

Catalyst Metals

Catalyst Metals controls two highly prospective gold belts. It has multi asset strategy.

It owns and operates the high-grade Henty Gold Mine in Tasmania which lies within the 25km Henty gold belt. Production to date is 1.4Moz @ 8.9 g/t.

It also controls +75km of strike length immediately north of the +22Moz Bendigo goldfield and home to the new, greenfield discovery at Four Eagles.

Capital Structure

Shares o/s: 98.5M Cash: \$18.6m (Dec-22) Debt: Nil

Board Members

Stephen Boston Non-Executive Chairman

James Champion de Crespigny Managing Director & CEO

Bruce Kay Non-Executive Director

Robin Scrimgeour Non-Executive Director

Corporate Details

ASX: CYL E:admin@catalystmetals. com.au W:catalystmetals.com.au T: +61 8 6107 5878

ABN 54 118 912 495

Unit 9, 331 – 335 Hay Street, Subiaco WA 6008 PO Box 416, Subiaco WA 6904

Marymia Gold Project Mineral Resource

Catalyst Metals Limited ("**Catalyst**") (ASX: **CYL**) is pleased to present the Marymia Gold Project Mineral Resource Estimate ("**MRE**") reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves 2012 Edition ("JORC Code").

This announcement is the first report of the Marymia Gold Project MRE by Catalyst following the acquisition of a majority interest in project owner Vango Mining Limited (ASX: **VAN**) (**Vango**) under its off market takeover offer (**Offer**). The Offer was declared unconditional on 15 February 2023, and Catalyst currently has a relevant interest in 89.6% of the Vango shares on issue.

The Marymia Gold Project comprises underground and open pit deposits. The total resource of 1Moz at 3g/t Au is unchanged with that previously reported by Vango¹.

Catalyst intends to progress exploration activities at Marymia and has commenced planning for an upcoming exploration program. The objective of this program will be to follow up on high priority targets identified by Catalyst and progress drilling at key deposits including Trident and K2 with a view to increasing Mineral Resources.

Mineral Resource

Table 1 below details the Mineral Resource estimate which has been reported in accordance with the JORC Code. JORC Table 1 (sections 1, 2 and 3) are included as an appendix to this announcement.

Tuble I Miller	Tuble 1 Willerun Resource estimate by some classification - Waryina Gola Project				
JORC Classification	Tonnage (Mt)	Au (g/t)	Ounces (koz)		
Indicated	6.4	3.2	663		
Inferred	3.9	2.7	339		
Total	10.4	3.0	1,002		

Table 1 Mineral Resource estimate by JORC Classification – Marymia Gold Project

Note:

- Due to the effect of rounding, totals may not represent the sum of all components.
- Tonnages are rounded to the nearest 0.1 million tonnes, ounces are rounded to the nearest 1,000 ounces, grades are shown to two significant figures.

Catalyst Metals considers that a drill hole table, as noted in item 5.7.2 of ASX listing rules, is not required to be prepared in this instance.

All drill results have been previously released on ASX by Vango and are publicly available. The MRE has been compiled by the same Competent Person that compiled the original estimates for Vango, and those estimates have been reviewed using updated gold price and cost information. The Competent Person who signed off on previous reports of Exploration Results for Vango has also signed off for Catalyst. No new drill hole data has been used in the revised estimates.

ASX:CYL

K Oz

9

45

30

10

50

89

63

38

119

461

410

107

24

541

1,002

K Oz

8

Total

1.1

2.0

1.9

1.1

1.7

1.9

1.8

1.8

1.4

1.8

1.7

8.0

8.9

4.3

7.9

3.0

g/t Au

K Tonnes g/t Au

253

688

486

237

185

841

1,580

1,120

2,008

8,250

1,590

374

170

2,134

10,384

K Tonnes

853

MARYMIA	-
	GO
Deposit	
Mineral Resource - Open Pit (OP):	
Trident West OP	
Marwest & Mars OP	
Mareast OP	
EastMareast OP	
Wedgetail OP	
РНВ-1 (КЗ) ОР	
K1 OP	
Triple-P & Triple-P Sth OP	
Albatross & Flamingo OP	
Cinnamon OP	
Total Open Pits	
Mineral Resource - Underground (UG
Trident UG	
K2 UG	
Triple-P & Zone-B UG	
Total Underground	
Total Underground Total JORC 2012 Mineral Resourc Table 3 - Marymia Gold	e Pro
Total Underground Total JORC 2012 Mineral Resource Table 3 - Marymia Gold MARYMIA	e Pr
Total Underground Total JORC 2012 Mineral Resource Table 3 - Marymia Gold MARYMIA Deposit	e Pr GC
Total Underground Total JORC 2012 Mineral Resource <i>Table 3 - Marymia Gold</i> MARYMIA Deposit Mineral Resource - Open Pit (OP): Title Pitter Open Pit (OP):	e Pr G(A
Total Underground Total JORC 2012 Mineral Resource Table 3 - Marymia Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Magnet & Mary OP	e Pr G C
Total Underground Total JORC 2012 Mineral Resource Table 3 - Marymia Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Mareast OP	e Pr G C
Total Underground Total JORC 2012 Mineral Resource Table 3 - Marymia Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Mareast OP EastMareast OP	
Total Underground Total JORC 2012 Mineral Resource Table 3 - Marymia Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Mareast OP EastMareast OP Wedgetail OP	
Total Underground Total JORC 2012 Mineral Resource Table 3 - Marymia Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Marwest & Mars OP Mareast OP EastMareast OP Wedgetail OP PHB-1 (K3) OP	
Total Underground Total JORC 2012 Mineral Resource Table 3 - Marymia Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Marwest & Mars OP EastMareast OP EastMareast OP Wedgetail OP PHB-1 (K3) OP K1 OP Tride.P. & Tride.P. Sth OP	
Total Underground Total JORC 2012 Mineral Resource Total JORC 2012 Mineral Resource Table 3 - Marymia Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Mareast OP EastMareast OP Wedgetail OP PHB-1 (K3) OP K1 OP Triple-P & Triple-P Sth OP Albatross & Flamingo OP	
Total Underground Total JORC 2012 Mineral Resource Total JORC 2012 Mineral Resource Deposit MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Mareast OP EastMareast OP Wedgetail OP PHB-1 (K3) OP K1 OP Triple-P & Triple-P Sth OP Albatross & Flamingo OP Cinnamon OP	
Total Underground Total JORC 2012 Mineral Resource Total JORC 2012 Mineral Resource Deposit MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Mareast OP EastMareast OP Wedgetail OP PHB-1 (K3) OP K1 OP Triple-P & Triple-P Sth OP Albatross & Flamingo OP Cinnamon OP Total Open Pits	
Total Underground Total JORC 2012 Mineral Resource Total JORC 2012 Mineral Resource Marymia Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Mareast OP EastMareast OP Wedgetail OP PHB-1 (K3) OP K1 OP Triple-P & Triple-P Sth OP Albatross & Flamingo OP Cinnamon OP Total Open Pits Mineral Resource - Underground (UG):	
Total Underground Total JORC 2012 Mineral Resource Total JORC 2012 Mineral Resource Marymia Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Marwest & Mars OP EastMareast OP Wedgetail OP PHB-1 (K3) OP K1 OP Triple-P & Triple-P Sth OP Albatross & Flamingo OP Cinnamon OP Total Open Pits Mineral Resource - Underground (UG): Trident UG	
Total Underground Total JORC 2012 Mineral Resource Total JORC 2012 Mineral Resource Marey Mare Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Mareast OP EastMareast OP Wedgetail OP PHB-1 (K3) OP K1 OP Triple-P & Triple-P Sth OP Albatross & Flamingo OP Cinnamon OP Total Open Pits Mineral Resource - Underground (UG): Trident UG K2 UG	
Total Underground Total JORC 2012 Mineral Resource Total JORC 2012 Mineral Resource Mareal Resource Deposit Mineral Resource - Open Pit (OP): Trident West OP Mareast OP EastMareast OP Wedgetail OP PHB-1 (K3) OP K1 OP Triple-P & Triple-P Sth OP Albatross & Flamingo OP Cinnamon OP Total Open Pits Mineral Resource - Underground (UG): Trident UG K2 UG Triple-P & Zone-B UG Triple-P & Zone-B UG	
Total Underground Total JORC 2012 Mineral Resource Total JORC 2012 Mineral Resource Marymia Gold MARYMIA Deposit Mineral Resource - Open Pit (OP): Trident West OP Marwest & Mars OP Mareast OP EastMareast OP Wedgetail OP PHB-1 (K3) OP K1 OP Triple-P & Triple-P Sth OP Albatross & Flamingo OP Cinnamon OP Total Open Pits Mineral Resource - Underground (UG): Trighe-P & Zone-B UG Total Underground	

Table 2: Marymia Gold Project JORC 2012 Mineral Resource Estimate February 2023 MARYMIA GOLD PROJECT JORC 2012 MINERAL RESOURCE ESTIMATE FEBRUARY 2023

1.1

2.0

1.9

1.1

1.7

2.0

1.8

2.1

1.8

1.8

9.4

10.6

9.6

3.2

g/t Au

K Oz

g

45

30

10

39

42

42

86

311

285

67

352

663

K Oz

8

Inferred

1.4

1.7

1.4

1.4

1.9

1.6

6.0

7.0

4.3

5.9

2.7

g/t Au

K Oz

11

47

21

38

32

150

125

40

24

189

339

K Oz

K Tonnes g/t Au

238

837

486

853

536

2,950

645

177

170

992

3,942

K Tonnes

Indicated

K Tonnes g/t Au

253

688

486

237

185

604

743

633

1,472

5,300

945

197

1,142

6,442

K Tonnes

Cut-off

Au g/t

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Au g/t

3.0

3.0

3.0

Table 3 - Marymia Gold Project JORC 2012 Mineral Resource February 2023 Oxide, Transition and Fresh MARYMIA GOLD PROJECT JORC 2012 MINERAL RESOURCE ESTIMATE FEBRUARY 2023

Deposit	Deposit Cut-off Oxide			Transition		Fresh			Total				
Mineral Resource - Open Pit (OP):	Au g/t	K Tonnes	g/t Au	K Oz	K Tonnes	g/t Au	K Oz	K Tonnes	g/t Au	K Oz	K Tonnes	g/t Au	K Oz
Trident West OP	0.5	12	1.2	0.5	189	1.0	6.2	51	1.2	2.0	253	1.1	9
Marwest & Mars OP	0.5	10	2.1	0.7	162	2.0	10.6	515	2.0	33.2	688	2.0	45
Mareast OP	0.5	10	1.5	0.5	451	1.9	27.9	25	2.2	1.7	486	1.9	30
EastMareast OP	0.5	224	1.1	8.0	13	0.9	0.4				237	1.1	8
Wedgetail OP	0.5	154	1.7	8.3	31	1.7	1.7				185	1.7	10
РНВ-1 (КЗ) ОР	0.5	287	1.5	14.1	392	1.9	23.7	162	2.4	12.4	841	1.9	50
K1 OP	0.5	350	1.5	17.0	780	1.6	41.1	450	2.1	31.0	1,580	1.8	89
Triple-P & Triple-P Sth OP	0.5	189	1.2	7.4	293	1.5	13.7	637	2.1	42.3	1,120	1.8	63
Albatross & Flamingo OP	0.5	606	1.3	24.8	239	1.7	13.0	8	1.7	0.4	853	1.4	38
Cinnamon OP	0.5	513	1.6	26.9	470	1.8	26.7	1,025	2.0	65.1	2,008	1.8	119
Total Open Pits		2,354	1.4	108	3,021	1.7	165	2,875	2.0	188	8,250	1.7	461
Mineral Resource - Underground (UG):	Au g/t	K Tonnes	g/t Au	K Oz	K Tonnes	g/t Au	K Oz	K Tonnes	g/t Au	K Oz	K Tonnes	g/t Au	K Oz
Trident UG	3.0							1,590	8.0	410	1,590	8.0	410
K2 UG	3.0							374	8.9	107	374	8.9	107
Triple-P & Zone-B UG	3.0							170	4.3	24	170	4.3	24
Total Underground								2,134	7.9	541	2,134	7.9	541
Total JORC 2012 Mineral Resource		2,354	1.4	108	3,021	1.7	165	5,009	4.5	729	10,384	3.0	1,002

James Champion de Crespigny Managing Director and CEO T: +61 (8) 6107 5878 admin@catalystmetals.com.au

Paul Armstrong Read Corporate

Notes and Competent Persons Statements:

- 1. Mineral Resources reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (Joint Ore Reserves Committee Code JORC 2012 Edition).
- 2. Open pit resources are reported within the May 2020 optimised conceptual pit shells at A\$2,500/oz gold price and 2020 costs. The resources reported are above a 0.5 g/t Au cut-off grade and include oxide, transition and fresh material, see Table 2. The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed all pits remained economic. (The Trident West pit must be mined to access the Trident underground.) In the 2023 review, all drilling (including post May 2020 drilling) beneath all pits showed that further drilling would be required to increase the depth of pits and hence resources.
- 3. In 2023 Trident underground resources were reviewed using a A\$2,800/oz gold price and increasing the April 2019 costs by 40%. The previously applied cut-off grade of 3.0 g/t Au remained valid and as such the Trident underground resources are retained as first reported in April 2019 which used a 3.0 g/t Au cut-off grade, and was modelled at a gold price of A\$2,000/oz. Further drilling would be required to increase the Trident underground resource. Other underground resources are reported above a 3.0 g/t Au cut-off (with minor 2.5 g/t Au cut-off material included for continuity purposes) and include fresh material only.
- 4. Totals may differ due to rounding, Mineral Resources reported on a dry in-situ basis.
- 5. The Statement of Mineral Resource Estimates has been compiled by Dr. Spero Carras who is a full-time employee of Carras Mining Pty Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ("FAusIMM"). Dr. Carras has sufficient experience, including over 40 years' experience in gold mine evaluation, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ("JORC") Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Dr. Carras consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.
- 6. The information in this report that relates to exploration results that form the basis of the Mineral Resource Estimate has been reviewed, compiled and fairly represented by Mr Jonathon Dugdale, a Fellow of the Australian Institute of Mining and Metallurgy ("FAusIMM") and a full time employee of Discover Resource Services Pty Ltd. Mr Dugdale has sufficient experience, including over 34 years' experience in exploration, resource evaluation, mine geology and finance, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ("JORC") Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Dugdale consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Appendix 3: JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Criteria	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information 	 Commentary Historic Vango Work: Reported Diamond Drilling assays are from mostly Half core and minor Quarter core, NQ2 and HQ diamond core. This is considered to be sufficient material for a representative sample. Mineralised intervals were selected based on projections of known mineralisation as well as identified associations with mineralisation e.g. biotite alteration at Trident, quartz and sulphide at other prospects. Sampling was continued well beyond the identified mineralised intervals and follow-up sampling was conducted where mineralisation was detected at the ends of the sampled zones. Drillholes were generally designed to intersect mineralisation orthogonal to strike and core was oriented. Cutting of core was along the orientation line, in order to be as close as possible to orthogonal to mineralised structures and representative. R C Drilling assays are from 1m samples split on the cyclone. 4m composites from these 1m splits have been taken in the cover sequence. Sample preparation according to the Industry Standard approach of approximately 3 kg submitted to Intertek Laboratories in Perth they were pulverised to produce a 50 g charge for fire assay. Previous Workers: Quality of historical sampling information is varied, but has been verified against original logs and reports wherever possible. Previous work has been dominated by Resolute, BMA, Homestake, Barrick Resources and Dampier Gold, all of which are considered to have used high quality methodology for the time. R C samples were callected as 4m composite spear samples. Mineralised zones were sampled at 1m intervals using a 1/8 riffle splitter. Core samples were taken at 1m intervals or at geological boundaries from NQ2 and HQ Core. Where sampling methods have not been recorded, results are consistent with, and of a similar quality, to results where methodology is known, including Vango methodology i.e. the Industry Standard approach abo

	Criteria	JORC Code explanation	Commentary
	Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Historic Vango Work: NQ2 Diamond drill-core. Face Sampling, Reverse Circulation (RC) hammer Previous workers: NQ/NQ2 and HQ Diamond drill-core, minor BQ diamond drill-core from underground K2. Face Sampling, Reverse Circulation (RC) hammer. Minor Aircore drilling in oxide zones of some open pit resource areas.
	Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Historic Vango Work: RC drilling was bagged on 1m intervals and an estimate of sample recovery has been made on the size of each sample. Recoveries have been excellent in mineralised zones. Diamond core recoveries are recorded for each metre with excellent recoveries through mineralised zones showing no likely bias to results. Results between RC and diamond are of similar tenor where they have been adjacent, with no indication of bias to the sampling with any drilling method. Previous Workers: Limited information on the recoveries has been recorded for RC, but where located for the diamond drilling, the recoveries have been consistently high in agreement with those noted by Vango.
		 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Historic Vango Work: Reverse Circulation (RC) holes have been logged on 1m intervals Diamond holes are logged in detail based on geological boundaries. Diamond holes are logged on 1m intervals for geotechnical data. Metallurgical samples were taken from logged HQ diamond holes for testwork verified as representative and appropriate by Como Engineers to support appropriate Mineral Resource estimation. Diamond drillcore has been geotechnically logged in detail and the geotechnical logging has been examined and verified sufficient detail to support appropriate Mineral Resource estimation and mining studies by Peter O'bryan and associates, geotechnical engineers. Previous Workers: Geological logs have been examined from previous workers in both hard copy and digital files. Logging codes have varied, but careful reconstruction of the geological sections has shown good correlation with the broad lithological logging.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise samples representivity Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second- half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Historic Vango Work: Diamond drilling - Half and Quarter Diamond Core on selected intervals of between 0.25-1.25m length using a diamond saw sampled. Standards submitted every 20 samples, of gold grade range similar to those expected in the sampling. Blanks were inserted every 20 samples also. RC Drilling sampled on 1m samples using a cone splitter within the cyclone. In less prospective lithologies these 1m samples were composited using a scoop over 4m intervals. Field duplicate sampling was completed by passing the bulk reject sample from the plastic bag through a riffle splitter. In addition, ¼ core was routinely submitted. Duplicate sample intervals were designated by the geologist. Previous Workers: RC - 1m samples collected at the rig using a 1:8 riffle splitter. Each sample was riffle split each 1m sample to collect approximately 2kg samples in calico bags, with the remaining sample retained on site in plastic bags. Four metre composite samples were also collected with any samples assaying greater than 0.1g/t Au being re-split to 1m intervals. Core sampled was halved using a diamond saw and sampled at 1m intervals, or to geological contacts. Sampling procedures for the Resolute drilling were not available. Metallurgy: Diamond Core sampled was halved using a diamond saw and then quartered for assaying and sampled at 1m intervals, or to geological contacts. Half core material was then used for metallurgical (leach recovery) testing with minor quarter core HQ material where this was necessary. Full core sections have been used for strength and grinding testing
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 also. Historic Vango Work: ~3kg samples dried, crushed and pulverised then a 50g charge analysed at Intertek Laboratories using an Industry Standard Fire Assay method. Standards submitted every 20 samples of grade-range/tenor similar to those expected in the sampling. Blanks were inserted every 20 samples also. Field duplicates also analysed. Previous Workers: Gold was analysed using fire assay with a 25-50g charge for Au within mineralised zones. Some Aqua regia data is included in the resources, generally in lower grade, oxide and transition, areas Drilling programs carried out by HGAL have included ongoing QAQC procedures. These included the use of certified standards, blanks, check assay and duplicate sampling. The various programs of QAQC carried out by HGAL have all produced results which support the sampling and assaying procedures used at the site. QAQC procedures for the Resolute drilling were not available.

Criteria	JORC Code explanation	Commentary
	 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 QAQC Discussion: Higher grade results show greater variation as expected with Duplicates and re-assays, but in general show good correlation. Standards and Blanks reported within acceptable accuracy and precision levels around the expected standard value. Some anomalous results were likely due to mislabelling of standards and these were reassigned where obvious. The results indicate the fire assay results from Intertek are of sufficient quality to be acceptable for use in resource estimation. Previous workers QA/QC analysis and results are also within acceptable accuracy levels where available.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historic Vango Work: Intersections have been calculated using a 1 g/t cut off and internal waste of up to 3m thickness with total Intersections greater than 3g/t. Intersections have been reviewed by senior geological staff at consultants Terra Search and Discover Resource Services (Jon Dugdale). Intersections have been re-calculated according to Mineral Resource estimation criteria. Previous Workers: The database of analytical results from previous workers has been audited and, where possible, verified with reference to historical reports. Intersections have been re-calculated according to Mineral Resource estimation criteria. Vango infill drilling has largely confirmed the thickness and tenor of previous drilling. Scissored/twinned (<10m) holes have confirmed mineralised zones at many prospects Data is provided from the field as paper logs for geology, DGPS files for locations, and CSV files from the laboratory for assays. The digital formats are converted into spreadsheet format and pass through an initial validation prior to loading into the Terra Search Explorer3 RDBMS system. Extensive data validation protocols are then applied from within the database and through visual confirmation by the senior geological team. Previous company databases have been converted into the Explorer3 RDBMS format and undergone extensive validation including cross referencing to Annual reporting and internal data sources. The database is managed by Terrasearch and outputted to an Access data base at Carras Mining for Mineral Resource estimation purposes.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource 	 Historic Vango Work: DGPS has been used to locate all drillholes. REFLEX Gyro Tool used for downhole surveys on all holes Previous Workers: The majority of drill holes used in the resource estimate have been accurately surveyed by qualified surveyors using DGPS. Down hole surveys have been conducted at regular intervals using industry-

Criteria	JORC Code explanation	Commentary
	 estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 standard equipment. Where single shot cameras were used some magnetic units have affected the azimuth readings and these have not been used. Many holes have been surveyed using Gyro tools. Some historical data may only have local surveyed coordinates and nominal downhole surveys but each hole in the database has been checked against original data with a small percentage of holes not available in hard copy for verification.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 Drill data spacing: Drillholes have been planned in areas of Mineral Resource definition to a minimum spacing of 40m x 40m intersection density (for Inferred Resources) and infilled to a minimum of 20m x 20m (for Indicated Resources). Isolated drillholes intersections at >40m spacing will be utilised for estimation of Exploration Targets. The drill spacing of 40m x 40m intersection density and 20m x 20m intersection density is sufficient to establish the degree of geological and grade continuity appropriate for Inferred to Indicated Mineral Resource estimation respectively for all prospects. Broader spaced drilling intersections (up to 60m) have been modelled in areas of structural continuity internal to the (Inferred) Mineral Resource. Some sections have closer spacing in high-grade zones, confirming the continuity in Indicated Resource areas. Metallurgy: Samples were selected from diamond core and/or RC chips to be representative of mill feed material for testing. Sufficient metallurgical sampling appropriate for the Mineral Resource estimation, complimented by previous data. Additional representative sampling will be required for Ore Reserve estimation in future.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of a majority of the drilling is approximately perpendicular or at a high angle to the strike and dip of the mineralisation. Cutting of core was along the orientation line, in order to be as close as possible to orthogonal to mineralised structures and representative. There is a low likelihood of any sampling bias. Certain holes have drilled parallel to key structures, but density of drilling and drilling on other orientations has allowed detailed geological modelling of these structures and hence any sampling bias in a single hole has been removed.
Sample security	• The measures taken to ensure sample security.	 Historic Vango Work: Samples sealed in bulka bag with Security seal, unbroken when delivered to lab. Previous Work: No information on Sample security has been obtained on previous workers sampling, however Industry standard practices are assumed.

