in which it appears.


The information in this report that relates to Arrowsmith North, Arrowsmith Central and Muchea Probable Ore Reserves is based on data collected and compiled under the supervision of Mr David Reid, who is a full-time employee of VRX Silica. Mr Reid, BSc (Geology), is a registered member of the Australian Institute of Geoscientists and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and the activity being undertaken to qualify as a Competent Person under the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr Reid consents to the inclusion of the data in the form and context in which it appears.

#### **Assumptions Underpinning Mineral Resources and Ore Reserves**

The information in this document that relates to the estimation and reporting of the Mineral Resources and Ore Reserves for the Company's silica sand projects is extracted from releases to ASX on 28 August 2019 and 11 November 2022 (Arrowsmith North), 17 September 2019 (Arrowsmith Central) and 18 October 2019 (Muchea). The Company confirms that it is not aware of any new information or data that materially affects the information included in this document and all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

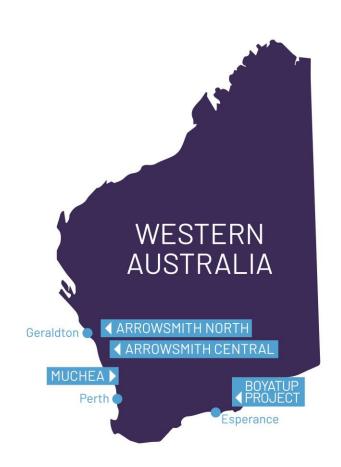


## Silica Sand - the Second-most Consumed Material on Earth





## **Portfolio Highlights**


## WA-based, pure-play silica sand company with advanced silica sand projects 100+ year production life

- ☐ 100% owner of four high value silica sand projects in Western Australia Tier 1 mining region
- ☐ Multi-decade-scale contiguous sand deposits with significant high-grade Resources
- Most-advanced non-private silica sand projects in Australia
- ☐ Mining Leases granted over three projects with environmental approvals, permitting and infrastructure preparations well-advanced
- ☐ Arrowsmith North to lead staggered development and production post-environmental approval followed by Muchea, Arrowsmith Central and Boyatup
- Strong interest from customers in Southeast Asia at a time of diminishing global supply and increasing demand



## Silica Sand – World Class Projects

## Project development pipeline to ensure disciplined, staged development of world-class assets



- WA-based company and management team
- Most advanced non-private silica sand projects in Australia
- ☐ Four large scale, high grade and low impurity silica sand projects each project capable of independent operation to supply raw material to diverse markets
- Simple, low impact mining and processing
- Access to established infrastructure (logistics, power, water and gas)
  - road and rail lines to port run adjacent to all project tenements
  - gas pipelines run adjacent to each of the project areas
- ☐ Scale of projects provides long-term opportunity for silica sand export and potential glass manufacturing and downstream<sup>5</sup> industries in Western Australia



## **Arrowsmith North**

#### Near-term development opportunity for a world-class silica sand project

- Production to follow final environmental approvals and permitting
- 221Mt Ore Reserve @99.7% SiO<sub>2</sub> (100-year production) (See Reserve Table)
- ☐ Grade controlled Proved Ore Reserve 9.2Mt for first 6 years of production
- ☐ Tailored 2Mtpa processing plant with patented process circuit, revised capital estimate and DFS underway
- Access to established infrastructure
  - Unused rail line (from Eneabba to Geraldton) runs adjacent to project tenements
  - ☐ Water from Yarragadee North deep aquifer
  - Access by adjacent Brand Highway
  - Hybrid gas and solar power supply



