

Outstanding results from extension and infill drilling at Challenger's Hualilan Gold Project

Highlights

- Extension and infill drilling at the Verde Zone continue to deliver outstanding results including:
 - 42.0m at 5.9 g/t AuEq¹
 1.9m at 124.9 g/t AuEq¹
- 5.3 g/t Au, 5.9 g/t Ag, 1.0% Zn from 270.6m including
- AuEq¹ 113.0 g/t Au, 117.0 g/t Ag, 21.2% Zn from 357.7m (GNDD-711);
- 43.0m at 1.8 g/t AuEq¹
 27.0m at 2.6 g/t AuEq¹
 2.9m at 9.7 g/t AuEq¹
- 1.4 g/t Au, 3.1 g/t Ag, 0.7% Zn from 32.0m including.
 2.0 g/t Au, 4.2 g/t Ag, 1.0% Zn from 42.0m and
- 0.7 g/t Au, 639 g/t Ag, 2.4% Zn from 97.5m (GNDD-667)
- 42.8m at 1.4 g/t AuEq¹
 5.3m at 6.3 g/t AuEq¹
 0.5m at 23.0 g/t AuEq¹
- 1.2 g/t Au, 3.3 g/t Ag, 0.4% Zn from 71.5m including
 5.4 g/t Au, 6.0 g/t Ag, 1.7% Zn from 109.0m and
- 12.9 g/t Au, 62.1 g/t Ag, 18.4% Zn from 127.9m (GNDD-660);
- 70.0m at 1.0 g/t AuEq¹
 2.7m at 17.0 g/t AuEq¹
 8.6m at 3.1 g/t AuEq¹
 2.7m at 9.3 g/t AuEq¹
- 0.9 g/t Au, 1.8 g/t Ag, 0.3% Zn from 196.0m including
 13.4 g/t Au, 37.2 g/t Ag, 6.4% Zn from 261.7m and
 2.8 g/t Au, 9.3 g/t Ag, 0.3% Zn from 354.5m including

- 8.6 g/t Au, 29.0 g/t Ag, 0.8% Zn from 354.5m (GNDD-643);

- 22.2m at 1.0 g/t AuEq¹
- 0.9 g/t Au, 2.3 g/t Ag, 0.3% Zn from 231.2m and
- 9.1m at 5.7 g/t AuEq1 4.6 g/t Au, 9.2 g/t Ag, 2.2% Zn from 378.0m and (GNDD-693);
- GNDD-711, drilled 80 metres below previous holes near the northern limit of the Verde Zone, has
 identified a high grade northern extension of Verde with an intersection of 42.0m at 5.9 g/t AuEq
- GNDD-643 has filled a significant gap in the continuity of a lightly drilled area in the Central Verde
 Zone with an intersection of 70.0m at 1.0 g/t AuEq and 8.6m at 3.1 g/t AuEq
- Drilling continues to extend the footprint of the Verde Zone mineralisation with several highgrade intersections at depth open and requiring follow-up drilling

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said

"Another excellent set of results as our extension and infill program at Hualilan progresses. We are encouraged by the intersection of new zones of high-grade mineralisation at depth on the northern margin of the Verde Zone as this appears to be a new high-grade target that will require follow up.

Importantly, we continue to see the trend of our infill drill holes generally surprising on the upside both in terms of mineralisation width and grade which is a positive. This often goes the other way in a resource drill out, but this has not been the case at Hualilan."

¹ Reported as Gold Equivalent (AuEq) values – for requirements under the JORC Code see page 15

Challenger Exploration (ASX: CEL) ("CEL" the "**Company**") is pleased to announce outstanding results from the ongoing drill program at the Hualilan Gold Project, located in San Juan Argentina, with extension and infill holes from the Verde Zone reported in this announcement.

The highlight from this program was the intersection of **42.0m** at **5.9** g/t AuEq in drill hole GNDD-711 which is an extension of the high-grade mineralisation north of the Verde Zone. The drilling continues to show the presence of coherent shoots of significantly higher-grade mineralisation at depth which remain open in several locations.

All results were received after the completion of the Company's maiden Hualilan Gold Project ("MRE"). The current MRE, which includes a high-grade core of 1.1 Moz at 5.6 g/t AuEq¹, was based on 125,700 metres drilling and will be updated in coming weeks. The Company is midway through an additional 50,000 metres of drilling which will take total CEL drill metres at Hualilan to 250,000 metres.

¹ Reported as Gold Equivalent (AuEq) values – for requirements under the JORC Code see page 15

DISCUSSION

THE VERDE ZONE

The Verde Zone contributes almost 1 million ounces gold equivalent¹ to the current Hualilan MRE. The Verde Zone was a CEL discovery targeted using surface magnetics and IP (Induced Polarisation) at the Hualilan Gold Project. The discovery hole (ASX Release - 2 March 2021) returned 125.5 metres at 1.1 g/t AuEq including 71.0 metres at 1.8 g/t AuEq (GNDD-169). The Verde Zone covers 2.0 kilometres of strike and mineralisation remains open along strike and at depth.

Mineralisation in the Verde Zone is oriented north-south, is 50 to 100 metres wide, and hosted by bedding parallel fault-fracture zones in sediments and steeply dipping fracture zones in intrusives. A lower grade halo of mineralisation extends into the overlying sedimentary rocks, which have been locally brecciated by the hydrothermal fluids during mineralisation. The overlying mineralisation in the sedimentary rocks dips to the west at 30-50° and is up to 50 metres thick. This overlying halo of lower grade mineralisation is a useful exploration guide to vector to the deeper intrusion-hosted mineralisation. As drilling extends deeper, zones of high-grade skarn mineralisation are being intersected at both limestone-intrusive contacts and also within limestone which is analogous to the mineralisation at the main Norte and Sentazon mantos.

Northern Verde Zone

GNDD-711

GNDD-711 was collared near the northern limit of the of the current MRE and is the deepest hole drilled on this section (Figure 1). The hole was collared to test 80 metres down dip of GNDD-402 (37.9 metres at 0.3 g/t AuEq) and discovered a new high-grade shoot at depth.

The hole intersected three stacked zones of mineralisation. The deepest intersection, extending into the intrusive, of 42.0m at 5.9 g/t AuEq (5.3 g/t Au, 5.9 g/t Ag, 1.0% Zn, 0.1% lead) from 319.0m,

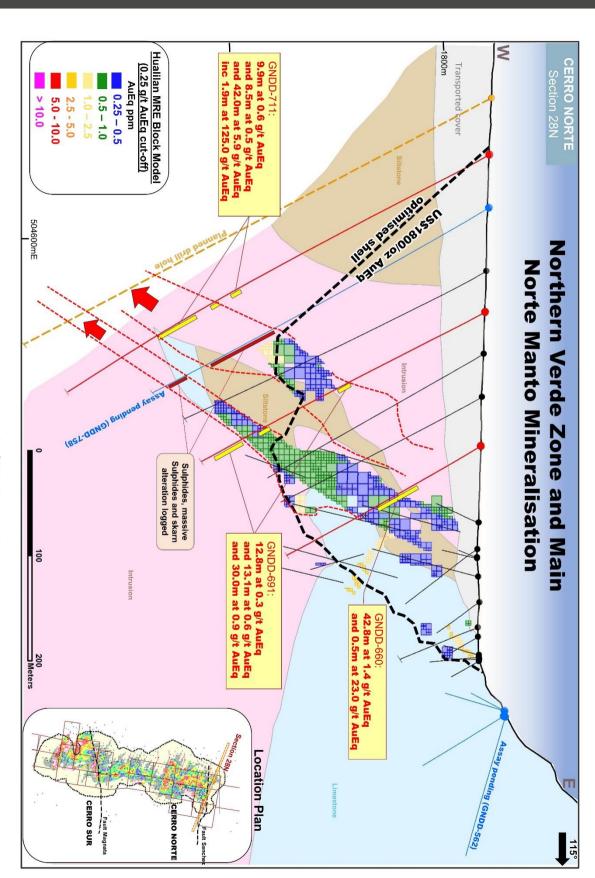


Figure 1 – Extension and infill drilling Northern Verde Zone

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

including 1.9m at 124.9 g/t AuEq (113.0 g/t Au, 117.0 g/t Ag, 21.2% Zn, 1.7% lead) is the first indication of a potential new zone of high-grade mineralisation in the northern Verde Zone and will be followed up with a hole to test an additional 80 metres downdip.

The two shallower zones of mineralisation were more typical of the northern Verde Zone with intersections of 9.9m at 0.6 g/t AuEq (0.4 g/t Au, 0.9 g/t Ag, 0.4% Zn, 0.2% lead) from 270.6m, including 1.5m at 2.0 g/t AuEq (1.5 g/t Au, 2.2 g/t Ag, 0.7% Zn, 0.6% lead) and 8.5m at 0.5 g/t AuEq (0.3 g/t Au, 0.4 g/t Ag, 0.2% Zn, 0.1% lead) from 295.0m including 1.5m at 2.0 g/t AuEq (1.5 g/t Au, 2.2 g/t Ag, 0.7% Zn, 0.6% lead).

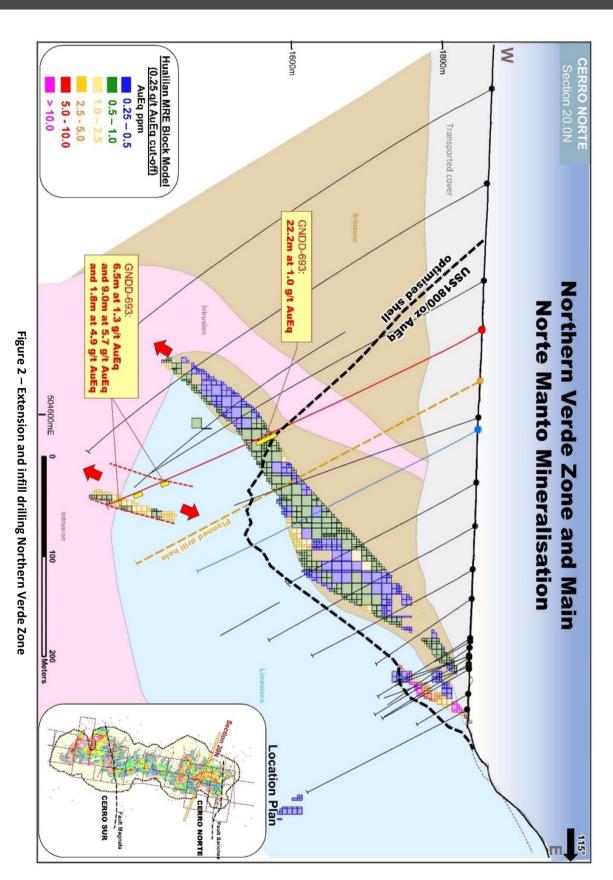
GNDD-660

GNDD-660 was drilled on the same section as GNDD-711 250 metres up-dip. The intersection of 42.8m at 1.4 g/t AuEq (1.2 g/t Au, 3.3 g/t Ag, 0.4% Zn, 0.2% lead) from 71.5m, including 5.3m at 6.3 g/t AuEq (5.4 g/t Au, 6.0 g/t Ag, 1.7% Zn, 0.1% lead) and several other 2-3 metres wide zones grading from 1.1 to 2.1 g/t AuEq (see Table 1) was approximately double the grade predicted by the current MRE block model. Additionally, the hole intersected two deeper zones of mineralisation including an intersection of 0.5m at 23.0 g/t AuEq (12.9 g/t Au, 62.1 g/t Ag, 18.4% Zn, 3.9% lead) from 127.9m.

GNDD-691

GNDD-691 was drilled as an infill hole between GNDD-711 and GNDD-690 and intersected three zones of mineralisation in the Verde Zone with the deepest intersection of **30.0m at 0.9 g/t AuEq (0.8 g/t Au, 1.2 g/t Ag, 0.1% Zn)** from 263.0m located below the current MRE. This intercept will extend the MRE by approximately 30 metres at this location.

GNDD-667


GNDD-667 was collared approximately 120 metres south of the northern limit of the current Verde Zone MRE, and is an infill hole between GNDD-183 (55.5 metres at 1.2 g/t AuEq) and GNDD-123 (30 metres at 0.3 g/t). The intersection 43.0m at 1.8 g/t AuEq (1.4 g/t gold, 3.1 g/t silver, 0.7% zinc, 0.3% lead) from 32.0m, including 27.0m at 2.6 g/t AuEq (2.0 g/t gold, 4.2 g/t silver, 1.0% zinc, 0.3% lead) is approximately double the grade in the current MRE block model and will extend the higher-grade mineralisation up-dip to near surface.

Additionally, the hole intersected **2.9m at 9.7 g/t AuEq (0.7 g/t gold, 639 g/t silver, 2.4% zinc, 1.0% lead)** from 97.5m. This deeper intersection extends a deeper high grade zone intersected in GNDD183 up-dip by approximately 20 metres.