Criteria	JORC Code explanation	Commentary
		 Metallurgical work: Samples sealed in bulka bag with Security seal, unbroken when delivered to lab or transported in diamond trays, previously photographed and then strapped to ensure safe and secure transport.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Review of standards, blanks and Duplicates indicate sampling and analysis has been effective. Historical QA/QC sampling has been referred to and signed off in previous resource statements, confirming the validity and previous data integrity. Databases have been extensively validated and a proportion of holes were compared to original data reports/sources and found to be consistent wherever checked.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native 	Marymia Gold Project is located within the Archaean Marymia Inlier in the Plutonic Well or Marymia Greenstone Belt ~218km northeast of Meekatharra in the Midwest mining district in WA (Figures' 1 and 2). Trident/Trident West/Marwest/Mars: - M52/217 - granted tenement in good standing. Mareast/East Mareast/Wedgetail: - M52/218 - granted tenement in good standing. K1/K2/PHB: - M52/186 granted tenement in good standing.
	 title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Triple-P & Zone-B/Albatross - Flamingo: M52/396 granted tenement in good standing. Cinnamon: M52/228 - granted tenement in good standing. The tenements above predate the Native title Act. The tenements are 100% owned by Catalyst Metals Ltd who are in the process of acquiring Vango Mining Limited. Gold production will be subject to a 1-4% royalty dependent on gold price (Currently 2%) capped at \$2M across the entire project area. Contingent production payments of up to \$4M across the entire project area.
Exploration done by other parties.	 Acknowledgment and appraisal of exploration by other parties. 	 Extensive previous work by Resolute Mining, Homestake Gold, Battle Mountain Australia, Barrick Mining and Dampier Gold. Previous metallurgical and resource work has been completed by Resolute Mining, Barrick Mining and Dampier Gold. The quality and verification of previous exploration work is covered under Section 1 above.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Marymia mineralisation is structurally controlled, orogenic, mesothermal (amphibolite metamorphic facies) in style, associated with the late tectonic D3 high-angle thrusting event and open folding/flexing and dilation of earlier - including D1/D2 thrusts. Gold mineralisation at Trident/Trident West, Marwest and Mars project is hosted within a sheared contact zone in ultramafic rocks. High-grade 'shoots' of mineralisation are associated with flexures in the mineralised, generally shallow dipping shear structures /contact zones between steeply dipping (D3) faults. Gold mineralisation at Mareast/EastMareast, K1, K2 and PHB-1 are also orogenic hosted within steep shears within a mafic dominant package, flexures in the shear are important controls on mineralisation. Gold at Wedgetail is orogenic found on the sheared contact between felsic "porphyry" intrusions and mafic rocks. Gold mineralisation at Cinnamon is hosted within a shear zones within conglomerates with felsic clasts within a mafic derived matrix. High grade zones are located in flexures of the shear zones. Gold at Triple P and Zone B is hosted within steep to moderate dipping

Criteria	JORC Code explanation	Commentary
Criteria Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar • dip and 	 Commentary shears and shallow dipping link structures, within a mafic package which includes some sulphidic sedimentary units and felsic "porphyry" intrusions. Gold at Albatross and Flamingo is hosted within, and in shallow dipping linking zones between, shear zones within a mostly sedimentary package with some mafic units at depth. Historic Vango Work: Location of Drillholes based on historical reports and data, originally located on surveyed sites, and DGPS. Northing and easting data generally within 0.1m accuracy RL data +-0.2m Down hole length =+- 0.1 m Details on Vango drilling included in this Mineral Resource update including: easting and northing of the drill hole collars, elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collars, dip and azimuth of the hole, down hole length and interception depth, hole length,
	 azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Vango's Website <u>www.vangomining.com</u>. Where specific drillhole intersections are shown on sections in Appendix 1 the relevant ASX release is referenced. Previous Workers: The majority of drill holes used in the resource estimate have been accurately surveyed by qualified surveyors using DGPS. Down hole surveys have been conducted at regular intervals using industry-standard equipment. Where single shot cameras were used some magnetic units have affected the azimuth readings and these have not been used. Many holes have been surveyed using Gyro tools. A number of the drillholes from each prospect are of unknown survey methods, and some may have a lower location accuracy both from a collar and survey perspective. These holes make up only a small percentage of the overall database at each resource and all holes appear to have been located with sufficient accuracy to be consistent with the known drilling. Open hole percussion and RAB drilling have been excluded from the resource calculations. All Diamond and Reverse Circulation (RC) holes have been included.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of Intersections should be included for any significant discovery being reported These 	 Representative plans and sections have been included in Appendix 1 of this report, including drill collar locations in plan view: Figure 1: Marymia Gold Project, key corridors and Mineral Resource projects Figure 2: Location of Marymia Gold Project in the Yilgarn block of

Criteria	JORC Code explanation	Commentary
Balanced reporting	 should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Western Australia Figure 3: Marymia Gold Project, Trident Corridor with Mineral Resource projects Figure 4: Trident West Mineral Resource cross section 19200mE Figure 5: Marwest – Mars Mineral Resource cross section 20810mE Figure 6: Mareast Mineral Resource cross section 22700mE Figure 7: Marymia Gold Project, Triple-P Corridor with Mineral Resource projects Figure 8: Triple-P and Zone-B Mineral Resource cross section 1920mN Figure 9: Albatross-Flamingo cross section 7900mN with optimised pit and N-S Resource blocks Figure 10: Marymia Gold Project, PHB Corridor with Mineral Resource projects Figure 11: K2 West Lode, Central Lode and Main Lode cross section 16,425mN Figure 12: Longitudinal Projection through K2 Main Lode, PHB-1 optimised pit & Resource model Figure 13: PHB-1 West Lode, Central Lode and Main Lode cross section 16,875mN Figure 14: K1 Mineral Resource cross section 18,780mN Figure 15: Marymia Gold Project, Cinnamon Corridor with Mineral Resource projects Figure 16: Cinnamon cross section 26,375mN Details of new drilling Intersections and results that are included in the Mineral Resource estimates were tabulated and released previousy by Vango Mining on the ASX. Where specific drilllhole intersections are shown on sections in Appendix 1 the relevant ASX release is referenced.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; 	 Other substantive exploration data, exclusive of drilling data referred to above, that has contributed to the Mineral Resource Estimates reported includes: Metallurgical test results have been included in mining optimisation evaluations; As reported historically in ASX releases by Vango Mining, based on metallurgical testwork for the Trident UG, Trident West/PHB-1 and Triple-P and Zone-B prospects. Metallurgical data generated by previous workers on other prospects. Metallurgical recoveries recommended and applied to optimisations are tabulated below:

potential deleterious or contaminating substances.Leach recoveries from test work and as apProjectAverage for OptRecommendedImage: CommendedTrident West OP93.7%Marwest & Mars OP92.9%Mareast OP93.7%EastMareast OP93.7%Wedgetail OP88.6%PHB-1 (K3) OP95.2%K1 OP93.4%Triple-P & Triple-P Sth OP93.4%	pplied timisations Applied 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0)%)%)%)%)%
contaminating substances.ProjectAverage for OptRecommendedTrident West OP93.7%Marwest & Mars OP92.9%Mareast OP93.7%EastMareast OP93.7%Wedgetail OP88.6%PHB-1 (K3) OP95.2%K1 OP92.8%Triple-P & Triple-P Sth OP93.4%	timisations Applied 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0)%)%)%)%
substances.RecommendedTrident West OP93.7%Marwest & Mars OP92.9%Mareast OP93.7%EastMareast OP93.7%Wedgetail OP88.6%PHB-1 (K3) OP95.2%K1 OP92.8%Triple-P & Triple-P Sth OP93.4%	Applied 92.(92.(92.(92.(92.(92.(92.(92.(2% 2% 2% 2% 2%
Trident West OP 93.7% Marwest & Mars OP 92.9% Mareast OP 93.7% EastMareast OP 93.7% Wedgetail OP 88.6% PHB-1 (K3) OP 95.2% K1 OP 92.8% Triple-P & Triple-P Sth OP 93.4%	92.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0	0% 0% 0% 0% 0%
Marwest & Mars OP 92.9% Mareast OP 93.7% EastMareast OP 93.7% Wedgetail OP 88.6% PHB-1 (K3) OP 95.2% K1 OP 92.8% Triple-P & Triple-P Sth OP 93.4%	92.(92.(92.(92.(92.(92.(92.(92.(0% 0% 0% 0%
Mareast OP 93.7% EastMareast OP 93.7% Wedgetail OP 88.6% PHB-1 (K3) OP 95.2% K1 OP 92.8% Triple-P & Triple-P Sth OP 93.4%	92.0 92.0 92.0 92.0 92.0 92.0 90.0	0% 0% 0% 0%
EastMareast OP 93.7% Wedgetail OP 88.6% PHB-1 (K3) OP 95.2% K1 OP 92.8% Triple-P & Triple-P Sth OP 93.4%	92.(92.(92.(92.(92.(90.(2% 2% 2%
Wedgetail OP 88.6% PHB-1 (K3) OP 95.2% K1 OP 92.8% Triple-P & Triple-P Sth OP 93.4%	92.0 92.0 92.0 90.0	<mark>)%</mark>
PHB-1 (K3) OP 95.2% K1 OP 92.8% Triple-P & Triple-P Sth OP 93.4%	92.0 92.0 90.0	<mark>)%</mark>
K1 OP 92.8% Triple-P & Triple-P Sth OP 93.4%	92.0 90.0	
Triple-P & Triple-P Sth OP 93.4% All view of Steeler 02.5%	90.0)%
		0%
/ Albatross & Flamingo OP 93.5%	92.0	0%
Cinnamon OP 92.7%	92.(0%
Trident UG 89.4%	90.0	0%
K2 UG 94.0%	92.(0%
Triple-P/Zone-B UG 91.5%	90.0	0%
Average 93%	9;	2%
verified operating cost estimates used in 2020 factored for 2023.	0 which were	
Prospect, Drilinole: Zone I		
	3.4 	
Transition	10.7	
PHB-1, PHBMET01 PHBMET03-Fresh	16.8	
Cinnamon, VBGRCD0002 Oxide/Transition	9.0	
Cinnamon, VBGRCD0001 Fresh	13.9	
 Bulk density/Specific Gravity (SG) data: Specific Gravity data had been generated by V through specific prospects and/or as reported previous Mineral Resource estimates. The SG measured/recommended and applied to the estimates are tabulated below: 	Vango from dri d in relation to Gʻs Mineral Resou	illcor ırce
Specific Gravit	ty (SG)	
Project Oxide SG Trans SG	Fresh	I SG
Recm Use Recm Use	se Recm	c
Trident West OP 1 80 1 80 2 40 2	40 2 Q0	2
Marwest & Mars OD 1 80 1 80 2 40 2	40 2.50	2.
Mareast OD 1.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2	<u>40</u> 2.00	2.
	40 2.00	2.
	40 2.80	2.
	40 2.80	2.0
PHB-1 (K3) OP 1.88 1.90 2.53 2.4	.40 2.80	Ζ.

	Criteria	JORC Code explanation	Commentary						
			Triple-P & Triple-P Sth OP	1.80	1.80	2.40	2.40	2.80	2.80
			Albatross & Flamingo OP	1.60	1.60	2.20	2.20	2.60	2.60
_			Cinnamon OP	1.80	1.80	2.30	2.30	2.70	2.70
2			Trident UG	1.80	1.80	2.40	2.40	2.90	2.90
			K2 UG	1.98	1.98	2.54	2.54	2.90	2.90
7	6		Triple-P/Zone-B UG	1.80	1.80	2.40	2.40	2.80	2.8
	2		Average	1.9	1.9	2.4	2.4	2.8	2.8
			 Geotechnical and r diamond drillh examination of O'Bryan and A used in open p evaluation wh used except for degrees were Trident West of Cinnamon OP transition and Fibrous Asbestiforn The Trident defibrous asbestiform m OP and Marea previous minin were put in pl Safety require areas, the con waste and tail and milling im 	 Geotechnical and rock characteristics data: Geotechnical data has been generated from logging of all oriented diamond drillholes completed. These data, complimented by field examination of previous open pits, was evaluated by Peter O'Bryan and Associates and applied to recommended pit-slopes used in open pit optimisations and for underground mining evaluation where applicable. Overall pit slopes of 40 degrees were used except for Wedgetail and EastMareast where pit slopes of 45 degrees were used. Geotechnical holes exist for Trident UG, Trident West OP and PHB-1 OP. Diamond drill-core from the Cinnamon OP deposit was also reviewed, including oxide, transition and fresh material. Tibrous Asbestiform Minerals: The Trident deposits (Trident West OP and Trident UG) contain the fibrous asbestiform mineral actinolite and tremolite. Fibrous asbestiform minerals have also been detected at Marwest & Mars OP and Mareast OP. Fibrous minerals had been associated with previous mining at Marymia and mining and milling processes were put in place to ensure appropriate Occupational Health and Safety requirements including adequate ventilation, wash down areas, the containment of crushed materials and the covering of waste and tailings. Best practices are being reviewed for mining 					
	Further Work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Interpretation and eidentified potential four key mineralised. Cinnamon corridors Exploration Targets mineralisation outs Drilling programme and, based on succe the necessary drillir estimates in due co Plans and cross sect extensions, includin drilling areas: Figure 3: Man Resource proj- Figure 4: Tride Figure 5: Man 20810mE 	evaluation extension d corrido s. will be evaluated ide the N s will be ess, infilling densit urse. tions in A ag the ma ymia Gol ects ent West west – N	on of all l ons and r ors incluc estimate Aineral R designe drilling v y to pre Appendia ain geolo d Projec Mineral lars Mineral	key resour repeats of ling the PH d for zone resource a d to test t will be carri- pare new a 1 show t regical inter t, Trident Resource eral Resou	rce prosp minerali HB, Triple es of targ reas whe hese Exp ried out Mineral he areas rpretatio Corridor e cross se urce cros	bects has sed zones e-P, Triden eted ere approp loration Ta in order to Resource of possible ns and futu with Mine ction 1920 s section	in all t and riate. argets reach e ure ral 0mE

Criteria	JORC Code explanation	Commentary
		 Figure 6: Mareast Mineral Resource cross section 22700mE Figure 7: Marymia Gold Project, Triple-P Corridor with Mineral Resource projects Figure 8: Triple-P and Zone-B Mineral Resource cross section 1920mN Figure 9: Albatross-Flamingo cross section 7900mN with optimised pit and N-S Resource blocks Figure 10: Marymia Gold Project, PHB Corridor with Mineral Resource projects Figure 11: K2 West Lode, Central Lode and Main Lode cross section 16,425mN Figure 12: Longitudinal Projection through K2 Main Lode, PHB-1 optimised pit & Resource model Figure 13: PHB-1 West Lode, Central Lode and Main Lode cross section 16,875mN Figure 14: K1 Mineral Resource cross section 18,780mN Figure 15: Marymia Gold Project, Cinnamon Corridor with Mineral Resource projects
		- Figure 16: Cinnamon cross section 26.375mN

Section 3 Estimation and Reporting of Mineral Resources TRIDENT WEST OPEN PIT (OP)

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database Integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the Trident West deposit (and adjoining Trident UG deposit) includes both RC and structurally oriented diamond drillcore. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy – including in petrographic examination (e.g. Phlogopite-Tremolite- sulphides relationship) has enabled a structural model to be generated that has guided the interpretation. Drilling density at Trident West is <20m x 20m and, although re-distribution of gold mineralization has occurred in the oxide zone of the deposit, the confidence in the geological interpretation. The nature of the data used for the geological interpretation is almost entirely drilling data. At Trident West a total of 160 holes for 15,751m of drilling has been completed both historically and by Vango Mining. This includes 6 DD holes for 530m and 154 RC holes for 15,221m. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging

Criteria	JORC Code explanation	Commentary
		 has been completed for all historic Vango and other previous drilling. Data/information generated from structural and geotechnical logging of diamond drillcore has also been utilised. Alternative interpretations with respect to the shape and orientation of mineralised zones, where data is limited to RC drilling (no orientation not known) are unlikely to significantly effect the volume of mineralisation but may have a low to moderate effect on continuity and classification (e.g. Indicated vs Inferred). However, the level of understanding based on structural orientation data generated throughout the Trident deposit, and the experience of the geological team, has limited the interpretation risk to low. Geology (structural, lithological and alteration) has been a key factor guiding the interpretation of the orientation, geometry, size and continuity of the resource envelopes and constraints/boundaries. The other key factor has been grade distribution and trends in the assay data, particularly where mineralisation occurs within a rock mass or the oxide zone. Key factors affecting continuity both of grade and geology include, in order of importance: Structural controls – for example, steeply dipping (D3) fault zones that bound and are interpreted to have controlled dilation in the shallow dipping ultramafic schist host unit and also host mineralisation. Some post mineralisation movement may have accentuated the bounding nature of these structures. Gold mineralisation shoot controls in 3 dimensions have been observed which, in the case of Trident, constrain high-grade mineralisation of gold mineralisation. Redistribution of gold mineralisation due to re-mobilisation of gold in the oxide zone and supergene enrichment in the transition zone of the deposit. Due to leaching and re-precipitation, this can generate a poddy, discontinuous gold distribution in some areas.
Dimensions Estimation and modelling techniques	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nature and appropriateness of the estimation technique(s) applied 	 The Trident West OP deposit has dimensions of 430m strike northeast - southwest x 400m northwest - southeast and 150m vertically from surface. The Trident West mineralisation strikes generally strikes northeast – southwest and dips moderately to the northwest. The following outlines the estimation and modelling technique used for producing Resources for the Trident West OP deposit.
	and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of	

TOP DOPODO 1100 001/1

Criteria	JORC Code explanation	Commentary					
	extrapolation from	Deposit Information					
	data points. If a computer assisted estimation method was chosen include a	DepositOrebodyNominalMetres ofDimensionsDrill SpacingMineralisedDrilling					
	description of computer software and	Trident West OP400mE x 300mN x 150mRL20mE x 20mN 20mE x 20mN~2,000m					
	 estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was 	Implementation Drink pooling Drink pooling Trident West OP 400mE x 300mN x 20mE x 20mN ~2,000m 1. Wireframes were provided by Terra Search for: a. Topography based on aerial survey information and historical open pits. b. Bottom of Oxidation (BOCO) c. Top of Fresh Rock (TOFR) 2. CMPL carried out a review of the weathering surfaces in conjunctio with Mr J Dugdale and Terra Search Geologists. 3. Based on geology and using intersection selection, mineralised shape were wireframed at a 0.5g/t nominal cut-off grade and usin intersection selection to constrain the interpretation. These mineralise shapes could contain values less than 0.5g/t within the wireframes. The parameters used for intersection selection were 3m down hole whice equates to an approximate 2-2.5m bench height. The intersectior could include 1m of internal dilution and all intersections included 0.5r of edge dilution. This edge dilution was added to allow for the nor visible edge definition which would be experienced in the minin process. 4. The mineralised wireframes were audited by Mr J Dugdale. 5. Each mineralised wireframes had an assigned strike, dip and plunge. 6. The majority of data was 1m lengths and length weighting was use when modelling the deposit. 7. The number of shapes used to model the deposit was as follows: Deposit Number of Shapes Trident West OP 69					
	 used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole. 	 sizes being used. 9. For each shape a detailed set of weighted statistics was produced. Base on the statistics, high grade cuts were determined using both the GA method and the method of Denham. The GAP method determines th beginning position of non-linearity of the cumulative probability plot a the high grade end of the data. The Denham method uses statistical distribution theory based on the gamma distribution and the conficient of variation. The selected high grade cut and percentage metal cut (based on drillir data) is shown below: 					
	model data to drill hole data, and use of reconciliation data if	data) is snown below:					

Criteria	JORC Code explanation	Commentary				
	available.		Deposit	Maximum Cut (g/t)	Percentage Metal Cut %	
			Trident West OP	50g/t	10% (50% of metal cut from 3 samples)	
		10	 Normalised vari produced for do wireframes cove The 6 mineralise (OK) with the fol Nugget: 0.5 Ranges: 50r 	ograms were run an own hole, down dip, o ring 82% of the total vo ed wireframes were m lowing parameters: n along strike, 25m dov	d directional variograms were down plunge for 6 mineralised olume of the deposit. nodelled using Ordinary Kriging wn dip, 3m down hole	
		11	. The remaining r Distance Power 3	nineralised wireframes 3 (ID ³) interpolation.	s were modelled using Inverse	
		12	2. For both OK and	ID ³ the following param	neters were also used:	
			 A minim of samp The disc The following 	num number of sample les of 16 cretisation parameters owing search radii were	s of 2 and a maximum number were 2E x 1N x 1RL e used:	
10			 20r sha 50r sha 	n along strike, 20m dov pes) n along strike, 25m dov pes)	vn dip, 3m down hole (small vn dip, 3m down hole (large	
			 Note: for relaxed 	or blocks that were not and the search radii we	filled, the parameters were ere increased.	
		13	8. The fundamenta	l block size used was:		
			Deposit	Small Blocks		
15			Trident West OP Small blocks were	2.5mE x 1mN x 1m	IRL	
			shapes were narr	ow.		
		14	 To check that th data, visual vali blocks to the san 	e interpolation of the dation was carried o nple composite data.	block model honoured the drill ut comparing the interpolated	
		15	 Volumes within v compared with t wireframes on a estimated were 	wireframes were deteri he block estimates of t shape by shape basis t correct.	nined and these were then he volumes within those o ensure that volumes	
		16	 Classification wa and geology as tl determined by p 	s carried out using a co ne guide as well as the reliminary pit consider	mbination of drill hole density potential mineability as ations.	
		17	7. The 2023 open p designed pit whice 2020 designed p with allowance for used for the design carried out by Associates). The defining the por exploitation in the	it resources are reporte ch had used a A\$2,500/c bit includes a minimum or a 20m wide road. Ar gned pit walls following v Geotechnical Cons optimised designed pit tion of models that ma e foreseeable future ar	d within the May 2020 optimised z gold price and 2020 costs. The turning circle road at the base overall slope of 40 degrees was site visits and geotechnical work sultants (Peter O'Bryan and provided a reasonable basis for ay have prospects for economic od could therefore reasonably be	

	Criteria	JORC Code explanation	Commentary
			declared as Open Pit Resources. (Optimisation used a metallurgical recovery of approximately 92% overall. The Resources reported are minimally diluted and further dilution, predominately in hard rock, would be required to produce Reserves as well as new optimisation studies followed by detailed pit design.)
			The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 designed pit remained economic when considered in conjunction with the underground potential at Trident. The Trident West OP must be developed to access the Trident Underground.
1			The resources reported are above a 0.5 g/t Au cut-off grade and include oxide, transition and fresh material.
J J	Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All results are reported on a dry tonnage basis.
7	Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	• A 0.5g/t Au cut-off grade is a reasonable mining cut-off grade for open pit deposits in the Marymia area assuming a 92% recovery and a gold price of A\$2,800.
	Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Open pit mining will be the mining method employed going forward using a 2.5m-5m bench height following grade control drilling.