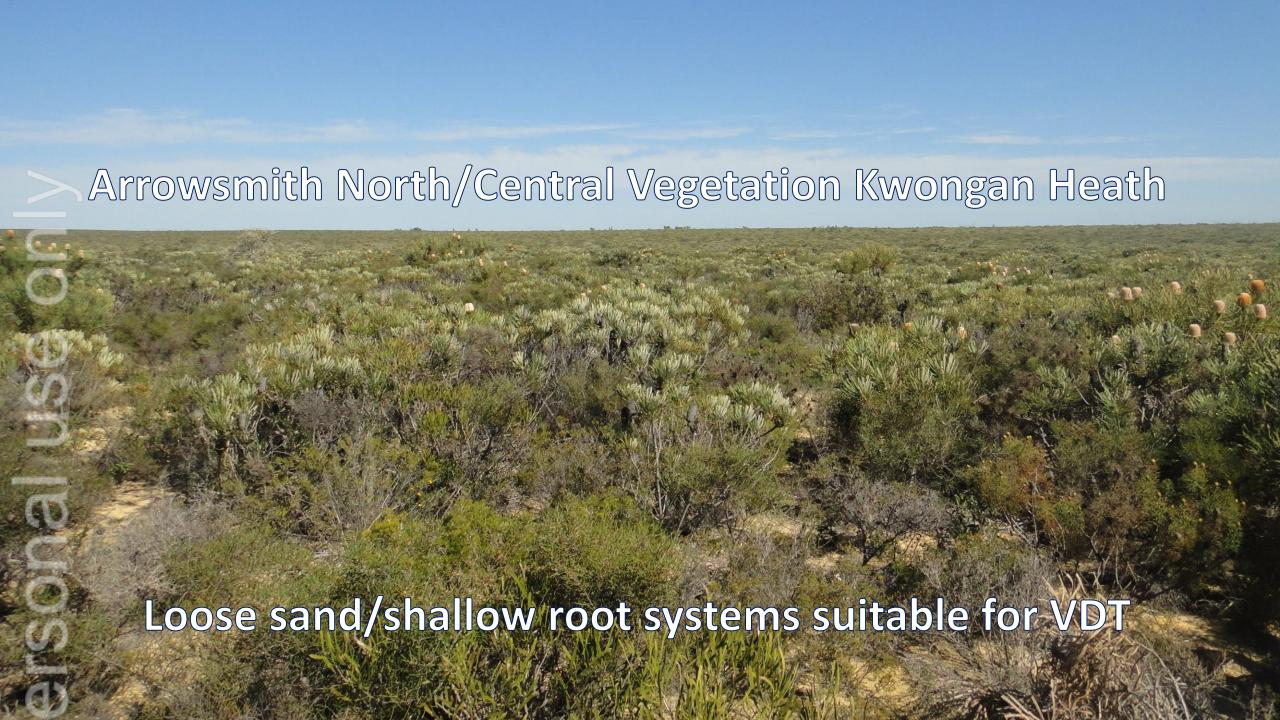
## Arrowsmith North Environmental and Mining Approvals

- Confirmation by Commonwealth Department of Agriculture, Water and the Environment of accredited State approval under the EPBC Act
- State Department of Water and Environmental Regulation and Environmental Protection Authority (EPA) require PER assessment
- Environmental Scoping Document (ESD) approved in March 2022
- Environmental Review Document (ERD) lodged in April 2022 and amended June 2022, with response to Govt Agencies comments lodged in December 2022
- ☐ Public Environmental Review (PER) of 4 weeks to follow ahead of final assessment and Ministerial Approval
- ☐ Mining proposal for DMIRS lodged for assessment in parallel with ERD



## Arrowsmith Central Environmental and Mining Approvals

- Confirmation by Commonwealth Department of Agriculture, Water and the Environment of accredited approval under the EPBC Act
- ☐ State Department of Water and Environmental Regulation and Environmental Protection Authority (EPA) require PER assessment
- ☐ Environmental Scoping Document (ESD) lodged in June 2022. Awaiting formal acceptance from EPA
- ☐ Environmental Review Document (ERD) that mirrors Arrowsmith North prepared and to be lodged with EPA following on ESD acceptance