GNDD-693

GNDD-693 was collared as an infill hole approximately 200 metres south of the northern limit of the current Verde Zone MRE. It also identified a previously unknown deeper high-grade zone in the Verde Zone, which is believed to be steeply dipping, open at depth, and analogous to the high-grade deeper mineralisation at Sentazon 1.8 kilometres to the south. As Figure 2 (over the page) shows the

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

intersections of 9.1m at 5.7 g/t AuEq (4.6 g/t gold, 9.2 g/t silver, 2.2% zinc) from 378.0m including 0.6m at 53.5 g/t AuEq (44.0 g/t gold, 67.8 g/t silver, 18.7% zinc, 0.1% lead) and a deeper intersection of 1.8 metres at 4.9 g/t AuEq (4.6 g/t gold, 2.9 g/t silver, 0.5% zinc) from 400.9 metres are a below the current MRE boundary and will require follow up drilling.

Additionally, GNDD-693 is an example of an infill hole exceeding the MRE block model. The intersection of 22.2 metres at 1.0 g/t AuEq (0.9 g/t gold, 2.3 g/t silver, 0.3% zinc) from 231.2m including 1.9 metres at 7.8 g/t AuEq (6.1 g/t gold, 22.9 g/t silver, 3.0% zinc, 0.1% lead) is above the existing MRE block model at this location.

GNDD-654

GNDD-654 was collared as an infill hole in the northern Verde Zone. The intersection of **11.0 metres** at **1.7** g/t AuEq (**1.5** g/t gold, **2.6** g/t silver, **0.3%** zinc) from 378.0m including **6.0 metres** at **2.7** g/t AuEq (**2.4** g/t gold, **4.4** g/t silver, **0.5%** zinc) represents a new zone of mineralisation at depth.

Central Verde Zone

GNDD-643 was drilled in the central Verde Zone to infill an area where there had not been enough drilling to allow the estimation of a resource in this area (Figure 3). The intersection of **70.0 metres at 1.0 g/t AuEq (0.9 g/t gold, 1.8 g/t silver, 0.3% zinc, 0.1% lead)** from 196.0m, including **2.7 metres at 17.0 g/t AuEq (13.4 g/t Au, 37.2 g/t Ag, 6.4% Zn, 1.3% lead)** from 261.7m confirms the continuity of the mineralisation between earlier drill holes and will allow the inclusion in an updated MRE.

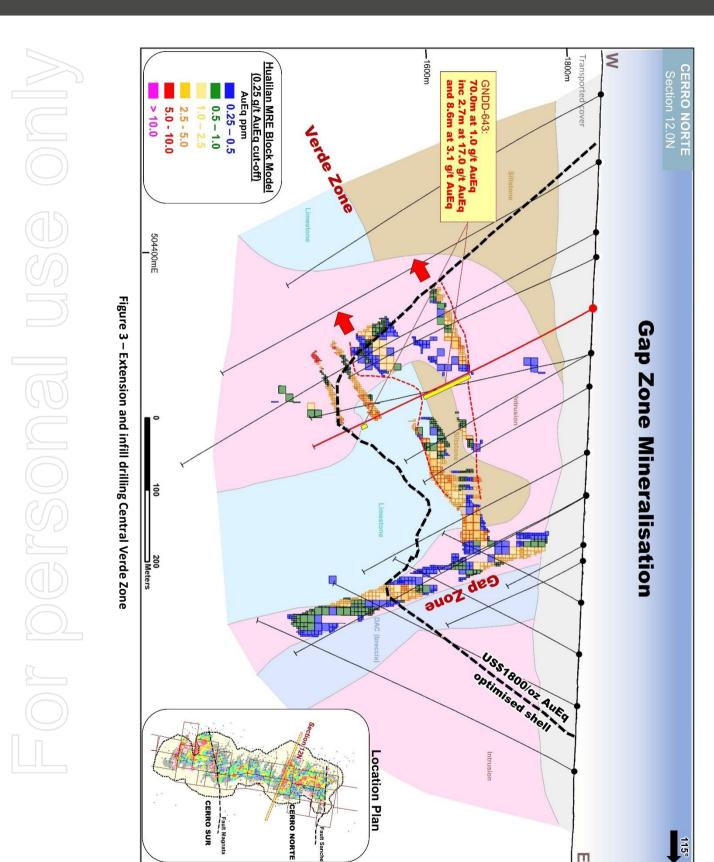

The deeper intersection of **8.6 metres at 3.1 g/t AuEq (2.8 g/t gold, 9.3 g/t silver, 0.3% zinc)** from 354.5m, including **2.7 metres at 9.3 g/t AuEq (8.6 g/t gold, 29.0 g/t silver, 0.8% zinc)** in GNDD-643 correlates with intersections of 1.2 metres at 4.0 g/t AuEq and 2.0 metres at 6.9 g/t AuEq in GNDD-285. The intersection in GNDD-643 extends this deeper high-grade mineralisation 20 metres up-dip.

Image 1: GNDD-790 (Central Verde at depth) skarn alteration and sulphides logged (assays pending)

Challenger Exploration Limited ACN 123 591 382 Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Southern Verde Zone

The majority of drilling in the southern Verde Zone has been extension drilling south of the existing MRE boundary, however some drilling has been ongoing to close gaps within the current MRE footprint. Drillholes GNDD-662, GNDD-668 and GNDD-674, GNDD-676, and GNDD-679 are examples of recent drilling designed to infill gaps in the current MRE footprint.

GNDD-679

Drillhole GNDD-679 intersected **57.0 metres at 0.6 g/t AuEq (0.5 g/t gold, 3.5 g/t silver, 0.1% zinc, 0.1% lead)** from surface including **6.0 metres at 1.6 g/t AuEq (1.3 g/t gold, 12.8 g/t silver, 0.2% zinc, 0.1% lead)** from 20.0m and **2.0 metres at 4.2 g/t AuEq (4.1 g/t gold, 0.8 g/t silver, 0.1% zinc, 0.2% lead)** from 34.0m.

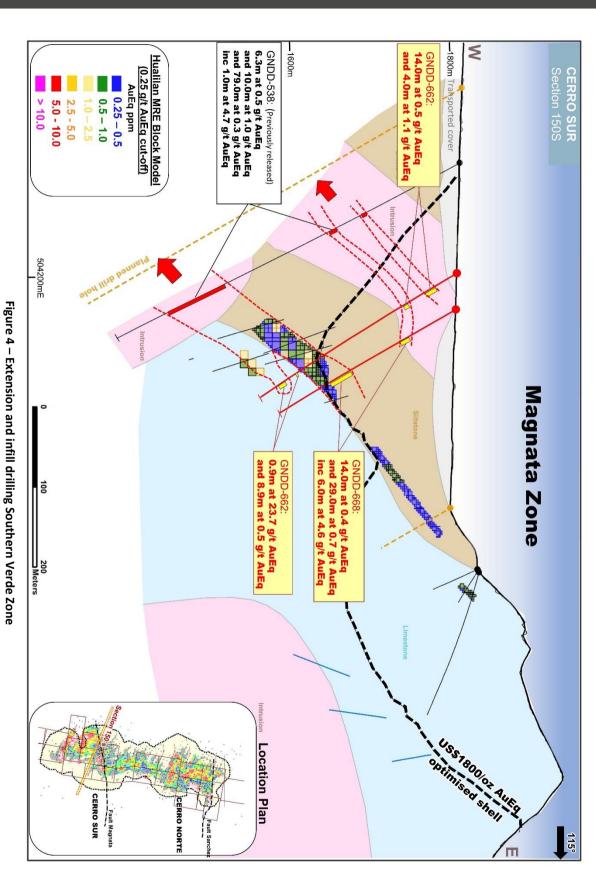

GNDD-662 and GNDD-668

Figure 4 (over the page) is a cross section showing recent Verde Zone drilling west of the Magnata Fault. This southern section of the Verde Zone was relatively lightly drilled prior to the previous MRE. The intercept in GNDD-668 of **29.0 metres at 0.7 g/t AuEq (0.5 g/t gold, 10.2 g/t silver, 0.3% zinc)** from 153.0m is considerably thicker than in the current MRE block model. The shallow intercepts in GNDD-662 and GNDD-668 represent new zones within the current MRE conceptual pit shell.

Image 2: GNDD-763 (Southern Verde Zone at depth) endoskarn alteration in intrusives (assays pending)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

1,045.8m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

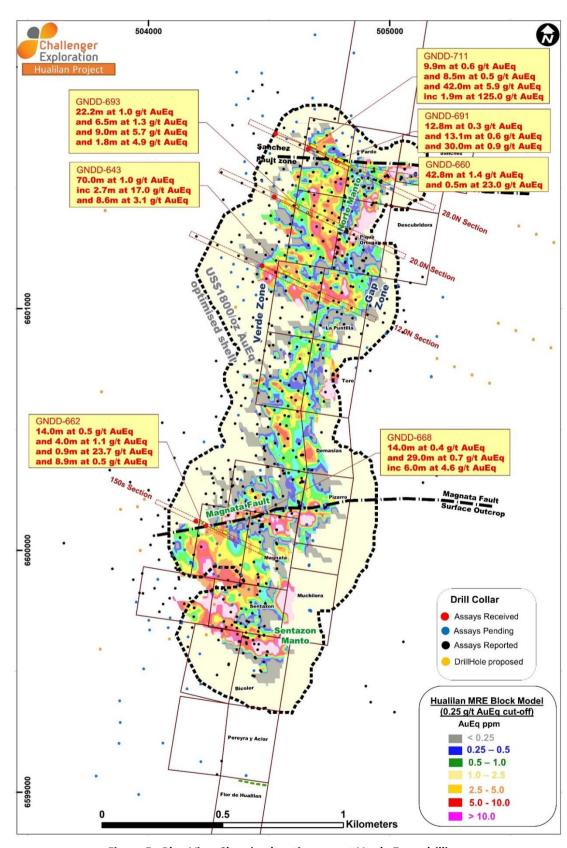


Figure 5 - Plan View Showing location recent Verde Zone drilling

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Ends

This ASX release was approved by the CEL Board

For further information contact:

Kris Knauer Scott Funston Media Enquiries
Managing Director Chief Financial Officer Jane Morgan
+61 411 885 979 +61 413 867 600 +61 405 555 618

kris.knauer@challengerex.com scott.funston@challengerex.com jm@janemorganmanagement.com.au

Previous announcements referred to in this release include:

31 Oct 2022 - Hualilan drilling continues to extend mineralisation well beyond the limits of the current Mineral Resource Estimate

21 Sept 2022 - Ongoing drilling at Challenger's Hualilan Gold Project continues to significantly extend the high-grade mineralisation

