

13 February 2023

HIGHLY STRATEGIC & PROSPECTIVE LITHIUM, REE & MANGANESE TENEMENTS ACQUIRED

HIGHLIGHTS

- Four (4) tenements are being acquired for low cash consideration plus shares, and are highly prospective with known lithium, rare earth element (REE) and manganese mineralisation
- Lithium tenement (Morrissey Hill project) has widespread outcropping pegmatites, and is directly adjoining, and contains the same geology as, Red Dirt Metals' (ASX: RDT) Yinnetharra Lithium Project (Figure 1)

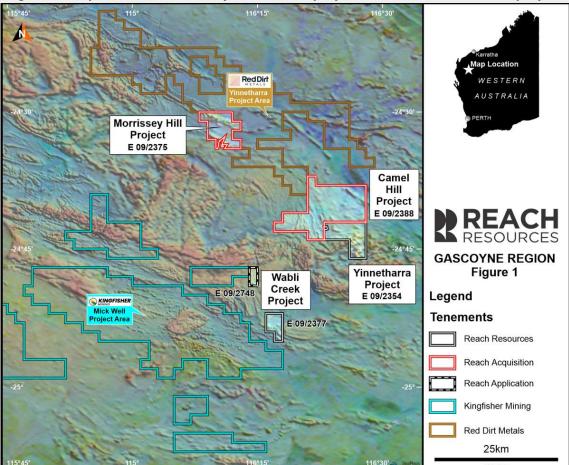


Figure 1: Acquisition 1 - Morrissey Hill Lithium project and the Camel Hill REE project

- REE and Manganese tenements bordered by FMG Pilbara (ASX:FMG), Firebird Metals (ASX:FRB), and existing Reach tenure in the Gascoyne region (see Figure 2)
- Upon completion, Reach will command a significant land holding in the highly prospective Gascoyne region, providing scale, contiguity and excellent exposure

ACQUISITIONS:

- Acquisition 1: Two tenements Prospective for Lithium: Morrissey Hill (E09/2375) and Rare Earth Elements (REE): Camel Hill (E09/2388). Both in the Gascoyne Mineral Field, WA (Figure 1)
 - Lithium tenement E09/2375 (Morrissey Hill) adjoins Red Dirt Metals' Yinnetharra
 Lithium Project. RDT recently announced¹ initial assay results from drill intersections including 55.6 m @ 1.12% Li₂O incl. 15 m @ 1.52% Li₂O from 95 m.
 - Morrissey Hill historical high-grade lithium, tantalum, rubidium, cesium, niobium results from rock-chip samples include:
 - 1.32% Li₂O, 3.62% Ta₂O₅, 1,936 ppm Rb, 2,276 ppm Cs, and 1.55% Nb₂O₅
 - Geology within E09/2375 is consistent with Red Dirt Metals' "Goldilocks Zone" theory for occurrence of lithium-cesium-tantalum (LCT) pegmatites. Numerous outcropping pegmatites have already been mapped within E09/2375.
 - In addition, results show a 5-km long lithium soil anomaly (>100 ppm Li) untested by drilling.
 - REE tenement E09/2388 (Camel Hill) has historical rock-chip samples with total rare earth oxide (TREO) results of up to 1,357 ppm
 - A ~3.5-km long REE soil anomaly (>500 ppm REE) untested by drilling.
 - Recorded REE anomalies correspond with thorium radiometric highs.
- Acquisition 2: Two tenements: White Castles (E09/2539 & E09/2542) prospective for manganese and REE in the Gascoyne Mineral Field, WA
 - High-grade rock-chip results up to 18% MnO².
 - Multiple surface manganese outcrops over 50 km of continuous strike.
 - Little to no exploration undertaken since 2010.
 - Neighbours include FMG to the east, FRB to the north west and Dreadnought Resources (ASX:DRE) to the south west.
 - The tenements lie within 5 km of recent anomalous REE results from Reach's Skyline project (ASX Release 7 November 2022).

PLACEMENT:

The Company has received firm commitments for \$2,000,000 in new equity to fund both acquisitions, pay off all debt (non-cash via share issue), conduct exploration activities and provide additional working capital

Reach Resources Limited (ASX: RR1 & RR10) ("Reach" or "the Company") is pleased to announce that binding terms sheets have been signed with two separate and non-related parties for the acquisition of four tenements highly prospective for lithium, REE and/or manganese in the Gascoyne Mineral Field, WA (Figures 1 & 2). Three of the four tenements share a boundary with existing Reach tenure which significantly increases the Company's ability to explore entire mineral strike lengths and provides greater contiguous area for potential future development.

¹ Red Dirt Metals (ASX:RDT) ASX Release dated 20 January 2023 entitled "Outstanding assay results from initial Yinnetharra Lithium drill hole" available at https://www.asx.com.au/asxpdf/20230120/pdf/45kt20rq1lw569.pdf

² Full summary of results shown in Appendix B.

Firm commitments have been received from sophisticated and professional investors to raise \$2M in cash, via a two tranche Placement to fund the acquisitions (low cash consideration plus share consideration – see section "Acquisition Summary and Terms" for full details), accelerate exploration on new and existing tenements with a focus on lithium, REE and manganese, and to provide additional working capital.

GASCOYNE REGION Figure 2 WESTERN AUSTRALIA 25km E 09/2733 Skyline Project HASTINGS E 09/2646 Yin Project Area White Castles **Project** E 09/2751 **Tenements** Reach Resources Reach Acquisition Reach Application Firebird Metals **FMG** Lanthanein Minerals Dreadnought Resources Hastings Technology 116°15

Figure 2: Acquisition 2 - White Castles Manganese project

Commenting on the acquisitions, Reach CEO Jeremy Bower said:

"We have intentionally added lithium and manganese to our critical mineral portfolio due to the exponential demand for these minerals from the electrical revolution taking over the globe. When exploring for lithium, you want three key factors: the right geology to produce evolved LCT pegmatites, visible or known lithium mineralisation and the presence of pathfinder elements such as cesium, tantalum, rubidium – Morrissey Hill has all three.

Additionally, we have a direct comparison next door at Red Dirt's Yinnetharra project. Yinnetharra has the same geology as Morrissey Hill and recent drill results by RDT have intersected good lithium grades. This gives us a great deal of confidence as we plan an aggressive exploration program at Morrissey Hill to begin in early March."