	Criteria	JORC Code explanation	Со	ommentary
	Metallurgical	• The basis for	•	Preliminary metallurgical testwork suggested high recoveries would be
	factors or	assumptions or	l -	achieved (Oxide 93%, Transition 93%, Fresh 90%). These recoveries were
	assumptions	predictions regarding	l -	used in financial assessment of the optimisation studies.
\geq		metallurgical	l	
	U	amenability. It is	l	
		always necessary as	l -	
Ŧ		part of the process of	l -	
		determining	l	
1		reasonable prospects	I	
	\mathcal{Y}	for eventual economic	l	
7	/	extraction to consider	l -	
	I	potential metallurgical	l -	
1	5	methoas, but the	I	
	ノー	ussumptions regarding	l	
7	5	treatment processo	I	
Л	()	and narameters made	l -	
\geq		when reporting	l -	
	5	Mineral Resources	l -	
	シ	may not always he	l	
	I	riaorous Where this is	l	
		the case. this should	l	
		be reported with an	l	
٦t	\int	explanation of the	l	
1	9	basis of the	I	
		metalluraical	l	
_	I	assumptions made.	I	
1	Environmental	Assumptions made	•	To date, there have been no issues in carrving out drilling and having
1	factors or	regarding possible	I	POW's approved.
1	assumptions	waste and process	•	The Trident West OP contains the fibrous asbestiform minerals actinolite
1		residue disposal	I	and tremolite. Fibrous minerals had been associated with previous
J	J J	options. It is always	l -	mining at Marymia and mining and milling processes were put in place to
	I	necessary as part of	l -	ensure appropriate Occupational Health and Safety requirements
		the process of	l -	including adequate ventilation, wash down areas, the containment of
1)	determining	l -	crushed materials and the covering of waste and tailings. Best practices
1	シ	reasonable prospects	I	are being reviewed for mining and milling implementation.
4		for eventual economic	I	
		extraction to consider	l -	
		the potential	I	
	l	environmental impacts	I	
		of the mining and	l	
1		processing operation.	I	
))	determination of	l	
-	シ	ueler mination of	l	
ון	I	puteritiai	l	
	I	impacts particularly	l	
	I	for a greenfields	l -	
	I	project may not	l -	
	I	always he well	l -	
	l	advanced, the status of	l -	
	l	early consideration of	l -	
	l	these notential	l -	
	l	environmental impacts	l -	
	l	should be reported	l -	
	l	Where these aspects	l -	
	l	have not been	l -	
_ L				

Criteria	JORC Code explanation	Commentary
	considered this should be reported with an explanation of the environmental assumptions made	
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials 	 The following bulk densities (t/m3) were used: Oxide: 1.80 Transition: 2.40 Fresh: 2.90 The bulk densities used were based on actual bulk density measurements as outlined in Section 2 of the JORC Table. Bulk density data has been collected in the field using a standard Weight in Air/Dry Weight method systematically through the diamond drilling in the field. Samples were selected and weighed in air and then submerged and reweighed using scales with a 0.1g accuracy. The samples were from fresh non-porous rock and generally returned consistent values. Some samples were covered in wax to ensure the accuracy of the method and these proved to be consistent with non-waxed measurements.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 All material in Trident West OP has been classified as Indicated Resource. Classification was based on a combination of drill hole spacing and confidence in geological continuity as well as the likelihood that it would be mined as a pit to access the Trident Underground. In general, drill hole spacing of 20mE x 20mN was used, with some infill holes. The potential for eventual open pit mining was determined by application of the following: An optimised Whittle pit shell produced in 2020 at A\$2,500 per ounce Au. Pit slopes determined from geotechnical drilling. A turning circle of 20m was used to define a pit base. The resource within the partially designed pits was undiluted (however sensitivities to dilution were carried out to ensure robustness of optimisation). Only non-diluted resources (inclusive of shape dilution) are reported in the Mineral Resource Statement. The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 conceptual pit remained economic when considered in conjunction with the underground potential at Trident.

Criteria	JORC Code explanation	Commentary
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 There have been no other audits and reviews carried out using the same data as has been used in this study.
Discussion of relative accuracy/ confidence	 audits or reviews of Mineral Resource estimates. Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the 	data as has been used in this study. • The interpretation of the deposit is based on drilling and the interpreted geology mirrors that seen in the Trident Underground. The Trident West OP is a starter pit which must be developed so that a portal position can be established for accessing the Trident Underground. Hence it is included as a resource as material removed from the pit will be milled providing it is above cut-off grade.
	 These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

Section 3 Estimation and Reporting of Mineral Resources MARWEST & MARS OPEN PIT (OP)

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the Marwest & Mars OP deposits (and adjoining Trident UG deposit) includes both RC and structurally oriented diamond drillcore. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy – including in petrographic examination (e.g. Phlogopite-Tremolite- sulphides relationship) has enabled a structural model to be generated that has guided the interpretation. Drilling density at Marwest & Mars OP is <20m x 20m and, although re-distribution of gold mineralization has occurred in the oxide zone of the deposit, the confidence in the geological interpretation. The nature of the data used for the geological interpretation is almost entirely drilling data. At Marwest & Mars OP a total of 367 holes for 28,183m of drilling has been completed both historically and by Vango Mining. This includes 12 DD holes for 944m and 355 RC holes for 27,239m. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging

Criteria	JORC Code explanation	Commentary
FIDDE AND AND		 has been completed for all Vango and previous drilling. Data/information generated from structural and geotechnical logging of diamond drillcore has also been utilised. Alternative interpretations with respect to the shape and orientation of mineralised zones, where data is limited to RC drilling (no orientation not known) are unlikely to significantly effect the volume of mineralisation but may have a low to moderate effect on continuity and classification (e.g. Indicated vs Inferred). However, the level of understanding based on structural orientation data generated throughout the Trident deposit, and the experience of the geological team, has limited the interpretation risk to low. Geology (structural, lithological and alteration) has been a key factor guiding the interpretation of the orientation, geometry, size and continuity of the resource envelopes and constraints/boundaries. The other key factor has been grade distribution and trends in the assay data, particularly where mineralisation occurs within a rock mass or the oxide zone. Key factors affecting continuity both of grade and geology include, in order of importance: Structural controls – for example, steeply dipping (D3) fault zones that bound and are interpreted to have controlled dilation in the shallow dipping ultramafic schist host unit and also host mineralisation. Some post mineralisation movement may have accentuated the bounding nature of these structures. Gold mineralisation shoot controls in 3 dimensions have been observed which, in the case of Marwest & Mars OP, constrain high-grade mineralisation to concave, downwarped, flexures in the ultramafic schist host. The footwall Serpentinite is generally un-mineralised and constrains the footwall of the mineralisation. Redistribution of gold mineralisation due to re-mobilisation of gold in the oxide zone and supergene enrichment in the transition zone of the deposit. Due to leaching and re-precipitation, this can
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The Marwest & Mars OP deposit has dimensions of 400m strike northeast - southwest x 400m northwest - southeast and 150m vertically from surface. The Marwest & Mars OP mineralisation strikes generally strikes northeast – southwest and dips moderately to the northwest.
Estimation and modelling techniques	• The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of	 The following outlines the estimation and modelling technique used for producing Resources for the Marwest & Mars OP deposit. Deposit Information Deposit Orebody Dimensions Nominal Drill Spacing Metres of Mineralised Drilling Netres of Mineralised Drilling Marwest & Mars OP 400mE x 400mN x 150mRL 20mE x 20mN 1,091m Wireframes were provided by Terra Search for:

Cri	iteria	JORC Code explanation	Con	nmentary				
		extrapolation from data points. If a computer assisted estimation method was chosen include a		a. Topograph open pits.b. Bottom of (c. Top of Fres	y based o Oxidation h Rock (Te	n aerial survey i (BOCO) DFR)	nformatio	on and historical
		 description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. 	 2. 3. 4. 5. 6. 	 CMPL carried out a review of the weatherin with Mr J Dugdale and Terra Search Geologist Based on geology and using intersection sele were wireframed at a 0.5g/t nominal content intersection selection to constrain the interpresion shapes could contain values less than 0.5g/t with parameters used for intersection selection with equates to an approximate 2-2.5m bench in could include 1m of internal dilution and all in of edge dilution. This edge dilution was address visible edge definition which would be exprocess. The mineralised wireframes were audited by Mission for the majority of data was 1m lengths and lew when modelling the deposit 				es in conjunction ineralised shapes grade and using These mineralised e wireframes. The down hole which The intersections ons included 0.5m llow for the non- ed in the mining dale. o and plunge. eighting was used
90)	deleterious elements or other non-grade variables of economic	7.	The number of shap	es used to	o model the dep	oosit was	as follows:
		significance (e.g. sulphur for acid mine drainage characterisation).		Marwest & Mars	OP	62	apes	
		 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the 	 The 10 largest shapes contained 75% of the volume for earling and the method of pre-Resource volume for earling was to ensure that modelling did not over sizes being used. 9. For each shape a detailed set of weighted stati on the statistics, high grade cuts were determ method and the method of Denham. The GA beginning position of non-linearity of the cum the high grade end of the data. The Denham distribution theory based on the gamma efficient of variation. the the selected high grade cut and percentage m data) is shown below: 				rolume. each shap er dilute sh tistics was rmined us AP metho mulative p am metho distribut metal cut	e was measured. hapes due to block s produced. Based hing both the GAP of determines the probability plot at bod uses statistical cion and the co- (based on drilling
		resource estimates.		Deposit	Maximu	m Cut (g/t)	Percent	age Metal Cut %
		 Discussion of basis for using or not using grade cutting or capping. 		Marwest & Mars OP	50g/t (3 small ar	0g/t in some eas)	10% (80 from 4 s	% of metal cut amples)
		 The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if 	10.	Normalised variogr produced for down wireframes covering The 8 mineralised v (OK) with the follow	ams wer hole, do 55% of t wireframe ing paran	e run and dir own dip, down he total volume es were modell neters:	rectional plunge of the de led using	variograms were for 8 mineralised eposit. Ordinary Kriging

Criteria	JORC Code explanation	Commentary						
	available.	 Nugget: 0.5 Ranges: 30m along strike, 30m down dip, 3m down hole 11. The remaining mineralised wireframes were modelled using Inverse Distance Power 3 (ID³) interpolation. 12. For both OK and ID³ the following parameters were also used: A minimum number of samples of 2 and a maximum number of samples of 16 The discretisation parameters were 2E x 1N x 1RL The following search radii were used: 20m along strike, 20m down dip, 2m down hole (small shapes) 30m along strike, 30m down dip, 3m down hole (large shapes) Note: for blocks that were not filled, the parameters were relaxed and the search radii were increased. 						
5		13. The fundamental block size used was:						
		Deposit Small Blocks						
		Marwest & Mars OP 2.5mE x 1mN x 1mRL						
		Small blocks were used to ensure adequate volume estimation where shapes were narrow.						
		 14. To check that the interpolation of the block model honoured the drill data, visual validation was carried out comparing the interpolated blocks to the sample composite data. 15. Volumes within wireframes were determined and these were then compared with the block estimates of the volumes within those wireframes on a shape by shape basis to ensure that volumes estimated were correct. 16. Classification was carried out using a combination of drill hole density and geology as the guide as well as the potential mineability as determined by preliminary pit considerations. 17. The 2023 open pit resources are reported within the May 2020 optimised conceptual pit shells which had used a A\$2,500/oz gold price and 2020 costs. In 2020 the pit shells were modified to include a minimum turning circle road at the base with allowance for a 20m wide road. An overall slope of 40 degrees was used for pit walls following site visits and discussions with Geotechnical Consultants (Peter O'Bryan and Associates). The optimised Whittle pit shells provided a reasonable basis for defining the portion of models that may have prospects for economic exploitation in the foreseeable future and could therefore reasonably be declared as Open Pit Resources. (Optimisation used a metallurgical recovery of approximately 92% overall. The Resources reported are minimally diluted and further dilution, predominately in hard rock, would be required to produce Reserves as well as new optimisation studies followed by detailed pit design.) 						
		In 2023, the economic viability of the 2020 conceptual pit was examined using a A\$2,800/oz gold price and increasing the May 2020 costs by 32%. The 2023 study confirmed that the conceptual 2020 pits remained economic using the A\$2,800/oz gold price and the						

2023 costs and as such the open pit resources remain unchanged

	Criteria	JORC Code explanation	Commentary
			from the reported Mineral Resource Estimate of 2020.
/			The resources reported are above a 0.5 g/t Au cut-off grade and include oxide, transition and fresh material
	Moisture	Whether the tonnages	All results are reported on a dry tonnage basis.
7		are estimated on a dry	
		basis or with natural	
P	5	method of	
	2	determination of the	
		moisture content.	
2	Cut-off	• The basis of the	• A 0.5g/t Au cut-off grade is a reasonable mining cut-off grade for open
	parameters	adopted cut-off	pit deposits in the Marymia area assuming a 92% recovery and a gold
		grade(s) or quality	price of A\$2,800.
U,	Mining factors or	Assumptions made	Onen nit mining will be the mining method employed going forward
	assumptions	reaardina possible	using a 2.5m-5m bench height following grade control drilling.
	\bigcirc	mining methods,	
		minimum mining	
		dimensions and	
		Internal (or, If	
\cap	01	mining dilution. It is	
Z		always necessary as	
		part of the process of	
		determining	
P	5	reasonable prospects	
	2	for eventual economic	
21		potential minina	
Y,		methods, but the	
C		assumptions made	
		regarding mining	
		methods and	
	e e e e e e e e e e e e e e e e e e e	parameters when estimating Mineral	
(\mathcal{D}	Resources may not	
		always be rigorous.	
		Where this is the case,	
C		this should be reported	
		with an explanation of	
	\bigcup	assumptions made.	
	Metallurgical	The basis for	Preliminary metallurgical testwork suggested high recoveries would be
	factors or	assumptions or	achieved (Oxide 93%, Transition 93%, Fresh 90%). These recoveries were
	assumptions	predictions regarding	used in financial assessment of the optimisation studies.
		metallurgical	
		amenability. It is	
		part of the process of	
		determining	
		reasonable prospects	
		for eventual economic	
		extraction to consider	
		potential metallurgical	
		memous, but the	

Criteria	JORC Code explanation	Commentary
	assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made	
Environmental	Assumptions made	• To date, there have been no issues in carrying out drilling and having
assumptions	waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an	 The Marwest & Mars OP contains the fibrous asbestiform minerals actinolite and tremolite. Fibrous minerals had been associated with previous mining at Marymia and mining and milling processes were put in place to ensure appropriate Occupational Health and Safety requirements including adequate ventilation, wash down areas, the containment of crushed materials and the covering of waste and tailings. Best practices are being reviewed for mining and milling implementation.
	explanation of the environmental assumptions made	
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the 	 The following bulk densities (t/m3) were used: Oxide: 1.80 Transition: 2.40 Fresh: 2.90 The bulk densities used were based on actual bulk density measurements as outlined in Section 2 of the JORC Table. The in-situ bulk density assignment was based on previous reported

Criteria	JORC Code explanation	Commentary
	 nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	measurements taken on HG triple tube core and apparent relative density testing on NQ2 core where available from this deposit and other deposits in the region with similar host rocks.
	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 All material in Marwest & Mars OP has been classified as Indicated Resource. Classification was based on a combination of drill hole spacing and confidence in geological continuity as well as the likelihood that it would be mined as a pit. In general, drill hole spacing of 20mE x 20mN was used, with some infill holes. The potential for eventual open pit mining was determined by application of the following: An optimised Whittle pit shell produced in 2020 at A\$2,500 per ounce Au. Pit slopes were based on performance of existing open pits and a geotechnical review by Peter O'Bryan and Associates. A turning circle of 20m was used to define a pit base. The resource within the partially designed pits was undiluted (however sensitivities to dilution were carried out to ensure robustness of optimisation). Only non-diluted resources (inclusive of shape dilution) are reported in the Mineral Resource Statement. The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 conceptual pit remained economic.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 There have been no other audits and reviews carried out using the same data as has been used in this study.

	Criteria	JORC Code explanation	Commentary
	Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by	 The interpretation of the deposit is robust, and it is unlikely that a different interpretation could be produced as the deposit modelling is based on previous modelling and mining of the Marwest OP deposit. Mars OP has not previously been mined.
	5	the Competent Person. For example, the application of statistical or geostatistical procedures to quantify	
<i>y</i>	20	the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that	
		 of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to along or 	
	2	local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should	
		 include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with 	
		production data, where available.	

Section 3 Estimation and Reporting of Mineral Resources MAREAST OPEN PIT (OP)

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the Mareast deposit has been predominantly RC drilling. However, the Mareast historical open pit remains open and structural orientations have been observed in pit wall exposures. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy in other deposits such as Trident, has enabled a structural model to be generated that has guided the interpretation. Drilling density at Mareast is <20m x 20m and, although re-distribution of gold mineralization has occurred in the oxide zone of the deposit, the confidence in the geological interpretation. The nature of the data used for the geological interpretation is almost entirely drilling data. At Mareast a total of 201 holes for 14,960m of drilling has been completed both historically and by Vango Mining. This includes This includes 3 DD holes for 190m and 198 RC holes for 14,770m. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging

Criteria	JORC Code explanation	Commentary						
		 has been completed for all Vango and previous drilling. Data/information generated from structural and geotechnical logging of diamond drillcore has also been utilised. Alternative interpretations with respect to the shape and orientation of mineralised zones, where data is limited to RC drilling (no orientation not known) are unlikely to significantly affect the volume of mineralisation but may have a low to moderate effect on continuity and classification (e.g. Indicated vs Inferred). Geology (structural, lithological and alteration) has been a key factor guiding the interpretation of the orientation, geometry, size and continuity of the resource envelopes and constraints/boundaries. The other key factor has been grade distribution and trends in the assay data, particularly where mineralisation occurs within a rock mass or the oxide zone. Key factors affecting continuity both of grade and geology include, in order of importance: Structural controls – for example, steeply dipping (D3) fault zones that bound and are interpreted to have controlled dilation in the steep to moderate dipping Mafic host unit and also host mineralisation. Some post mineralisation movement may have accentuated the bounding nature of these structures. Gold mineralisation to shallow plunging shoots within the mafic host. Intrusive felsic "porphyries" also constrain the mineralisation. Redistribution of gold mineralisation due to re-mobilisation of gold in the oxide zone and supergene enrichment in the transition zone of the deposit. Due to leaching and re-precipitation, this can generate a poddy, discontinuous gold distribution in some areas. 						
Dimensions Estimation and modelling techniques	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nature and appropriateness of the estimation technique(s) applied and key 	 The Mareast OP deposit has dimensions of 450m strike northeast southwest x 300m northwest - southeast and 100m vertically from surface/base of pit. The Mareast OP mineralised envelope strikes generally strikes northeast - southwest and dips moderately to the northwest. The following outlines the estimation and modelling technique used for producing Resources for the Mareast OP deposit. <u>Deposit Information</u> 						
	applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a	DepositOrebody DimensionsNominal Drill SpacingMetres of Mineralised DrillingMareast OP450mE x 300mN x 100mRL25mE x 20mN 1,009m1,009m1.Wireframes were provided by Terra Search for: a.Topography based on aerial survey information and historical open pits.b.Bottom of Oxidation (BOCO) c.Top of Fresh Rock (TOFR)2.CMPL carried out a review of the weathering surfaces in conjunction						

Criteria	JORC Code explanation	Com	mentary				
	 description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade 	3. 4. 5. 6. 7.	Based on geology and using intersection selection, mineralised shapes were wireframed at a 0.5g/t nominal cut-off grade and using intersection selection to constrain the interpretation. These mineralised shapes could contain values less than 0.5g/t within the wireframes. The parameters used for intersection selection were 3m down hole which equates to an approximate 2-2.5m bench height. The intersections could include 1m of internal dilution and all intersections included 0.5m of edge dilution. This edge dilution was added to allow for the non- visible edge definition which would be experienced in the mining process.The mineralised wireframes were audited by Mr J Dugdale. Each mineralised wireframe had an assigned strike, dip and plunge. The majority of data was 1m lengths and length weighting was used when modelling the deposit.DepositNumber of Shapes				
)	variables of economic significance (e.g. sulphur for acid mine		Mareast OP	apes contain	ed 70% of	51 the volume.	
	 support for acta mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. 	8. 9.	A breakdown of This was to ensur sizes being used. For each shape a on the statistics, method and the beginning positio the high-grade e distribution theo efficient of variat The selected high data) is shown be	pre-Resource that model detailed set of high grade of method of D on of non-line nd of the da ory based of cion. n grade cut a elow: Maximum (e volume lling did no of weighte cuts were enham. T earity of th ata. The E n the gau nd percent Cut (g/t)	for each shap t over dilute sh d statistics was determined us he GAP metho ie cumulative p Denham metho mma distribut tage metal cut Percentage N	ve was measured. hapes due to block s produced. Based sing both the GAP od determines the probability plot at od uses statistical tion and the co- (based on drilling Metal Cut %
	geological interpretation was used to control the resource estimates.		Mareast OP	40g	/t	14% (50% of 2 samples)	metal cut from
	 Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole 	10.	Normalised vario produced for do wireframes cover The 10 mineralise (OK) with the foll Nugget: 0.5 Ranges: 30n	ograms wer wn hole, do ring 65% of t ed wirefram owing paran n along strike	e run and wn dip, d he total vc es were m neters: e, 50m dow	d directional own plunge fo olume of the do odelled using vn dip, 4m dow	variograms were or 10 mineralised eposit. Ordinary Kriging vn hole
	data, and use of reconciliation data if available.	11. 12.	The remaining n Distance Power 3 For both OK and I • A minim of samp • The disc • The follo	hineralised v 8 (ID ³) interp ID ³ the follow um number les of 16 retisation pa pwing search	vireframes olation. ving param of samples rameters v radii were	were modell neters were als s of 2 and a ma were 2E x 1N x e used:	ed using Inverse to used: uximum number 1RL

Criteria	JORC Code explanation	Cor	nmentary		
		13.	 20m al shapes 30m al shapes Note: for bl relaxed and 	ong strike, 20m down dij) ong strike, 50m down dij) ocks that were not filled I the search radii were ir ock size used was:	p, 2m down hole (small p, 4m down hole (large , the parameters were hcreased.
\square			Deposit	Small Blocks	
5			Mareast OP Small blocks were us shapes were narrow.	2.5mE x 1mN x 1mRL ed to ensure adequate v	volume estimation where
		14. 15. 16. 17.	To check that the ir data, visual validat blocks to the sample Volumes within wire compared with the l wireframes on a sha estimated were corr Classification was ca and geology as the g determined by prelin The 2023 open pit re conceptual pit shells costs. In 2020 the pi circle road at the ba	nterpolation of the block ion was carried out co e composite data. frames were determined block estimates of the vo pe by shape basis to ensi- rect. rried out using a combin guide as well as the pote minary pit consideration esources are reported wit s which had used a A\$2,5 t shells were modified to se with allowance for a	k model honoured the drill omparing the interpolated d and these were then olumes within those sure that volumes hation of drill hole density ntial mineability as s. thin the May 2020 optimised 500/oz gold price and 2020 include a minimum turning 20m wide road. An overall is following site visits and
\mathcal{O}			siope of 40 degree discussions with Associates). The op basis for defining th economic exploitati reasonably be decla metallurgical recover reported are minim hard rock, would be optimisation studies	s was used for pit wai Geotechnical Consulta- ptimised Whittle pit sho ne portion of models th on in the foreseeable f ared as Open Pit Resourcery of approximately 92 ally diluted and further be required to produce followed by detailed pit	Is following site Visits and ints (Peter O'Bryan and ells provided a reasonable at may have prospects for future and could therefore rces. (Optimisation used a 2% overall. The Resources dilution, predominately in Reserves as well as new t design.)
			In 2023, the econom using a A\$2,800/oz g The 2023 study co economic using the such the open pit Mineral Resource Es	ic viability of the 2020 co sold price and increasing nfirmed that the conce A\$2,800/oz gold price resources remain unch timate of 2020.	onceptual pit was examined the May 2020 costs by 32%. eptual 2020 pits remained and the 2023 costs and as hanged from the reported
			The resources repor	ted are above a 0.5 g/t A I fresh material	u cut-off grade and include
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	•	All results are reporte	ed on a dry tonnage basis	5.

Criteria	JORC Code explanation	Commentary
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 A 0.5g/t Au cut-off grade is a reasonable mining cut-off grade for open pit deposits in the Marymia area assuming a 92% recovery and a gold price of A\$2,800.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Open pit mining will be the mining method employed going forward using a 2.5m-5m bench height following grade control drilling.
factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of 	 Preliminary metallurgical testwork suggested high recoveries would be achieved (Oxide 93%, Transition 93%, Fresh 90%). These recoveries were used in financial assessment of the optimisation studies.