24 June 2022 - Drilling at Hualilan Solidifies Outlook to Uplift Maiden MRE

1 June 2022 - 2.1M Ounce AuEq Maiden Resource at Hualilan Gold Project

Table 1 - New Intercepts Reported this Release

(m)					ivew iii	tercep	із керс	ntea tii	is Kelease		
GNDD359ext 428.0 466.0 38.0 0.36 0.23 0.00 0.01 0.4 0.2 g/t AuEq cut 14.1				Interval		_			-	Comments	Gram x
Inc	(#)			(m)	(g/t)	(g/t)	(%)				metres
Band	GNDD359ext	428.0	466.0		0.36				0.4	0.2 g/t AuEq cut	14.1
GNDD627	inc	440.0	442.0	2.0	2.4		0.00				4.8
Inc		480.0	490.0	10.0	0.27						
Annion	GNDD627	404.2	417.5	13.3	0.23	1.6	0.17		0.4	0.2 g/t AuEq cut	5.2
GNDD640	inc	413.0	414.4	1.4	0.86	7.7	0.92	1.2	1.7		2.4
Band 242.5 243.3 0.8 27.0 67.0 1.1 7.9 31.7 10 g/t AuEq cut 25.3	and	461.0	461.6	0.6	1.5	9.0	0.11	0.51	1.8		1.0
GNDD643 354.5 363.0 8.6 2.8 9.3 0.01 0.25 3.1 0.2 g/t AuEq cut 26.2	GNDD640	214.0	221.0	7.0	0.20	8.2	0.03	0.02	0.3		2.2
Inc	and	242.5	243.3	0.8	27.0	67.0	1.1	7.9	31.7	10 g/t AuEq cut	25.3
and 196.0 266.0 70.0 0.87 1.8 0.06 0.26 1.0 0.2 g/t AuEq cut 71.8	GNDD643	354.5	363.0	8.6	2.8	9.3	0.01	0.25	3.1	0.2 g/t AuEq cut	26.2
inc 198.0 200.0 2.0 1.0 0.27 0.01 0.02 1.0 1.0 2.0 inc 212.0 214.0 2.0 1.0 1.9 0.04 0.03 1.1 2.1 inc 244.0 246.0 2.0 1.3 2.2 0.01 0.02 1.4 2.7 inc 261.7 264.4 2.7 13.4 37.2 1.3 6.4 17.0 45.1 GNDD645 38.0 46.0 8.0 0.33 1.9 0.08 0.14 0.4 0.2 g/t AuEq cut 4.5 inc 167.0 169.0 2.0 1.0 1.0 0.01 0.4 0.2 g/t AuEq cut 4.5 inc 167.0 169.0 2.0 2.3 10.7 0.23 0.68 2.8 2.8 5.5 inc 190.0 192.0 2.0 2.3 10.7 0.23 0.68 2.8 2.8 5.5 inc 206.0	inc	354.5	357.2	2.7	8.6	29.0	0.02	0.78	9.3		25.2
inc 212.0 214.0 2.0 1.0 1.9 0.04 0.03 1.1 2.1 inc 244.0 246.0 2.0 1.3 2.2 0.01 0.02 1.4 2.7 inc 261.7 264.4 2.7 13.4 37.2 1.3 6.4 17.0 45.1 GNDD645 18.0 46.0 8.0 0.33 1.9 0.08 0.14 0.4 0.2 g/t AuEq cut 4.5 inc 167.0 169.0 2.0 1.0 1.0 0.01 0.4 0.2 g/t AuEq cut 4.5 inc 167.0 169.0 2.0 1.0 1.0 0.01 0.02 1.0 2.0 2.0 2.0 1.0 0.02 1.0 0.2 g/t AuEq cut 4.5 inc 1.0 0.0 0.0 0.0 2.7 0.0 0.0 1.0 0.2 g/t AuEq cut 1.4 5.5 inc 1.0 1.0 1.0 1.0 1.0 1.0 1.0	and	196.0	266.0	70.0	0.87	1.8	0.06	0.26	1.0	0.2 g/t AuEq cut	71.8
inc 244.0 246.0 2.0 1.3 2.2 0.01 0.02 1.4 2.7 inc 261.7 264.4 2.7 13.4 37.2 1.3 6.4 17.0 45.1 GNDD645 38.0 46.0 8.0 0.33 1.9 0.08 0.14 0.4 0.2 g/t AuEq cut 3.5 GNDD646 167.0 167.0 100.0 0.43 0.83 0.01 0.01 0.04 0.2 g/t AuEq cut 4.5 inc 167.0 169.0 2.0 1.0 1.0 0.01 0.02 1.0 2.0 2.1 2.0 and 190.0 192.0 2.0 2.3 10.7 0.23 0.68 2.8 5.5 5.5 inc 190.0 192.0 2.0 2.7 7.7 7.1 0.26 1.1 8.4 5.5 inc 206.0 206.7 0.7 7.7 7.7 1.1 0.0 1.1 3.3 <t< td=""><td>inc</td><td>198.0</td><td>200.0</td><td>2.0</td><td>1.0</td><td>0.27</td><td>0.01</td><td>0.02</td><td>1.0</td><td></td><td>2.0</td></t<>	inc	198.0	200.0	2.0	1.0	0.27	0.01	0.02	1.0		2.0
inc 261.7 264.4 2.7 13.4 37.2 1.3 6.4 17.0 45.1 GNDD645 38.0 46.0 8.0 0.33 1.9 0.08 0.14 0.4 0.2 g/t AuEq cut 3.5 GNDD646 167.0 177.0 10.0 0.43 0.83 0.01 0.01 0.4 0.2 g/t AuEq cut 4.5 inc 167.0 169.0 2.0 1.0 1.0 0.01 0.02 1.0 2.0 2.0 2.0 1.0 1.0 0.01 0.2 2.0 2.0 2.0 2.0 1.0 1.0 0.02 1.0 1.0 0.00 1.0 0.02 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.1 1.3 0.06 0.17 7.7 7.1 0.26 1.1 8.4 5.9 6NDD650 1.0 1.0 1.1 1.3 0.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1	inc	212.0	214.0	2.0	1.0	1.9	0.04	0.03	1.1		2.1
GNDD645 38.0 46.0 8.0 0.33 1.9 0.08 0.14 0.4 0.2 g/t AuEq cut 3.5 GNDD646 167.0 177.0 10.0 0.43 0.83 0.01 0.01 0.4 0.2 g/t AuEq cut 4.5 inc 167.0 169.0 2.0 1.0 1.0 0.01 0.02 1.0 0.2 g/t AuEq cut 4.5 inc 190.0 296.7 16.7 0.76 2.7 0.06 0.17 0.9 0.2 g/t AuEq cut 1.48 inc 190.0 192.0 2.0 2.3 10.7 0.23 0.68 2.8 5.5 inc 206.0 206.7 0.7 7.7 7.1 0.26 1.1 8.4 5.9 GNDD690 83.3 84.5 1.2 0.17 16.1 0.87 1.7 1.3 4.0 1.6 4.0 2.2 2 g/t AuEq cut 7.3 1.6 and 114.0 16.0 2.0 1.	inc	244.0	246.0	2.0	1.3	2.2	0.01	0.02	1.4		2.7
GNDD646 167.0 177.0 10.0 0.43 0.83 0.01 0.01 0.4 0.2 g/t AuEq cut 4.5	inc	261.7	264.4	2.7	13.4	37.2	1.3	6.4	17.0		45.1
inc 167.0 169.0 2.0 1.0 1.0 0.01 0.02 1.0 2.0 and 190.0 206.7 16.7 0.76 2.7 0.06 0.17 0.9 0.2 g/t AuEq cut 14.8 inc 190.0 192.0 2.0 2.3 10.7 0.23 0.68 2.8 5.5 inc 206.0 206.7 0.7 7.7 7.1 0.26 1.1 8.4 5.9 GNDD649 83.3 84.5 1.2 0.17 16.1 0.87 1.7 1.3 1.6 1.6 and 10.0 131.7 23.7 0.27 1.3 0.01 0.04 0.3 0.2 g/t AuEq cut 7.3 inc 114.0 116.0 2.0 1.1 1.3 0.00 0.04 0.3 0.2 g/t AuEq cut 3.7 GND6551 186.0 194.0 8.0 0.24 0.56 0.00 0.02 0.3 0.2 g/t AuEq cut 2.1	GNDD645	38.0	46.0	8.0	0.33	1.9	0.08	0.14	0.4	0.2 g/t AuEq cut	3.5
and 190.0 206.7 16.7 0.76 2.7 0.06 0.17 0.9 0.2 g/t AuEq cut 14.8 inc 190.0 192.0 2.0 2.3 10.7 0.23 0.68 2.8 5.5 inc 206.0 206.7 0.7 7.7 7.1 0.26 1.1 8.4 5.9 GNDD649 83.3 84.5 1.2 0.17 16.1 0.87 1.7 1.3 1.6 1.6 and 108.0 131.7 23.7 0.27 1.3 0.01 0.04 0.3 0.2 g/t AuEq cut 7.3 inc 114.0 116.0 2.0 1.1 1.3 0.03 0.3 1.1 2.3 GNDD650 14.0 32.0 18.0 0.12 1.8 0.00 0.14 0.2 0.2 g/t AuEq cut 3.7 GNDD651 186.0 194.0 8.0 0.24 0.56 0.00 0.02 0.3 0.2 g/t AuEq cut 2.1	GNDD646	167.0	177.0	10.0	0.43	0.83	0.01	0.01	0.4	0.2 g/t AuEq cut	4.5
inc 190.0 192.0 2.0 2.3 10.7 0.23 0.68 2.8 5.5 inc 206.0 206.7 0.7 7.7 7.1 0.26 1.1 8.4 5.9 GNDD649 83.3 84.5 1.2 0.17 16.1 0.87 1.7 1.3 1.6 and 108.0 131.7 23.7 0.27 1.3 0.01 0.04 0.3 0.2 g/t AuEq cut 7.3 inc 114.0 116.0 2.0 1.1 1.3 0.03 0.03 1.1 2.3 GNDD650 14.0 32.0 18.0 0.12 1.8 0.00 0.14 0.2 0.2 g/t AuEq cut 3.7 GNDD651 186.0 194.0 8.0 0.24 0.56 0.00 0.02 0.3 0.2 g/t AuEq cut 2.1 and 202.0 218.0 16.1 0.94 1.5 0.01 0.01 1.1 1.0 0.2 g/t AuEq cut 16.2	inc	167.0	169.0	2.0	1.0	1.0	0.01	0.02	1.0		2.0
inc 206.0 206.7 0.7 7.7 7.1 0.26 1.1 8.4 5.9 GNDD649 83.3 84.5 1.2 0.17 16.1 0.87 1.7 1.3 1.6 and 108.0 131.7 23.7 0.27 1.3 0.01 0.04 0.3 0.2 g/t AuEq cut 7.3 inc 114.0 116.0 2.0 1.1 1.3 0.03 0.03 1.2 g/t AuEq cut 3.7 GNDD650 14.0 32.0 18.0 0.12 1.8 0.00 0.14 0.2 0.2 g/t AuEq cut 3.7 GNDD651 186.0 194.0 8.0 0.24 0.56 0.00 0.02 0.3 0.2 g/t AuEq cut 2.1 and 202.0 218.0 16.1 0.94 1.5 0.01 0.11 1.0 0.2 g/t AuEq cut 16.2 inc 202.0 202.5 0.6 14.0 13.0 0.01 0.03 14.2 7.8 <	and	190.0	206.7	16.7	0.76	2.7	0.06	0.17	0.9	0.2 g/t AuEq cut	14.8
GNDD649 83.3 84.5 1.2 0.17 16.1 0.87 1.7 1.3 0.2 g/t AuEq cut 7.3 and 108.0 131.7 23.7 0.27 1.3 0.01 0.04 0.3 0.2 g/t AuEq cut 7.3 inc 114.0 116.0 2.0 1.1 1.3 0.03 0.03 1.1 2.3 GNDD650 14.0 32.0 18.0 0.12 1.8 0.00 0.14 0.2 0.2 g/t AuEq cut 3.7 GNDD651 186.0 194.0 8.0 0.24 0.56 0.00 0.02 0.3 0.2 g/t AuEq cut 2.1 and 202.0 218.0 16.1 0.94 1.5 0.01 0.11 1.0 0.2 g/t AuEq cut 16.2 inc 202.0 202.5 0.6 14.0 13.0 0.01 0.03 14.2 7.8 inc 212.0 214.0 2.0 1.0 1.3 0.2 g/t AuEq cut 16.2	inc	190.0	192.0	2.0	2.3	10.7	0.23	0.68	2.8		5.5
and 108.0 131.7 23.7 0.27 1.3 0.01 0.04 0.3 0.2 g/t AuEq cut 7.3 inc 114.0 116.0 2.0 1.1 1.3 0.03 0.03 1.1 2.3 GNDD650 14.0 32.0 18.0 0.12 1.8 0.00 0.14 0.2 0.2 g/t AuEq cut 3.7 GNDD651 186.0 194.0 8.0 0.24 0.56 0.00 0.02 0.3 0.2 g/t AuEq cut 2.1 and 202.0 218.0 16.1 0.94 1.5 0.01 0.11 1.0 0.2 g/t AuEq cut 16.2 inc 202.0 202.5 0.6 14.0 13.0 0.01 0.03 14.2 7.8 inc 212.0 214.0 2.0 1.0 1.3 0.02 0.24 1.1 1.0 2.2 2.7 8.3 and 343.0 344.0 1.0 1.0 1.0 0.0 1.0	inc	206.0	206.7	0.7	7.7	7.1	0.26	1.1	8.4		5.9
inc 114.0 116.0 2.0 1.1 1.3 0.03 0.03 1.1 2.3 GNDD650 14.0 32.0 18.0 0.12 1.8 0.00 0.14 0.2 0.2 g/t AuEq cut 3.7 GNDD651 186.0 194.0 8.0 0.24 0.56 0.00 0.02 0.3 0.2 g/t AuEq cut 2.1 and 202.0 218.0 16.1 0.94 1.5 0.01 0.11 1.0 0.2 g/t AuEq cut 16.2 inc 202.0 202.5 0.6 14.0 13.0 0.01 0.03 14.2 7.8 inc 212.0 214.0 2.0 1.0 1.3 0.02 0.24 1.1 2.2 2 GNDD653 258.0 282.0 24.0 0.34 0.45 0.00 0.01 0.3 0.2 g/t AuEq cut 8.3 and 343.0 344.0 1.0 1.0 0.01 0.0 0.01 1.0 0.2 g	GNDD649	83.3	84.5	1.2	0.17	16.1	0.87	1.7	1.3		1.6
GNDD650 14.0 32.0 18.0 0.12 1.8 0.00 0.14 0.2 0.2 g/t AuEq cut 3.7 GNDD651 186.0 194.0 8.0 0.24 0.56 0.00 0.02 0.3 0.2 g/t AuEq cut 2.1 and 202.0 218.0 16.1 0.94 1.5 0.01 0.11 1.0 0.2 g/t AuEq cut 16.2 inc 202.0 202.5 0.6 14.0 13.0 0.01 0.03 14.2 7.8 inc 212.0 214.0 2.0 1.0 1.3 0.02 0.24 1.1 2.2 GNDD653 258.0 282.0 24.0 0.34 0.45 0.00 0.01 0.3 0.2 g/t AuEq cut 8.3 and 343.0 344.0 1.0 1.0 0.41 0.00 0.01 1.0 1.0 1.0 GNDD654 173.8 213.8 40.1 0.20 0.72 0.02 0.05 0.2	and	108.0	131.7	23.7	0.27	1.3	0.01	0.04	0.3	0.2 g/t AuEq cut	7.3
GNDD651 186.0 194.0 8.0 0.24 0.56 0.00 0.02 0.3 0.2 g/t AuEq cut 2.1 and 202.0 218.0 16.1 0.94 1.5 0.01 0.11 1.0 0.2 g/t AuEq cut 16.2 inc 202.0 202.5 0.6 14.0 13.0 0.01 0.03 14.2 7.8 inc 212.0 214.0 2.0 1.0 1.3 0.02 0.24 1.1 2.2 GNDD653 258.0 282.0 24.0 0.34 0.45 0.00 0.01 0.3 0.2 g/t AuEq cut 8.3 and 343.0 344.0 1.0 1.0 0.41 0.00 0.01 1.0 1.0 1.0 GNDD654 173.8 213.8 40.1 0.20 0.72 0.02 0.05 0.2 0.2 g/t AuEq cut 9.5 and 349.8 361.0 11.2 0.77 0.83 0.00 0.01 0.8	inc	114.0	116.0	2.0	1.1	1.3	0.03	0.03	1.1		2.3