## Responsible Mining – the VRX Way

## A made-for-purpose mining method designed around continuous rehabilitation

- VRX has developed a unique and progressive mining method for its silica sand projects
- ☐ The Vegetation Direct Transfer (VDT) method provides a rapid and comprehensive regeneration of mined areas based on continuous rehabilitation as mining progresses
- ☐ The VDT method removes a 400mm-deep sod with topsoil containing the vast majority of native flora and invertebrate fauna remaining intact
- Root structures in the loose sand are relatively shallow at 200-300mm in depth

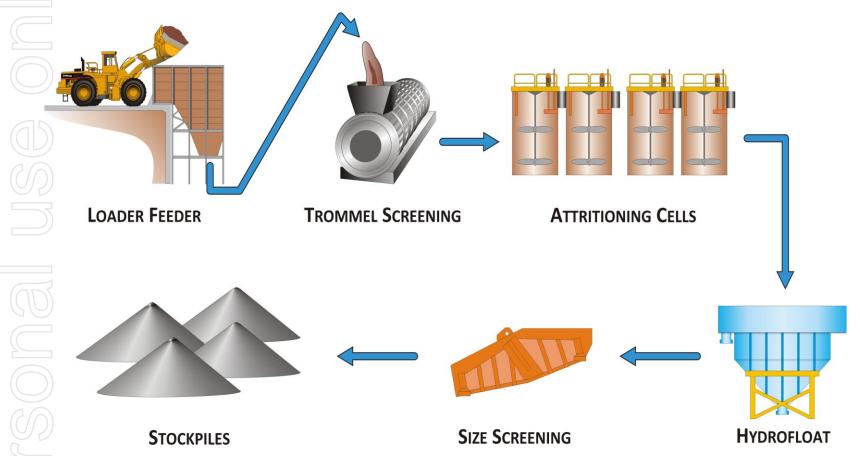






## Muchea

#### Large scale, world class high-grade and low impurity silica sand project


- Production to follow Arrowsmith North subject to EPA approval
- Utilise VDT method and Arrowsmith North plant design
- Access to established infrastructure
  - Underutilised railway connects to Kwinana (100km)
  - Grid power and gas pipelines adjacent to project
  - ☐ Water from Yaragadee deep aquifer
  - Adjacent to Brand Highway
- ☐ Granted Mining Lease and Miscellaneous Licences for access
- □ Significant metallurgical testwork +99.9%  $SiO_2$  <100ppm  $Fe_2O_3$  after processing (high-grade, low impurity)
- □ Raw material for premium ultra-clear cover glass production for solar panels
- ☐ Potential for manufacturing cover glass from adjacent gas/hydrogen pipeline



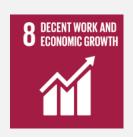


## **Processing Flowsheet**

Simplified wet processing, multiple products, no dust, 2mtpa processing plant at each site



## **Processing Plant Design** Arrowsmith North, Arrowsmith Central and Muchea to each have 2 Mtpa processing capacity No toxic reagents required




## Sustainability, Environmental, Social and Governance (ESG)

VRX is delivering on its ESG responsibilities aligned to the UN's Sustainable Development Goals