Criteria	JORC Code explanation	Commentary
	the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 To date, there have been no issues in carrying out drilling and having POW's approved. The Mareast OP contains the fibrous asbestiform minerals actinolite and tremolite. Fibrous minerals had been associated with previous mining at Marymia and mining and milling processes were put in place to ensure appropriate Occupational Health and Safety requirements including adequate ventilation, wash down areas, the containment of crushed materials and the covering of waste and tailings. Best practices are being reviewed for mining and milling implementation.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, 	 The following bulk densities (t/m3) were used: Oxide: 1.80 Transition: 2.40 Fresh: 2.80 The bulk densities used were based on actual bulk density measurements as outlined in Section 2 of the JORC Table. The in-situ bulk density assignment was based on previous reported measurements taken on HG triple tube core and apparent relative density testing on NQ2 core where available from this deposit and other deposits in the region with similar host rocks.

Criteria	JORC Code explanation	Commentary
	 porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials 	
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the 	 All material in Mareast OP has been classified as Indicated Resource. Classification was based on a combination of drill hole spacing and confidence in geological continuity as well as the likelihood that it would be mined as a pit. In general, drill hole spacing of 25mE x 20mN was used, with some infill holes. The potential for eventual open pit mining was determined by application of the following: An optimised Whittle pit shell produced in 2020 at A\$2,500 per ounce Au. Pit slopes were based on performance of existing open pits and a geotechnical review by Peter O'Bryan and Associates. A turning circle of 20m was used to define a pit base. The resource within the partially designed pits was undiluted (however sensitivities to dilution were carried out to ensure robustness of optimisation). Only non-diluted resources (inclusive of shape dilution) are reported in the Mineral Resource Statement. The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 conceptual pit remained economic.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 There have been no other audits and reviews carried out using the same data as has been used in this study.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an 	 The interpretation of the deposit is robust, and it is unlikely that a different interpretation could be produced as the deposit modelling is based on previous modelling and mining of the Mareast OP deposit.

Criteria	JORC Code explanation	Commentary
	approach is not	
	a qualitative	
	discussion of the	
	factors that could	
	affect the relative	
	accuracy and	
	confidence of the	
	estimate.	
)	• The statement should	
9	specify whether it	
	relates to global or	
5	local estimates, and, if	
	local, state the relevant	
2	tonnages, which should	
	be relevant to technical	
2	and economic	
	evaluation.	
	Documentation should	
	include assumptions	
	made and the	
	procedures used.	
77	These statements of	
\cup)	relative accuracy and	
	confidence of the	
	estimate should be	
	comparea with	
\int	production data,	
J	witere available.	

Section 3 Estimation and Reporting of Mineral Resources EASTMAREAST OPEN PIT (OP)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the EastMareast deposit has been predominantly RC drilling. However, the adjacent Mareast historical open pit remains open and structural orientations have been observed in pit wall exposures. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy in other deposits such as Trident, has enabled a structural model to be generated that has guided the interpretation. Drilling density at EastMareast is <20m x 20m and, although re-distribution of gold mineralization has occurred in the oxide zone of the deposit, the confidence in the geological interpretation. The nature of the data used for the geological interpretation is almost entirely drilling data. At EastMareast a total of 142 RC holes for 3,287m has been completed both historically and by Vango Mining. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging has been completed for all Vango and previous drilling. Data/information

	Criteria	JORC Code explanation	Commentary			
	Dimensions	The extent and variability of the Mineral Resource	 generated from structural a drillcore has also been utilis Alternative interpretations of mineralised zones, where orientation not known) are mineralisation but may hav and classification (e.g. Indic Geology (structural, litholog guiding the interpretation of continuity of the resource e other key factor has been g data, particularly where min the oxide zone. Key factors affecting contin order of importance: Structural controls – fo that bound and are into steep to moderate dipp mineralisation. Some p accentuated the bound Gold mineralisation sho observed whjch, in the mineralisation to shalld Intrusive felsic "porphy Redistribution of gold r in the oxide zone and s of the deposit. Due to generate a poddy, disc The EastMareast OP deposi southwest x 200m northw surface. 	and geote sed. with resp e data is l unlikely t re a low t cated vs lr gical and a of the orie envelopes grade distr neralisation uity both r example erpreted ping Mafi post mine ding natur oot contra- case of Ea ow plungi yries" also mineralisa supergene leaching ontinuou	chnical logging of pect to the shape imited to RC drilli o significantly eff o moderate effect offerred). alteration, geometri and constraints/ ribution and trend on occurs within a of grade and geo e, steeply dipping to have controlle c host unit and al eralisation mover re of these structuo ols in 3 dimension astMareast, const ng shoots within o constrain the min ation due to re-mode e enrichment in the and re-precipitation s gold distribution unensions of 300m utheast and 1000	i diamond and orientation ing (no ect the volume of it on continuity een a key factor ry, size and boundaries. The ds in the assay a rock mass or logy include, in (D3) fault zones d dilation in the so host nent may have ures. ns have been train high-grade the mafic host. neralisation. obilisation of gold ne transition zone ion, this can n in some areas. strike northeast - m vertically from
	\mathcal{D}	expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The EastMareast OP mine northeast - southwest and d 	eralised e lips mode	envelope strikes rately to the nort	generally strikes hwest.
7	Estimation and modelling	• The nature and appropriateness of the	 The following outlines the esproducing Resources for the 	stimation EastMar	and modelling te east OP deposit.	echnique used for
	techniques	estimation technique(s)	Deposit Information			
\subseteq	applied and key assumptions, including treatment of extreme grade values,	Deposit Orebody Dimension	15	Nominal Drill Spacing	Metres of Mineralised Drilling	
J [_		domaining, interpolation	EastMareast OP 300mE x 2 x 90mRL	200mN	25mE x 20mN	~600m
		parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of	 Wireframes were provided by Terra Search for: a. Topography based on aerial survey information and historical open pits. b. Bottom of Oxidation (BOCO) c. Top of Fresh Rock (TOFR) CMPL carried out a review of the weathering surfaces in conjunction with Mr J Dugdale and Terra Search Geologists. 			

	Criteria	JORC Code explanation	Con	nmentary				
		 computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of dalatariaus elements or 	3. 4. 5. 6. 7.	Based on geology ar were wireframed intersection selection shapes could contain parameters used for equates to an appr could include 1m of i of edge dilution. Th visible edge definit process. The mineralised wire Each mineralised wire the majority of data when modelling the The number of shape	nd using at a 0 n to cons n values la r intersed internal o his edge ion whic eframes v reframe h a was 1n deposit. es used to	intersection s 5g/t nominal train the inter ess than 0.5g/ ction selection 2-2.5m bencl dilution and al dilution was a ch would be vere audited b nad an assigne n lengths and	election, m cut-off g pretation. t within the were 3m h height. l intersection added to a experience by Mr J Dug d strike, dig l length we eposit was	ineralised shapes grade and using These mineralised e wireframes. The down hole which The intersections ons included 0.5m llow for the non- ed in the mining dale. o and plunge. eighting was used as follows:
()	\mathcal{O}	deleterious elements or other non-grade		Deposit		Number of S	hapes	
	\supset	variables of economic significance (e.g. sulphur for acid mine drainage		EastMareast OP	es contain	34 ed 75% of the	volume	
		 drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the aeological 	8. 9.	The 10 largest shapes contained 75% of the volume. A breakdown of pre-Resource volume for each shape was measured. This was to ensure that modelling did not over dilute shapes due to block sizes being used. For each shape a detailed set of weighted statistics was produced. Based on the statistics, high grade cuts were determined using both the GAP method and the method of Denham. The GAP method determines the beginning position of non-linearity of the cumulative probability plot at the high grade end of the data. The Denham method uses statistical distribution theory based on the gamma distribution and the co- efficient of variation. The selected high grade cut and percentage metal cut (based on drilling data) is shown below:				
Ć		interpretation was		Deposit	Maximu	ım Cut (g/t)	Percenta	ge Metal Cut %
		 resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	10.	EastMareast OP Normalised variogra produced for down wireframes covering The 8 mineralised v (OK) with the followi Nugget: 0.6 Ranges: 60m ald The remaining mine Distance Power 3 (ID	No Cut I ams wer hole, do 565% of t vireframe ing paran ong strike eralised o 0 ³) interp	Max 12g/t re run and d own dip, dow the total volun es were mode neters: e, 30m down c wireframes w olation.	No Metal	Cut variograms were for 8 mineralised eposit. Ordinary Kriging vn hole led using Inverse
			12.	A minimum of samples	number of 16	of samples of	2 and a ma	iximum number

Criteria	JORC Code explanation	Cor	nmentary		
		13.	 The discree The follow 25m a shape 60m a shape Note: for k relaxed an 	tisation parameters were ing search radii were use long strike, 25m down d s) long strike, 30m down d s) olocks that were not filled d the search radii were i	e 2E x 1N x 1RL ed: ip, 2.5m down hole (small ip, 4m down hole (large d, the parameters were ncreased.
			Deposit	Small Blocks	
\bigcirc			EastMareast OP	0.5mE x 1mN x 1mRL	
\hat{O}			Small blocks were u shapes were narrov	sed to ensure adequate	volume estimation where
Ď		14.	To check that the data, visual valida blocks to the samp Volumes within wir	interpolation of the bloc tion was carried out c le composite data. eframes were determine	ck model honoured the drill comparing the interpolated
0		16.	compared with the wireframes on a sh estimated were con Classification was c	block estimates of the v ape by shape basis to en rect. arried out using a combi	olumes within those sure that volumes nation of drill hole density
		17.	and geology as the determined by prel The 2023 open pit r	guide as well as the pote iminary pit consideration resources are reported w	ential mineability as ns. ithin the May 2020 optimised
9			conceptual pit shel costs. In 2020 the p circle road at the b slope of 45 degree discussions with	Is which had used a A\$2, it shells were modified to ase with allowance for a es was used for pit wa	500/oz gold price and 2020 o include a minimum turning 20m wide road. An overall Ils following site visits and
5			Associates). The op for defining the por exploitation in the f declared as Open recovery of approx minimally diluted would be required	timised Whittle pit shells tion of models that may oreseeable future and co Pit Resources. (Optimi kimately 92% overall. T and further dilution, p to produce Reserves a	provided a reasonable basis have prospects for economic build therefore reasonably be sation used a metallurgical The Resources reported are redominately in hard rock, is well as new optimisation
			studies followed by In 2023, the econor using a A\$2,800/oz The 2023 study co economic using the such the open pit Mineral Resource E	r detailed pit design.) nic viability of the 2020 o gold price and increasing onfirmed that the conc e A\$2,800/oz gold price resources remain unc stimate of 2020.	conceptual pit was examined g the May 2020 costs by 32%. eptual 2020 pits remained and the 2023 costs and as hanged from the reported
			The resources repo oxide, transition an	rted are above a 0.5 g/t . d fresh material.	Au cut-off grade and include

Criteria	JORC Code explanation	Commentary
Moisture Cut-off	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. The basis of the adopted cut-off 	 All results are reported on a dry tonnage basis. A 0.5g/t Au cut-off grade is a reasonable mining cut-off grade for open nit deposits in the Marymia area assuming a 92% recovery and a gold.
	grade(s) or quality parameters applied.	price of A\$2,800.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Open pit mining will be the mining method employed going forward using a 2.5m-5m bench height following grade control drilling.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding	 Preliminary metallurgical testwork suggested high recoveries would be achieved (Oxide 93%, Transition 93%, Fresh 90%). These recoveries were used in financial assessment of the optimisation studies.

Criteria		JORC Code explanation	Commentary
		metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the	
		metallurgical	
Environmen	tal	Assumptions made.	There are surrently no known environmental factors which will affect the
factors or	lai	Assumptions made regarding possible	 There are currently no known environmental factors which will affect the project. To date, there have been no issues in carrying out drilling and
assumptions	s	waste and process	having POW's approved.
20		residue disposal	
99		options. It is always	
		necessary as part of	
		the process of	
		reasonable prospects	
		for eventual economic	
		extraction to consider	
(D)		the potential	
39		environmental impacts	
		of the mining and	
		processing operation.	
		While at this stage the	
\bigcirc		determination of	
16		potential	
(0)		impacts particularly	
$\overline{\mathcal{D}}$		for a greenfields	
		proiect. may not	
35		always be well	
		advanced, the status of	
		early consideration of	
()		these potential	
		environmental impacts	
		should be reported.	
		Where these aspects	
		have not been	
\bigcirc		considered this should	
		be reported with an explanation of the	
		environmental	
		assumptions made.	
Bulk density	,	Whether assumed or	• The following bulk densities (t/m3) were used:
		determined. If	Oxide: 2.00
		assumed, the basis for	Transition: 2.40
		the assumptions. If	Fresh: 2.80
		determined, the	• The bulk densities used were based on actual bulk density measurements
		method used, whether	as outlined in Section 2 of the JORC Table.
		wet or dry, the	
		frequency of the	
		measurements, the	
		nature, size and	

Criteria	JORC Code explanation	Commentary
	 representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different 	 The in-situ bulk density assignment was based on previous reported measurements taken on HG triple tube core and apparent relative density testing on NQ2 core where available from this deposit and other deposits in the region with similar host rocks.
\sum	materials.	
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 All material in EastMareast OP has been classified as Indicated Resource. Classification was based on a combination of drill hole spacing and confidence in geological continuity as well as the likelihood that it would be mined as a pit. In general, drill hole spacing of 25mE x 20mN was used, with some infill holes. The potential for eventual open pit mining was determined by application of the following: An optimised Whittle pit shell produced in 2020 at A\$2,500 per ounce Au. Pit slopes were based on performance of existing open pits and a geotechnical review by Peter O'Bryan and Associates. A turning circle of 20m was used to define a pit base. The resource within the partially designed pits was undiluted (however sensitivities to dilution were carried out to ensure robustness of optimisation). Only non-diluted resources (inclusive of shape dilution) are reported in the Mineral Resource Statement. The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 conceptual pit remained economic.
Audits of reviews	 The results of any audits or reviews of 	 There have been no other audits and reviews carried out using the same data as has been used in this study.
	auaits or reviews of Mineral Resource estimates.	data as has been used in this study.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the	 The interpretation of the deposit is based on geology in the ultramafic corridor (which includes historically mined Marwest and Mareast) and while the mineralised shapes pinch and swell they follow the general behaviour of mineralisation in the ultramafic stratigraphy of the Marymia belt.

application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within	
statistical or geostatistical procedures to quantify he relative accuracy of he resource within	
geostatistical procedures to quantify he relative accuracy of he resource within	
procedures to quantify the relative accuracy of the resource within	
the relative accuracy of the resource within	
the resource within	
stated confidence	
imits, or, if such an	
approach is not	
deemed appropriate.	
a aualitative	
discussion of the	
factors that could	
affect the relative	
accuracy and	
confidence of the	
estimate.	
The statement should	
specify whether it	
relates to alobal or	
ocal estimates and if	
ocal, state the relevant	
onnages, which should	
be relevant to technical	
and economic	
evaluation.	
Documentation should	
nclude assumptions	
nade and the	
procedures used.	
These statements of	
relative accuracy and	
confidence of the	
estimate should be	
compared with	
production data	
where available.	
vnere avallable.	
	imits, or, if such an approach is not leemed appropriate, qualitative liscussion of the actors that could offect the relative accuracy and onfidence of the estimate. The statement should pecify whether it elates to global or ocal estimates, and, if ocal, state the relevant onnages, which should be relevant to technical and economic evaluation. Documentation should nclude assumptions made and the procedures used. These statements of elative accuracy and onfidence of the estimate should be compared with production data, where available.

Section 3 Estimation and Reporting of Mineral Resources WEDGETAIL OPEN PIT (OP)

Criteria	JORC Code explanation	Commentary
Database Integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the Wedgetail deposit has been predominantly RC drilling. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy in other deposits such as Trident, has enabled a structural model to be generated that has guided the interpretation. Drilling density at Wedgetail is <20m x 20m and, although re-distribution of gold mineralization has occurred in the oxide zone of the deposit, the confidence in the geological interpretation in terms of grade distribution and volume is high, with a low to moderate degree of uncertainty regarding variability of orientation. The nature of the data used for the geological interpretation is almost entirely drilling data. At Wedgetail drilling includes a total of 123 RC holes for 5,948m both historically and by Vango Mining. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging has been completed for all Vango and previous drilling. Data/information generated from structural and geotechnical logging of diamond drillcore has also been utilised.

Criteria	JORC Code explanation	Commentary				
		•	 Alternative inter of mineralised z orientation not mineralisation to and classification Geology (structur guiding the inter continuity of the other key factor data, particular the oxide zone. Key factors affe order of import Structural of that bound steep to me also host me may have a Gold miner observed we mineralisat Redistribut in the oxide of the depor generate a 	rpretations with resp cones, where data is I known) are unlikely to but may have a low to out may have a low to resource on the original rpretation of the original resource envelopes of has been grade dist ly where mineralisation to shallow plong low the the bourn alisation shoot contro- which, in the case of V ion to shallow plungi lsic "porphyries" also ion at Wedgetail. ion of gold mineralisation controls and supergene posit. Due to leaching poddy, discontinuou	pect to the shape a imited to RC drilli co significantly affe o moderate effect afterred). alteration) has be entation, geometre and constraints/k ribution and trend on occurs within a of grade and geol e, steeply dipping to have controlled c / felsic porphyry post mineralisation olign ature of the ols in 3 dimension Vedgetail, constra- ng shoots within t o constrain the foct e enrichment in the and re-precipitati s gold distribution	and orientation ng (no ect the volume of t on continuity en a key factor y, size and boundaries. The ds in the assay a rock mass or ogy include, in (D3) fault zones d dilation in the y host units and on movement ese structures. Is have been hin high-grade the mafic host. otwall of the obilisation of gold te transition zone on, this can h in some areas.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	•	 The Wedgetail (southwest x 20 surface. The Wedgetail northeast - south 	DP deposit has dime Om northwest - sou OP mineralised en nwest and dips steep	ensions of 300m s utheast and 100r nvelope strikes to moderately to	strike northeast - m vertically from generally strikes the northwest.
modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key 		producing Resou	itines the estimation irces for the Wedgeta ition	ail OP deposit.	chnique used for
	assumptions, including treatment of extreme grade values,		Deposit	Orebody Dimensions	Nominal Drill Spacing	Metres of Mineralised Drilling
	domaining, interpolation parameters and		Wedgetail OP	600mE x 225mN x 100mRL	25mE x 20mN	625m
	maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and	2	Wireframes wer a. Topogr open p b. Botton c. Top of 2. CMPL carried or with Mr J Dugda	re provided by Terra S raphy based on aeria its. n of Oxidation (BOCO Fresh Rock (TOFR) ut a review of the we ale and Terra Search	Search for: I survey informati) athering surfaces Geologists.	on and historical in conjunction

	Criteria	JORC Code explanation	Commentary					
		 parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade 	3. 4. 5. 6. 7.	 Based on geology and using intersection selection, mineral were wireframed at a 0.5g/t nominal cut-off grade intersection selection to constrain the interpretation. These shapes could contain values less than 0.5g/t within the wire parameters used for intersection selection were 3m down equates to an approximate 2-2.5m bench height. The icould include 1m of internal dilution and all intersections in of edge dilution. This edge dilution was added to allow visible edge definition which would be experienced in process. The mineralised wireframes were audited by Mr J Dugdale. Each mineralised wireframe had an assigned strike, dip and The majority of data was 1m lengths and length weightim when modelling the deposit. 				
\bigcirc	Y	variables of economic		Deposit		Number of S	hapes	
	\bigcirc	significance (e.g. sulphur for acid mine drainage		Wedgetail OP		24		
		 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	8. 9.	The 6 largest shapes contained 80% of the volume.A breakdown of pre-Resource volume for each shape was measured.This was to ensure that modelling did not over dilute shapes due to blocksizes being used.For each shape a detailed set of weighted statistics was produced. Basedon the statistics, high grade cuts were determined using both the GAPmethod and the method of Denham. The GAP method determines thebeginning position of non-linearity of the cumulative probability plot atthe high grade end of the data. The Denham method uses statisticaldistribution theory based on the gamma distribution and the co-efficient of variation.The selected high grade cut and percentage metal cut (based on drillingdata) is shown below:DepositMaximum Cut (g/t)Percentage Metal Cut %Wedgetail OPNo Cut Max 18g/tNormalised variograms were run and directional variograms wereproduced for down hole, down dip, down plunge for 4 mineralised				
			11. 12.	The 4 mineralised w (OK) with the follow Nugget: 0.65 Ranges: 40m al The remaining mine Distance Power 3 (IE For both OK and ID ³ • A minimum of samples • The discreti • The followin	wireframe ing paran ong strike eralised N D ³) interp the follow n number of 16 isation pa ng search	es were mode neters: e, 20m down of wireframes we olation. ving paramete of samples of arameters wer radii were use	elled using lip, 3m dow ere modell ers were als 2 and a ma e 2E x 1N x ed:	Ordinary Kriging vn hole ed using Inverse to used: aximum number 1RL

	Criteria	JORC Code explanation	mmentary			
			 20m along strike, 20m down dip, 3m down hole (small shapes) 40m along strike, 20m down dip, 3m down hole (large shapes) Note: for blocks that were not filled, the parameters were relaxed and the search radii were increased. 13. The fundamental block size used was: 			
	\mathcal{O}		Deposit Small Blocks			
	5		Wedgetail OP2.5mE x 1mN x 1mRLSmall blocks were used to ensure adequate volume estimation where shapes were narrow.			
<i>y</i>			 14. To check that the interpolation of the block model honoured the drill data, visual validation was carried out comparing the interpolated blocks to the sample composite data. 15. Volumes within wireframes were determined and these were then compared with the block estimates of the volumes within those wireframes on a shape by shape basis to ensure that volumes estimated were correct. 			
			 16. Classification was carried out using a combination of drill hole density and geology as the guide as well as the potential mineability as determined by preliminary pit considerations. 17. The 2023 open pit resources are reported within the May 2020 optimised conceptual pit shells which had used a A\$2,500/oz gold price and 2020 costs. In 2020 the pit shells were modified to include a minimum turning circle road at the base with allowance for a 20m wide road. An overall 			
			slope of 45 degrees was used for pit walls following site visits and discussions with Geotechnical Consultants (Peter O'Bryan and Associates). The optimised Whittle pit shells provided a reasonable basis for defining the portion of models that may have prospects for economic exploitation in the foreseeable future and could therefore reasonably be declared as Open Pit Resources. (Optimisation used a metallurgical recovery of approximately 92% overall. The Resources reported are minimally diluted and further dilution, predominately in bard rock, would be required to produce Resources as well as pow			
			optimisation studies followed by detailed pit design.)			
			In 2023, the economic viability of the 2020 conceptual pit was examined using a A\$2,800/oz gold price and increasing the May 2020 costs by 32%. The 2023 study confirmed that the conceptual 2020 pits remained economic using the A\$2,800/oz gold price and the 2023 costs and as such the open pit resources remain unchanged from the reported Mineral Resource Estimate of 2020.			
			The resources reported are above a 0.5 g/t Au cut-off grade and include oxide, transition and fresh material.			
	Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content	All results are reported on a dry tonnage basis.			