and 202.0 218.0 16.1 0.94 1.5 0.01 0.11 1.0 0.2 g/t AuEq cut 16.2 inc 202.0 202.5 0.6 14.0 13.0 0.01 0.03 14.2 7.8 inc 212.0 214.0 2.0 1.0 1.3 0.02 0.24 1.1 2.2 GNDD653 258.0 282.0 24.0 0.34 0.45 0.00 0.01 0.3 0.2 g/t AuEq cut 8.3 and 343.0 344.0 1.0 1.0 0.41 0.00 0.01 1.0 1.0 1.0 GNDD654 173.8 213.8 40.1 0.20 0.72 0.02 0.05 0.2 0.2 g/t AuEq cut 9.5 and 349.8 361.0 11.2 0.77 0.83 0.00 0.01 0.8 0.2 g/t AuEq cut 8.8 inc 359.5 361.0 1.5 2.3 2.7 0.01 0.06 2.4 3.	GNDD650	14.0	32.0	18.0	0.12	1.8	0.00	0.14	0.2	0.2 g/t AuEq cut	3.7
inc 202.0 202.5 0.6 14.0 13.0 0.01 0.03 14.2 7.8 inc 212.0 214.0 2.0 1.0 1.3 0.02 0.24 1.1 2.2 GNDD653 258.0 282.0 24.0 0.34 0.45 0.00 0.01 0.3 0.2 g/t AuEq cut 8.3 and 343.0 344.0 1.0 1.0 0.41 0.00 0.01 1.0 1.0 1.0 GNDD654 173.8 213.8 40.1 0.20 0.72 0.02 0.05 0.2 0.2 g/t AuEq cut 9.5 and 349.8 361.0 11.2 0.77 0.83 0.00 0.01 0.8 0.2 g/t AuEq cut 8.8 inc 349.8 350.6 0.8 3.8 5.5 0.00 0.00 3.9 3.1 inc 378.0 389.0 11.0 1.5 2.3 2.7 0.01 0.06 2.4 3.6 <td>GNDD651</td> <td>186.0</td> <td>194.0</td> <td>8.0</td> <td>0.24</td> <td>0.56</td> <td>0.00</td> <td>0.02</td> <td>0.3</td> <td>0.2 g/t AuEq cut</td> <td>2.1</td>	GNDD651	186.0	194.0	8.0	0.24	0.56	0.00	0.02	0.3	0.2 g/t AuEq cut	2.1
inc 202.0 202.5 0.6 14.0 13.0 0.01 0.03 14.2 7.8 inc 212.0 214.0 2.0 1.0 1.3 0.02 0.24 1.1 2.2 GNDD653 258.0 282.0 24.0 0.34 0.45 0.00 0.01 0.3 0.2 g/t AuEq cut 8.3 and 343.0 344.0 1.0 1.0 0.41 0.00 0.01 1.0 1.0 1.0 GNDD654 173.8 213.8 40.1 0.20 0.72 0.02 0.05 0.2 0.2 g/t AuEq cut 9.5 and 349.8 361.0 11.2 0.77 0.83 0.00 0.01 0.8 0.2 g/t AuEq cut 8.8 inc 349.8 350.6 0.8 3.8 5.5 0.00 0.00 3.9 3.1 inc 378.0 389.0 11.0 1.5 2.3 2.7 0.01 0.06 2.4 3.6 <td>and</td> <td>202.0</td> <td>218.0</td> <td>16.1</td> <td>0.94</td> <td>1.5</td> <td>0.01</td> <td>0.11</td> <td>1.0</td> <td>0.2 g/t AuEq cut</td> <td>16.2</td>	and	202.0	218.0	16.1	0.94	1.5	0.01	0.11	1.0	0.2 g/t AuEq cut	16.2
GNDD653 258.0 282.0 24.0 0.34 0.45 0.00 0.01 0.3 0.2 g/t AuEq cut 8.3 and 343.0 344.0 1.0 1.0 0.41 0.00 0.01 1.0 1.0 GNDD654 173.8 213.8 40.1 0.20 0.72 0.02 0.05 0.2 0.2 g/t AuEq cut 9.5 and 349.8 361.0 11.2 0.77 0.83 0.00 0.01 0.8 0.2 g/t AuEq cut 8.8 inc 349.8 350.6 0.8 3.8 5.5 0.00 0.00 3.9 3.1 inc 359.5 361.0 1.5 2.3 2.7 0.01 0.06 2.4 3.6 and 378.0 389.0 11.0 1.5 2.6 0.02 0.26 1.7 0.2 g/t AuEq cut 18.6 inc 383.0 389.0 6.0 2.4 4.4 0.04 0.47 2.7 16.0 <tr< td=""><td>inc</td><td>202.0</td><td>202.5</td><td>0.6</td><td>14.0</td><td>13.0</td><td>0.01</td><td>0.03</td><td>14.2</td><td></td><td></td></tr<>	inc	202.0	202.5	0.6	14.0	13.0	0.01	0.03	14.2		
and 343.0 344.0 1.0 1.0 0.41 0.00 0.01 1.0 1.0 GNDD654 173.8 213.8 40.1 0.20 0.72 0.02 0.05 0.2 0.2 g/t AuEq cut 9.5 and 349.8 361.0 11.2 0.77 0.83 0.00 0.01 0.8 0.2 g/t AuEq cut 8.8 inc 349.8 350.6 0.8 3.8 5.5 0.00 0.00 3.9 3.1 inc 359.5 361.0 1.5 2.3 2.7 0.01 0.06 2.4 3.6 and 378.0 389.0 11.0 1.5 2.6 0.02 0.26 1.7 0.2 g/t AuEq cut 18.6 inc 383.0 389.0 6.0 2.4 4.4 0.04 0.47 2.7 16.0 and 409.0 413.0 4.0 0.34 0.13 0.00 0.0 0.3 0.2 g/t AuEq cut 1.4	inc	212.0	214.0	2.0	1.0	1.3	0.02	0.24	1.1		2.2
GNDD654 173.8 213.8 40.1 0.20 0.72 0.02 0.05 0.2 0.2 g/t AuEq cut 9.5 and 349.8 361.0 11.2 0.77 0.83 0.00 0.01 0.8 0.2 g/t AuEq cut 8.8 inc 349.8 350.6 0.8 3.8 5.5 0.00 0.00 3.9 3.1 inc 359.5 361.0 1.5 2.3 2.7 0.01 0.06 2.4 3.6 and 378.0 389.0 11.0 1.5 2.6 0.02 0.26 1.7 0.2 g/t AuEq cut 18.6 inc 383.0 389.0 6.0 2.4 4.4 0.04 0.47 2.7 16.0 and 409.0 413.0 4.0 0.34 0.13 0.00 0.0 0.3 0.2 g/t AuEq cut 1.4 GNDD657 54.6 84.6 30.1 0.39 1.1 0.17 0.29 0.6 0.2 g/t AuEq cut	GNDD653	258.0	282.0	24.0	0.34	0.45	0.00	0.01	0.3	0.2 g/t AuEq cut	8.3
GNDD654 173.8 213.8 40.1 0.20 0.72 0.02 0.05 0.2 0.2 g/t AuEq cut 9.5 and 349.8 361.0 11.2 0.77 0.83 0.00 0.01 0.8 0.2 g/t AuEq cut 8.8 inc 349.8 350.6 0.8 3.8 5.5 0.00 0.00 3.9 3.1 inc 359.5 361.0 1.5 2.3 2.7 0.01 0.06 2.4 3.6 and 378.0 389.0 11.0 1.5 2.6 0.02 0.26 1.7 0.2 g/t AuEq cut 18.6 inc 383.0 389.0 6.0 2.4 4.4 0.04 0.47 2.7 16.0 and 409.0 413.0 4.0 0.34 0.13 0.00 0.0 0.3 0.2 g/t AuEq cut 1.4 GNDD657 54.6 84.6 30.1 0.39 1.1 0.17 0.29 0.6 0.2 g/t AuEq cut	and	343.0	344.0	1.0	1.0	0.41	0.00	0.01	1.0		
inc 349.8 350.6 0.8 3.8 5.5 0.00 0.00 3.9 3.1 inc 359.5 361.0 1.5 2.3 2.7 0.01 0.06 2.4 3.6 and 378.0 389.0 11.0 1.5 2.6 0.02 0.26 1.7 0.2 g/t AuEq cut 18.6 inc 383.0 389.0 6.0 2.4 4.4 0.04 0.47 2.7 16.0 and 409.0 413.0 4.0 0.34 0.13 0.00 0.0 0.3 0.2 g/t AuEq cut 1.4 GNDD657 54.6 84.6 30.1 0.39 1.1 0.17 0.29 0.6 0.2 g/t AuEq cut 17.3 inc 64.0 69.0 5.0 1.4 2.9 0.46 0.59 1.8 8.8 inc 83.0 84.6 1.6 0.58 1.7 0.37 0.79 1.0 1.7 and 100.0	GNDD654				0.20	0.72	0.02	0.05	0.2	0.2 g/t AuEq cut	
inc 349.8 350.6 0.8 3.8 5.5 0.00 0.00 3.9 3.1 inc 359.5 361.0 1.5 2.3 2.7 0.01 0.06 2.4 3.6 and 378.0 389.0 11.0 1.5 2.6 0.02 0.26 1.7 0.2 g/t AuEq cut 18.6 inc 383.0 389.0 6.0 2.4 4.4 0.04 0.47 2.7 16.0 and 409.0 413.0 4.0 0.34 0.13 0.00 0.0 0.3 0.2 g/t AuEq cut 1.4 GNDD657 54.6 84.6 30.1 0.39 1.1 0.17 0.29 0.6 0.2 g/t AuEq cut 17.3 inc 64.0 69.0 5.0 1.4 2.9 0.46 0.59 1.8 8.8 inc 83.0 84.6 1.6 0.58 1.7 0.37 0.79 1.0 1.7 and 100.0	and	349.8	361.0	11.2	0.77	0.83	0.00	0.01	0.8	0.2 g/t AuEq cut	8.8
inc 359.5 361.0 1.5 2.3 2.7 0.01 0.06 2.4 3.6 and 378.0 389.0 11.0 1.5 2.6 0.02 0.26 1.7 0.2 g/t AuEq cut 18.6 inc 383.0 389.0 6.0 2.4 4.4 0.04 0.47 2.7 16.0 and 409.0 413.0 4.0 0.34 0.13 0.00 0.0 0.3 0.2 g/t AuEq cut 1.4 GNDD657 54.6 84.6 30.1 0.39 1.1 0.17 0.29 0.6 0.2 g/t AuEq cut 17.3 inc 64.0 69.0 5.0 1.4 2.9 0.46 0.59 1.8 8.8 inc 83.0 84.6 1.6 0.58 1.7 0.37 0.79 1.0 1.7 and 100.0 114.0 14.0 0.87 1.1 0.10 0.14 1.0 0.2 g/t AuEq cut 13.5 <t< td=""><td>inc</td><td></td><td></td><td></td><td>3.8</td><td></td><td>0.00</td><td>0.00</td><td></td><td></td><td></td></t<>	inc				3.8		0.00	0.00			
and 378.0 389.0 11.0 1.5 2.6 0.02 0.26 1.7 0.2 g/t AuEq cut 18.6 inc 383.0 389.0 6.0 2.4 4.4 0.04 0.47 2.7 16.0 and 409.0 413.0 4.0 0.34 0.13 0.00 0.0 0.3 0.2 g/t AuEq cut 1.4 GNDD657 54.6 84.6 30.1 0.39 1.1 0.17 0.29 0.6 0.2 g/t AuEq cut 17.3 inc 64.0 69.0 5.0 1.4 2.9 0.46 0.59 1.8 8.8 inc 83.0 84.6 1.6 0.58 1.7 0.37 0.79 1.0 1.7 and 100.0 114.0 14.0 0.87 1.1 0.10 0.14 1.0 0.2 g/t AuEq cut 13.5 inc 104.0 114.0 10.0 1.1 1.2 0.10 0.13 1.2 12.3	inc					2.7	0.01	0.06			
inc 383.0 389.0 6.0 2.4 4.4 0.04 0.47 2.7 16.0 and 409.0 413.0 4.0 0.34 0.13 0.00 0.0 0.3 0.2 g/t AuEq cut 1.4 GNDD657 54.6 84.6 30.1 0.39 1.1 0.17 0.29 0.6 0.2 g/t AuEq cut 17.3 inc 64.0 69.0 5.0 1.4 2.9 0.46 0.59 1.8 8.8 inc 83.0 84.6 1.6 0.58 1.7 0.37 0.79 1.0 1.7 and 100.0 114.0 14.0 0.87 1.1 0.10 0.14 1.0 0.2 g/t AuEq cut 13.5 inc 104.0 114.0 10.0 1.1 1.2 0.10 0.13 1.2 12.3 GNDD659 230.0 235.2 5.2 0.40 12.9 0.16 0.18 0.7 0.2 g/t AuEq cut 3.5	and		1		1.5	2.6				0.2 g/t AuEq cut	
and 409.0 413.0 4.0 0.34 0.13 0.00 0.0 0.3 0.2 g/t AuEq cut 1.4 GNDD657 54.6 84.6 30.1 0.39 1.1 0.17 0.29 0.6 0.2 g/t AuEq cut 17.3 inc 64.0 69.0 5.0 1.4 2.9 0.46 0.59 1.8 8.8 inc 83.0 84.6 1.6 0.58 1.7 0.37 0.79 1.0 1.7 and 100.0 114.0 14.0 0.87 1.1 0.10 0.14 1.0 0.2 g/t AuEq cut 13.5 inc 104.0 114.0 10.0 1.1 1.2 0.10 0.13 1.2 12.3 GNDD659 230.0 235.2 5.2 0.40 12.9 0.16 0.18 0.7 0.2 g/t AuEq cut 3.5 inc 234.0 235.2 1.2 1.7 27.8 0.65 0.46 2.4 2.8										<u> </u>	
GNDD657 54.6 84.6 30.1 0.39 1.1 0.17 0.29 0.6 0.2 g/t AuEq cut 17.3 inc 64.0 69.0 5.0 1.4 2.9 0.46 0.59 1.8 8.8 inc 83.0 84.6 1.6 0.58 1.7 0.37 0.79 1.0 1.7 and 100.0 114.0 14.0 0.87 1.1 0.10 0.14 1.0 0.2 g/t AuEq cut 13.5 inc 104.0 114.0 10.0 1.1 1.2 0.10 0.13 1.2 12.3 GNDD659 230.0 235.2 5.2 0.40 12.9 0.16 0.18 0.7 0.2 g/t AuEq cut 3.5 inc 234.0 235.2 1.2 1.7 27.8 0.65 0.46 2.4 2.8							0.00	0.0		0.2 g/t AuEq cut	
inc 64.0 69.0 5.0 1.4 2.9 0.46 0.59 1.8 8.8 inc 83.0 84.6 1.6 0.58 1.7 0.37 0.79 1.0 1.7 and 100.0 114.0 14.0 0.87 1.1 0.10 0.14 1.0 0.2 g/t AuEq cut 13.5 inc 104.0 114.0 10.0 1.1 1.2 0.10 0.13 1.2 12.3 GNDD659 230.0 235.2 5.2 0.40 12.9 0.16 0.18 0.7 0.2 g/t AuEq cut 3.5 inc 234.0 235.2 1.2 1.7 27.8 0.65 0.46 2.4 2.8	GNDD657				0.39	1.1	0.17	0.29			
inc 83.0 84.6 1.6 0.58 1.7 0.37 0.79 1.0 1.7 and 100.0 114.0 14.0 0.87 1.1 0.10 0.14 1.0 0.2 g/t AuEq cut 13.5 inc 104.0 114.0 10.0 1.1 1.2 0.10 0.13 1.2 12.3 GNDD659 230.0 235.2 5.2 0.40 12.9 0.16 0.18 0.7 0.2 g/t AuEq cut 3.5 inc 234.0 235.2 1.2 1.7 27.8 0.65 0.46 2.4 2.8											
and 100.0 114.0 14.0 0.87 1.1 0.10 0.14 1.0 0.2 g/t AuEq cut 13.5 inc 104.0 114.0 10.0 1.1 1.2 0.10 0.13 1.2 12.3 GNDD659 230.0 235.2 5.2 0.40 12.9 0.16 0.18 0.7 0.2 g/t AuEq cut 3.5 inc 234.0 235.2 1.2 1.7 27.8 0.65 0.46 2.4 2.8											
inc 104.0 114.0 10.0 1.1 1.2 0.10 0.13 1.2 12.3 GNDD659 230.0 235.2 5.2 0.40 12.9 0.16 0.18 0.7 0.2 g/t AuEq cut 3.5 inc 234.0 235.2 1.2 1.7 27.8 0.65 0.46 2.4 2.8										0.2 g/t AuEa cut	
GNDD659 230.0 235.2 5.2 0.40 12.9 0.16 0.18 0.7 0.2 g/t AuEq cut 3.5 inc 234.0 235.2 1.2 1.7 27.8 0.65 0.46 2.4 2.8										5, 1,1,1	
inc 234.0 235.2 1.2 1.7 27.8 0.65 0.46 2.4 2.8										0.2 g/t AuEa cut	1
				t e						G, - 13:25 - 2 # 1	1
	and	343.3	349.0	5.7	0.33	9.6	0.12	1.3	1.1	0.2 g/t AuEq cut	6.0