Further, the acquisition of the White Castles Manganese project is a strategic play for Reach providing additional critical minerals diversification. There is no substitute for manganese in the steel making process, which provides a large demand for the metal itself. However, the importance of manganese is also growing exponentially within the battery sector for use in electric vehicles. Manganese is an important component in the cathodes of the two most commonly produced types of electric vehicle (EV) batteries available today, including Li-Ion.

There is a growing push from EV and battery cathode manufacturers to increase manganese content to improve battery and electric vehicle cost competitiveness, while maintaining energy density. Manganese is therefore a strategic commodity to add to the Reach asset portfolio.

It is an exciting time for the Company, and we can't wait to update shareholders as our exploration across all tenements ramps up over the coming months."

ACQUISITION 1: MORRISSEY HILL E09/2375 (LITHIUM) & CAMEL HILL E09/2388 (REE)

The two new tenements lie in the Mutherbukin Zone of the Gascoyne Mineral Field and are dominated by granitoids of the Paleoproterozoic Durlacher Supersuite in the centre of the project area. The Thirty Three Supersuite is the youngest unit in the project area and crops out in both Morrissey Hill E09/2375 and Camel Hill E09/2388, along the Ti Tree Shear Zone.

Red Dirt¹ has reported lithium-mineralised pegmatites within 5 km of the Thirty Three Supersuite at their Yinnetharra Project, which is adjacent to Morrissey Hill (E09/2375). Mineral Developments³ and Pure Minerals Limited⁴ have previously collected rock-chip samples, primarily from pegmatites, at Morrissey Hill (E09/2375; Figure 3). Additionally, Pure Minerals Ltd conducted a gridded soil sampling program over Morrissey Hill, of over 1,000 soil samples.

³ Oliver, William (2017). Mineral Developments Pty Ltd Annual Report for the period 20 July 2016 to 19 July 2017 for E09/2136 Morrissey Hill.

⁴ Nielsen, Kell (2018). Pure Minerals Limited Annual Technical Report for the period 3 July 2017 to 2 July 2018 for Morrissey Hill Project.

Anomalous results of up to 6,140 ppm Li $(1.32\% \text{ Li}_2\text{O})^5$, 2.97% Ta $(3.62\% \text{ Ta}_2\text{O}_5)^6$, 1,936 ppm Rb, 2,276 ppm Cs, and 1.08% Nb $(1.55\% \text{ Nb}_2\text{O}_5)^7$ were returned from rock-chip samples along the contact boundary between the Thirty Three Supersuite and Leake Spring Metamorphics (Figure 3). The same geological contact hosts RDT's Yinnetherra Project. Therefore, with the same geological complex and outcropping pegmatites at Morrissey Hill, and lithium mineralisation in historical rock chip samples, the project is considered prospective for potential lithium deposits.

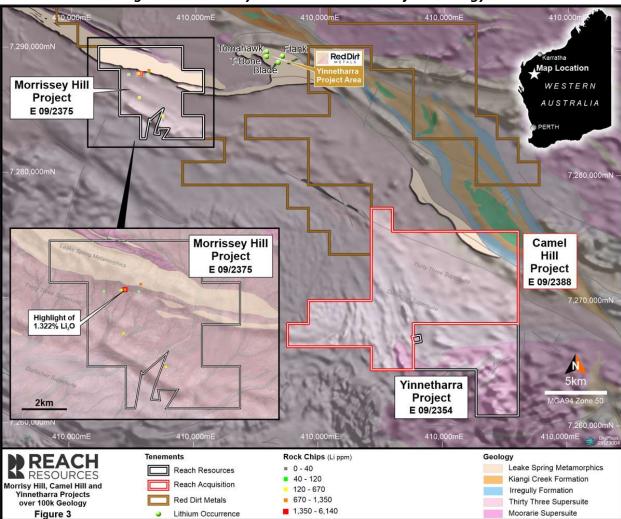


Figure 3: Morrissey Hill and Camel Hill Project Geology

⁵ Li (ppm) was converted to Li₂O (%) by dividing by 10,000 to convert to Li (%) and then by multiplying by a conversion factor of 2.153.

⁶ Ta (%) was converted to Ta₂O₅ (%) by multiplying by a conversion factor of 1.221.

⁷ Nb (%) was converted to Nb₂O₅ (%) by multiplying by a conversion factor of 1.431.

ACQUISITION 2: WHITE CASTLES E09/2539 & E09/2542 (MANGANESE AND REE)

The White Castles Manganese Project is part of a ~200 km long strike extensive belt of manganese deposits within the Ullawarra Formation of the Edmund Basin. The Ullawarra Formation regionally hosts supergene-stratiform, lateritic and detrital style manganese mineralisation and is similar in age to the Tieling Formation that hosts manganese deposits in northern China⁸. Most manganese mineralisation is located within one depositional package of the Ullawarra Formation that consists of siltstone, fine-grained sandstone, dolostone, chert and lesser felsic volcaniclastic rocks and is intruded by numerous dolerite sills. Outcropping manganese mineral occurrences in E09/2539 and E09/2542 include Pingandy Bore, Coodardo Well 3 and Wanna Bore. Several manganese occurrences are also present in adjacent tenements, including Coodardo Well 1 and 2, located immediately north of E09/2539 in the same stratigraphic unit. The White Castles project tenements are located along strike from numerous manganese occurrences within Pure Minerals Battery Hub Manganese Project (Figure 4).

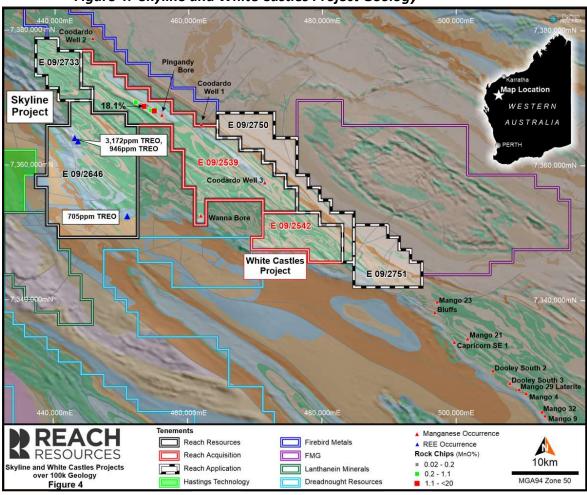


Figure 4: Skyline and White Castles Project Geology

⁸ Su, W., Li, H., Huff, W. D., Ettensohn, F. R., Zhang, S., Zhou, H., and Wan, Y. 2010, SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China. *Chinese Science Bulletin*, **55**, 3312–3323.