	Criteria	JC	ORC Code explanation	Commentary	
	Cut-off	•	The basis of the	•	A 0.5g/t Au cut-off grade is a reasonable mining cut-off grade for open
	parameters		adopted cut-off		pit deposits in the Marymia area assuming a 92% recovery and a gold
			grade(s) or quality		price of A\$2,800.
\geq			parameters applied.		
	Mining factors or	٠	Assumptions made	٠	Open pit mining will be the mining method employed going forward using
	assumptions		regarding possible		a 2.5m-5m bench height following grade control drilling.
			mining methods,		
			minimum mining		
-			dimensions and		
_	\mathcal{I}		internal (or, ij applicable ovtornal)		
			mining dilution. It is		
_	~		always necessary as		
1)		part of the process of		
9	2		determinina		
1/	$\overline{\mathbb{O}}$		reasonable prospects		
J	J		for eventual economic		
			extraction to consider		
))		potential mining		
			methods, but the		
			assumptions made		
			regarding mining		
7	7		methods and		
21	\bigcirc		parameters when		
			estimating Mineral Bosourcos may not		
			always he rigorous		
_			Where this is the case		
			this should be reported		
9	2		with an explanation of		
1/	$\overline{\mathbb{C}}$		the basis of the		
J	J		mining		
			assumptions		
	5.		made.		
1	Metallurgical	٠	The basis for	٠	Preliminary metallurgical testwork suggested high recoveries would be
9	factors or		assumptions or		achieved (Oxide 92%, Transition 92%, Fresh 92%). These recoveries were
7	assumptions		predictions regarding		used in financial assessment of the optimisation studies.
_			metallurgical		
			amenability. It is		
,			always necessary as		
_			determining		
7	\mathcal{I}		reasonable prospects		
	\mathcal{I}		for eventual economic		
			extraction to consider		
			potential metallurgical		
			methods, but the		
			assumptions regarding		
			metallurgical		
			treatment processes		
			and parameters made		
			when reporting		
			IVIINERAL RESOURCES MAY		
			not always be rigorous. Where this is the case		
			this should be reported		
			with an explanation of		
L					

Criteria	JORC Code explanation	Commentary
	the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental 	 There are currently no known environmental factors which will affect the project. To date, there have been no issues in carrying out drilling and having POW's approved.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the 	 The following bulk densities (t/m3) were used: Oxide: 2.00 Transition: 2.40 Fresh: 2.80 The bulk densities used were based on actual bulk density measurements, as outlined in Section 2 of the JORC Table. The in citu bulk density assignment was based on provious reported.
	 Jrequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, 	 The in-situ bulk density assignment was based on previous reported measurements taken on HG triple tube core and apparent relative density testing on NQ2 core where available from this deposit and other deposits in the region with similar host rocks.

Criteria	JORC Code explanation	Commentary
Classification	 porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials The basis for the classification of the 	 All material in Wedgetail OP has been classified as Indicated Resource. Classification was based on a combination of drill halo species and
	 classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the data. 	 Classification was based on a combination of drill hole spacing and confidence in geological continuity as well as the likelihood that it would be mined as a pit. In general, drill hole spacing of 25mE x 20mN was used, with some infill holes. The potential for eventual open pit mining was determined by application of the following: An optimised Whittle pit shell produced in 2020 at A\$2,500 per ounce Au. Pit slopes were based on performance of existing open pits and a geotechnical review by Peter O'Bryan and Associates. A turning circle of 20m was used to define a pit base. The resource within the partially designed pits was undiluted (however sensitivities to dilution were carried out to ensure robustness of optimisation). Only non-diluted resources (inclusive of shape dilution) are reported in the Mineral Resource Statement. The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 conceptual pit remained economic.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 There have been no other audits and reviews carried out using the same data as has been used in this study.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not 	 The interpretation of the deposit is robust, and it is unlikely that a different interpretation could be produced as the main mineralisation is constrained to several parallel structures.

Criteria	JORC Code explanation	Commentary
	 deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

Section 3 Estimation and Reporting of Mineral Resources PHB-1 (K3) OPEN PIT (OP)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case 	• Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the PHB-1 (K3) OP deposit (and adjoining K2 UG deposit) includes both RC and structurally oriented diamond drillcore. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy has enabled a structural model to be generated that has guided the interpretation. Drilling density at PHB-1 (K3) is generally <20m x 20m on the West Lode structure with a lower density of drilling testing extensions of Main Lode and Central Lode and, although re-distribution of gold mineralization has occurred in the oxide zone of the deposit, the confidence in the geological interpretation. The nature of the data used for the geological interpretation is almost entirely drilling data. At PHB-1 (K3) OP a total of 289 holes for 26,079m of drilling has been completed both historically and by Vango Mining. This includes 14 DD holes for 2,400m and 275 RC holes for 23,679m. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging

Criteria	JORC Code explanation	Commentary
VII DUDU UNII V		 has been completed for all Vango and previous drilling. Data/information generated from structural and geotechnical logging of diamond drillcore has also been utilised. Alternative interpretations with respect to the shape and orientation of mineralised zones, where data is limited to RC drilling (no orientation not known) are unlikely to significantly affect the volume of mineralisation but may have a low to moderate effect on continuity and classification (e.g. Indicated vs Inferred). Geology (structural, lithological and alteration) has been a key factor guiding the interpretation of the orientation, geometry, size and continuity of the resource envelopes and constraints/boundaries. The other key factor has been grade distribution and trends in the assay data, particularly where mineralisation occurs within a rock mass or the oxide zone. Key factors affecting continuity both of grade and geology include, in order of importance: Structural controls – for example, steeply dipping (D3) fault zones that bound and are interpreted to have controlled dilation in the steeply dipping mafic host unit and also host mineralisation. Some post mineralisation movement may have accentuated the bounding nature of these structures. Gold mineralisation shoot controls in 3 dimensions have been observed whjch, in the case of PHB-1 (K3), constrain high-grade mineralisation to shallow plunging shoots within the mafic host. Redistribution of gold mineralisation due to re-mobilisation of gold in the oxide zone and supergene enrichment in the transition zone of the deposit. Due to leaching and re-precipitation, this can generate a poddy, discontinuous gold distribution in some areas.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The PHB-1 (K3) deposit has dimensions of 500m strike northeast - southwest x 250m northwest - southeast and 250m vertically from surface. The PHB-1 (K3) OP mineralised envelope generally strikes northeast - southwest and dips steeply the northwest or southeast.
Estimation and modelling techniques	• The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of	 The following outlines the estimation and modelling technique used for producing Resources for the PHB-1 (K3) OP deposit. <u>Deposit Information</u> <u>Deposit Information</u> <u>Nominal Drill Spacing</u> <u>Metres of Mineralised Drilling</u> PHB-1 (K3) OP <u>500mE x 600mN x 25mE x 25mN</u> <u>~2,500m</u> Wireframes were provided by Terra Search for: a. Topography based on aerial survey information and historical open pits. b. Bottom of Oxidation (BOCO) c. Top of Fresh Rock (TOFR) CMPL carried out a review of the weathering surfaces in conjunction with Mr J Dugdale and Terra Search Geologists.

Criteria	JORC Code explanation	Commentary					
	 computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or 	 4. 5. 6. 7. 	Based on geology and using intersection selection, mineralised shapes were wireframed at a 0.5g/t nominal cut-off grade and using intersection selection to constrain the interpretation. These mineralised shapes could contain values less than 0.5g/t within the wireframes. The parameters used for intersection selection were 6m down hole which equates to an approximate 3m bench height. The intersections could include 2m of internal dilution and all intersections included 0.5m of edge dilution. This edge dilution was added to allow for the non-visible edge definition which would be experienced in the mining process. The mineralised wireframes were audited by Mr J Dugdale. Each mineralised wireframe had an assigned strike, dip and plunge. The majority of data was 1m lengths and length weighting was used when modelling the deposit.DepositNumber of Shapes				
5	other non-grade variables of economic significance (e.g. sulphur for acid mine drainage		PHB-1 (K3) OP The 15 largest shap	es contain	16 ed 65% of th	6 e volume.	
	 characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between 	8. 9.	A breakdown of pu This was to ensure to sizes being used. For each shape a de on the statistics, hi method and the me beginning position the high-grade end distribution theory efficient of variatio The selected high g data) is shown below	re-Resource that mode etailed set gh grade of ethod of D of non-line d of the di y based of n. grade cut a pw:	ce volume fo lling did not o of weighted s cuts were de Denham. The earity of the o ata. The Der on the gamm nd percentag	r each shap over dilute sl statistics wa termined us GAP metho cumulative nham metho na distribu ge metal cut	e was measured. hapes due to block s produced. Based sing both the GAP od determines the probability plot at od uses statistical tion and the co- c (based on drilling
5	 Description of how the 		Deposit	Maximu	m Cut (g/t)	Percentag	e Metal Cut %
	 geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 		РНВ-1 (КЗ) ОР	40g/t (la shapes) 2 (smaller	rger 20g/t shapes)	34% (75% from 5 sar 640g/t)	of metal cut nples, 1 at
		10. 11. 12.	 Normalised variograms were run and directional variograms w produced for down hole, down dip, down plunge for 7 minerali wireframes covering 40% of the total volume of the deposit. The 7 mineralised wireframes were modelled using Ordinary Krig (OK) with the following parameters: Nugget: 0.4 Ranges: 50m along strike, 25m down dip, 4m down hole The remaining mineralised wireframes were modelled using Inve Distance Power 3 (ID³) interpolation. For both OK and ID³ the following parameters were also used: A minimum number of samples of 2 and a maximum number of samples of 16 The discretisation parameters were 2E x 1N x 1RL 				variograms were for 7 mineralised eposit. Ordinary Kriging vn hole led using Inverse so used: aximum number

	Criteria	JORC Code explanation	Со	mmentary		
			13	 The follow 25m a shape: 50m a shape: Note: for b relaxed an 	ing search radii were use long strike, 25m down d s) long strike, 25m down d s) locks that were not filled d the search radii were i	rd: ip, 3m down hole (small ip, 4m down hole (large d the parameters were ncreased.
	\bigcirc		13.		OCK SIZE USED Was:	1
				Deposit		-
1	5			РНВ-1 (КЗ) ОР	1mE x 2.5mN x 1mRL	
1/				Small blocks were us shapes were narrow	sed to ensure adequate	volume estimation where
J	2		14.	To check that the i	nterpolation of the bloc	k model honoured the drill
	\square			blocks to the sampl	tion was carried out c e composite data.	omparing the interpolated
			15.	Volumes within wire compared with the wireframes on a sha	eframes were determine block estimates of the v ape by shape basis to en	ed and these were then olumes within those sure that volumes
][D		16.	estimated were cor Classification was ca	rect. arried out using a combin	nation of drill hole density
_				and geology as the determined by prel	guide as well as the pote iminary pit consideratio	ential mineability as ns.
			17.	The 2023 open pit r	esources are reported wi	thin the May 2020 optimised
	D)			costs. In 2020 the p	it shells were modified to	o include a minimum turning
1/	6			circle road at the ba slope of approxima	ase with allowance for a ately 40 degrees was u	20m wide road. An overall used for pit walls following
J	2			detailed geotechni	cal analysis work carr	ied out on drill holes by
				Whittle pit shells pr	litants (Peter O'Bryan an ovided a reasonable bas	d Associates). The optimised is for defining the portion of
	\mathcal{D}			models that may	have prospects for eco	phomic exploitation in the
-				Pit Resources. (Optimisation used a	metallurgical recovery of
				approximately 92% diluted and furthe	overall. The Resourcer overall. predominate	es reported are minimally ly in hard rock, would be
				required to produ	ce Reserves as well as	new optimisation studies
				followed by detailed	d pit design.)	
				In 2023, the econor using a A\$2,800/oz The 2023 study co economic using the the open pit resou Resource Estimate	nic viability of the 2020 gold price and increasing onfirmed that the com A\$2,800/oz gold price a rces remain unchanged of 2020.	conceptual pit was examined g the May 2020 costs by 32%. ceptual 2020 pits remained nd the 2023 costs and as such I from the reported Mineral
				The resources repo oxide, transition an	rted are above a 0.5 g/t d fresh material.	Au cut-off grade and include

Criteria	JORC Code explanation	Commentary
Moisture Cut-off	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. The basis of the adopted 	 All results are reported on a dry tonnage basis. A 0.5g/t Au cut-off grade is a reasonable mining cut-off grade for open
parameters	cut-off grade(s) or quality parameters applied.	pit deposits in the Marymia area assuming a 92% recovery and a gold price of A\$2,800.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Open pit mining will be the mining method employed going forward using a 3m-5m bench height following grade control drilling.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes 	 Preliminary metallurgical testwork suggested high recoveries would be achieved (Oxide 93%, Transition 93%, Fresh 90%). These recoveries were used in financial assessment of the optimisation studies.

Criteria	JORC Code explanation	Commentary
Environmental	 and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. Assumptions made 	 There are currently no known environmental factors which will affect the present. To date there have been no incurs in corruing out drilling and
factors or assumptions	regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the	project. To date, there have been no issues in carrying out drilling and having POW's approved.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. 	 The following bulk densities (t/m3) were used: Oxide: 1.90 Transition: 2.40 Fresh: 2.82 The bulk densities used were based on actual bulk density measurements as outlined in Section 2 of the JORC Table.

Criteria	JORC Code explanation	Commentary
	 The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials 	• Bulk density data has been collected in the field using a standard Weight in Air/Dry Weight method systematically through the diamond drilling in the field. Samples were selected and weighed in air and then submerged and reweighed using scales with a 0.1g accuracy. The samples were from fresh non-porous rock and generally returned consistent values. Some samples were covered in wax to ensure the accuracy of the method and these proved to be consistent with non-waxed measurements.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineralised material in PHB-1 (K3) OP has been classified as Indicated Resource for larger shapes only. Smaller shapes were classified as Inferred Resource. Classification was based on a combination of drill hole spacing and confidence in geological continuity as well as the likelihood that it would be mined as a pit. In general, drill hole spacing of 25mE x 25mN was used, with some infill holes. The potential for eventual open pit mining was determined by application of the following: An optimised Whittle pit shell produced in 2020 at A\$2,500 per ounce Au. Pit slopes were determined from geotechnical drilling. A turning circle of 20m was used to define a pit base. The resource within the partially designed pits was undiluted (however sensitivities to dilution were carried out to ensure robustness of optimisation). Only non-diluted resources (inclusive of shape dilution) are reported in the Mineral Resource Statement. The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 conceptual pit remained economic. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 There have been no other audits and reviews carried out using the same data as has been used in this study. The current geological interpretation reflects previous interpretations of PHB-1 (K3) OP by previous owners, although previous estimates were based on a more tightly constrained model, indicating a preference for a very selective mining scenario.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the 	 Mineralisation in the PHB-1 (K3) OP is narrow and for this reason a wide spaced intersection selection has been used which incorporates a reasonable amount of internal dilution. This will facilitate a more bulk mining approach in some areas rather than a highly selective mining approach for the entirety of the deposit. The interpretation of the deposit is robust as wider shapes have been modelled.

application of statistical or geostatistical procedures to qu the relative accur the resource with stated confidence limits, or, if such approach is not deemed appropri- qualitative discus of the factors the could affect the relative accuracy confidence of the estimate. • The statement sh specify whether i relates to global local estimates, o local, state the re tonnages, which	nantify racy of hin e an iate, a ssion at ' and ? nould it or	
 approach is not deemed appropri- qualitative discus of the factors the could affect the relative accuracy confidence of the estimate. The statement sh specify whether is relates to global local estimates, of local, state the re- tonnages, which 	iate, a ssion at and ? nould it or	
estimate. • The statement sh specify whether i relates to global local estimates, o local, state the re tonnages, which	hould it or	
	and, if elevant should	
be relevant to tec and economic evaluation. Documentation s include assumpti made and the	should should ions	
 procedures used. These statement relative accuracy confidence of the estimate should compared with production data. 	s of ' and ? be where	

Section 3 Estimation and Reporting of Mineral Resources K1 OPEN PIT (OP)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the K1 OP deposit includes both RC and structurally oriented diamond drillcore. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy has enabled a structural model to be generated that has guided the interpretation. Drilling density at K1 OP is generally <20m x 20m and, although re-distribution of gold mineralization has occurred in the oxide zone of the deposit, the confidence in the geological interpretation in terms of grade distribution and volume is high, with a low to moderate degree of uncertainty regarding variability of orientation. The nature of the data used for the geological interpretation is almost entirely drilling data. At K1 OP a total of 1,132 holes for 73,523m of drilling have been completed, both historically and by Vango Mining. This includes 34 DD holes for 3,577m and 1,098 RC holes for 69,946m. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging has been completed for all Vango and previous drilling. Data/information generated from structural and geotechnical logging of diamond

Criteria	JORC Code explanation	Commentary					
Dimensions	JORC Code explanation Jorc Code explanation		 drillcore has also been utilised. Alternative interpretations with respect to the shape and orientation of mineralised zones, where data is limited to RC drilling (no orientation not known) are unlikely to significantly affect the volume of mineralisation but may have a low to moderate effect on continuity and classification (e.g. Indicated vs Inferred). Geology (structural, lithological and alteration) has been a key factor guiding the interpretation of the orientation, geometry, size and continuity of the resource envelopes and constraints/boundaries. The other key factor has been grade distribution and trends in the assay data, particularly where mineralisation occurs within a rock mass or the oxide zone. Key factors affecting continuity both of grade and geology include, in order of importance: Structural controls – for example, steeply dipping (D3) fault zones that bound and are interpreted to have controlled dilation in the steeply dipping ultramafic/mafic host unit and also host mineralisation. Some post mineralisation movement may have accentuated the bounding nature of these structures. Gold mineralisation shoot controls in 3 dimensions have been observed which, in the case of K1 OP, constrain high-grade mineralisation to shallow plunging shoots within the ultramafic/mafic host. Redistribution of gold mineralisation due to re-mobilisation of gold in the oxide zone and supergene enrichment in the transition zone of the deposit. Due to leaching and re-precipitation, this can generate a poddy, discontinuous gold distribution in some areas. 				
0	Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The K1 OP mineralised envelope strikes generally strikes north southwest and dips steeply the northwest or southeast. 					
Éstimation and modelling techniques	Mineral Resource.stimation and modelling echniquesThe nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and	The following outlines the estimation and modelling technique used for producing Resources for the K1 OP deposit. <u>Deposit Information</u>					
		C	Deposit	Orebody Dimensions	Nominal Drill Spacing	Metres of Mineralised Drilling	
		К	21 OP	300mE x 1,000mN x 130mRL	20mE x 20mN	~6,000m	
		parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and		 Wireframes weil open p b. Botton c. Top of CMPL carried of with Mr J Dugda 	re provided by Terra S raphy based on aerial hits. n of Oxidation (BOCO) Fresh Rock (TOFR) ut a review of the we ale and Terra Search	Search for: survey informatio) athering surfaces Geologists.	on and historical in conjunction

Criteria	JORC Code explanation	Commentary					
Criteria	 JORC Code explanation parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation the 	 Cor 3. 4. 5. 6. 7. 8. 9. 9. 10. 	mmentary Based on geology a were wireframed intersection selection shapes could contail parameters used for equates to an appredict of edge dilution. The selected high grade and the method and the	nd using at a 0.1 on to consi n values lo r intersector roximate internal of his edge tion whice eframes w reframes w reframe h a was 1 n e deposit. es used to es contain e-Resource hat mode tailed set of gh grade of thod of D of non-line of the da based of those of the da based of the da	intersection s 5g/t nominal train the inter ess than 0.5g/ ction selection 2-2.5m benc dilution and al dilution and al dilution was the would be vere audited be ad an assigne n lengths and o model the de Number of S 169 ed 50% of the ce volume for lling did not ov of weighted st cuts were det benham. The earity of the c ata. The Den on the gamm nd percentage im Cut (g/t) 40g/t	election, m l cut-off g pretation t within the n were 3m h height l intersectio added to a experience by Mr J Dug d strike, dip l length we eposit was a hapes - e volume. - e ach shap ver dilute sh tatistics was ermined us GAP metho umulative p ham metho a distribut e metal cut Percentag 7% (50% of from 5 sa lirectional	ineralised shapes grade and using These mineralised e wireframes. The down hole which The intersections ons included 0.5m llow for the non- ed in the mining dale. o and plunge. bighting was used as follows: e was measured. hapes due to block s produced. Based ing both the GAP d determines the probability plot at bod uses statistical cion and the co- (based on drilling ge Metal Cut % of metal cut mples) wariograms were
)	• The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	10. 11. 12.	Normalised variogr produced for down wireframes covering The 12 mineralised (OK) with the follow Nugget: 0.45 Ranges: 50m al The remaining min Distance Power 2 (II For both OK and UP ²	ams wer hole, do g 43% of t wireframe ing paran long strike eralised v D ²) interp	e run and c own dip, dow he total volur es were mode neters: e, 40m down c wireframes w olation.	lirectional n plunge fo ne of the de elled using dip, 4m dow vere model	variograms were or 12 mineralised eposit. Ordinary Kriging vn hole led using Inverse
		12.					u ujcu.

	Criteria	JORC Code explanation	Cor	nmentary		
			13.	 A minimum of samples The discret The followi 20m al shapes 50m al shapes Note: for b relaxed and 	n number of samples of 2 of 16 isation parameters were ing search radii were user long strike, 20m down di s) long strike, 40m down di s) locks that were not filled d the search radii were ir ock size used was:	and a maximum number 2E x 1N x 1RL d: p, 2.5m down hole (small p, 4m down hole (large the parameters were ncreased.
				Deposit	Small Blocks	
\int				K1 OP	1mE x 2.5mN x 1mRL	
				shapes were narrow	sed to ensure adequate v	olume estimation where
			14. 15. 16. 17.	To check that the in data, visual validat blocks to the sample Volumes within wire compared with the wireframes on a sha estimated were corr Classification was ca and geology as the g determined by preli The 2023 open pit re conceptual pit shell costs. In 2020 the p circle road at the ba slope of 40 degree discussions with Associates). The opt for defining the port exploitation in the for declared as Open I recovery of approx minimally diluted a would be required studies followed by	nterpolation of the block tion was carried out co e composite data. eframes were determined block estimates of the vo ape by shape basis to ensi- rect. arried out using a combin- guide as well as the pote minary pit consideration esources are reported wit s which had used a A\$2,5 it shells were modified to ase with allowance for a es was used for pit wal Geotechnical Consulta- timised Whittle pit shells tion of models that may horeseeable future and co Pit Resources. (Optimis imately 92% overall. The and further dilution, pri- to produce Reserves as detailed pit design.)	k model honoured the drill omparing the interpolated d and these were then olumes within those sure that volumes hation of drill hole density ntial mineability as is. thin the May 2020 optimised 500/oz gold price and 2020 o include a minimum turning 20m wide road. An overall ls following site visits and nts (Peter O'Bryan and provided a reasonable basis have prospects for economic uld therefore reasonably be ation used a metallurgical he Resources reported are edominately in hard rock, is well as new optimisation
				using a A\$2,800/oz 32%. The 2023 stud economic using the such the open pit Mineral Resource Es	gold price and increasi y confirmed that the con A\$2,800/oz gold price resources remain unch stimate of 2020.	ng the May 2020 costs by ceptual 2020 pits remained and the 2023 costs and as langed from the reported
				The resources repor oxide, transition and	ted are above a 0.5 g/t A d fresh material.	u cut-off grade and include

Criteria	JORC Code explanation	Commentary
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All results are reported on a dry tonnage basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 A 0.5g/t Au cut-off grade is a reasonable mining cut-off grade for open pit deposits in the Marymia area assuming a 92% recovery and a gold price of A\$2,800.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Open pit mining will be the mining method employed going forward using a 2.5m-5m bench height following grade control drilling.
Metallurgical factors or	The basis for assumptions or	 Preliminary metallurgical testwork suggested high recoveries would be achieved (Oxide 93%, Transition 93%, Fresh 90%). These recoveries were
assumptions	predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the	used in financial assessment of the optimisation studies.