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

inc	343.3	347.0	3.7	0.48	11.4	0.16	1.8	1.5		5.5
GNDD660	71.5	114.3	42.8	1.2	3.3	0.18	0.41	1.4	0.2 g/t AuEq cut	61.9
inc	74.3	76.0	1.8	2.0	1.9	0.18	0.16	2.1		3.6
inc	80.5	83.0	2.6	1.3	7.0	0.32	0.24	1.6		4.1
inc	86.0	88.0	2.0	0.89	6.5	0.31	0.17	1.1		2.2
inc	95.0	97.0	2.0	1.0	5.0	0.32	0.75	1.5		2.9
inc	109.0	114.3	5.3	5.4	6.0	0.10	1.7	6.3		33.3
and	127.9	128.4	0.5	12.9	62.1	3.9	18.4	23.0	10 g/t AuEq cut	11.5
and	174.5	208.0	33.6	0.19	0.18	0.00	0.01	0.2	0.2 g/t AuEq cut	6.7
GNDD662	34.0	48.0	14.0	0.47	1.3	0.01	0.03	0.5	0.2 g/t AuEq cut	7.0
inc	42.0	44.0	2.0	1.1	1.7	0.01	0.02	1.1		2.3
and	74.0	78.0	4.0	1.1	3.5	0.03	0.07	1.1		4.5
and	208.0	224.0	16.0	0.18	3.4	0.07	0.19	0.3	0.2 g/t AuEq cut	5.2
inc	218.0	220.0	2.0	0.47	11.9	0.30	0.85	1.1		2.1
and	236.8	237.7	0.8	23.5	13.4	0.00	0.06	23.7	10 g/t AuEq cut	20.1
and	254.5	263.4	8.9	0.24	3.8	0.20	0.41	0.5	0.2 g/t AuEq cut	4.6
inc	260.7	261.3	0.6	0.87	26.0	1.8	2.9	2.9		1.7
GNDD665	211.0	226.0	15.0	0.25	2.76	0.03	0.03	0.3	0.2 g/t AuEq cut	4.6
GNDD666	287.0	290.0	3.0	0.74	15.9	0.06	0.21	1.0	0.2 g/t AuEq cut	3.1
inc	288.9	289.4	0.5	3.1	71.4	0.26	0.77	4.4		2.2
and	374.0	376.0	2.0	0.10	3.1	0.27	1.2	0.8	0.2 g/t AuEq cut	1.5
GNDD667	32.0	75.0	43.0	1.4	3.1	0.25	0.72	1.8	0.2 g/t AuEq cut	78.0
inc	42.0	69.0	27.0	2.0	4.2	0.34	1.0	2.6		70.3
and	97.5	100.4	2.9	0.65	639	1.0	2.4	9.7		28.1
GNDD668	69.0	83.0	14.0	0.33	2.2	0.01	0.04	0.4	0.2 g/t AuEq cut	5.2
inc	81.0	83.0	2.0	1.1	1.1	0.00	0.02	1.1		2.3
and	153.0	182.0	29.0	0.45	10.2	0.03	0.27	0.7	0.2 g/t AuEq cut	20.5
inc	153.0	154.0	1.0	2.8	63.1	0.18	2.0	4.6		4.6
inc	170.0	176.0	6.0	1.3	27.9	0.05	0.73	1.9		11.6
GNDD671	315.0	322.0	7.0	0.77	0.25	0.00	0.01	0.8	0.2 g/t AuEq cut	5.5
inc	315.0	319.0	4.0	1.1	0.21	0.00	0.01	1.1		4.5
GNDD672	268.0	272.0	4.0	4.2	3.9	0.02	0.17	4.3		17.3
and	428.5	429.0	0.5	1.2	1.8	0.00	0.07	1.3		0.6
GNDD674	1.6	11.0	9.4	0.25	1.1	0.04	0.05	0.3	0.2 g/t AuEq cut	2.7
and	56.0	58.9	2.9	1.4	31.9	0.04	0.89	2.2	0.2 g/t AuEq cut	6.4
inc	57.5	58.9	1.4	2.7	62.6	0.07	1.6	4.2		5.7
GNDD676	11.0	19.0	8.0	0.08	0.77	0.02	0.39	0.3	0.2 g/t AuEq cut	2.2
GNDD677	85.8	140.8	55.1	0.20	0.62	0.03	0.11	0.3	0.2 g/t AuEq cut	14.7
inc	102.0	104.0	2.0	1.2	1.2	0.17	0.38	1.4		2.8
inc	140.0	140.8	0.8	2.6	17.3	0.01	0.09	2.8		2.3
GNDD678	251.0	252.0	1.0	3.0	2.3	0.09	0.51	3.3		3.3
and	283.0	284.0	1.0	1.5	13.1	0.30	0.42	1.9		1.9
and	317.5	319.6	2.1	0.13	7.4	0.10	0.30	0.4	0.2 g/t AuEq cut	0.8
GNDD679	0.0	57.0	57.0	0.51	3.5	0.07	0.09	0.6	0.2 g/t AuEq cut	34.6
inc	20.0	26.0	6.0	1.3	12.8	0.08	0.18	1.6		9.4
inc	34.0	36.0	2.0	4.1	0.73	0.18	0.08	4.2		8.4
GNDD680	116.0	130.0	14.0	0.23	0.43	0.01	0.07	0.3	0.2 g/t AuEq cut	3.7
and	154.0	157.0	3.0	0.27	0.76	0.04	0.07	0.3	0.2 g/t AuEq cut	0.9
and	166.6	174.0	7.4	0.25	0.22	0.01	0.04	0.3	0.2 g/t AuEq cut	2.1