## SUSTAINABLE GALS DEVELOPMENT















#### **CLEAN ENERGY**

Utilising reliable, renewable modern energy

## ECONOMIC GROWTH

Enhancing economic and productive employment

### INDUSTRY INNOVATION

Building resilient infrastructure and fostering innovation

### SUSTAINABLE COMMUNITIES

Respecting heritage values

## RESPONSIBLE PRODUCTION

Employing sustainable mining methods

### **CLIMATE ACTION**

Reducing emissions from production

#### REHABILITATION PLAN

Employing direct vegetation transfer as a unique rehabilitation method



#### Other Initiatives

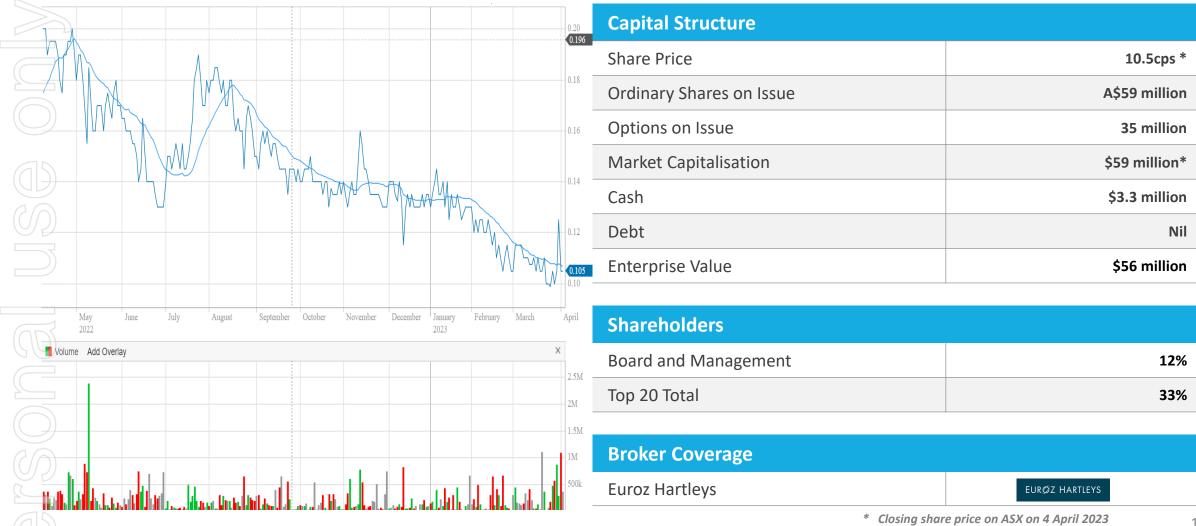
#### VRX is investigating other potential downstream products and cost saving alternatives

- □ IAF Grant VRX is shortlisted for a grant from the State Innovation Attraction Fund to investigate the production of silica flour
- ☐ Austrade Critical Minerals Prospectus VRX projects at Arrowsmith North and Muchea included in the Critical Minerals Prospectus published by Austrade December 2022
- ☐ Trials of VDT VRX has applied for a native vegetation clearing permit at Muchea to trial the practicalities of VDT in various vegetation types at Muchea
- Geothermal power VRX has made application for three geothermal permits near Arrowsmith
- ☐ Gas fired power VRX is investigating potential power sources at a gas wellhead in the vicinity of the Arrowsmith deposits



## **Our Team**

### Board


|   | Person Role          |                               | Experience                                                                                                                 |  |  |  |
|---|----------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ) | Paul<br>Boyatzis     | Chairman                      | Governance: over 30 years' experience in investment, equity markets and managing public companies                          |  |  |  |
|   | Bruce<br>Maluish     | Managing<br>Director          | Technical and finance: over 40 years' experience in mining industry including previous roles as ASX MD and General Manager |  |  |  |
|   | Peter<br>Pawlowitsch | Non-<br>Executive<br>Director | Senior executive: finance and corporate roles                                                                              |  |  |  |
|   | David Welch          | Non-<br>Executive<br>Director | Senior executive: responsible for strategy, business transformation and performance, commercial negotiations               |  |  |  |

## Executive

| Person                 | Role                   | Experience                                                                                                                   |
|------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Ryan Baxter            | General<br>Manager     | Production: 15 years' experience in mining and construction with last 9 years exporting silica sand                          |
| David Reid             | Exploration<br>Manager | Technical: responsible for exploration and mineral processing                                                                |
| Steven<br>Papadopoulos | Commercial<br>Manager  | Legal and commercial: over 25 years' experience as corporate lawyer and commercial advisor in resources and other industries |
| Yoonil Kim             | Marketing<br>Manager   | Marketing: 19 years' experience selling silica sand in the Asian market                                                      |



## **Corporate Summary**





## Right Time, Right Place



- Very long life, high-grade silica sand supply with combined 1.1 billion tonne Resource, 99.6% to 99.9% SiO<sub>2</sub> grade
- WA domestic gas reserves and burgeoning hydrogen projects in Mid West
- Long term supply of essential raw materials and green energy for glass manufacturing (gas/solar/hydrogen)
- High-tech ultra-clear glass production capability from Muchea
- Manufacturing of solar panels in WA for a huge and growing market in Australia