Criteria	JORC Code explanation	Со	mmentary
	assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made		
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental 	•	To date, there have been no issues in carrying out drilling and having POW's approved, however the K1 OP contains fibrous asbestiform mineral tails which will need to be removed in accordance with Occupational Health and Safety Guidelines prior to commencement of mining.
Bulk density	 assumptions made. Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the 	•	The following bulk densities (t/m3) were used:Oxide:1.98Transition:2.40Fresh:2.82The bulk densities used were based on actual bulk density measurements as outlined in Section 2 of the JORC Table.
	measurements, the	•	The in-situ bulk density assignment was based on previous reported

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the	 Commentary measurements taken on HG triple tube core and apparent relative density testing on NQ2 core where available from this deposit and other deposits in the region with similar host rocks. Mineralised material in K1 OP has been classified as Indicated Resource in large shapes and Inferred Resource in smaller shapes. Classification was based on a combination of drill hole spacing and confidence in geological continuity as well as the likelihood that it would be mined as a pit. In general, drill hole spacing of 20mE x 20mN was used, with some infill holes. The potential for eventual open pit mining was determined by application of the following: An optimised Whittle pit shell produced in 2020 at A\$2,500 per ounce Au. Pit slopes were based on performance of existing open pits and a geotechnical review by Peter O'Bryan and Associates. A turning circle of 20m was used to define a pit base. The resource within the partially designed pits was undiluted (however sensitivities to dilution were carried out to ensure robustness of optimisation).
	 data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Only non-diluted resources (inclusive of shape dilution) are reported in the Mineral Resource Statement. The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 conceptual pit remained economic. The Mineral Resource estimate appropriately reflects the view of the
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	 Competent Person. There have been no other audits and reviews carried out using the same data as has been used in this study.

	Criteria	JORC Code explanation	Commentary
ſ	Discussion of	• Where appropriate a	• The interpretation of the deposit is robust, and it is unlikely that a
	relative accuracy/	statement of the	different interpretation could be produced as previous mining on which
	confidence	relative accuracy and	the deposit modelling is based exists. Wider structures have been the
		confidence level in the	focus of the current study, although a number of narrower structures
-		Mineral Resource	have also been included and will be the focus of intensive grade control
		estimate usina an	drilling.
		approach or procedure	5
_		deemed appropriate by	
_		the Competent Person.	
		For example, the	
		application of	
		statistical or	
_		geostatistical	
1		procedures to quantify	
4		the relative accuracy of	
/		the resource within	
J		stated confidence	
		limits, or, if such an	
		approach is not	
		deemed appropriate, a	
		qualitative discussion	
		of the factors that	
_	1	could affect the	
		relative accuracy and	
		confidence of the	
		estimate.	
-		• The statement should	
		specify whether it	
		relates to global or	
		local estimates, and, if	
/		local, state the relevant	
J		tonnages, which should	
		be relevant to technical	
		and economic	
1		evaluation.	
		Documentation should	
		include assumptions	
		made and the	
		procedures used.	
		• These statements of	
		relative accuracy and	
		confidence of the	
-		estimate should be	
_		compared with	
		production data,	
		where available.	
1			

Section 3 Estimation and Reporting of Mineral Resources TRIPLE-P, TRIPLE-P STH OPEN PIT (OP)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the Triple-P, Triple-P Sth OP deposits includes both RC and previous diamond drillcore. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy at Triple-P and other deposits such as Trident, has enabled a structural model to be generated that has guided the interpretation. Drilling density at Triple-P, Triple-P Sth OP is generally <20m x 20m and, although re-distribution of gold mineralization has occurred in the oxide zone of the deposit, the confidence in the geological interpretation. The nature of the data used for the geological interpretation is almost entirely drilling data. At Triple-P, Triple-P Sth OP a total of 348 holes for 17,913m of drilling, both historically and by Vango Mining. This includes 19 DD holes for 1,172m and 329 RC holes for 16,741m. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging has been completed for all Vango and previous drilling. Data/information

Criteria	JORC Code explanation	Commentary					
		 generated from structural and geotechnical logging of diamond drillcore has also been utilised. Alternative interpretations with respect to the shape and orientation of mineralised zones, where data is limited to RC drilling (no orientation not known) are unlikely to significantly affect the volume of mineralisation but may have a low to moderate effect on continuity and classification (e.g. Indicated vs Inferred). Geology (structural, lithological and alteration) has been a key factor guiding the interpretation of the orientation, geometry, size and continuity of the resource envelopes and constraints/boundaries. The other key factor has been grade distribution and trends in the assay data, particularly where mineralisation occurs within a rock mass or the oxide zone. Key factors affecting continuity both of grade and geology include, in order of importance: Structural controls – for example, steeply dipping (D3) fault zones that bound and are interpreted to have controlled dilation in the moderately dipping mafic and sedimentary host units, and also host mineralisation shoot controls in 3 dimensions have been observed which, in the case of Triple-P. Triple-P Sth OP, constrain high-grade mineralisation to shallow plunging shoots within the mafic/sedimantary host. Intrusive felsic "porphyries" also constrain the footwall of the mineralisation at Triple-P specifically. Redistribution of gold mineralisation due to re-mobilisation of gold in the oxide zone and supergene enrichment in the transition zone of the deposit. Due to leaching and re-precipitation, this can generate a poddy, discontinuous gold distribution in some areas. 					
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The Triple-P, Triple-P Sth OP deposit has dimensions of 700m strike northeast - southwest x 500m northwest - southeast and 150m vertically from surface/pit floor. The Triple-P, Triple-P Sth OP mineralised envelope strikes generally strikes northeast - southwest and dips steeply the northwest or southeast. 					
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was	 The following outlines the estimation and modelling technique used for producing Resources for the Triple-P, Triple-P Sth OP deposit. <u>Deposit Information</u> <u>Deposit Orebody</u> <u>Nominal Drill</u> <u>Metres of Mineralised</u> 					
		Dimensions Spacing Drilling Triple-P, Triple-P 500mE x 700mN x 150mRL 20mE x 20mN ~8,000m 1. Wireframes were provided by Terra Search for: a. Topography based on aerial survey information and historical open pits. b. Bottom of Oxidation (BOCO) c. Top of Fresh Rock (TOFR)					

Criteria	JORC Code explanation	Com	imentary						
	 chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. 	2. 3. 4. 5. 6. 7. 8. 9.	CMPL carried out a with Mr J Dugdale ar Based on geology ar were wireframed intersection selection shapes could contair parameters used for equates to an appr could include 1m of i of edge dilution. Th visible edge definit process. The mineralised wire Each mineralised wire Each mineralised wire Each mineralised wire Each mineralised wire The majority of data when modelling the The number of shape Deposit Triple-P, Triple-P S The 10 largest shape A breakdown of pre This was to ensure th sizes being used. For each shape a det on the statistics, hig method and the met beginning position o the high-grade end distribution theory efficient of variation The selected high grad	review of and Terra 3 and Using at a 0.1 in to conse invalues lo r intersectoristic internal of internal of internal of anis edge ion whice eframes we eframes we efr	of the weather Search Geologi intersection se 5g/t nominal train the interp ess than 0.5g/t ction selection 2-2.5m bench dilution and all dilution was a ch would be of vere audited by ad an assigned in lengths and o model the de Number of Sh 116 ded 75% of the ce volume for lling did not over of weighted sta cuts were dete benham. The Ge earity of the cu ata. The Denh on the gamma	ing surface ists. election, m cut-off pretation. within the were 3m height. intersecti dded to a experience y Mr J Dug dstrike, di length we posit was hapes volume. each shap er dilute sl atistics wa scanned us GAP metho imulative ham meth a distribu metal cut	tes in conjunction hineralised shapes grade and using These mineralised e wireframes. The down hole which The intersections ons included 0.5m illow for the non- ed in the mining dale. p and plunge. ighting was used as follows: be was measured. hapes due to block s produced. Based sing both the GAP od determines the probability plot at od uses statistical tion and the co- t (based on drilling		
	 Description of now the geological interpretation was 		Deposit	Maxim	um Cut (g/t)	Percenta	age Metal Cut %		
	 used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	10. 11. 12.	Triple-P,Triple-P Sth OP Normalised variogra produced for down wireframe covering a The 1 mineralised wi with the following pa Nugget: 0.6 Ranges: 60m ala The remaining mine Distance Power 3 (ID For both OK and ID ³ t • A minimum of samples	60g/t (I 25g/t (s ams wer hole, do 40% of th ireframe arameter ong strike eralised w a ³) interp the follow number of 16	arge shapes) small shapes) e run and di own dip, down te total volume was modelled s: e, 30m down di wireframes we olation. ving parameter of samples of 2	6% (35% from 3 si rectional n plunge of the de using Ord ip, 3m dov ere model rs were als 2 and a ma	85% of metal cut 3 samples) nal variograms were ge for 1 mineralised e deposit. Ordinary Kriging (OK) down hole delled using Inverse e also used: maximum number		

Criteria	JORC Code explanation	Cor	nmentary		
			 The discretisation The following search 50m along strisshapes) Note: for blocks the relaxed and the search 	parameters were 2E x 1N x 1R ch radii were used: ike, 25m down dip, 3m down l at were not filled the paramet arch radii were increased.	L nole (small ters were
		13.	The fundamental block size	used was:	
			Deposit	Small Blocks	
5			Triple-P, Triple-P Sth OP Small blocks were used to e shapes were narrow.	1mE x 2.5mN x 1mRL nsure adequate volume estim	ation where
		14. 15. 16. 17.	To check that the interpola data, visual validation wa blocks to the sample compo- Volumes within wireframes compared with the block es wireframes on a shape by s estimated were correct. Classification was carried of and geology as the guide as determined by preliminary The 2023 open pit resource conceptual pit shells which costs. In 2020 the pit shells circle road at the base with slope of 40 degrees was un where 30 degrees was imple with Geotechnical Consult optimised Whittle pit shells portion of models that may the foreseeable future and Open Pit Resources. (Opt	ation of the block model hon s carried out comparing the posite data. were determined and these ver- stimates of the volumes within hape basis to ensure that volu- ut using a combination of drill well as the potential mineab pit considerations. s are reported within the May had used a A\$2,500/oz gold p were modified to include a min allowance for a 20m wide ro- sed with the exception of the emented, following site visits a fants (Peter O'Bryan and As provided a reasonable basis for have prospects for economic could therefore reasonably imisation used a metallurgic	oured the drill e interpolated were then n those umes hole density ility as 2020 optimised price and 2020 nimum turning pad. An overall e footwall side and discussions sociates). The for defining the exploitation in be declared as cal recovery of
			approximately 90% overal diluted and further dilution required to produce Rese followed by detailed pit des	II. The Resources reported on, predominately in hard r erves as well as new optim sign.)	are minimally ock, would be isation studies
			In 2023, the economic viabil using a A\$2,800/oz gold p 32%. The 2023 study confir economic using the A\$2,80 such the open pit resource Mineral Resource Estimate	lity of the 2020 conceptual pit rice and increasing the May med that the conceptual 2020 00/oz gold price and the 202 ces remain unchanged from of 2020.	was examined 2020 costs by pits remained 3 costs and as the reported
			The resources reported are	above a 0.5 g/t Au cut-off gra	de and include
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content	•	All results are reported on a	dry tonnage basis.	

	Criteria	JC	RC Code explanation	Со	mmentary
	Cut-off	•	The basis of the	٠	A 0.5g/t Au cut-off grade is a reasonable mining cut-off grade for open
	purumeters		arade(s) or quality		
			parameters applied.		
	Mining factors or	•	Assumptions made	٠	Open pit mining will be the mining method employed going forward using
	assumptions		regarding possible		a 2.5m-5m bench height following grade control drilling.
_			mining methods,		
_			minimum mining		
7			dimensions and		
			internal (or, if		
			applicable, external)		
			mining unution. It is always pecessary as		
1			part of the process of		
7			determining		
1/			reasonable prospects		
9			for eventual economic		
			extraction to consider		
			potential mining		
			methods, but the		
			regarding mining		
			methods and		
			parameters when		
			estimating Mineral		
			Resources may not		
			always be rigorous.		
-			Where this is the case,		
_			this should be reported		
1/			the basis of the		
J			mining		
			assumptions		
			made.		
1	Metallurgical	٠	The basis for	٠	Preliminary metallurgical testwork suggested high recoveries would be
7	factors or		assumptions or		achieved (Oxide 92%, Transition 92%, Fresh 86%). Test-work indicates the
-	assumptions		predictions regarding		fresh recovery can be upgraded to 90% using a combination of flotation
			amenahility. It is		addition prior to leaching. These recoveries were used in financial
			alwavs necessarv as		assessment of the optimisation studies.
			part of the process of		
			determining		
			reasonable prospects		
			for eventual economic		
Π			extraction to consider		
11			potential metallurgical methods, but the		
			assumptions regarding		
			metallurgical		
			treatment processes		
			and parameters made		
			when reporting		
			Mineral Resources may		
			not always be rigorous.		
			writere this is the case,		
			with an explanation of		
L		I	· · · · · · · · · · · · · · · · · · ·		

Criteria	JORC Code explanation	Commentary
	the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental 	 There are currently no known environmental factors which will affect the project. To date, there have been no issues in carrying out drilling and having POW's approved.
Bulk density	 assumptions made. Whether assumed or 	• The following bulk densities (t/m3) were used:
bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vuqs, 	 The following bulk densities (t/m3) were used: Oxide: 1.80 Transition: 2.40 Fresh: 2.80 The bulk densities used were based on actual bulk density measurements as outlined in Section 2 of the JORC Table. The in-situ bulk density assignment was based on previous reported measurements taken on HG triple tube core and apparent relative density testing on NQ2 core where available from this deposit and other deposits in the region with similar host rocks.

Criteria	JORC Code explanation	Commentary
Classification	 porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials The basis for the 	 Mineralised material in Triple-P & Triple-P Sth OP has been classified as
	 classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects 	 Indicated Resource within the one large shape and Inferred for all other shapes. Classification was based on a combination of drill hole spacing and confidence in geological continuity as well as the likelihood that it would be mined as a pit. In general, drill hole spacing of 20mE x 20mN was used, with some infill holes. The potential for eventual open pit mining was determined by application of the following: An optimised Whittle pit shell produced in 2020 at A\$2,500 per ounce Au. Pit slopes were based on performance of existing open pits and a geotechnical review by Peter O'Bryan and Associates. A turning circle of 20m was used to define a pit base. The resource within the partially designed pits was undiluted (however sensitivities to dilution were carried out to ensure robustness of optimisation). Only non-diluted resources (inclusive of shape dilution) are reported in the Mineral Resource Statement.
5	the Competent Person's view of the deposit.	 The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 conceptual pit remained economic. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	• There have been no other audits and reviews carried out using the same data as has been used in this study.
viscussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence 	 The interpretation of the deposit is robust, and it is unlikely that a different interpretation could be produced as the current model is based on previous mining.

Criteria	JORC Code explanation	Commentary
	limits, or, if such an	
	approach is not	
	aeemea appropriate, a	
	qualitative alscussion	
	of the factors that	
	could affect the	
	relative accuracy and	
	confidence of the	
	estimate.	
))	 The statement should aposite what has it 	
	specify whether it	
	local actimates and if	
5	local estimates, and, ij	
J	toppages which should	
	tonnages, which should	
	and aconomic	
D	evaluation	
7	Documentation should	
9	include assumptions	
	made and the	
	nrocedures used	
	 These statements of 	
	relative accuracy and	
9	confidence of the	
	estimate should be	
	compared with	
	production data, where	
)	available.	
I I		

Section 3 Estimation and Reporting of Mineral Resources ALBATROSS & FLAMINGO OPEN PIT (OP)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the Albatross & Flamingo OP deposits includes predominantly RC. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy at other deposits such as Trident, has enabled a structural model to be generated that has guided the interpretation. Drilling density at Albatross & Flamingo OP is generally <20m x 20m and, although re-distribution of gold mineralization has occurred in the oxide zone of the deposit, the confidence in the geological interpretation in terms of grade distribution and volume is high, with a moderate degree of uncertainty regarding variability of shape and orientation, particularly in the oxide zone. The nature of the data used for the geological interpretation is almost entirely drilling data. At Albatross & Flamingo OP a total of 380 holes for 33,779m of drilling both historically and by Vango Mining. This includes 5 DD holes for 336m and 375 RC holes for 33,443m. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging has been completed for all Vango and previous drilling. Data/information

Criteria	JORC Code explanation	Commentary					
		 generated from structural and geotechnical logging of diamond drillcore has also been utilised. Alternative interpretations with respect to the shape and orientation of mineralised zones, where data is limited to RC drilling (no orientation not known) are unlikely to significantly affect the volume of mineralisation but may have a low to moderate effect on continuity and classification (e.g. Indicated vs Inferred). Geology (structural, lithological and alteration) has been a key factor guiding the interpretation of the orientation, geometry, size and continuity of the resource envelopes and constraints/boundaries. The other key factor has been grade distribution and trends in the assay data, particularly where mineralisation occurs within a rock mass or the oxide zone. Key factors affecting continuity both of grade and geology include, in order of importance: Structural controls – for example, steeply dipping (D3) fault zones that bound and are interpreted to have controlled dilation in the shallow to moderately dipping sedimentary and mafic host units, and also host mineralisation. Some post mineralisation movement may have accentuated the bounding nature of these structures. Gold mineralisation shoot controls in 3 dimensions have been observed whjch, in the case of Albatross & Flamingo OP, constrain high-grade mineralisation to shallow plunging shoots within the sedimentary and mafic host units. In some cases intrusive felsic "porphyries" also constrain the footwall of the mineralisation at Albatross & Flamingo OP. Redistribution of gold mineralisation due to re-mobilisation of gold in the oxide zone and supergene enrichment in the transition zone of the deposit. Due to leaching and re-precipitation, this can generate a poddy, discontinuous gold distribution in some areas. Modeling of the continuity of these zones has in some cases been difficult and this has led to a sectional projection model being generated. 					
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The Albatross & Flamingo OP deposit has dimensions of 800m strike northeast - southwest x 400m northwest - southeast and 170m vertically from surface/pit(s) floor. The Albatross & Flamingo OP mineralised envelope strikes generally strikes northeast - southwest and dips steeply the northwest or southeast. 					
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key	The following outlines the estimation and modelling technique used for producing Resources for the Albatross & Flamingo OP deposit. <u>Deposit Information</u>					
	assumptions, including treatment of extreme grade values,	DepositOrebody DimensionsNominal Drill SpacingMetres of Mineralised Drilling					
	domaining, interpolation parameters and maximum distance of	Albatross & Flamingo OP400mE x 800mN x 170mRL20m x 20m3,800m					
	extrapolation from	1. Wireframes were provided by Terra Search for:					

Criteria	JORC Code explanation	Commentary
	JORC Code explanation data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between	Commentary a. Topography based on aerial survey information and historical open pits. b. Bottom of Oxidation (BOCO) c. Top of Fresh Rock (TOFR) 2. CMPL carried out a review of the weathering surfaces in conjunction with Mr J Dugdale and Terra Search Geologists. 3. Based on geology and using intersection selection, mineralised shapes were wireframed at a 0.5g/t nominal cut-off grade and using intersection selection to constrain the interpretation. These mineralised shapes could contain values less than 0.5g/t within the wireframes. The parameters used for intersection selection were 3m down hole which equates to an approximate 2-2.5m bench height. The intersections could include 1m of internal dilution and all intersections included 0.5m of edge dilution. This edge dilution was added to allow for the nonvisible edge definition which would be experienced in the mining process. 4. The mineralised wireframes were audited by Mr J Dugdale. 5. Each mineralised wireframes were audited by Mr J Dugdale. 6. The majority of data was 1m lengths and length weighting was used when modelling the deposit. 7. The number of shapes used to model the deposit was as follows: Image: Deposit Number of Shapes Albatross & Flamingo OP 150 8. A breakdown of pre-Resource volume for each shape was measured. This was to ensure that modelling did not over dilute shapes due to block sizes being used. 9. For each shape a detailed set of weighted statistics was produced. Based on the statistics, high grade cuts were determined using both the GAP method and the method
J	variables of economic significance (e.g.	Deposit Number of Shapes
Ĵ	variables of economic significance (e.g.	Deposit Number of Shapes
	suipnur for acia mine drainage characterisation).	Albatross & Flamingo OP 150
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the 	 8. A breakdown of pre-Resource volume for each shape was measured. This was to ensure that modelling did not over dilute shapes due to block sizes being used. 9. For each shape a detailed set of weighted statistics was produced. Based on the statistics, high grade cuts were determined using both the GAP method and the method of Denham. The GAP method determines the beginning position of non-linearity of the cumulative probability plot at the high grade end of the data. The Denham method uses statistical distribution theory based on the gamma distribution and the coefficient of variation. The selected high grade cut and percentage metal cut (based on drilling data) is shown below:
	geological	Deposit Maximum Cut (g/t) Percentage Metal Cut %
	used to control the resource estimates.	Albatross & Flamingo OP50g/t5% (Only 2 samples cut)
	 Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Due to the discontinuous nature of the mineralisation, no variograms were run and as a result, kriging was not carried out. The mineralised wireframes were modelled using Inverse Distance Power 2 (ID²) interpolation with the following parameters: A minimum number of samples of 2 and a maximum number of samples of 16 The discretisation parameters were 2E x 1N x 1RL The following search radii was used:

	Criteria	JORC Code explanation	Con	nmentary		
			12.	The fundamental blo	ock size used was:	
$\sim 1/$				Deposit	Small Blocks	
				Albatross & Flamingo OP	2.5mE x 1.25mN x 1mRL	
				Small blocks were us shapes were narrow.	sed to ensure adequate volume es	stimation where
			 13. 14. 15. 16. 	To check that the in data, visual validati blocks to the sample Volumes within wir compared with the wireframes on a sha were correct. Classification was ca and geology as the g determined by prelin The 2023 open pit re optimised conceptua and 2020 costs. In 2 minimum turning cir wide road. An overa following site visits a (Peter O'Bryan and A provided a reasonab may have prospects future and could the Resources. (Optimis approximately 92% of diluted and further of required to produce followed by detailed	terpolation of the block model ho ion was carried out comparing t ecomposite data. reframes were determined and the block estimates of the volume pe by shape basis to ensure that volu- rried out using a combination of dri- guide as well as the potential minea minary pit considerations. esources are reported within the Ma al pit shells which had used a A\$2,500 020 the pit shells were modified to recle road at the base with allowance for economic exploitation in the for exercise reasonably be declared as O for economic exploitation in the for end discussions with Geotechnical O for economic exploitation in the for exercise reasonably be declared as O fation used a metallurgical recovery overall. The Resources reported are dilution, predominately in hard rock Reserves as well as new optimisati pit design.)	noured the drill he interpolated hese were then es within those lumes estimated ll hole density bility as y 2020 0/oz gold price include a e for a 20m pit walls consultants pit shells models that reseeable upen Pit of e minimally s, would be on studies
				In 2023, the econom using a A\$2,800/oz 32%. The 2023 study economic using the such the open pit Mineral Resource Es	ic viability of the 2020 conceptual p gold price and increasing the May confirmed that the conceptual 202 A\$2,800/oz gold price and the 20 resources remain unchanged fror timate of 2020.	it was examined y 2020 costs by 20 pits remained 23 costs and as n the reported ade and include
	Moisture	 W/hether the tonnages 	•	oxide, transition and	l fresh material.	
		are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.				
	Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	•	A 0.5g/t Au cut-off g pit deposits in the M price of A\$2,800.	rade is a reasonable mining cut-off larymia area assuming a 92% reco	f grade for open very and a gold

Criteria JORC Code explanation		JORC Code explanation	Commentary		
	Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining 	• Open pit mining will be the mining method employed going forward using a 2.5m-5m bench height following grade control drilling.		
		dimensions and internal (or, if applicable, external) mining dilution. It is			
		always necessary as part of the process of determining reasonable prospects for eventual economic			
]]	\bigcirc	extraction to consider potential mining methods, but the assumptions made			
	5	regarding mining methods and parameters when			
7		Resources may not always be rigorous. Where this is the case,			
		this should be reported with an explanation of the basis of the mining assumptions made			
	Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is	• Preliminary metallurgical testwork suggested high recoveries would be achieved (Oxide 93%, Transition 93%, Fresh 90%). These recoveries were used in financial assessment of the optimisation studies.		
	5	always necessary as part of the process of determining reasonable prospects			
		for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding			
	\supset	metallurgical treatment processes and parameters made when reporting			
		When reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported			
		with an explanation of the basis of the metallurgical assumptions made.			