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

GNDD681	20.0	27.2	7.2	0.33	4.2	0.00	0.23	0.5	0.2 g/t AuEq cut	3.5
inc	26.0	27.2	1.2	1.9	19.8	0.01	0.32	2.2		2.7
and	134.3	138.5	4.2	0.34	9.3	0.01	0.01	0.5	0.2 g/t AuEq cut	1.9
and	157.6	164.0	6.4	0.44	4.6	0.08	0.94	0.9	0.2 g/t AuEq cut	6.0
inc	159.0	161.5	2.5	0.89	8.3	0.15	1.8	1.9		4.7
GNDD683	232.0	238.0	6.0	0.18	1.5	0.04	0.14	0.3	0.2 g/t AuEq cut	1.6
and	365.9	367.5	1.6	3.3	33.3	4.8	6.2	7.6		12.1
and	381.0	399.0	18.0	0.47	0.58	0.05	0.16	0.6	0.2 g/t AuEq cut	10.1
inc	389.0	391.0	2.0	2.1	1.2	0.04	0.51	2.4		4.8
GNDD686	93.5	103.5	10.0	0.63	2.7	0.19	0.39	0.9	0.2 g/t AuEq cut	8.8
inc	93.5	94.6	1.1	1.3	3.4	0.09	0.25	1.5		1.6
inc	102.4	103.5	1.1	2.3	12.8	1.3	2.3	3.8		4.0
and	163.0	173.0	10.0	0.10	1.5	0.09	0.25	0.3	0.2 g/t AuEq cut	2.6
and	220.0	229.5	9.5	0.29	0.15	0.00	0.01	0.3	0.2 g/t AuEq cut	2.8
GNDD687	116.0	134.0	18.0	0.16	2.9	0.11	0.14	0.3	0.2 g/t AuEq cut	5.0
inc	126.0	128.0	2.0	0.86	15.0	0.67	0.67	1.5		3.0
and	171.8	172.3	0.5	1.0	37.7	3.1	4.5	4.1		2.1
GNDD688	307.0	323.0	16.0	0.24	0.21	0.01	0.0	0.3	0.2 g/t AuEq cut	4.1
GNDD689	56.0	58.0	2.0	0.61	7.3	0.02	0.02	0.7	0.2 g/t AuEq cut	1.4
GNDD690	90.5	116.0	25.5	0.36	1.2	0.02	0.07	0.4	0.2 g/t AuEq cut	10.4
inc	94.0	96.0	2.0	1.0	2.7	0.01	0.02	1.1		2.2
inc	111.9	114.0	2.1	1.2	2.6	0.10	0.35	1.4		3.0
and	140.0	146.0	6.0	0.08	11.5	0.02	0.14	0.3	0.2 g/t AuEq cut	1.7
GNDD691	146.2	159.0	12.8	0.22	0.31	0.05	0.08	0.3	0.2 g/t AuEq cut	3.5
inc	156.0	157.3	1.3	1.0	1.1	0.35	0.53	1.4		1.8
and	232.5	245.6	13.1	0.42	2.2	0.04	0.24	0.6	0.2 g/t AuEq cut	7.4
inc	243.7	245.6	1.9	2.2	8.0	0.04	0.50	2.6		4.8
and	263.0	293.0	30.0	0.84	1.2	0.01	0.08	0.9	0.2 g/t AuEq cut	26.7
inc	269.0	271.0	2.0	1.2	0.69	0.00	0.12	1.3		2.6
inc	275.0	277.0	2.0	1.2	4.1	0.01	0.25	1.3		2.7
GNDD692	37.0	63.2	26.2	0.31	13.6	0.02	0.04	0.5	0.2 g/t AuEq cut	13.0
inc	44.0	46.0	2.0	0.66	35.0	0.02	0.02	1.1		2.2
inc	50.0	52.0	2.0	0.94	42.7	0.04	0.08	1.5		3.0
inc	62.0	63.2	1.2	2.6	86.9	0.03	0.17	3.8		4.3
GNDD693	231.2	253.4	22.2	0.86	2.3	0.01	0.29	1.0	0.2 g/t AuEq cut	22.8
inc	234.6	236.0	1.4	1.5	1.5	0.00	0.18	1.6		2.3
inc	251.5	253.4	1.9	6.1	22.9	0.05	3.03	7.8		14.8
and	350.0	356.5	6.5	1.0	2.5	0.01	0.70	1.3		8.7
inc	350.0	353.9	3.9	1.6	4.0	0.01	1.0	2.1		8.3
and	378.0	387.1	9.1	4.6	9.2	0.01	2.2	5.7		51.7
inc	386.5	387.1	0.6	44.0	67.8	0.08	18.7	53.5	10 g/t AuEq cut	32.1
and	400.9	402.7	1.8	4.6	2.9	0.00	0.5	4.9		8.8
GNDD696	200.0	206.0	6.0	0.22	0.12	0.00	0.01	0.2	0.2 g/t AuEq cut	1.4
and	220.0	226.0	6.0	0.35	0.29	0.01	0.07	0.4	0.2 g/t AuEq cut	2.3
GNDD700	198.0	210.0	12.0	0.68	1.5	0.13	0.46	0.9	0.2 g/t AuEq cut	11.3
inc	199.2	202.0	2.8	1.1	2.6	0.15	1.0	1.6		4.5
inc	208.0	210.0	2.0	1.4	1.3	0.13	0.16	1.5		3.1
and	249.0	269.0	20.0	0.44	1.3	0.06	0.23	0.6	0.2 g/t AuEq cut	11.5
inc	255.0	259.0	4.0	1.1	3.1	0.14	0.71	1.5		6.1