EXPLORATION SUMMARY

The Company engaged the services of consulting group RSC in early December last year to undertake a detailed geological review of our Gascoyne tenements, including the new acquisitions we are announcing in this release. This work involves a thorough prospectivity analysis, exploration target generation and development of an exploration program. This work is expected to be completed by the end of February 2023, after which a systematic and aggressive exploration program will commence.

The exploration program will commence with the potential lithium mineralisation at Morrissey Hill, the REE potential at Camel Hill and Reach's Wabli Creek blocks (Reach' Critical Elements Project). The focus will then shift to the northern blocks at the Company's Skyline project and the newly acquired manganese asset at White Castles.

The Company has a busy year ahead as exploration commences, with the intended aim to commence drilling campaigns in the first half of the year, subject to permits and approvals being received, which will provide consistent news flow once commenced.

ACQUISITION SUMMARY AND TERMS

On 8 February 2023, two binding terms sheets were signed with separate and non-related parties on the following terms:

ACQUISITION 1 - MORRISSEY HILL LITHIUM PROJECT and the CAMEL HILL REE PROJECT:

The Company to acquire 100% of the Western Australian exploration licenses E09/2388 and E09/2375 from Tasex Geological Services Pty Ltd (ACN 129 133 615) ("Tasex").

Material Terms of the Acquisition:

Consideration

- \$50,000 non-refundable cash deposit (paid on 4 January 2023); and
- Pay a further \$150,000 in cash; and
- the issue of 200,000,000 shares in RR1 at an issue price of \$0.004 per share (\$800,000); and
- grant to Tasex a royalty equal to 1% of the gross revenue from all minerals produced or sold from the Tenements. Reach and Tasex will enter into a royalty deed for this purpose.

The consideration shares will be issued without the need for shareholder approval from Reach Resources available capacity under ASX Listing Rule 7.1.

Escrow

An agreed voluntary escrow period of 6 months from the date ordinary shares in RR1 are issued to Tasex or its nominee.

Conditions precedent

Completion of the Acquisition is subject to the satisfaction or waiver (in writing and agreed between the parties) of the following conditions precedent:

- (a) Reach Resources successfully completing Tranche 1 of the Placement (see below Placement terms);
- (b) the Seller executing a voluntary escrow deed with respect to the consideration shares for a period of 6 months from the date the consideration shares are issued to Tasex (or its nominee); and
- (c) execution of a formal royalty agreement on the terms outlined above

ACQUISITION 2: WHITE CASTLES MANGANESE AND REE PROJECT

The Company to acquire all of the issued capital of Kouzan Pty Ltd (ACN 651 813 615) ("Kouzan") from its sole shareholder. Kouzan owns 100% of the Western Australian exploration licenses E09/2539 and E09/2542.

Material Terms of the Acquisition:

Consideration

- \$20,000 non-refundable cash deposit (paid on 3 January 2023); and
- pay to Kouzan \$120,000 in cash (\$20,000 was paid on 1 February 2023, leaving a balance of \$100,000 remaining payable in cash); and
- the issue of 30,000,000 shares in RR1 at an issue price of \$0.004 per Share (\$120,000)

The consideration shares will be issued without the need for shareholder approval from Reach Resources available capacity under ASX Listing Rule 7.1.

Escrow

An agreed voluntary escrow period of 6 months from the date ordinary shares in RR1 are issued to the vendor or their nominee.

Conditions precedent

Settlement is subject to and conditional upon the satisfaction (or waiver) of the following remaining conditions precedent (among any others):

- (a) Reach successfully completing Tranche 1 of the Placement (see Placement terms below);
- (b) the seller of the tenements executing a voluntary escrow deed with respect to the consideration shares for a period of 6 months from the date the consideration shares are issued to the seller (or its nominee); and
- (c) there being no material adverse change in the circumstances of Kouzan and none of the warranties given by Kouzan becoming untrue, incorrect or misleading each prior to the date of satisfaction (or waiver) of all other conditions.

PLACEMENT TERMS

The Company has received binding letters of commitment to raise \$2,000,000 at \$0.004 per share (the "Placement") to finance an aggressive exploration strategy over the Company's new and existing tenement portfolio, in addition to paying the balance of the cash consideration for the Tasex tenements (\$150,000 balance to pay) and Kouzan Pty Ltd (\$100,000 balance to pay), and to provide additional working capital. The Placement was undertaken with Westar Capital Limited acting as Lead Manager, via the offer of shares to sophisticated and professional investors. Westar Capital will be paid 6% of gross funds raised under the Placement. Mintaka Nominees Pty Ltd will receive 25 million shares (\$100,000) for introductory services (subject to shareholder approval).

The Placement will be undertaken in two tranches as follows:

Tranche 1 (Placement capacity)

The maximum number of shares will be issued from Reach Resources available capacity under ASX Listing Rule 7.1 and 7.1A (Tranche 1) in the following proportions, raising \$950,000 (before costs):

- 55,000,000 ordinary shares issued under ASX Listing Rule 7.1, and
- 182,500,000 ordinary shares issued under ASX Listing Rule 7.1A

To facilitate secondary trading of the Placement Shares to be issued pursuant to the Placement the Company will soon issue a cleansing prospectus. This will allow the Placement Shares to be traded pursuant to section 708A(11) of the *Corporations Act 2001* (Cth).

Tranche 2 (Shareholder approval required)

The balance of the Shares will be issued following receipt by Reach of the approval of the requisite majority of the Company's members at general meeting for the purposes of Listing Rule 7.1 (Tranche 2), as follows:

 262,500,000 ordinary shares, subject to shareholder approval and raising in total \$1,050,000 (before costs).

A Notice of Meeting will be dispatched in due course.

Settlement of funds under tranche 1 of the placement is proposed for Wednesday 15 February 2023, with the allotment of shares to follow on Thursday 16 February 2023. Settlement of funds under tranche 2 will be dependent on the approval by shareholders and timing of the general meeting, to be advised in due course.

REPAYMENT OF LOAN

The Company and its major creditor, Bath Resources Pty Ltd ("Bath"), have agreed to a settlement of the \$450,000 owed by the Company to Bath through the issue of 75,000,000 shares in the Company which represents \$300,000 worth of shares at a deemed issue price equal to the issue price pursuant to the Placement (\$0.004), with the balance of the debt to be forgiven. Repayment on the above terms is subject to shareholder approval.