Criteria	JORC Code explanation	Commentary
Environmental	Assumptions made	• There are currently no known environmental factors which will affect the
factors or	regarding possible	project. To date, there have been no issues in carrying out drilling and
assumptions	waste and process	having POW's approved.
	residue disposal	
	options. It is always	
	necessary as part of	
	the process of	
	determining	
	reasonable prospects	
\bigcirc	for eventual economic	
	the potential	
	environmental impacts	
	of the mining and	
Y	processing operation.	
10	While at this stage the	
99	determination of	
	potential	
	environmental	
	impacts, particularly	
	for a greenfields	
	project, may not	
705	always be well	
30	early consideration of	
	these notential	
	environmental impacts	
	should be reported.	
	Where these aspects	
	have not been	
20	considered this should	
99	be reported with an	
	explanation of the	
	environmental	
Bully day sites	assumptions made.	
Bulk density	Whether assumed or determined. If	• The following bulk densities (t/m3) were used:
	assumed the basis for	Uxide: 1.00 Transition: 2.20
	the assumptions of	Fresh 2.20
	determined. the	
	method used, whether	• The bulk densities used were based on actual bulk density measurements
	wet or dry, the	as outlined in Section 2 of the JORC Table.
	frequency of the	• The in-situ bulk density assignment was based on previous reported
	measurements, the	measurements taken on HG triple tube core and apparent relative
п	nature, size and	density testing on NQ2 core where available from this deposit and other
	representativeness of	deposits in the region with similar host rocks.
	the samples.	
	The bulk density joi hulk material must	
	have been measured	
	by methods that	
	adequately account for	
	void spaces (vuas,	
	porosity, etc), moisture	
	and differences	
	between rock and	
	alteration zones within	

Criteria	JORC Code explanation	Commentary
	 the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	
	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 All material in Albatross & Flamingo OP has been classified as Inferred Resource. Classification was based on a combination of drill hole spacing and confidence in geological continuity as well as the likelihood that it would be mined as a pit. In general, drill hole spacing of 20mE x 20mN was used, with some infill holes, however due to the lack of geological continuity exhibited by the drilling all material has been classified as Inferred Resource. The potential for eventual open pit mining was determined by application of the following: An optimised Whittle pit shell produced in 2020 at A\$2,500 per ounce Au. Pit slopes were based on performance of existing open pits and a geotechnical review by Peter O'Bryan and Associates. A turning circle of 20m was used to define a pit base. The resource within the partially designed pits was undiluted (however sensitivities to dilution were carried out to ensure robustness of optimisation). Only non-diluted resources (inclusive of shape dilution) are reported in the Mineral Resource Statement. The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 conceptual pit remained economic. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 There have been no other audits and reviews carried out using the same data as has been used in this study.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an	 The interpretation of the deposit should be considered as preliminary and it will require further drilling to raise its classification status from Inferred Resource to Indicated Resource.

approach is not deemed appropriate, a qualitative discussion of the factors that could diffect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimate. totnages, which should be relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. • These statements of relative accuracy and confidence of the estimate should be compared with procedures used. • These statements of relative accuracy and compared with production data, where available.	Criteria	JORC Code explanation	Commentary
		 approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

Section 3 Estimation and Reporting of Mineral Resources CINNAMON OPEN PIT (OP)

\geq	Criteria	JORC Code explanation	Commentary
	Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
	Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
	Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the Cinnamon OP deposits includes both RC and structurally oriented diamond drillcore. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy at Cinnamon OP and other deposits such as Trident, has enabled a structural model to be generated that has guided the interpretation. Drilling density at Cinnamon OP is generally <20m x 20m and, although re-distribution of gold mineralization has occurred in the oxide zone of the deposit, the confidence in the geological interpretation. The nature of the data used for the geological interpretation is almost entirely drilling data. At Cinnamon OP a total of 109 holes for 17,358m of drilling of drilling has been completed, both historically and by Vango Mining. This includes 13 DD holes for 3,431m and 96 RC holes for 13,927m. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging has been completed for all Vango and previous drilling.

Criteria	JORC Code explanation	Commentary
		 Data/information generated from structural and geotechnical logging of diamond drillcore has also been utilised. Alternative interpretations with respect to the shape and orientation of mineralised zones, where data is limited to RC drilling (no orientation not known) are unlikely to significantly affect the volume of mineralisation but may have a low to moderate effect on continuity and classification (e.g. Indicated vs Inferred). Geology (structural, lithological and alteration) has been a key factor guiding the interpretation of the orientation, geometry, size and continuity of the resource envelopes and constraints/boundaries. The other key factor has been grade distribution and trends in the assay data, particularly where mineralisation occurs within a rock mass or the oxide zone. Key factors affecting continuity both of grade and geology include, in order of importance: Structural controls – for example, steeply dipping (D3) fault zones that bound and are interpreted to have controlled dilation in the steep to moderately conglomerate host units, and also host mineralisation. Some post mineralisation movement may have accentuated the bounding nature of these structures. Gold mineralisation shoot controls in 3 dimensions have been observed which, in the case of Cinnamon OP, constrain high-grade mineralisation to shallow plunging shoots within the conglomerate host unit. Redistribution of gold mineralisation due to re-mobilisation of gold in the oxide zone and supergene enrichment in the transition zone of the deposit. Due to leaching and re-precipitation, this can generate a poddy, discontinuous gold distribution in some areas. Leaching has also depleted the oxide zone of the deposit, down to 60m below surface.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The Cinnamon OP deposit has dimensions of 300m strike northeast southwest x 400m northwest - southeast and 250m vertically from surface. The Cinnamon OP mineralised envelope strikes generally strikes northeast - southwest and dips steeply the northwest or southeast.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was	The following outlines the estimation and modelling technique used for producing Resources for the Cinnamon OP deposit. <u>Deposit Information</u>
		Deposit Orebody Nominal Drill Spacing Dimensions Dimens
		Cinnamon OP400mE x 300mN x 250mRL25mE x 25mN2,520m1. Wireframes were provided by Terra Search for: a. Topography based on aerial survey information and historical open pits. b. Bottom of Oxidation (BOCO) c. Top of Fresh Rock (TOFR)

TOPPODALICO OD

Criteria	JORC Code explanation	Commentary
	 chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. 	 CMPL carried out a review of the weathering surfaces in conjunction with Mr J Dugdale and Terra Search Geologists. Based on geology and using intersection selection, mineralised shapes were wireframed at a 0.5g/t nominal cut-off grade and using intersection selection to constrain the interpretation. These mineralised shapes could contain values less than 0.5g/t within the wireframes. The parameters used for intersection selection were 3m down hole which equates to an approximate 2-2.5m bench height. The intersections could include 1m of internal dilution and all intersections included 0.5m of edge dilution. This edge dilution was added to allow for the nonvisible edge definition which would be experienced in the mining process. The mineralised wireframes were audited by Mr J Dugdale. Each mineralised wireframes had an assigned strike, dip and plunge. The majority of data was 1m lengths and length weighting was used when modelling the deposit. The number of shapes used to model the deposit was as follows: Deposit Number of Shapes 3 groups of shapes contained 65% of the volume. A breakdown of pre-Resource volume for each shape was measured. This was to ensure that modelling did not over dilute shapes due to block sizes being used. For each shape a detailed set of weighted statistics was produced. Based on the statistics, high grade cuts were determined using both the GAP method and the method of Denham. The GAP method determines the beginning position of non-linearity of the cumulative probability plot. For each shape a detailed set of weighted statistics was produced. Based on the statistics, high grade cuts were determined using both the GAP method and the method of Denham. The GAP method determines the beginning position of non-linearity of the cumulative probability plot.
	 Description of now the geological 	data) is shown below:
	interpretation was used to control the	Deposit Maximum Cut (g/t) Percentage Metal Cut %
	resource estimates.Discussion of basis for	Cinnamon OP 30g/t 2%
	 using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 10. Normalised variograms were run and directional variograms were produced for down hole, down dip, down plunge for 3 mineralised grouped wireframes covering 65% of the total volume of the deposit. The 3 mineralised grouped wireframes were modelled using Ordinary Kriging (OK) with the following parameters: Nugget: 0.6 Ranges: 60m along strike, 40m down dip, 3m down hole 11. The remaining mineralised wireframes were modelled using Inverse Distance Power 2 (ID²) interpolation. 12. For both OK and ID² the following parameters were also used: A minimum number of samples of 2 and a maximum number of samples of 16

Criteria	JORC Code explanation	Commentary
		 The discretisation parameters were 2E x 1N x 1RL The following search radii were used: 30m along strike, 20m down dip, 2m down hole (small shapes) 60m along strike, 40m down dip, 3m down hole (large shapes) Note: for blocks that were not filled, the parameters were relaxed and the search radii were increased.
D		Deposit
5)		Cinnamon OP 2.5mE x 1mN x 2.5mRL
\tilde{O}		Small blocks were used to ensure adequate volume estimation where shapes were narrow.
		14. To check that the interpolation of the block model honoured the drill data, visual validation was carried out comparing the interpolated blocks to the sample composite data.15. Volumes within wireframes were determined and these were then compared with the block estimates of the volumes within those
\mathcal{O}		wireframes on a shape by shape basis to ensure that volumes estimated were correct.16. Classification was carried out using a combination of drill hole density and geology as the guide as well as the potential mineability as
		 determined by preliminary pit considerations. 17. The 2023 open pit resources are reported within the May 2020 optimised conceptual pit shells which had used a A\$2,500/oz gold price and 2020 costs. In 2020 the pit shells were modified to include a minimum turning circle road at the base with allowance for a 20m wide road. An
5		overall slope of 40 degrees was used for pit walls following site visits and discussions with Geotechnical Consultants (Peter O'Bryan and Associates). The optimised Whittle pit shells provided a reasonable basis for defining the portion of models that may have prospects for economic exploitation in the foreseeable future and could therefore
		reasonably be declared as Open Pit Resources. (Optimisation used a metallurgical recovery of approximately 92% overall. The Resources reported are minimally diluted and further dilution, predominately in hard rock, would be required to produce Reserves as well as new optimisation studies followed by detailed pit design.)
		In 2023, the economic viability of the 2020 conceptual pit was examined using a A\$2,800/oz gold price and increasing the May 2020 costs by 32%. The 2023 study confirmed that the conceptual 2020 pits remained economic using the A\$2,800/oz gold price and the 2023 costs and as such the open pit resources remain unchanged from the reported Mineral Resource Estimate of 2020.
		The resources reported are above a 0.5 g/t Au cut-off grade and include oxide, transition and fresh material.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the	All results are reported on a dry tonnage basis.

Criteria	JORC Code explanation	Commentary
	moisture content.	
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	• A 0.5g/t Au cut-off grade is a reasonable mining cut-off grade for open pit deposits in the Marymia area assuming a 92% recovery and a gold price of A\$2,800.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this chevid ha ranartad 	 Open pit mining will be the mining method employed going forward using a 2.5m-5m bench height following grade control drilling.
5	with an explanation of the basis of the mining assumptions made.	
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case,	 Preliminary metallurgical testwork suggested high recoveries would be achieved (Oxide 93%, Transition 93%, Fresh 90%). These recoveries were used in financial assessment of the optimisation studies.

Criteria	JORC Code explanation	Commentary
	this should be reported with an explanation of the basis of the metallurgical assumptions made	
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made 	 There are currently no known environmental factors which will affect the project. To date, there have been no issues in carrying out drilling and having POW's approved.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for 	 The following bulk densities (t/m3) were used: Oxide: 1.80 Transition: 2.30 Fresh: 2.70 The bulk densities used were based on actual bulk density measurements as outlined in Section 2 of the JORC Table. The in-situ bulk density assignment was based on previous reported measurements taken on HG triple tube core and apparent relative density testing on NQ2 core where available from this deposit and other deposits in the region with similar host rocks.

Criteria	JORC Code explanation	Commentary
	 void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	
	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineralised material in Cinnamon OP has been classified as Indicated Resource in areas where shapes exhibited continuity and as Inferred Resource elsewhere. Classification was based on a combination of drill hole spacing and confidence in geological continuity as well as the likelihood that it would be mined as a pit. In general, drill hole spacing of 25mE x 25mN was used, with some infill holes. The potential for eventual open pit mining was determined by application of the following: An optimised Whittle pit shell produced in 2020 at A\$2,500 per ounce Au. Pit slopes were based on performance of existing open pits and a geotechnical review by Peter O'Bryan and Associates. A turning circle of 20m was used to define a pit base. The resource within the partially designed pits was undiluted (however sensitivities to dilution were carried out to ensure robustness of optimisation). Only non-diluted resources (inclusive of shape dilution) are reported in the Mineral Resource Statement. The 2023 review, using a A\$2,800/oz gold price and increasing the May 2020 costs by 32% confirmed the 2020 conceptual pit remained economic.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 There have been no other audits and reviews carried out using the same data as has been used in this study.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within	 The interpretation of the deposit is based on historic and more recent drilling. While the overall interpretation is correct, at a local scale there will be variations which will require more detailed drilling for increased confidence in the behaviour of the mineralisation.

Criteria	JORC Code explanation	Commentary
	 stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

Section 3 Estimation and Reporting of Mineral Resources K2 UNDERGROUND (UG)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the K2 UG deposits includes both RC and structurally oriented diamond drillcore. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy at K2 UG and at other deposits such as Trident, has enabled a structural model to be generated that has guided the interpretation. Drilling density at K2 UG is generally <20m x 20m, with some areas of broader drill spacing such as on West Lode, and the confidence in the geological interpretation in terms of grade distribution and volume is high, with a low to moderate degree of uncertainty regarding variability of orientation. The nature of the data used for the geological interpretation is almost entirely drilling data. At K2, including K2 UG, 1,003 holes for 76,428m of drilling has been completed, both historically and by Vango Mining. This includes 98 DD holes for 19,893m and 905 RC holes for 56,535m. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging has been completed for all Vango and previous drilling. Data/information generated from structural and geotechnical logging of diamond

Criteria	JORC Code explanation	Commentary
		 drillcore has also been utilised. Alternative interpretations with respect to the shape and orientation of mineralised zones, where data is limited to RC drilling (no orientation not known) are unlikely to significantly affect the volume of mineralisation but may have a low to moderate effect on continuity and classification (e.g. Indicated vs Inferred). Geology (structural, lithological and alteration) has been a key factor guiding the interpretation of the orientation, geometry, size and continuity of the resource envelopes and constraints/boundaries. The other key factor has been grade distribution and trends in the assay data, particularly where mineralisation occurs within a rock mass. Key factors affecting continuity both of grade and geology include, in order of importance: Structural controls – for example, steeply dipping (D3) fault zones that bound and are interpreted to have controlled dilation in the steep to moderately dipping Mafic host units, and also host mineralisation. Some post mineralisation movement may have accentuated the bounding nature of these structures. Gold mineralisation shoot controls in 3 dimensions have been observed which, in the case of K2 UG, constrain high-grade mineralisation to shallow plunging shoots within the mafic host unit. Only fresh material has been included in the K2 UG Mineral Resoruce estimate and, as such, redistribution of gold mineralisation due to re-mobilisation of gold in the oxide zone and supergene enrichment in the transition zone of the deposit is not a factor.
Dimensions Estimation and modelling techniques	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a 	 The K2 UG deposit has dimensions of 800m strike northeast - southwest x 300m northwest - southeast and 250m vertically from surface/pit floor. The K2 UG mineralised envelope strikes generally strikes northeast - southwest and dips steeply the northwest or southeast. The following outlines the estimation and modelling technique used for producing Resources for the K2 UG deposit. Deposit Orebody Dimensions Spacing Mineralised Drilling K2 UG 300mE x 800mN x 20mRL Wireframes were provided by Terra Search for: Topography based on aerial survey information and historical open pits. Bottom of Oxidation (BOCO) Top of Fresh Rock (TOFR)
	data points. If a computer assisted estimation method was chosen include a description of computer software and	 CMPL carried out a review of the weathering surfaces in conjunction with Mr J Dugdale and Terra Search Geologists. Based on geology and using intersection selection, mineralised shapes were wireframed at a 3g/t nominal cut-off grade and using intersection selection to constrain the interpretation. These mineralised shapes

Criteria	JORC Code explanation	Con	nmentary				
	 parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of 	4. 5. 6. 7.	could contain value parameters used for intersections could in of mineralisation int minimal cases < 2.5g The mineralised wire were interpreted; M Each mineralised wir The majority of dat when modelling the The number of shape	es less r interse nclude 1r ersection (/t). eframes v ain Lode, reframe h a was 1r deposit a es used w	than 3g/t wi ction selectio n of internal d n grades could were audited l , Central Lode had an assigned n lengths and and in determi vas as follows:	thin the n were 3r ilution. To l be lower oy Mr J Du and West d strike, di length we ning the h	wireframes. The n down hole and ensure continuity ed to 2.5g/t (or in gdale and 3 Lodes Lode. p and plunge. eighting was used igh grade cuts.
	deleterious elements or other non-grade variables of economic significance (e.g.		K2 UG 1 shape (Main Lode)	containe	49 ed 50% of the v	volume.	
	sulphur for acid mine drainage characterisation). • In the case of block	8.	A breakdown of pre This was to ensure th sizes being used.	e-Resource at mode	e volume for lling did not ov	each shap ver dilute sl	e was measured. hapes due to block
	 model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	9.	on the statistics, high grade cuts were determined using both the GAP method and the method of Denham. The GAP method determines the beginning position of non-linearity of the cumulative probability plot. The Denham method uses statistical distribution theory based on the gamma distribution and the co-efficient of variation.				
	correlation between		Deposit	Maximu	um Cut (g/t)	Percenta	ge Metal Cut %
	Description of how the geological interpretation was used to control the recourse estimates		K2 UG (Historically a 50g/t d	cut was a	60g/t pplied).	27% (70% from 4 sa	6 of metal cut amples)
	 Discussion of basis for using or not using grade cutting or capping. 	10.	Normalised variogra produced for down wireframe (Main Loc	ams wer hole, do le) coveri	e run and d own dip, dow ing 50% of the	irectional n plunge total volur	variograms were for 1 mineralised ne of the deposit.
	The process of validation, the checking process used, the comparison of model data to drill hole		Kriging (OK) with the Nugget: 0.6 Ranges: 60m alo	followin ong strike	(IVIAIN LODE) w ig parameters: e, 30m down d	vas modell i lip, 3m dov	ea using Ordinary vn hole
	data, and use of reconciliation data if available.	11.	The remaining mine Distance Power 3 (IE For both OK and ID ³ f • A minimum of samples • The discreti • The followin • 25m all shapes	eralised N 3 ³) the follow number of 16 sation pa ng search ong strike	wireframes we ving paramete of samples of grameters wer radii were use e, 25m down d	ere model rs were als 2 and a ma e 2E x 1N x ed: lip, 2.5m de	led using Inverse so used: aximum number 1RL own hole (small

	Criteria	JORC Code explanation	Commentary
			 30m along strike, 60m down dip, 3m down hole (large shapes) Note: for blocks that were not filled, the parameters were relaxed and the search radii were increased.
C			Deposit
Ē	\sum		K2 UG 1mE x 2.5mN x 1mRL
			Small blocks were used to ensure adequate volume estimation where shapes were narrow.
			 14. To check that the interpolation of the block model honoured the drill data, visual validation was carried out comparing the interpolated blocks to the sample composite data. 15. Volumes within wireframes were determined and these were then compared with the block estimates of the volumes within those wireframes on a shape by shape basis to ensure that volumes estimated were correct. 16. Classification was carried out using a combination of drill hole density and geology as the guide and Indicated Resource was constrained to Main Lode directly underneath the K2 OP.
C			
	Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture contant	All results are reported on a dry tonnage basis.
	Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 Updated underground cost estimates (2023) and using a gold price of A\$2,800/oz indicated that a break even mill feed cut-off grade of 3g/t Au is likely for underground deposits in the Marymia area.
	Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the 	 Underground mining using long hole open stoping will be the mining method employed going forward. Historic work carried out by Entech Mining Consultants support the concept of long hole open stoping and historic geotechnical work indicates good rock strength with minimal geotechnical issues in the mining.

Criteria	JORC Code explanation	Com	nmentary
Metalluraical	regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	•	Historical metallurgical testwork suggested a high recovery (90%+) would
factors or assumptions	assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical		be achieved.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental 	r •	There are currently no known environmental factors which will affect the project. To date, there have been no issues in carrying out drilling and having POW's approved.

Criteria	JORC Code explanation	Commentary
Bulk density	 impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the 	 The following bulk densities (t/m3) were used: Fresh: 2.90 The bulk densities used were based on actual bulk density measurements. Bulk density data has been collected in the field using a standard Weight
	determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. • The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. • Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	 Bulk density data has been collected in the field using a standard Weight in Air/Dry Weight method systematically through the diamond drilling in the field. Samples were selected and weighed in air and then submerged and reweighed using scales with a 0.1g accuracy. The samples were from fresh non-porous rock and generally returned consistent values. Some samples were covered in wax to ensure the accuracy of the method and these proved to be consistent with non-waxed measurements.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability 	 Fresh material directly beneath the K2 OP was classified as Indicated Resource (Main Lode only). All other material was classified as Inferred Resource with the exception of wireframes around one intersection (which was isolated) and wireframes which were extremely deep (Unclassified Resource). Classification was based on a combination of drill hole spacing and confidence in geological continuity. In general drill hole spacing of 25mE x 25mN was used. The Mineral Resource estimate appropriately reflects the view of the Competent Person.

Criteria	JORC Code explanation	Commentary
	of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). • Whether the result appropriately reflects the Competent Person's view of the deposit.	
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 There have been no other audits and reviews carried out using the same data as has been used in this study.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of 	 The interpretation of the deposit is robust and it is unlikely that a different interpretation at the global scale could be produced given the drilling that now defines the ore. There will need to be underground face sampling and drilling to define small scale fluctuations in the mineralised Lodes. The estimated resource is in-line with historic resources estimated for K2 UG taking into consideration the additional information. Oxide and transitional material above the fresh rock has been excluded from the reported K2 Mineral Resource due to a lack of geotechnical work required to establish a stable pit cut-back. An interim technical decision was taken to focus on K2 underground for mining safety reasons, as proximal historic workings exist. Further optimisation will be carried out prior to pre-feasibility studies to determine the most economical outcome for open-pit cut-back versus underground mining options. The K2 open pit resource will be reported once a recoverable component, based on safety, geotechnical information and mining, can be determined.

Criteria	JORC Code explanation	Commentary
	relative accuracy and confidence of the estimate should be compared with production data, where available.	