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

GNDD701		206.4	205.4		0.40	I	0.00	0.00		0.2 -/- 4 - 5	
and 77.3 82.2 4.9 0.28 14.2 0.05 0.08 0.5 0.2 g/t AuEq cut 2.4 inc 80.9 82.2 1.3 0.80 45.5 0.16 0.27 1.5 2.0 and 121.0 150.0 29.0 0.19 4.6 0.03 0.3 0.3 0.2 g/t AuEq cut 7.7 inc 122.5 125.5 3.0 1.1 17.3 0.17 0.15 4.4 GND702 53.0 62.0 9.0 1.2 6.6 0.07 0.19 1.4 0.2 g/t AuEq cut 12.6 inc 57.0 62.0 5.0 1.8 8.4 0.10 0.29 2.0 10.2 12.6 inc 117.0 121.0 4.0 3.2 0.41 0.00 0.02 1.6 0.2 g/t AuEq cut 13.7 inc 117.0 121.0 4.0 3.2 0.20 1.1 0.0 12.7 1.0 1.1 <td< td=""><td>and</td><td>296.4</td><td>305.4</td><td>9.0</td><td>0.18</td><td>5.7</td><td>0.02</td><td>0.03</td><td>0.3</td><td>0.2 g/t AuEq cut</td><td>2.3</td></td<>	and	296.4	305.4	9.0	0.18	5.7	0.02	0.03	0.3	0.2 g/t AuEq cut	2.3
inc 80.9 82.2 1.3 0.80 45.5 0.16 0.27 1.5 2.0 and 121.0 150.0 29.0 0.19 4.6 0.03 0.3 0.2 g/t AuEq cut 7.7 inc 122.5 125.5 3.0 1.1 17.3 0.17 0.17 1.5 0.2 g/t AuEq cut 12.6 inc 57.0 62.0 5.0 1.8 8.4 0.10 0.29 2.0 10.2 10.2 and 117.0 125.5 8.5 1.6 0.29 0.00 0.02 1.6 0.2 g/t AuEq cut 12.7 and 117.0 121.0 4.0 3.2 0.41 0.00 0.03 3.2 12.7 10.0 12.7 and 155.0 164.6 9.6 0.20 0.32 0.00 0.02 0.2 g/t AuEq cut 12.7 and 182.8 12.0 0.7 0.95 1.3 0.02 0.20 1.1 0.2 g/t AuEq cut 1.0 <										0.0 //	
and 121.0 150.0 29.0 0.19 4.6 0.03 0.03 0.3 0.2 g/t AuEq cut 7,7 inc 122.5 125.5 3.0 1.1 17.3 0.17 0.17 1.5 4.4 4.4 GNDD702 53.0 62.0 9.0 1.2 6.6 0.07 0.19 1.4 0.2 g/t AuEq cut 12.6 inc 57.0 62.0 5.0 1.8 8.4 0.10 0.29 2.0 10.2 and 117.0 125.5 8.5 1.6 0.29 0.00 0.02 1.6 0.2 g/t AuEq cut 13.7 inc 117.0 121.0 4.0 3.2 0.41 0.00 0.03 3.2 12.7 and 155.0 164.6 9.6 0.20 0.32 0.00 0.02 0.2 0.2 g/t AuEq cut 2.1 and 213.5 214.2 0.7 0.95 1.3 0.02 0.20 1.1 0.7 <		1								0.2 g/t AuEq cut	
Inc											
GNDD702 53.0 62.0 9.0 1.2 6.6 0.07 0.19 1.4 0.2 g/t AuEq cut 12.6	and									0.2 g/t AuEq cut	
inc 57.0 62.0 5.0 1.8 8.4 0.10 0.29 2.0 10.2 and 117.0 125.5 8.5 1.6 0.29 0.00 0.02 1.6 0.2 g/t AuEq cut 13.7 inc 117.0 121.0 4.0 3.2 0.41 0.00 0.03 3.2 12.7 and 155.0 164.6 9.6 0.20 0.32 0.00 0.02 0.2 0.2 g/t AuEq cut 2.1 and 213.5 214.2 0.7 0.95 1.3 0.02 0.20 1.1 0.7 GNDD703 9.0 20.0 11.0 0.15 2.7 0.09 0.37 0.4 0.2 g/t AuEq cut 4.1 and 182.8 183.3 0.5 2.4 12.2 0.03 2.4 3.7 1.8 inc 182.8 183.3 0.5 2.4 12.2 0.03 2.4 3.7 1.8 1.0 inc											
and 117.0 125.5 8.5 1.6 0.29 0.00 0.02 1.6 0.2 g/t AuEq cut 13.7 inc 117.0 121.0 4.0 3.2 0.41 0.00 0.03 3.2 0.27 12.7 and 155.0 164.6 9.6 0.20 0.32 0.00 0.02 0.2 0.2 g/t AuEq cut 2.1 and 213.5 214.2 0.7 0.95 1.3 0.02 0.20 1.1 0.7 GNDD703 9.0 20.0 11.0 0.15 2.7 0.09 0.37 0.4 0.2 g/t AuEq cut 4.1 and 182.8 183.3 0.5 2.4 12.2 0.03 2.4 3.7 1.8 inc 10.7 1.8 inc 200.2 200.8 0.7 5.4 4.6 0.05 0.80 5.9 3.8 and 326.0 330.0 4.0 1.0 1.8 0.03 0.27 0.3 0.2 g/t AuEq cut 1.0 <td>GNDD702</td> <td>53.0</td> <td>62.0</td> <td>9.0</td> <td>1.2</td> <td>6.6</td> <td>0.07</td> <td></td> <td>1.4</td> <td>0.2 g/t AuEq cut</td> <td></td>	GNDD702	53.0	62.0	9.0	1.2	6.6	0.07		1.4	0.2 g/t AuEq cut	
inc 117.0 121.0 4.0 3.2 0.41 0.00 0.03 3.2 12.7 and 155.0 164.6 9.6 0.20 0.32 0.00 0.02 0.2 0.2 g/t AuEq cut 2.1 and 213.5 214.2 0.7 0.95 1.3 0.02 0.20 1.1 0.7 GNDD703 9.0 20.0 11.0 0.15 2.7 0.09 0.37 0.4 0.2 g/t AuEq cut 4.1 and 182.8 183.3 0.5 2.4 12.2 0.03 2.4 3.7 1.8 inc 200.2 200.8 0.7 5.4 4.6 0.05 0.80 5.9 3.8 and 350.0 330.0 4.0 0.10 1.8 0.03 0.27 0.3 0.2 g/t AuEq cut 1.0 and 597.0 597.5 0.5 1.0 0.72 0.00 0.71 1.4 0.7 GNDD704 170.0<	inc	57.0	62.0	5.0	1.8	8.4	0.10	0.29	2.0		10.2
and 155.0 164.6 9.6 0.20 0.32 0.00 0.02 0.2 0.2 g/t AuEq cut 2.1 and 213.5 214.2 0.7 0.95 1.3 0.02 0.20 1.1 0.7 GNDD703 9.0 20.0 11.0 0.15 2.7 0.09 0.37 0.4 0.2 g/t AuEq cut 4.1 and 182.8 183.3 0.5 2.4 12.2 0.03 2.4 3.7 1.8 inc 200.2 200.8 0.7 5.4 4.6 0.05 0.80 5.9 3.8 and 326.0 330.0 4.0 0.10 1.8 0.03 0.27 0.3 0.2 g/t AuEq cut 1.0 and 326.0 330.0 4.0 0.10 1.8 0.05 0.80 5.9 3.8 and 326.0 330.0 4.0 0.10 1.8 0.05 0.2 g/t AuEq cut 1.0 inc 174.0 <	and	117.0	125.5	8.5	1.6	0.29	0.00	0.02	1.6	0.2 g/t AuEq cut	13.7
and 213.5 214.2 0.7 0.95 1.3 0.02 0.20 1.1 0.7 GNDD703 9.0 20.0 11.0 0.15 2.7 0.09 0.37 0.4 0.2 g/t AuEq cut 4.1 and 182.8 210.0 27.3 0.32 1.3 0.02 0.12 0.4 0.2 g/t AuEq cut 10.7 inc 182.8 183.3 0.5 2.4 12.2 0.03 2.4 3.7 1.8 inc 200.2 200.8 0.7 5.4 4.6 0.05 0.80 5.9 3.8 and 326.0 330.0 4.0 0.10 1.8 0.03 0.27 0.3 0.2 g/t AuEq cut 1.0 and 597.0 597.5 0.5 1.0 0.72 0.00 0.71 1.4 0.7 GNDD704 170.0 201.3 31.3 0.42 1.0 0.01 0.18 0.5 0.2 g/t AuEq cut 16.3 inc 174.0 176.0 2.0 1.2 2.1 0.00 0.24 1.3 2.7 and 227.0 228.4 1.4 0.84 3.4 0.01 0.70 1.2 1.3 2.7 and 227.0 228.4 1.4 0.84 3.4 0.01 0.70 1.2 1.0 10 g/t AuEq cut 7.7 GNDD706 267.0 273.0 6.0 0.52 1.7 0.06 0.04 0.6 0.2 g/t AuEq cut 3.4 inc 267.0 269.0 2.0 1.3 2.1 0.16 0.06 1.4 2.7 GNDD707 NSI GNDD709 66.0 72.0 6.0 0.05 1.3 2.1 0.16 0.06 1.4 2.7 GNDD709 66.0 72.0 6.0 0.05 2.2 0.01 0.51 0.3 0.2 g/t AuEq cut 1.9 GNDD710 372.0 378.5 6.5 0.31 0.14 0.00 0.01 0.3 0.2 g/t AuEq cut 1.9 GNDD711 270.6 280.5 9.9 0.38 0.91 0.22 0.44 0.6 0.2 g/t AuEq cut 2.0 and 435.0 437.0 2.0 0.92 1.0 0.04 0.13 1.0 2.2 g/t AuEq cut 2.0 and 435.0 437.0 2.0 0.92 1.0 0.04 0.13 1.0 2.2 g/t AuEq cut 2.0 and 436.5 477.0 10.5 0.35 0.20 0.00 0.01 0.4 0.2 g/t AuEq cut 3.8 and 521.0 523.0 2.0 1.4 0.75 0.00 0.00 1.4 0.2 g/t AuEq cut 3.8 and 521.0 523.0 2.0 1.4 0.75 0.00 0.00 1.4 0.2 g/t AuEq cut 3.8 and 295.0 303.5 8.4 0.32 0.38 0.91 0.22 0.44 0.6 0.2 g/t AuEq cut 3.8 inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 2.0 2.0 2.0 2.0 3.0 and 295.0 303.5 8.4 0.32 0.38 0.98 0.23 0.4 0.2 g/t AuEq cut 3.8 inc 295.0 303.5 8.4 0.32 0.38 0.98 0.23 0.4 0.2 g/t AuEq cut 3.8 inc 295.0 303.5 8.4 0.32 0.38 0.98 0.23 0.4 0.2 g/t AuEq cut 3.8 inc 295.0 303.5 8.4 0.32 0.38 0.99 0.49 1.0 0.10 0.0 0.2 g/t AuEq cut 3.8 inc 295.0 303.5 8.4 0.32 0.38 0.99 0.49 1.0 0.40 0.5 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 0.00 0.0	inc	117.0	121.0	4.0	3.2	0.41	0.00	0.03	3.2		12.7
GNDD703 9.0 20.0 11.0 0.15 2.7 0.09 0.37 0.4 0.2 g/t AuEq cut 4.1 and 182.8 210.0 27.3 0.32 1.3 0.02 0.12 0.4 0.2 g/t AuEq cut 10.7 inc 182.8 183.3 0.5 2.4 12.2 0.03 2.4 3.7 1.8 inc 200.2 200.8 0.7 5.4 4.6 0.05 0.80 5.9 3.8 and 326.0 330.0 4.0 0.10 1.8 0.03 0.27 0.3 0.2 g/t AuEq cut 1.0 and 597.0 597.5 0.5 1.0 0.02 0.00 0.71 1.4 0.7 GNDD704 170.0 201.3 31.3 0.42 1.0 0.01 1.8 0.5 0.2 g/t AuEq cut 1.0 inc 174.0 176.0 2.0 1.2 2.1 0.00 0.24 1.3 2.2 1.3	and	155.0	164.6	9.6	0.20	0.32	0.00	0.02	0.2	0.2 g/t AuEq cut	2.1
and 182.8 210.0 27.3 0.32 1.3 0.02 0.12 0.4 0.2 g/t AuEq cut 10.7 inc 182.8 183.3 0.5 2.4 12.2 0.03 2.4 3.7 1.8 inc 200.2 200.8 0.7 5.4 4.6 0.05 0.80 5.9 3.8 and 326.0 330.0 4.0 0.10 1.8 0.03 0.27 0.3 0.2 g/t AuEq cut 1.0 and 597.0 597.5 0.5 1.0 0.72 0.00 0.71 1.4 0.7 GNDD704 170.0 201.3 31.3 0.42 1.0 0.01 0.18 0.5 0.2 g/t AuEq cut 16.3 inc 174.0 176.0 2.0 1.2 2.1 0.00 0.24 1.3 2.7 and 227.0 228.4 1.4 0.84 3.4 0.01 0.70 1.2 1.7 and 295.7 </td <td>and</td> <td>213.5</td> <td>214.2</td> <td>0.7</td> <td>0.95</td> <td>1.3</td> <td>0.02</td> <td>0.20</td> <td>1.1</td> <td></td> <td>0.7</td>	and	213.5	214.2	0.7	0.95	1.3	0.02	0.20	1.1		0.7
inc 182.8 183.3 0.5 2.4 12.2 0.03 2.4 3.7 1.8 inc 200.2 200.8 0.7 5.4 4.6 0.05 0.80 5.9 3.8 and 326.0 330.0 4.0 0.10 1.8 0.03 0.27 0.3 0.2 g/t AuEq cut 1.0 and 597.0 597.5 0.5 1.0 0.72 0.00 0.71 1.4 0.7 GNDD704 170.0 201.3 31.3 0.42 1.0 0.01 0.18 0.5 0.2 g/t AuEq cut 16.3 inc 174.0 176.0 2.0 1.2 2.1 0.00 0.24 1.3 2.6 inc 183.0 185.0 2.0 1.2 2.1 0.00 0.24 1.3 2.7 and 227.0 228.4 1.4 0.84 3.4 0.01 0.70 1.2 1.7 GNDD706 267.0 273.0	GNDD703	9.0	20.0	11.0	0.15	2.7	0.09	0.37	0.4	0.2 g/t AuEq cut	4.1
inc 200.2 200.8 0.7 5.4 4.6 0.05 0.80 5.9 3.8 and 326.0 330.0 4.0 0.10 1.8 0.03 0.27 0.3 0.2 g/t AuEq cut 1.0 and 597.0 597.5 0.5 1.0 0.72 0.00 0.71 1.4 0.7 GNDD704 170.0 201.3 31.3 0.42 1.0 0.01 0.18 0.5 0.2 g/t AuEq cut 16.3 inc 174.0 176.0 2.0 1.2 2.1 0.00 0.24 1.3 2.6 inc 183.0 185.0 2.0 1.2 0.1 0.00 0.24 1.3 2.7 and 227.0 228.4 1.4 0.84 3.4 0.01 0.79 1.2 1.7 and 227.0 26.2 0.6 5.4 89.2 0.09 16.2 14.0 10 g/t AuEq cut 7.7 GNDD706 267.0<	and	182.8	210.0	27.3	0.32	1.3	0.02	0.12	0.4	0.2 g/t AuEq cut	10.7
and 326.0 330.0 4.0 0.10 1.8 0.03 0.27 0.3 0.2 g/t AuEq cut 1.0 and 597.0 597.5 0.5 1.0 0.72 0.00 0.71 1.4 0.7 GNDD704 170.0 201.3 31.3 0.42 1.0 0.01 0.18 0.5 0.2 g/t AuEq cut 16.3 inc 174.0 176.0 2.0 1.2 2.1 0.00 0.24 1.3 2.6 inc 183.0 185.0 2.0 1.2 0.92 0.02 0.19 1.3 2.7 and 227.0 228.4 1.4 0.84 3.4 0.01 0.70 1.2 1.7 and 295.7 296.2 0.6 5.4 89.2 0.09 16.2 14.0 10 g/t AuEq cut 7.7 GNDD706 267.0 273.0 6.0 0.52 1.7 0.06 0.04 0.6 0.2 g/t AuEq cut 3.4	inc	182.8	183.3	0.5	2.4	12.2	0.03	2.4	3.7		1.8
and 597.0 597.5 0.5 1.0 0.72 0.00 0.71 1.4 0.7 GNDD704 170.0 201.3 31.3 0.42 1.0 0.01 0.18 0.5 0.2 g/t AuEq cut 16.3 inc 174.0 176.0 2.0 1.2 2.1 0.00 0.24 1.3 2.6 inc 183.0 185.0 2.0 1.2 0.92 0.02 0.19 1.3 2.7 and 227.0 228.4 1.4 0.84 3.4 0.01 0.70 1.2 1.7 and 295.7 296.2 0.6 5.4 89.2 0.09 16.2 14.0 10 g/t AuEq cut 7.7 GND706 267.0 273.0 6.0 0.52 1.7 0.06 0.04 0.6 0.2 g/t AuEq cut 3.4 inc 267.0 269.0 2.0 1.3 2.1 0.16 0.06 1.4 2.7 GND7070 N	inc	200.2	200.8	0.7	5.4	4.6	0.05	0.80	5.9		3.8
GNDD704 170.0 201.3 31.3 0.42 1.0 0.01 0.18 0.5 0.2 g/t AuEq cut 16.3 inc 174.0 176.0 2.0 1.2 2.1 0.00 0.24 1.3 2.6 inc 183.0 185.0 2.0 1.2 0.92 0.02 0.19 1.3 2.7 and 227.0 228.4 1.4 0.84 3.4 0.01 0.70 1.2 1.7 and 295.7 296.2 0.6 5.4 89.2 0.09 16.2 14.0 10 g/t AuEq cut 7.7 GNDD706 267.0 273.0 6.0 0.52 1.7 0.06 0.04 0.6 0.2 g/t AuEq cut 3.4 inc 267.0 269.0 2.0 1.3 2.1 0.16 0.06 1.4 2.7 GNDD707 NSI 0.05 2.2 0.01 0.51 0.3 0.2 g/t AuEq cut	and	326.0	330.0	4.0	0.10	1.8	0.03	0.27	0.3	0.2 g/t AuEq cut	1.0