This announcement has been authorised by the Board of Reach Resources Limited

For further information please contact:

Jeremy Bower

Chief Executive Officer Level 4, 216 St Georges Terrace Perth, 6000 W.A jeremy@reachresources.com.au

-ENDS-

About Reach Resources Limited

Reach Resources is a critical mineral explorer with a large portfolio of tenements in the resource rich Gascoyne Mineral Field. Recent and historical exploration results have confirmed the presence of Lithium, REE, Niobium and Manganese across the Company's land holdings.

However, the Company is distinct from other pure explorers by also having an Inferred Gold Resource at Payne's Find and a significant investment in a downstream patented technology that recycles the rare earth elements from the permanent magnets required in electric vehicles, wind turbines, hard disk drives and MRI machines.

Competent Person's Statement

Information in this announcement that relates to lithium and REE Exploration Results is based on and fairly represents information and supporting documentation prepared and compiled by Mr Andrew Jones, who is a Member of the Australian Institute of Geoscientists. Mr Jones is a director of TasEx Geological Services Pty Ltd and consults to Reach Resources Limited on a part-time basis. Mr Jones has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking to qualify as a Competent Person, as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Jones consents to the inclusion in the announcement of the matters based on this information in the form and context in which it appears.

The information in this announcement that relates to Exploration Results for the White Castles Manganese Project is based on and fairly represents information and supporting documentation compiled by René Sterk, who is a full-time employee of consulting company, RSC. Mr Sterk is a Competent Person and a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy. Mr Sterk has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sterk consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

No New Information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

Forward Looking Statements

This report contains forward looking statements concerning the projects owned by Reach Resources Limited. If applicable, statements concerning mining reserves and resources may also be deemed to be forward looking statements in that they involve estimates based on specific assumptions. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward looking statements as a result of a variety of risks, uncertainties and other factors. Forward looking statements are based on management's beliefs, opinions and estimates as of the dates the forward looking statements are made and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

(Criteria in this s	section apply to all succeeding sections.)	
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Surface sampling (rock-chip and soil samples) reported in this ASX release was undertaken historically by: O Eastern Goldfields Exploration Pty. Ltd. in 2010 for Au, Cu, and Mn in its Coodardo Gap Mn Project. O Pure Minerals in 2018, targeting for Li and Ta in its Morrissey Hill Project. O Mineral Developments in 2017, targeting beryl, Li, mica, REEs and U in the Morrissey Hill project. Eastern Goldfields Exploration, Coodardo Gap Mn Project: (2010, A number: 87495) Rock chip samples were collected during field reconnaissance at random locations from ferric outcrop, shale and float chip samples between May 2009 and May 2010 during four field visits. Assay results are provided for 18 rock chip samples in WAMEX report A 87495 (WAN-50–51, and WAN-55–71). These reported samples correlate to descriptions from the fourth field trip described in the WAMEX report. There are no historical records of measures taken by Eastern Goldfields exploration to ensure sample representivity of the primary sample. Pure Minerals, Morrissey Hill Project: (2018, A number: 117605) Soil (1112) and rock chip (50) samples were collected by Pure Minerals during a surface sampling programme at the Morrissey Hill tenement. Pure Minerals used a portable XRF analyser to analyse the soil and rock chip samples in field, before being submitted for laboratory analyses.

ensure sample representivity of the primary sample.

 Soil samples were collected by removing the loose surface material and sampling to a depth of 5–10 cm beneath the surface. The first

Criteria	JORC Code explanation	Commentary
		batch of soil samples (MSS0001–0133) were collected during Sept/Oct 2017 and the collected material was sieved using a 2 mm mesh and the -2 mm component was collected for analysis by MS91 (Na ₂ O ₂ fusion, ICP-AES and ICP-MS). The second batch of soil samples (MSS01134–1112) were collected during March 2018 and the collected material was sieved using an 80 Mesh sieve and the -80 mesh component was collected for analysis. Rock-chip samples (MHS0001–0050) were collected, primarily from pegmatites; however, no further information is available on the sampling techniques used for the rock-chip samples.
		Mineral Developments, Morrissey Hill Project: (2017, A number: 114717) • Rock-chip samples (17) were collected by Mineral Developments during field reconnected by Mineral Developments
		 during field reconnaissance at the Morrissey Hill tenement. There are no historical records of measures taken by Mineral Developments to ensure sample representivity of the primary sample. There is no further information available on the sampling techniques used for the rock-chip samples.
		 Encounter Resources, Minneritchie Well Project: (2008, A number: 78072) Rock-chip samples (394) were collected by Encounter Resources during a surface geochemical rock chip program at its Minneritchie Well Project targeting uranium (U) mineralisation.
		 Encounter Resources collected "fist-sized" samples. The sample type was recorded as "float" or "bulk soil" whenever a sample float fragment or a bulk sample was taken.
		 Rock chips were collected from outcrops by digging a ~40 cm hole; however, no further information is available on the sampling techniques.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling has been reported in this ASX release.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	No drilling has been reported in this ASX release.

Criteria	JORC Code explanation	Commentary
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 No information is available on logging of the Eastern Goldfields, Pur Minerals or Mineral Developments surface samples. Encounte Resources recorded comments on the sample type, lithology weathering and fabric of the rock chip samples. No drilling has been reported in this ASX release.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Pure Minerals, Mineral Developments or Encounter Resources surfactions samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Eastern Goldfields Exploration, Coodardo Gap Mn Project: (2010, A number: 87495) Samples WAN-55 to WAN-71 were analysed using technique ME XRF12 (borate fusion, manganese ore package). This technique is considered appropriate for Mn analysis by the Competent Person. The analysis technique was not reported for samples WAN-50 and WAN-51, hence these two samples are not reported. No results are provided for WAN-01 to WAN-49, although the companies report (A number 87495) notes samples from earlier field campaign with up to 30% MnO.
		Pure Minerals, Morrissey Hill Project:

Commentary
 (2018, A number: 117605) Samples were analysed by ALS in Perth by package MS91, a package combining Na₂O₂ fusion, ICP-AES and ICP-MS determination. This technique is considered appropriate for Li analysis by the Competent Person. Portable XRF data have not been reported in this ASX release. No records are available of the quality control procedures and results; however, ALS Perth is an accredited and ISO-certified laboratory and therefore appropriate internal quality control procedures are assumed to have been adopted.
 Mineral Developments, Morrissey Hill Project: (2017, A number: 114717) Samples were analysed by Nagrom in Perth using techniques ICP004 (for Li) and XRF008 for whole rock analyses. No records are available of quality control procedures being undertaken.
 Encounter Resources, Minneritchie Well Project: (2008, A number: 78072) Samples were analysed by Actlabs using techniques aqua regia digestion for Au (AU25) and 4-acid digestion (HF-HNO₃-HCIO₄-HCI) via ICP-OES for multi-element suite. No records are available of quality control procedures being undertaken.
 Pure Minerals' records indicate that data was compiled directly from laboratory results and checks against field notes and GIS software were completed. No records are available on the verification of the sampled material by Eastern Goldfields, Mineral Developments and Encounter Resources. Full details on data documentation and entry protocols are not known. Assay data are available to the public and can be obtained from historical open-file reports via WAMEX. No adjustments to assay data were reported in the open-file records. However, Reach applied elemental to oxide conversions for the Pure Minerals and Mineral Developments assay data, and TREO conversions for the Encounter Resources assay data.
_

Criteria	JORC Code explanation	Commentary
D		 Li (%) and then by multiplying by a conversion factor of 2.153. Ta (%) was converted to Ta₂O₅ (%) by multiplying by a conversion factor of 1.221. Nb (%) was converted to Nb₂O₅ (%) by multiplying by a conversion factor of 1.431.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The grid system used in the figures and appendices in this ASX release is MGA Zone 50. The project's topographic control is adequate for early-stage surface targeting and reconnaissance. Eastern Goldfields Exploration, Coodardo Gap Mn Project: (2010, A number: 87495) Sample locations were recorded in GDA94 Zone 50. No information is provided on the accuracy of sample locations or how they were obtained; RL are not provided in the WAMEX appendix. Pure Minerals, Morrissey Hill Project: (2018, A number: 117605) All samples were located using a handheld GPS and an accuracy of +/- 5 m. Sample locations were recorded in GDA94 Zone 50. RLs were recorded for the first batch of soil samples (MSS0001–0133) and rock chip samples (MHS0001–0050); however, no elevation data were recorded for the second batch of soil samples (MSS01134–1112).
		 Mineral Developments, Morrissey Hill Project: (2017, A number: 114717) All samples were located using a GPS; however, accuracy of the GPS instrument is unknown. Sample locations were recorded in GDA94 Zone 50. No elevation data were recorded for the rock chip samples. Encounter Resources, Minneritchie Well Project: (2008, A number: 78072) Sample locations were recorded in GDA94 UTM Zone 51.

Criteria	JORC Code explanation	Commentary
		 No information is provided on the accuracy of sample locations or how they were obtained; RL are not provided in the WAMEX appendix.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Historical reconnaissance Exploration Results have been compiled for prospectivity targeting. Data spacing is not intended to support continuity for Mineral Resource estimation. Drilling is required to achieve data spacing and distribution sufficient for resource estimation.
		 Eastern Goldfields Exploration, Coodardo Gap Mn Project: (2010, A number: 87495) Rock-chip samples were collected randomly from outcrop and float and are therefore irregularly spaced. No sample composting was applied.
		Pure Minerals, Morrissey Hill Project: (2018, A number: 117605) Soil samples were collected on an 800 x 200 m grid of 50–100 m x 400 m line spacings to avoid drainage and areas considered less prospective. No information is available on data spacing for the rock chip samples. Rock-chip samples appear to be very selective,
		collected primarily from pegmatites. There are no records of sample compositing having been applied. Mineral Developments, Morrissey Hill Project: (2017, A number: 114717) Rock-chip samples were collected randomly from pegmatite outcrops.
		 No sample composting was applied. Encounter Resources, Minneritchie Well Project: (2008, A number: 78072) Rock-chip samples were collected along 600–1000 m spaced traverses with 100 m sample spacing along each line. At known areas of U mineralisation, the spacing decreased to 300 m with 50 m spacing
		along line samples.

 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientations of possible structures within the tenements are not well-known at this early stage. The Competent Person considers this appropriate for reviewing historical surface sampling results for prospectivity targeting. Eastern Goldfields Exploration, Coodardo Gap Mn Project: (2010, A number: 87495) Rock-chip samples were collected randomly from outcrop and float. Pure Minerals, Morrissey Hill Project: (2018, A number: 117605) Soil sampling grid was oriented to the northeast as pegmatites were observed in east–west and north–south orientations. Mineral Developments, Morrissey Hill Project: (2017, A number: 114717) Rock-chip samples were collected from pegmatite outcrops. Encounter Resources, Minneritchie Well Project: (2008, A number: 78072) Sampling lines were orientated east–west as most of the structure interpreted from magnetic and gravity is oriented between 330° and
The measures taken to ensure sample security.	Eastern Goldfields Exploration, Coodardo Gap Mn Project: (2010, A number: 87495) No information is available on historical sample security measures. Pure Minerals, Morrissey Hill Project: (2018, A number: 117605) Records indicate that all samples were submitted directly to the laboratory; however, no additional information is available on sample security. Mineral Developments, Morrissey Hill Project: (2017, A number: 114717) Samples were submitted to the laboratory; however, no additional information is available on sample security.
	Encounter Resources, Minneritchie Well Project: (2008, A number: 78072)
_	possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

Criteria	JORC Code explanation	Commentary
		 Samples were submitted to the lab; however, no additional information is available on sample security.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 There are no records of any audits or reviews of the historical sampling techniques or data other than the current collation of information by Reach, where the key deliverable was to establish prospectivity.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	and agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Skyline Project
			ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental
			White Castles Project
	· · · · · · · · · · · · · · · · · · ·		 The White Castles project in Northern Gascoyne region comprises granted licences E 09/2539 and E 09/2542 and the following licences are under application: E 09/2750 and E 09/2751
			Critical Elements Project
			 The Critical Minerals Project comprises granted licenses E 09/2375 (Morrisey Hill), E 09/2388 (Camel Hill) and E 09/2354 (Yinnietharra) along the Ti Tree Shear Zone, and E 09/2377 (Wabli Creek) along the Chalba Shear Zone. An application was lodged for E 09/2748.
			There are no aboriginal heritage places listed within Reach tenements and applications.