Section 3 Estimation and Reporting of Mineral Resources Triple-P and Zone B Underground (UG)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Industry standard checks were carried out on the database using Surpac Software by Carras Mining Pty Ltd (CMPL). All modelling was carried out using Surpac Software by CMPL. Current work has been plotted and examined in MineMap and Surpac in detail along with the existing extensive Explorer3 RDBMS database. Previous data was sourced from the best available databases for each prospect and supplemented by regional databases. Structural and geotechnical data was collected from historical hard copy reports in several instances to enhance the geological and geotechnical database generated by Vango Mining. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. These include the review of original data, mostly from historical reporting (e.g. previous Annual Reports) to ensure the reliability of the data. Any potential data discrepancies have been examined and corrected where necessary. Some data within the existing database has been adjusted based on review with the original source data including Vango Mining data and data from historical reporting.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr Spero Carras of CMPL (Competent Person) has visited the Marymia area and reviewed projects on the ground. Dr Carras also spent a significant amount of time working on the Marymia geology and geophysics in conjunction with Mr Jon Dugdale of DRS (Competent Person for the Exploration Results).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mr Jon Dugdale of DRS carried out geological interpretations of the Marymia Projects in the offices of CMPL working together with David Jenkins and Etienne deGaul of Terrasearch and Dr Spero Carras and Mr Tony Patriarca of CMPL. As a result, CMPL were involved in all aspects of the geological interpretation used for the Mineral Resource estimation. Drilling of the Triple-P and Zone B UG deposits includes both RC and previous diamond drillcore. Structural orientations and examination of timing relationships between mineralised structures and related alteration mineralogy at Triple-P and Zone B UG and at other deposits such as Trident, has enabled a structural model to be generated that has guided the interpretation. Drilling density at Triple-P and Zone B UG is generally 20m - 40m x 20m - 40m, and the confidence in the geological interpretation in terms of grade distribution and volume is moderate, with a moderate degree of uncertainty regarding variability of orientation. Thus the entire Mineral Resource estimate for Triple-P and Zone B UG is categorised Inferred. The nature of the data used for the geological interpretation is almost entirely drilling data. At Triple-P and Zone B UG a total of 511 holes for 38,583m of drilling has been completed, both historically and by Vango Mining. This includes 11 DD holes for 1,321m and 500 RC holes for 37,262m. Assay data generated from these drillholes is almost entirely Fire Assay analyses (see Section 1 for description). Lithological logging has been completed for all Vango and previous drilling.

Criteria	JORC Code explanation	Commentary
		 Data/information generated from structural and geotechnical logging of diamond drillcore has also been utilised. Alternative interpretations with respect to the shape and orientation of mineralised zones, where data is limited to RC drilling (no orientation not known) are unlikely to significantly affect the volume of mineralisation but may have a low to moderate effect on continuity and classification (e.g. Indicated vs Inferred). Geology (structural, lithological and alteration) has been a key factor guiding the interpretation of the orientation, geometry, size and continuity of the resource envelopes and constraints/boundaries. The other key factor has been grade distribution and trends in the assay data, particularly where mineralisation occurs within a rock mass. Key factors affecting continuity both of grade and geology include, in order of importance: Structural controls – for example, steeply dipping (D3) fault zones that bound and are interpreted to have controlled dilation in the shallow to moderately dipping mafic and sedimentary host units, and also host mineralisation. Some post mineralisation movement may have accentuated the bounding nature of these structures. Gold mineralisation shoot controls in 3 dimensions have been observed whjch, in the case of Triple-P and Zone B UG, constrain high-grade mineralisation to shallow plunging shoots within the mafic and sedimentary host units. Only fresh material has been included in the Triple-P and Zone B UG Mineral Resource estimate and, as such, redistribution of gold mineralisation due to re-mobilisation of gold in the oxide zone and supergene enrichment in the transition zone of the deposit is not a factor.
Dimensions Estimation and modelling techniques	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of 	 The Triple-P and Zone B UG deposits are separate shoots of mineralisation, offset from each other by a oriented strike-slip fault. The Triple-P & Zone-B UG deposit have dimensions of: Triple-P: 140m strike north – south, 100m east – west and 100m from the base of the Triple-P pit floor. Zone-B: 160m strike north – south, 100m east – west and 150m from the base of the Zone B pit floor. The Triple-P and Zone B UG mineralised envelope strikes generally strikes north – south and dips shallow to moderately to the west. The following outlines the estimation and modelling technique used for producing Resources for the Triple-P & Zone-B UG deposit. <u>Deposit Information</u> <u>Deposit Information <u>Orebody Dimensions Drill Spacing <u>Triple-P 100mRL 20mE x 20mN up to 40mE x 40mE 100mRL <u>Zone-B 100mRL 100mRL </u> <u>100mE x 160mN x 100mRL <u>100mRL 100mRL <u>Dimensions Drill Spacing <u>Triple-P 100mRL <u>Dimensions Drill Spacing <u>Triple-P 100mRL <u>Dimensions Drill Spacing <u>Dimensions Drill Spacing <u>Triple-P 100mRL <u>Dimensions Drill Spacing <u>Triple-P 100mRL <u>Dimensions Drill Spacing <u>Dimensions Drill S</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>

Crite	ria	JORC Code explanation	Com	imentary		
	ria	JORC Code explanation computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or	Com 2. 3. 4. 5. 6. 7.	Only the fresh rock com estimation. CMPL carried out a rev with Mr J Dugdale and T Based on geology and u were wireframed at a 3g selection to constrain could contain values parameters used for inte The mineralised wirefra Each mineralised wirefra The majority of data w when modelling the dep The number of shapes u	ponent was considere riew of the weathering erra Search Geologists using intersection sele- g/t nominal cut-off gra the interpretation. T less than 3g/t withi ersection selection we mes were audited by N ame had an assigned st ras 1m lengths and lep posit. sed to model the depo	d in the resource g surfaces in conjunction s. ction, mineralised shapes ide and using intersection hese mineralised shapes n the wireframes. The re 3m down hole. Ar J Dugdale. trike, dip and plunge. ngth weighting was used osit was as follows:
		other non-grade variables of economic		Triple D		
		significance (e.g. sulphur for acid mine			10	
		drainage		Zone-B	15	
90		 In the case of block model interpolation, the block size in relation to the average 	_	Due to the sparse nature of 20g/t was applied. The selected high grade data) is shown below:	e of the data, a visually cut and percentage m	estimated high grade cut etal cut (based on drilling
		sample spacing and the search employed.		Deposit	Maximum Cut (g/t)	Percentage Metal Cut%
		Any assumptions behind modelling of		Triple-P & Zone-B UG	20g/t	5%
		 selective mining of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of 	9.	The modelling method of extended sections with to the wireframe. Classification was carrie and geology as the guide classified as Inferred mineralisation to increa the continuity of the following the mining of	used was a polygonal e the average grade of t ed out using a combin- e resulted in all of the n Resource. There is ase in size with furthe geology and with Triple-P OP.	estimation method using he intersection allocated ation of drill hole density nineralised material being the potential for the r drilling to better define improved understanding
	4	available.	-			
Mois	ture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of 	• 4	All results are reported o	n a dry tonnage basis.	

	Criteria	JORC Code explanation	Commentary
Ī		determination of the	
-		moisture content.	
	Cut-off	• The basis of the	• Updated underground cost estimates (2023) and using a gold price of
-	parameters	adopted cut-off	A\$2,800/oz indicated that a break even mill feed cut-off grade of 3g/t Au
		parameters applied.	is likely for underground deposits in the Marymia area.
	Mining factors or	Assumptions made	• At present there is no definitive proposed mining method. Following
	assumptions	regarding possible	more detailed drilling (which will raise the classification of the
-		mining methods,	mineralised resource to Indicated) the best method of extraction will be
_		minimum mining	selected.
		dimensions and	
		applicable external)	
		mining dilution. It is	
1		always necessary as	
1		part of the process of	
\mathcal{D}		determining	
	7	reasonable prospects	
		Jor eventual economic	
		notential minina	
		methods, but the	
7		assumptions made	
21		regarding mining	
-		methods and	
_		parameters when	
		Resources may not	
		always be rigorous.	
		Where this is the case,	
		this should be reported	
<u> </u>		with an explanation of	
		the basis of the mining assumptions made	
1	Metallurgical	The basis for	Preliminary metallurgical testwork suggested high leach recoveries
9	factors or	assumptions or	would be achieved, (Fresh 75% to 97%, average 86%). Test-work
7	assumptions	predictions regarding	indicates the fresh recovery can be upgraded to 90% using a combination
_		metallurgical	of flotation concentrate of sulphide occluded gold, finer grinding and lead
		amenability. It is	nitrate addition prior to leaching.
		part of the process of	
_		determining	
		reasonable prospects	
		for eventual economic	
Π		extraction to consider	
		potential metallurgical mathada, but tha	
		assumptions regarding	
		metallurgical	
		treatment processes	
		and parameters made	
		when reporting	
		Mineral Resources may	
		Where this is the case	
		this should be reported	

Criteria	JORC Code explanation	Commentary
	with an explanation of the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental 	 There are currently no known environmental factors which will affect the project. To date, there have been no issues in carrying out drilling and having POW's approved.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for 	 The following bulk densities (t/m3) were used: Fresh: 2.80 The bulk densities used were based on actual bulk density measurements as outlined in Section 2 of the JORC Table. The in-situ bulk density assignment was based on previous reported measurements taken on HG triple tube core and apparent relative density testing on NQ2 core where available from this deposit and other deposits in the region with similar host rocks.

Criteria	JORC Code explanation	Commentary
	 void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineralised material in Triple-P & Zone-B UG has been classified as Inferred Resource due to the lack of continuity exhibited by the currently available drilling. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	• There have been no other audits and reviews carried out using the same data as has been used in this study.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence	 The interpretation of the deposit should be considered preliminary and as a result the mineralisation has been classified as Inferred Resource. It is anticipated that further deep drilling will better define the underground potential of this area.

Criteria	JORC Code explanation	Commentary
	limits, or, if such an	
	deemed annronriate a	
	aualitative discussion	
\sim	of the factors that	
	could affect the	
	relative accuracy and	
	confidence of the	
	estimate.	
	• The statement should	
2	specify whether it	
	relates to global or	
5	local estimates, and, if	
	local, state the relevant	
	tonnages, which should	
\bigcirc	be relevant to technical	
Ð	and economic	
7	evaluation.	
))	Documentation should	
	include assumptions	
	made and the	
	procedures used.	
	• These statements of	
\cup	relative accuracy and	
	confidence of the	
	estimate should be	
	compared with	
\mathcal{D}	production data, where	
J	uvulluble.	

Section 3 Estimation and Reporting of Mineral Resources Trident Underground (UG)¹ - unchanged from 18 April 2019 release

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria JORC Code explanation		JORC Code explanation	Commentary			
	<i>integrity</i> <i>integrity</i> <i>ensure that data has</i> <i>not been corrupted by,</i> <i>for example,</i> <i>transcription or keying</i> <i>errors, between its</i> <i>initial collection and its</i> <i>use for Mineral</i> <i>Resource estimation</i> <i>purposes.</i> <i>Data validation</i> <i>procedures used.</i>		 All data has been plotted and examined in MineMap and Surpac in detail along with the existing extensive database. Any potential discrepancies have been examined and corrected where necessary. All data has been loaded into the Explorer3 RDBMS and has undergone validation procedures. Some data within the existing database has been adjusted based on review with the original source data from historical reporting. Previous data was sourced from databases previously reviewed by Runge in 2010. Structural and geotechnical data was collected from hard copy reports in several instances to enhance the geological and geotechnical database 			
	Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr Carras carried out 2 independent site visits to the Trident resource area where he reviewed diamond drilling information. Dr Carras was also involved extensively with the geological interpretation and domaining of the Trident resource area. 			
	Geological Interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Vango drilled 33 Diamond holes and 27 RC holes within the Trident higher-grade area. This data in addition to the previous database of over 600 holes has allowed detailed geological interpretation of the system. Detailed Geological logging was completed on the diamond drillholes and used to interpret previous logging. RQD and magnetic susceptibility data was also used to define structures and geological units in conjunction with the geological logging was used to inform the geological model. Biotite alteration was a common companion to gold mineralisation and shows a strong correlation. There is high confidence in the geological model which shows two distinct zones a shallow north west dipping structure of 2- 10m thickness parallel to thrusting, and a steep, wider folded zone adjacent to steep controlling faults within the deposit. Cross-faulting does appear to displace the mineralisation causing some breaks in continuity. The location of these structures is of moderate confidence. 			
	Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the 	 The resource extents of this estimate are approximately 1,000m from 19,050mE to 20,100mE and 300m vertical extent. 			

Criteria	JORC Code explanation	Con	nmentary	1		
	Mineral Resource.					
Estimation and modelling• The nature and appropriateness of estimation technique applied and key	 The nature and appropriateness of the estimation technique(s) applied and key 	 The following outlines the estimation and modelling technique used for producing resources for the Trident deposit. Surpac Software was used in the estimation process. 				
	assumptions, including treatment of extreme grade values,	De	eposit	Orebody Dimensions	Nominal Drill Spacing	Metres of Mineralised Drilling
\bigcirc	domaining, interpolation parameters and	Tr	ident	1,100mE x 500mN x 300mRL	20m x 20m	Approx. 1,400m
\mathcal{D}	maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a	1.	Wirefra Service a. b. c.	ames were provided by Terr s Ltd for: Topography based on dril Bottom of Oxidation (BOC Top of Fresh Rock (TOFR)	rasearch and Disc Il collar data CO)	cover Resource
$\overline{\mathcal{D}}$	description of computer software and parameters used. • The availability of	2.	Carras weathe Resour	Mining Pty Ltd ("CMPL") ca ering surfaces in conjunction ce Services Ltd geologists.	rried out a reviev n with Terrasearc	w of the h and Discover
	check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	3.	Based were w shapes The pa which o interse interse	on geology and using inter vireframed at a 3.0g/t nom could contain values less rameters used for intersec equates to an approximate ctions could include up t ctions were undiluted.	section selection inal cut-off grad than 3.0g/t with tion selection we 2-2.5m minimum o 3m of interna	, domainal shapes e. These domainal in the wireframes. ere 3m down hole n stope height. The al dilution and all
0	 The assumptions made regarding recovery of by-products. 	4.	The wi Resour	reframed shapes were audi ce Services Ltd geological s	ted by Terraseard taff.	ch and Discover
5	 Estimation of deleterious elements or other non-grade 	5.	The de dip.	posit has a north north wes	sterly strike and a	an east north east
	variables of economic significance (e.g. sulphur for acid mine drainage	6. 7.	The ma used w The nu	ajority of data was of 1m ler when modelling the deposit. umber of shapes used was a	ngths and weight as follows:	ed lengths were
	 characterisation). In the case of block model interpolation, the block size in 		Depos Trider	sit Number of Shapes nt 28		
Ð	relation to the average sample spacing and the search employed.	8.	A breal This wa to the	kdown of pre-Resource volu as to ensure that modelling block sizes being used.	ume for each sha did not over dilu	pe was measured. Ite the shapes due
	 Any assumptions behind modelling of selective mining units. Any assumptions about correlation between wariables 	9.	The Re density domain statisti Denha	esource shapes were broke n, grade and geology. (See n a detailed set of weighted cs, high grade cuts were m. The Denham method	en into domains e accompanying l statistics was pr determined usir uses statistical o	based on drilling image.) For each oduced. Based on ng the method of distribution theory
	 Description of how the geological interpretation was 		based of is cons	on the gamma distribution a istent with the often-used (and the co-efficie GAP method.)	nt of variation (this
	used to control the		me sei	ected high-grade cut and pe	ercentage metal	

Criteria	JORC Code explanation	Commentary				
	resource estimates. • Discussion of basis for	domair	domain is shown below:			
	using or not using grade cutting or	Domain	Comment	High Grade Cut (g/t)	Metal Cut (%)	
	capping.The process of validation, the	Domain 1	Main Flat Dipping Domain (High Grade Area)	140	8	
	checking process used, the comparison of model data to drill hole data, and use of	Domain 1	Main Flat Dipping Domain (Not in High Grade Area)	55	4	
5	reconciliation data if available.	Domain 2	Main Vertical Domain (High Grade Area)	120	3	
		Domain 2	Main Vertical Domain (Not in High Grade Area)	70	4	
		Domain 3	Eastern Domain	50	0	
\supset		Domain 4	Horizontal Domain Near Transition Boundary	20	0	
7		Domain 5	Flat Dipping Domains Close to Domain 1	30	0	
		Domain 6	Flat Dipping Domain Under Proposed Portal	15	0	
		Domain 7	All Other Shapes	30	0	
		definite bounda even w 10. Major s variogra 11. The foll Domair • • • • All othe	e waste zones have been re aries were used as soft bou ith a 140g/t cut, 8% of the search orientations were as aphy. owing fill method was use n 1: Ordinary Kriging Nugget = 0.55 Sill = 1 Range = 30 Search = 70 er Domains (excluding Dom Inverse Distance Power 3	emoved. The high-gra indaries when estimat metal is still cut from ssigned for each shape d in modelling: hain1): 3 (ID ³)	ade domain ting. Note tha Domain 1. e based on	
		12. The foll • • •	owing parameters were us A minimum number of s of samples of 16 The discretisation param Search parameters were variography Note: for blocks that did search parameters were	sed for all Domains in amples of 2 and a ma eters were 2 x 2 x 1 based on domain orion not meet these requi relaxed and the searc	modelling: ximum numb entation and rements, the ch radii were	

	Criteria	JORC Code explanation	Commentary
			 13. The fundamental block size used was: Deposit Small Blocks Trident 0.5mN x 5mE x 1mRL Small blocks were used to ensure adequate volume estimation where Domainal shapes were narrow. (The assumption was that all blocks would be mined in the mining process i.e. there would not be an application of an internal cut-off grade.) 14. To check that the interpolation of the block model honoured the drill data, validation was carried out comparing the interpolated blocks to the sample composite data.
V			15. Volumes within wireframes were determined and these were then compared with the block estimates of the volumes within those wireframes on a shape by shape basis to ensure that the volumes estimated were correct.
3	Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	 Tonnages and grades were estimated on a dry in-situ basis. No moisture values were reviewed.
	Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 Updated underground cost estimates (2023) and using a gold price of A\$2,800/oz indicated that a break even mill feed cut- off grade of 3g/t Au is likely for underground deposits in the Marymia area.
	Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported	 The mining method will be a mix of moderately sized long hole open stopes with engineered paste fill and some conventional drift and engineered fill in the flatter areas. Cable bolting of the ultramafic hanging wall is anticipated. It is expected that dilutions of up to 30% may be experienced. Dilution has not been applied in the Resource modelling process. Geotechnical studies are currently underway to determine the dilution parameters that will be used in conversion to reserves. It is intended to maximise the use of remote control, tele-operated and automated, mining equipment when implementing the underground mining method.

	Criteria	JORC Code explanation	Commentary
		with an explanation of	
		the basis of the mining	
		assumptions made.	
2	Metallurgical	• The basis for	 Metallurgical testwork was conducted by ALS in Perth on a
	factors or	assumptions or	representative, >50kg composite sample generated from diamond drill-
	assumptions	predictions regarding	core that forms part of the Trident Mineral Resource. The calculated
		metallurgical	head grade is in line with the indicated Resource at 9.1 g/t gold (Au).
		amenability. It is	size of 106µm of over 89% after 24 hours to 90% after 48 hours. The
		nart of the process of	new test-work also produced a relatively low Bond Ball-mill Work
		determining	Index of 13. indicating potential for relatively low bond, but milling costs.
		reasonable prospects	
7		for eventual economic	
		extraction to consider	
		potential metallurgical	
1		methods, but the	
\mathcal{D}		assumptions regarding	
		metailurgicai	
		and narameters made	
		when reporting	
		Mineral Resources may	
	7	not always be rigorous.	
		Where this is the case,	
4		this should be reported	
		with an explanation of	
		the basis of the	
-		metallurgical	
	Environmental	Assumptions made	The Trident denosit contains the fibrous aspectiform mineral actinolite
1/	factors or	reaardina possible	and as a result the mining, treatment of ore and disposal of waste will
J	assumptions	waste and process	need to comply with the handling of fibrous minerals rules and
		residue disposal	regulations. Fibrous minerals have been associated with previous
_		options. It is always	mining of the Marwest pit at Marymia and mining and milling processes
1		necessary as part of	were put in place to ensure appropriate Occupational Health and Safety
7		the process of	requirements. At Trident there will be a need for adequate ventilation,
-		determining	wash down areas, the containment of crushed materials and the
_		for eventual economic	covering of waste and tallings.
		extraction to consider	
		the potential	
		environmental impacts	
		of the mining and	
		processing operation.	
		While at this stage the	
		determination of	
		potential	
		impacts narticularly	
		for a greenfields	
		project, may not	
		always be well	
		advanced, the status of	
		early consideration of	
		these potential	
		environmental impacts	

Criteria	JORC Code explanation	Commentary
	should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density was measured on 140 diamond drillhole samples using a wet/dry weight measurement to determine the density. Some measurements were completed using wax to ensure no bias due to water ingress and these values showed the non-wax measurements to be accurate. The bulk density measurements confirmed the use of 2.90 t/m³ as being appropriate for all mineralisation.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result 	 Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Identified Mineral Resources and Ore Reserves (JORC, 2012). The Indicated portion of the resource was confined to areas defined where the drill spacing was approximately 20m by 20m and continuity in both grade and geological structure was demonstrated. The Inferred Resource included areas of the resource where sampling was greater than 20m by 20m or was represented by isolated, discontinuous zones of mineralisation to a maximum of 40m. In general, classification was carried out using a combination of drill hole spacing and geology as the guide. Several areas were placed in the unclassified category due to inadequate drilling. The result appropriately reflects the Competent Person's view of the Trident deposit.

Criteria	JORC Code explanation	Commentary
	appropriately reflects the Competent Person's view of the deposit.	
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 Internal review of interpretation and methodology have been completed by contractors who verified the technical inputs, geological methodology and parameters of the estimate. The Resource has not yet been independently reviewed.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate for the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. 	 The resource has not yet been independently reviewed. The Trident deposit has a very high-grade core which is within a dilational zone with an ultramafic schist host. The use of the very high-grade cut is appropriate for such a zone and this zone has been domained to constrain the high-grade values. The results produced are global and in general, domaining to determine the high cuts and removal of a significant amount of metal has restricted the smoothing of high-grade values into lower grade domains, even though soft boundaries have been used. Definite waste zones have also been eliminated from the estimates. There is no production data available.

Appendix 1

Figure 1: Marymia Gold Project, key corridors and Mineral Resource projects

Figure 2: Location of Marymia Gold Project in the Yilgarn block of Western Australia

Figure 3: Marymia Gold Project, Trident Corridor with Mineral Resource projects

Figure 4: Trident West Mineral Resource cross section 19200mE¹

ASX:CYL

Figure 5: Marwest – Mars Mineral Resource cross section 20810mE²

Figure 6: Mareast Mineral Resource cross section 22700mE³

Figure 7: Marymia Gold Project, Triple-P Corridor with Mineral Resource projects

Figure 8: Triple-P and Zone-B Mineral Resource cross section 1920mN⁴

Figure 9: Albatross-Flamingo cross section 7900mN with optimised pit and N-S Resource blocks ⁵

Figure 10: Marymia Gold Project, PHB Corridor with Mineral Resource projects

Figure 11: K2 West Lode, Central Lode and Main Lode cross section 16,425mN⁷

Figure 12: Longitudinal Projection through K2 Main Lode, PHB-1 optimised pit & Resource model

Figure 13: PHB-1 West Lode, Central Lode and Main Lode cross section 16,875mN⁷

Figure 14: K1 Mineral Resource cross section 18,780mN

Figure 15: Marymia Gold Project, Cinnamon Corridor with Mineral Resource projects

Figure 16: Cinnamon cross section 26,375mN⁸

¹ VAN ASX 22/01/19 New High-Grade Gold Intersections from Trident West
 ² VAN ASX 19/11/19 New Shallow High-Grade Gold Intersections at Mars
 ³ VAN ASX 23/05/19 High-Grade Gold Intersections Extend Corridor (Mareast)
 ⁴ VAN ASX 05/08/19 New Very High-Grade Zone Discovered at Marymia Project (Triple-P)
 ⁵ VAN ASX 21/01/20 Exceptional High-Grade Gold Intercepts (Albatross-Flamingo)
 ⁶ VAN ASX 23/03/20 High-Grade Drilling Success at Marymia Gold Project (K2/PHB-1)
 ⁷ VAN ASX 03/03/20 Exceptional Intersections from New Iode Discovery at Marymia (PHB-1)

⁸ VAN ASX 13/09/18 Broad and High-Grade Gold Intersections at Cinnamon