# Thank you

#### **Bruce Maluish**

Managing Director Ground Floor, 52 Kings Park Road West Perth WA 6005

Phone: 08 9226 3780

Email: info@vrxsilica.com.au





## **VRX Resources and Reserves**

| Project    | Classification | Mt   | SiO <sub>2</sub><br>% | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | TiO <sub>2</sub><br>% | LOI<br>% |
|------------|----------------|------|-----------------------|--------------------------------|--------------------------------|-----------------------|----------|
|            | Indicated      | 29   | 99.6                  | 0.09                           | 0.03                           | 0.07                  | 0.22     |
| Muchea     | Inferred       | 172  | 99.6                  | 0.05                           | 0.02                           | 0.10                  | 0.23     |
|            | Total          | 208  | 99.6                  | 0.06                           | 0.02                           | 0.10                  | 0.23     |
|            | Measured       | 10   | 95.9                  | 1.90                           | 0.70                           | 0.30                  | 0.70     |
| Arrowsmith | Indicated      | 237  | 97.7                  | 1.00                           | 0.40                           | 0.20                  | 0.50     |
| North      | Inferred       | 521  | 98.2                  | 0.80                           | 0.30                           | 0.20                  | 0.40     |
|            | Total          | 768  | 98.0                  | 0.90                           | 0.30                           | 0.20                  | 0.40     |
| Arrowsmith | Indicated      | 28.2 | 96.6                  | 1.70                           | 0.40                           | 0.20                  | 0.70     |
| Central    | Inferred       | 48.3 | 96.9                  | 1.50                           | 0.40                           | 0.20                  | 0.70     |
| Central    | Total          | 76.5 | 96.8                  | 1.50                           | 0.40                           | 0.20                  | 0.70     |
| Royatup    | Inferred       | 60   | 67.8                  | 0.83                           | 0.23                           | 0.13                  | 0.88     |
| Boyatup    | Total          | 60   | 67.8                  | 0.83                           | 0.23                           | 0.13                  | 0.88     |