Criteria JORC Code explanation Commentary

Exploration done by other parties

Acknowledgment and appraisal of exploration by other parties.

This release summarises the results of material exploration by other parties within E 09/2375, E 09/2388, E 09/2354, E 2748, E 09/2377, E 09/2733, E 09/2646, E 09/2539, E 09/2542, E 09/2750 and E 09/2751. U3O8 Ltd drilled two RC holes in E09/2377 targeting U mineralisation. The Competent Person does not consider the results material due to the different target commodities. The remainder of the historical exploration undertaken in these tenements are surface samples.

Company	Report Number	Year	Target commodity	Reach Tenement
Pure Minerals Limited	117605, 117689	2018	Li ±Ta	E 09/2375, E 09/2377
Mineral Developments	114716, 114717	2017	Beryl, Li, Mica, REE, U	E 09/2375, E 09/2377
Encounter Resources	78072	2008	U and base metals	E 09/2388
Rising Mining Holdings Pty Ltd	93579, 97672	2012, 2013	U, W, REE	E 09/2388
Glengarry Resources Ltd	66179	2003	Та	E 09/2388, E 09/2354
United Mining Resources Pty Ltd	90419	2011	U, W, REE	E 09/2388, E 09/2354
Lithium Australia NI	117227	2018	Li, REE, Ta, W	E 09/2388
Wodgina Lithium Pty Ltd	118915	2018	Au, Li	E 09/2388
U308 Ltd	76883, 79787, 84704, 88390	2007, 2008, 2009, 2010	U, Th, V	E 09/2377
Thor Mining PLC	98245			E 09/2377

Criteria	JORC Code explanation	Commentary				
		Eastern Goldfield Exploration	s 87495	2010	Au, Cu, Mn	E 09/2539
		Golden Phoenix Australia Pty Ltd	106114, 109684, 113891	2015, 2016, 2017	Au, Ag, Fe, Cu, Pb, Zn, Ni	E 09/2539, E 09/2750, E 09/2542, E 09/2751
Geology	Deposit type, geological setting and style of mineralisation.	 Reach's Skyline and are dominat groups. The sout Irregully and Kia tenure is domin- siliclastic rocks or 	ed by sedimen hwestern part o ngi Creek forn ated by the Na	tary rock of E 09/26 nations, v arimbunr	s of the Edmu 346 comprises while the rest na Dolerite an	ind and Collie outcrops of th of the Skylin
5)		The Ullawarra lateritic and detri				ene-stratiforn
5		 Reach's Critical the Gascoyne F Durlacher and T is the youngest u along the northe Syncline. 	Province and onlinity Three sup nit in the Critica	comprise ersuites. al Eleme	s granites of The Thirty Th nts project area	the Moorarie ree Supersuit a and outcrop
Drill hole Information		The Thirty Three from veins to 10-200 m in thickr typically zoned, veg. Bi, Be, Normining (Sheppar Minerals Ltd) identify fractionate pegmatites.	-20-m-wide dykess (Sheppard vith massive qu -Ta), which had et al., 2010 entified the Thi	es and some	hallowly dippir 2010). The pes, and include in the subject Resources Les Supersuite a	ng sheets up to begmatites and rare element of small-scaltd (now Arros a fertile and second s
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	 Significant soil a northing, are pro 				g easting an

Criteria	JORC Code explanation	Commentary
	 down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No data aggregation methods have been applied. Reach applied a cut-off of 40 ppm Li for the reported data by Pure Minerals and Mineral Developments, and a cut-off of 600 ppm TREO for the reported data by Encounter Resources. No cut-offs were applied in reported data by Eastern Goldfields Exploration. Results are presented in Appendices A–C and figures in this release. No metal equivalents are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps for the Skyline and Critical Minerals projects are presented in Figure 1 and 2. Known mineral occurrences, projects and mines illustrated in Figure 3 and 4 were extracted from WAMEX.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Historical results that are considered relevant have been presented here in a balanced manner to avoid misleading reporting. The reported results presented in Figures 3 and 4 reflect the full range of rock-chip and soil sample results for the target commodities available to Reach Resources at the time of this report. No relevant information has been omitted.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics;	All relevant data available to Reach Resources has been documented in this report.

	Criteria	JORC Code explanation	Commentary
		potential deleterious or contaminating substances.	
	Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Desktop studies and target identification for Li, Mn, and REE are in progress. Field reconnaissance is scheduled for Q1/Q2 of 2023.
SM JEUOSJ			

APPENDICES

APPENDIX A: REE analyses and TREO calculation (in ppm) of rock chip samples collected by Encounter Resources across tenement E 09/2388. A cut-off of 600 ppm TREO was applied.

Sample ID	Northing	Easting	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Υ	TREO
			ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppm
EX107006	7265500	433500	125000	245000	20300	74200	11600	1640	10900	940	5490	970	2870	370	3110	430	33000	645
EX107031	7265900	433350	135000	230000	20700	74300	11200	1330	11300	910	4580	730	1730	210	1470	0	22000	619
EX107032	7265900	433400	135000	250000	20600	77200	10500	1550	10700	870	5180	950	2770	390	2990	350	33000	664
EX107033	7266400	431600	185000	380000	31600	105000	18700	1510	16500	1350	6430	960	2420	290	2320	290	24000	933
EX107034	7266400	431650	155000	295000	29600	115000	25100	2370	23600	2410	12300	2060	5440	760	5320	500	68000	892
EX107035	7266400	431700	210000	435000	40600	147000	25600	2800	24200	2260	12300	2040	5490	660	4890	590	56000	1165
EX107052	7266400	432550	135000	245000	27100	110000	17100	2480	15600	1130	5380	710	1640	180	1260	200	18700	697
EX107055	7266400	432700	105000	230000	24000	91700	15500	1410	14100	1050	5030	730	2100	260	1740	270	23000	620
EX107059	7266400	432900	165000	315000	32200	106000	18100	3440	19200	1320	6380	850	2050	250	1540	220	21000	831
EX107066	7266400	433250	125000	220000	23300	84500	12600	1440	12200	870	4030	570	1300	120	720	230	15400	602
EX107068	7266400	433350	125000	255000	22200	75800	10700	1460	10900	880	4730	780	2180	290	2220	290	23000	644
EX107083	7266800	431100	92000	235000	22300	97700	16600	1180	16600	1480	9360	1540	4200	540	4060	490	49000	664
EX107085	7266800	431300	105000	220000	20500	90300	15700	2260	14500	1060	5550	960	2990	390	2880	310	32000	618
EX107087	7266800	431500	125000	285000	25100	94700	15900	1430	16000	1330	6680	950	2450	250	1560	200	27000	726
EX107106	7266800	433300	120000	250000	21300	83100	12200	1530	12000	910	5110	840	2370	310	2450	310	27000	649

	Sample ID	Northing	Easting	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	TREO
				ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppm
	EX107136	7267200	434100	160000	310000	29900	131000	21500	3340	20400	1520	8840	1250	3360	400	3010	320	40000	882
	EX107142	7267200	434400	120000	245000	28500	99300	14500	1300	12700	870	4100	560	1400	200	1210		19100	659
	EX107186	7267500	431100	235000	455000	37600	146000	26400	5080	26900	2320	11800	1470	3290	340	1980		1900	1145
	EX107194	7267500	431900	100000	220000	25600	101000	18700	2250	19000	1940	12000	1950	5870	790	5480		5300	621
	EX107195	7267500	432000	280000	510000	50600	197000	32500	3580	32200	2630	14100	1810	4110	400	2300		2200	1357
	EX107217	7267800	433800	170000	340000	33300	121000	18300	3160	16200	1090	5960	930	2800	380	3120		3000	862
	EX107242	7268200	431000	110000	225000	20600	75200	13100	2340	15800	1700	9990	1340	3240	360	2260		27000	610
	EX107251	7268200	431900	94000	200000	21600	84600	17500	1890	20600	2730	19300	3700	11800	1540	12000		110000	725
	EX107257	7268200	432500	110000	250000	24400	97200	17000	2100	16100	1440	9330	1580	4700	640	4700		50000	709
	EX107284	7268200	435200	120000	135000	36500	156000	27900	4810	20300	1580	8370	1150	2960	410	3140		28000	650
	EX107285	7268200	435300	150000	195000	49500	200000	34400	5260	22300	1630	7810	1030	2570	330	2410		27000	833
	EX107320	7269200	432800	280000	335000	38700	153000	26400	2890	24000	1830	9650	1290	2990	330	2080		32000	1088
L	EX107329	7269200	431900	99000	300000	23200	96700	19800	3160	21400	2120	12000	1820	5360	610	4750		53000	775
L	EX107335	7269200	431300	60000	355000	15700	62300	11700	1670	12700	1070	6500	940	2790	360	2580		25000	676
L	EX107337	7269200	431100	125000	295000	26500	107000	18900	3030	20900	2160	13300	2150	6340	800	6460		55000	821
	EX107341	7269200	430700	80000	185000	20500	83900	24700	2380	34600	5560	35600	5750	17400	2070	14000		185000	842
L	EX107374	7269800	433500	130000	160000	26400	107000	20400	4970	20800	1950	11700	1730	5730	940	9600		38000	644

Appendix B: Geochemical results from reconnaissance sampling of Eastern Goldfields Pty Ltd over Reach tenement E 09/2539. One sample from a ferric outcrop returned ~19% MnO. No cut-off applied.

Sample ID	Easting	Northing	MnO	Al ₂ O ₃	CaO	Cu	Fe ₂ O ₃	K ₂ O	MgO	Na₂O	P ₂ O ₅	SiO ₂	SO₃	TiO ₂	V ₂ O ₅	LOI 1000
)			wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%
WAN-55	455011	7368403	0.033	1.77	0.81	0.051	11.6	0.092	0.11	0.203	0.678	80.6	0.597	0.11	0.013	2.8
WAN-56	455011	7368403	0.052	0.96	0.38	0.004	1.84	0.298	0.12	0.02	0.048	96	0.042	0.07	0.008	0.05
WAN-57	455064	7368473	0.042	12.55	3.48	0.011	11.2	2.58	1.62	0.092	0.078	60.7	0.079	0.94	0.047	6.48
WAN-58	455087	7368525	0.205	7.33	8.65	0.038	14.7	1.585	4.34	0.174	0.118	48.5	0.239	0.37	0.058	13.3
WAN-59	454961	7368403	0.028	9.32	4.64	0.027	10.7	2.14	2.68	0.126	0.164	59.8	0.36	0.65	0.068	9.15
WAN-60	454369	7368234	0.08	6.55	14.9	0.003	1.14	0.068	0.5	0.03	0.032	61.7	0.02	0.43	0.028	14.45
WAN-61	454369	7368234	0.097	6.2	25.7	0.004	1.5	0.048	1.08	0.017	0.042	41.6	0.029	0.43	0.028	23
WAN-62	454371	7368243	0.153	6.49	27.6	0.004	2.72	0.168	0.78	0.033	0.076	36.8	0.069	0.48	0.03	24.5
WAN-63	454366	7368210	0.504	5.82	11.95	0.008	3.43	0.18	0.41	0.036	0.064	65.5	0.03	0.11	0.102	11.75
WAN-64	453839	7368902	0.14	7.21	13.5	0.009	20.6	0.674	1.88	0.092	0.347	38	0.056	0.45	0.015	16.95
WAN-65	453875	7368995	0.021	5.9	14.45	0.003	9.99	0.706	5.95	0.074	0.038	42.3	0.128	0.56	0.022	19.75
WAN-66	452963	7369093	0.102	5.13	23.6	0.004	11.1	0.532	2.19	0.051	0.067	33.6	0.254	0.43	0.05	22.7
WAN-67	452951	7369074	0.036	8.24	21.8	0.005	1.78	0.764	3.04	0.029	0.033	40.5	0.32	0.59	0.02	22.7
WAN-69	452108	7369402	0.603	5.99	20.1	0.007	12.05	1.26	5.35	0.063	0.13	31.5	0.233	0.49	0.02	22.1
WAN-70	454884	7368130	1.1	1.72	7.46	0.02	62.6	0.087	0.32	0.166	0.05	15	1.235	0.18	0.087	9.78
WAN-71	453336	7368818	18.85	0.85	4.4	0.015	50.9	0.578	0.92	0.334	0.811	5.47	0.156	0.04		14.6

Appendix C: Li values from rock chip sampling by Mineral Developments and Pure Minerals over Reach tenement E 09/2375. A cut-off of 40 ppm Li was applied. No results from E 09/2542