Total Mineral Resource 1,113 Million Tonnes

| Classification                 | Product                                                           | Mt                                                                                                                                                                                                                                                                                                                                                                                            | SiO <sub>2</sub> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Al <sub>2</sub> O <sub>3</sub> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fe <sub>2</sub> O <sub>3</sub> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOI<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|--------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Probable                       | F80                                                               | 10.2                                                                                                                                                                                                                                                                                                                                                                                          | 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                | F80C                                                              | 4.25                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                | F150                                                              | 4.25                                                                                                                                                                                                                                                                                                                                                                                          | 99.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Muchea Ore Reserve             |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               | Million Tonnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Proved                         | AFS20                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                           | 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                | AFS35                                                             | 3.9                                                                                                                                                                                                                                                                                                                                                                                           | 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                | AFS55                                                             | 2.7                                                                                                                                                                                                                                                                                                                                                                                           | 99.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                | Local                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Proved Or                      | Proved Ore Reserve                                                |                                                                                                                                                                                                                                                                                                                                                                                               | Million Tonnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Probable                       | AFS20                                                             | 24.2                                                                                                                                                                                                                                                                                                                                                                                          | 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                | AFS35                                                             | 102.5                                                                                                                                                                                                                                                                                                                                                                                         | 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                | AFS55                                                             | 51.1                                                                                                                                                                                                                                                                                                                                                                                          | 99.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                | Local                                                             | 34.1                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Probable Ore Reserve           |                                                                   | 212                                                                                                                                                                                                                                                                                                                                                                                           | Million 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | illion Tonnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Arrowsmith North Ore Reserve   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               | Million 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tonnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Probable                       | CF400                                                             | 4.2                                                                                                                                                                                                                                                                                                                                                                                           | 99.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                | C20                                                               | 8.4                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                | C40                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                | High TiO <sub>2</sub>                                             | 2.2                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Arrowsmith Central Ore Reserve |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               | Million 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tonnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                | Proved Or Probable  Probable On the North Ore  Probable  Probable | Probable         F80C           F150         F150           chea Ore Reserve         AFS20           AFS35         AFS55           Local         AFS20           AFS35         AFS35           AFS35         AFS55           Local         Probable Ore Reserve           Sith North Ore Reserve         CF400           C20         C40           High TiO2           th Central Ore Reserve | Probable         F80C         4.25           chea Ore Reserve         18.7           AFS20         0.8           AFS35         3.9           AFS55         2.7           Local         1.8           Proved Ore Reserve         9.2           AFS20         24.2           AFS35         102.5           AFS55         51.1           Local         34.1           Probable Ore Reserve         212           aith North Ore Reserve         221           CF400         4.2           C20         8.4           C40         4.2           High TiO2         2.2 | Frobable         F80C         4.25         99.9           chea Ore Reserve         18.7 Million 1           AFS20         0.8         99.5           AFS35         3.9         99.5           AFS55         2.7         99.2           Local         1.8         1.8           Proved Ore Reserve         9.2         Million 1           AFS35         102.5         99.5           AFS35         102.5         99.5           AFS55         51.1         99.2           Local         34.1         34.1           Probable Ore Reserve         212         Million 1           CF400         4.2           C20         8.4         99.6           C40         4.2         99.6           High TiO2         2.2           th Central Ore Reserve         18.9         Million 1 | F80C         4.25         99.9         0.02           chea Ore Reserve         18.7         Million Tonnes           AFS20         0.8         99.5         0.25           AFS35         3.9         99.5         0.5           AFS55         2.7         99.2         0.5           Local         1.8         1.8           Proved Ore Reserve         9.2         Million Tonnes           AFS35         102.5         99.5         0.25           AFS35         102.5         99.5         0.5           AFS55         51.1         99.2         0.5           Local         34.1         34.1           Probable Ore Reserve         212         Million Tonnes           aith North Ore Reserve         221         Million Tonnes           CF400         4.2         99.6         0.25           C40         4.2         99.6         0.25           High TiO2         2.2         Million Tonnes | F80C         4.25         99.9         0.02         0.008           F150         4.25         99.8         0.07         0.015           chea Ore Reserve         18.7         Million Tonnes           AFS20         0.8         99.5         0.25         0.07           AFS35         3.9         99.5         0.5         0.06           AFS55         2.7         99.2         0.5         0.1           Local         1.8         1.8         1.8         1.8         1.8           Proved Ore Reserve         9.2         Million Tonnes         0.07         0.07           AFS35         102.5         99.5         0.5         0.07           AFS35         102.5         99.5         0.5         0.06           AFS55         51.1         99.2         0.5         0.1           Local         34.1         34.1         1.2         1.2         0.06           Probable         CF400         4.2         99.6         0.25         0.04           CY         C40         4.2         99.6         0.25         0.04           High TiO2         2.2 | F80         10.2         99.9         0.02         0.008         0.03           F80C         4.25         99.8         0.07         0.015         0.035           chea Ore Reserve         18.7         Million Tonnes           AFS20         0.8         99.5         0.25         0.07         0.05           AFS35         3.9         99.5         0.5         0.06         0.05           AFS55         2.7         99.2         0.5         0.1         0.05           AFS55         2.7         99.2         0.5         0.1         0.05           Proved Ore Reserve         9.2         Million Tonnes           AFS20         24.2         99.5         0.25         0.07         0.05           AFS35         102.5         99.5         0.5         0.06         0.05           AFS35         102.5         99.5         0.5         0.06         0.05           AFS55         51.1         99.2         0.5         0.1         0.05           AFS55         51.1         99.2         0.5         0.1         0.05           Million Tonnes         0.0 |  |

Total Ore Reserve 259 Million Tonnes