	Sample ID	Company	Easting	Northing	Li	Rb	Cs	Та	Al	K	Mn	Na	Nb	Р	Pb	Si
)				ppm	ppm	ppm	ppm	wt.%	wt.%						
	E092136_004	Mineral Developments	417392	7284600	120	737	58	19	12.87	2.97	0.099	5.684	0.01	0.093	0.002	28.0
	E092136_005	Mineral Developments	417312	7284780	40	1001	65	51	9.98	3.63	0.173	1.874	0.008	0.052	0.002	32.6
	E092136_007	Mineral Developments	415485	7286073	220	1232	188	26	9.98	4.80	0.02	2.66	0.006	0.093	0.005	31.8
	E092136_008	Mineral Developments	415360	7286000	40	1772	187	1	9.67	10.13	0.019	2.118		0.192	0.005	30.5
))	E092136_009	Mineral Developments	415802	7286970	40	44	15	33	8.84	0.21	0.047	7.147		0.104	0.001	33.6
	E092136_010	Mineral Developments	415545	7288001	6140	4157	2276	734	8.59	4.31	0.516	1.14	0.008	0.017	0.05	32.9
3	E092136_011	Mineral Developments	415545	7288001	1350	914	333	214	9.78	1.38	0.242	5.692	0.005	0.03	0.002	32.6
7	E092136_012	Mineral Developments	415388	7287975	670	1322	135	29676	9.58	3.85	0.513	2.114	1.081	0.018	0.006	29.1
	E092136_014	Mineral Developments	414610	7287922	90	1015	54	43	8.27	5.49	0.061	2.873	0.003	0.074	0.004	33.8
3	E092136_015	Mineral Developments	416244	7288243	830	1936	221	71	10.75	6.65	0.252	0.217	0.004	0.038	0.003	25.3
	E092136_017	Mineral Developments	416160	7287913	110	368	12	12	4.14	1.02	0.035	1.879	0.003	0.008	0.001	40.5
	MHS0001	Pure Minerals	418,628	7,286,791	217	228	36.7	31.3	6.69	0.68	0.031	6.05	0.005	0.031	0.001	N/A
	MHS0008	Pure Minerals	415,284	7,288,870	58.6	112	9.33	1.05	5.15	1.55	0.060	0.24	0.001	0.023	0.002	N/A
	MHS0009	Pure Minerals	415,235	7,288,821	64.8	164	16.8	1.36	7.51	2.91	0.041	0.31	0.002	0.026	0.002	N/A
7	MHS0014	Pure Minerals	414,857	7,287,793	61.6	149	4.7	7.88	5.51	0.61	0.124	3.38	0.003	0.071	0.001	N/A
7	MHS0015	Pure Minerals	414,711	7,287,745	55.2	327	11	2.99	7.16	2	0.164	4.3	0.001	0.174	0.002	N/A

Pure Minerals	415,653 415,546 417,055 416,338 415,025 414,835 416,005 417,180	7,287,778 7,288,000 7,285,736 7,285,961 7,285,663 7,287,910 7,287,886 7,287,938	ppm 114 760 680 166 60.7 58.3 41.6	257 440 830 630 412 520	9pm 34.8 154 156.5 28.2 43.7	9pm 14.95 81.8 16.95 12.75 >100	wt.%8.167.266.47.116.95	wt.% 0.92 0.75 2.47 2.65	wt.%0.0370.0820.1080.029	wt.% 6.56 6.43 0.32 1.38	wt.%0.0040.0050.0040.009	wt.% 0.112 0.022 0.126 0.01	wt.% 0.001 0.001 0.001 0.000	wt.% N/A N/A N/A
Pure Minerals	415,546 417,055 416,338 415,025 414,835 416,005 417,180	7,288,000 7,285,736 7,285,961 7,285,663 7,287,910 7,287,886	760 680 166 60.7 58.3	440 830 630 412	154 156.5 28.2 43.7	81.8 16.95 12.75 >100	7.26 6.4 7.11	0.75 2.47 2.65	0.082 0.108	6.43 0.32	0.005	0.022 0.126	0.001	N/A N/A
Pure Minerals Pure Minerals Pure Minerals Pure Minerals Pure Minerals Pure Minerals	417,055 416,338 415,025 414,835 416,005 417,180	7,285,736 7,285,961 7,285,663 7,287,910 7,287,886	680 166 60.7 58.3	830 630 412	156.5 28.2 43.7	16.95 12.75 >100	6.4 7.11	2.47	0.108	0.32	0.004	0.126	0.001	N/A
Pure Minerals Pure Minerals Pure Minerals Pure Minerals Pure Minerals	416,338 415,025 414,835 416,005 417,180	7,285,961 7,285,663 7,287,910 7,287,886	166 60.7 58.3	630 412	28.2	12.75	7.11	2.65						
Pure Minerals Pure Minerals Pure Minerals Pure Minerals	415,025 414,835 416,005 417,180	7,285,663 7,287,910 7,287,886	60.7 58.3	412	43.7	>100			0.029	1.38	0.009	0.01	0.000	N/A
Pure Minerals Pure Minerals Pure Minerals	414,835 416,005 417,180	7,287,910 7,287,886	58.3				6.95							1
Pure Minerals	416,005 417,180	7,287,886		520	40.7			1.4	0.026	4.43	0.010	0.06	0.001	N/A
Pure Minerals	417,180	, , ,	41.6			3.78	7.52	4.71	0.023	2.94	0.002	0.095	0.003	N/A
		7,287,938		250	18.9	5.09	6.81	1.4	0.014	2.62	0.004	0.118	0.002	N/A
Pure Minerals	447 470		46.8	1	0.55	77.1	6.96	0.03	0.067	1.05	0.009	>1	0.001	N/A
	417,178	7,287,938	60.9	6.8	1.31	31.3	7.89	0.05	0.100	0.86	0.005	0.107	0.001	N/A
Pure Minerals	418,096	7,288,880	57.1	311	44	2.55	5.85	4.15	0.026	1.51	0.002	0.067	0.002	N/A
Pure Minerals	418,149	7,289,046	56.5	304	16.75	1.88	6.94	4.33	0.046	1.45	0.002	0.091	0.004	N/A
Pure Minerals	414,193	7,288,345	44.6	154	26	4.26	6.12	1.05	0.065	3.63	0.002	0.088	0.001	N/A
Pure Minerals	416,877	7,285,274	82.4	430	183.5	2.12	8.23	4.17	0.009	1	0.000	0.17	0.007	N/A