inc 174.0 176.0 2.0 1.2 2.1 0.00 0.24 1.3 2.6 inc 183.0 185.0 2.0 1.2 0.92 0.09 1.3 2.7 and 227.0 228.4 1.4 0.84 3.4 0.01 0.70 1.2 1.7 and 295.7 296.2 0.6 5.4 89.2 0.09 16.2 14.0 10 g/t AuEq cut 7.7 GNDD706 267.0 273.0 6.0 0.52 1.7 0.06 0.04 0.6 0.2 g/t AuEq cut 3.4 inc 267.0 269.0 2.0 1.3 2.1 0.16 0.06 1.4 2.7 GNDD707 NSI 0.0 0.0 0.0 0.0 0.0 1.9	and	597.0	597.5	0.5	1.0	0.72	0.00	0.71	1.4		0.7
inc 183.0 185.0 2.0 1.2 0.92 0.02 0.19 1.3 2.7 and 227.0 228.4 1.4 0.84 3.4 0.01 0.70 1.2 1.7 and 295.7 296.2 0.6 5.4 89.2 0.09 16.2 14.0 10 g/t AuEq cut 7.7 GNDD706 267.0 273.0 6.0 0.52 1.7 0.06 0.04 0.6 0.2 g/t AuEq cut 3.4 inc 267.0 269.0 2.0 1.3 2.1 0.16 0.06 1.4 2.7 GNDD707 NSI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0	GNDD704	170.0	201.3	31.3	0.42	1.0	0.01	0.18	0.5	0.2 g/t AuEq cut	16.3
and 227.0 228.4 1.4 0.84 3.4 0.01 0.70 1.2 1.7 and 295.7 296.2 0.6 5.4 89.2 0.09 16.2 14.0 10 g/t AuEq cut 7.7 GNDD706 267.0 273.0 6.0 0.52 1.7 0.06 0.04 0.6 0.2 g/t AuEq cut 3.4 inc 267.0 269.0 2.0 1.3 2.1 0.16 0.06 1.4 2.7 GNDD707 NSI	inc	174.0	176.0	2.0	1.2	2.1	0.00	0.24	1.3		2.6
and 295.7 296.2 0.6 5.4 89.2 0.09 16.2 14.0 10 g/t AuEq cut 7.7 GNDD706 267.0 273.0 6.0 0.52 1.7 0.06 0.04 0.6 0.2 g/t AuEq cut 3.4 inc 267.0 269.0 2.0 1.3 2.1 0.16 0.06 1.4 2.7 GNDD707 NSI O.0 O.0 0.05 2.2 0.01 0.51 0.3 0.2 g/t AuEq cut 1.9 GNDD710 372.0 378.5 6.5 0.31 0.14 0.00 0.01 0.3 0.2 g/t AuEq cut 2.0 and 435.0 437.0 2.0 0.92 1.0 0.04 0.13 1.0 0.2 g/t AuEq cut 2.0 and 466.5 477.0 10.5 0.35 0.20 0.00 0.01 0.4 0.2 g/t AuEq cut 3.8 and 521.0 523.0 2.0 1.4 0.75 0.	inc	183.0	185.0	2.0	1.2	0.92	0.02	0.19	1.3		2.7
GNDD706 267.0 273.0 6.0 0.52 1.7 0.06 0.04 0.6 0.2 g/t AuEq cut 3.4 inc 267.0 269.0 2.0 1.3 2.1 0.16 0.06 1.4 2.7 GNDD707 NSI 0.0 0.05 2.2 0.01 0.51 0.3 0.2 g/t AuEq cut 1.9 GNDD710 372.0 378.5 6.5 0.31 0.14 0.00 0.01 0.3 0.2 g/t AuEq cut 2.0 and 435.0 437.0 2.0 0.92 1.0 0.04 0.13 1.0 2.0 and 466.5 477.0 10.5 0.35 0.20 0.00 0.01 0.4 0.2 g/t AuEq cut 3.8 and 521.0 523.0 2.0 1.4 0.75 0.00 0.00 1.4 0.2 g/t AuEq cut 6.3 inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 3.0 <td>and</td> <td>227.0</td> <td>228.4</td> <td>1.4</td> <td>0.84</td> <td>3.4</td> <td>0.01</td> <td>0.70</td> <td>1.2</td> <td></td> <td>1.7</td>	and	227.0	228.4	1.4	0.84	3.4	0.01	0.70	1.2		1.7
inc 267.0 269.0 2.0 1.3 2.1 0.16 0.06 1.4 2.7 GNDD707 NSI 0.0 0.05 2.2 0.01 0.51 0.3 0.2 g/t AuEq cut 1.9 GNDD710 372.0 378.5 6.5 0.31 0.14 0.00 0.01 0.3 0.2 g/t AuEq cut 2.0 and 435.0 437.0 2.0 0.92 1.0 0.04 0.13 1.0 2.0 2.0 and 466.5 477.0 10.5 0.35 0.20 0.00 0.01 0.4 0.2 g/t AuEq cut 3.8 and 521.0 523.0 2.0 1.4 0.75 0.00 0.00 1.4 0.2 g/t AuEq cut 3.8 inc 276.0 280.5 9.9 0.38 0.91 0.22 0.44 0.6 0.2 g/t AuEq cut 6.3 inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 <td< td=""><td>and</td><td>295.7</td><td>296.2</td><td>0.6</td><td>5.4</td><td>89.2</td><td>0.09</td><td>16.2</td><td>14.0</td><td>10 g/t AuEq cut</td><td>7.7</td></td<>	and	295.7	296.2	0.6	5.4	89.2	0.09	16.2	14.0	10 g/t AuEq cut	7.7
GNDD707 NSI 0.0 GNDD709 66.0 72.0 6.0 0.05 2.2 0.01 0.51 0.3 0.2 g/t AuEq cut 1.9 GNDD710 372.0 378.5 6.5 0.31 0.14 0.00 0.01 0.3 0.2 g/t AuEq cut 2.0 and 435.0 437.0 2.0 0.92 1.0 0.04 0.13 1.0 2.0 and 466.5 477.0 10.5 0.35 0.20 0.00 0.01 0.4 0.2 g/t AuEq cut 3.8 and 521.0 523.0 2.0 1.4 0.75 0.00 0.00 1.4 0.2 g/t AuEq cut 3.8 inc 276.0 280.5 9.9 0.38 0.91 0.22 0.44 0.6 0.2 g/t AuEq cut 6.3 inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 3.0 and 295.0 303.5 8.4 0.32	GNDD706	267.0	273.0	6.0	0.52	1.7	0.06	0.04	0.6	0.2 g/t AuEq cut	3.4
GNDD709 66.0 72.0 6.0 0.05 2.2 0.01 0.51 0.3 0.2 g/t AuEq cut 1.9 GNDD710 372.0 378.5 6.5 0.31 0.14 0.00 0.01 0.3 0.2 g/t AuEq cut 2.0 and 435.0 437.0 2.0 0.92 1.0 0.04 0.13 1.0 2.0 and 466.5 477.0 10.5 0.35 0.20 0.00 0.01 0.4 0.2 g/t AuEq cut 3.8 and 521.0 523.0 2.0 1.4 0.75 0.00 0.00 1.4 2.9 GNDD711 270.6 280.5 9.9 0.38 0.91 0.22 0.44 0.6 0.2 g/t AuEq cut 6.3 inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 3.0 and 295.0 303.5 8.4 0.32 0.38 0.08 0.23 0.4 0.2 g/t AuEq cut	inc	267.0	269.0	2.0	1.3	2.1	0.16	0.06	1.4		2.7
GNDD710 372.0 378.5 6.5 0.31 0.14 0.00 0.01 0.3 0.2 g/t AuEq cut 2.0 and 435.0 437.0 2.0 0.92 1.0 0.04 0.13 1.0 2.0 and 466.5 477.0 10.5 0.35 0.20 0.00 0.01 0.4 0.2 g/t AuEq cut 3.8 and 521.0 523.0 2.0 1.4 0.75 0.00 0.00 1.4 2.9 GNDD711 270.6 280.5 9.9 0.38 0.91 0.22 0.44 0.6 0.2 g/t AuEq cut 6.3 inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 3.0 and 295.0 303.5 8.4 0.32 0.38 0.08 0.23 0.4 0.2 g/t AuEq cut 3.8 inc 392.0 299.1 1.1 0.80 1.2 0.24 0.75 1.2 1.3	GNDD707	NSI									0.0
and 435.0 437.0 2.0 0.92 1.0 0.04 0.13 1.0 2.0 and 466.5 477.0 10.5 0.35 0.20 0.00 0.01 0.4 0.2 g/t AuEq cut 3.8 and 521.0 523.0 2.0 1.4 0.75 0.00 0.00 1.4 2.9 GNDD711 270.6 280.5 9.9 0.38 0.91 0.22 0.44 0.6 0.2 g/t AuEq cut 6.3 inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 3.0 and 295.0 303.5 8.4 0.32 0.38 0.08 0.23 0.4 0.2 g/t AuEq cut 3.8 inc 298.0 299.1 1.1 0.80 1.2 0.24 0.75 1.2 1.3 inc 302.3 303.5 1.1 0.78 0.53 0.09 0.49 1.0 1.2 and 319.	GNDD709	66.0	72.0	6.0	0.05	2.2	0.01	0.51	0.3	0.2 g/t AuEq cut	1.9
and 466.5 477.0 10.5 0.35 0.20 0.00 0.01 0.4 0.2 g/t AuEq cut 3.8 and 521.0 523.0 2.0 1.4 0.75 0.00 0.00 1.4 2.9 GNDD711 270.6 280.5 9.9 0.38 0.91 0.22 0.44 0.6 0.2 g/t AuEq cut 6.3 inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 3.0 and 295.0 303.5 8.4 0.32 0.38 0.08 0.23 0.4 0.2 g/t AuEq cut 3.8 inc 298.0 299.1 1.1 0.80 1.2 0.24 0.75 1.2 1.3 inc 302.3 303.5 1.1 0.78 0.53 0.09 0.49 1.0 1.2 and 319.0 361.0 42.0 5.31 5.91 0.14 1.02 5.9 0.2 g/t AuEq cut 246.8 inc 320.8 321.7 0.9 1.12 6.98 0.92 1.16 <td>GNDD710</td> <td>372.0</td> <td>378.5</td> <td>6.5</td> <td>0.31</td> <td>0.14</td> <td>0.00</td> <td>0.01</td> <td>0.3</td> <td>0.2 g/t AuEq cut</td> <td>2.0</td>	GNDD710	372.0	378.5	6.5	0.31	0.14	0.00	0.01	0.3	0.2 g/t AuEq cut	2.0
and 521.0 523.0 2.0 1.4 0.75 0.00 0.00 1.4 2.9 GNDD711 270.6 280.5 9.9 0.38 0.91 0.22 0.44 0.6 0.2 g/t AuEq cut 6.3 inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 3.0 and 295.0 303.5 8.4 0.32 0.38 0.08 0.23 0.4 0.2 g/t AuEq cut 3.8 inc 298.0 299.1 1.1 0.80 1.2 0.24 0.75 1.2 1.3 inc 302.3 303.5 1.1 0.78 0.53 0.09 0.49 1.0 1.2 and 319.0 361.0 42.0 5.31 5.91 0.14 1.02 5.9 0.2 g/t AuEq cut 246.8 inc 320.8 321.7 0.9 1.12 6.98 0.92 1.16 1.9 1.8	and	435.0	437.0	2.0	0.92	1.0	0.04	0.13	1.0		2.0
GNDD711 270.6 280.5 9.9 0.38 0.91 0.22 0.44 0.6 0.2 g/t AuEq cut 6.3 inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 3.0 and 295.0 303.5 8.4 0.32 0.38 0.08 0.23 0.4 0.2 g/t AuEq cut 3.8 inc 298.0 299.1 1.1 0.80 1.2 0.24 0.75 1.2 1.3 inc 302.3 303.5 1.1 0.78 0.53 0.09 0.49 1.0 1.2 and 319.0 361.0 42.0 5.31 5.91 0.14 1.02 5.9 0.2 g/t AuEq cut 246.8 inc 320.8 321.7 0.9 1.12 6.98 0.92 1.16 1.9 1.8	and	466.5	477.0	10.5	0.35	0.20	0.00	0.01	0.4	0.2 g/t AuEq cut	3.8
inc 276.0 277.5 1.5 1.5 2.2 0.60 0.70 2.0 3.0 and 295.0 303.5 8.4 0.32 0.38 0.08 0.23 0.4 0.2 g/t AuEq cut 3.8 inc 298.0 299.1 1.1 0.80 1.2 0.24 0.75 1.2 1.3 inc 302.3 303.5 1.1 0.78 0.53 0.09 0.49 1.0 1.2 and 319.0 361.0 42.0 5.31 5.91 0.14 1.02 5.9 0.2 g/t AuEq cut 246.8 inc 320.8 321.7 0.9 1.12 6.98 0.92 1.16 1.9 1.8	and	521.0	523.0	2.0	1.4	0.75	0.00	0.00	1.4		2.9
and 295.0 303.5 8.4 0.32 0.38 0.08 0.23 0.4 0.2 g/t AuEq cut 3.8 inc 298.0 299.1 1.1 0.80 1.2 0.24 0.75 1.2 1.3 inc 302.3 303.5 1.1 0.78 0.53 0.09 0.49 1.0 1.2 and 319.0 361.0 42.0 5.31 5.91 0.14 1.02 5.9 0.2 g/t AuEq cut 246.8 inc 320.8 321.7 0.9 1.12 6.98 0.92 1.16 1.9 1.8	GNDD711	270.6	280.5	9.9	0.38	0.91	0.22	0.44	0.6	0.2 g/t AuEq cut	6.3
inc 298.0 299.1 1.1 0.80 1.2 0.24 0.75 1.2 1.3 inc 302.3 303.5 1.1 0.78 0.53 0.09 0.49 1.0 1.2 and 319.0 361.0 42.0 5.31 5.91 0.14 1.02 5.9 0.2 g/t AuEq cut 246.8 inc 320.8 321.7 0.9 1.12 6.98 0.92 1.16 1.9 1.8	inc	276.0	277.5	1.5	1.5	2.2	0.60	0.70	2.0		3.0
inc 302.3 303.5 1.1 0.78 0.53 0.09 0.49 1.0 1.2 and 319.0 361.0 42.0 5.31 5.91 0.14 1.02 5.9 0.2 g/t AuEq cut 246.8 inc 320.8 321.7 0.9 1.12 6.98 0.92 1.16 1.9 1.8	and	295.0	303.5	8.4	0.32	0.38	0.08	0.23	0.4	0.2 g/t AuEq cut	3.8
and 319.0 361.0 42.0 5.31 5.91 0.14 1.02 5.9 0.2 g/t AuEq cut 246.8 inc 320.8 321.7 0.9 1.12 6.98 0.92 1.16 1.9 1.8	inc	298.0	299.1	1.1	0.80	1.2	0.24	0.75	1.2		1.3
and 319.0 361.0 42.0 5.31 5.91 0.14 1.02 5.9 0.2 g/t AuEq cut 246.8 inc 320.8 321.7 0.9 1.12 6.98 0.92 1.16 1.9 1.8	inc	302.3	303.5	1.1	0.78	0.53	0.09	0.49	1.0		1.2
	and	319.0	361.0	42.0	5.31	5.91	0.14	1.02	5.9	0.2 g/t AuEq cut	
	inc	320.8	321.7	0.9	1.12	6.98	0.92	1.16	1.9		1.8
inc 357.7 359.6 1.9 113 117 1.72 21.17 124.9 237.4	inc	357.7		1.9	113	117	1.72	21.17	124.9		237.4

¹ Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1900 Oz, Ag US\$24 Oz, Zn US\$4,000/t, Pb US\$2000/t
- Metallurgical recoveries are estimated to be Au (95%), Ag (91%), Zn (67%) Pb (58%) across all ore types (see JORC Table
 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: $AuEq (g/t) = Au (g/t) + [Ag (g/t) \times 0.012106] + [Zn (%) \times 0.46204] + [Pb (%) \times 0.19961]$
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America with a maiden **2.1 million ounce gold Resource Estimate** recently announced for the Hualilan Gold Project in San Juan, Argentina.

The Company strategy is for the 100% owned Hualilan Gold Project to provide a high-grade low capex operation in the near term while it prepares for much larger bulk gold operations at both Hualilan and El Guaybo in Ecuador.

- Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive drilling with over 150 historical and 700 CEL drill-holes and the Company has released an Interim JORC 2012 Compliant resource of 2,133,065 ounces which remains open in most directions. This resource contains a Skarn component 6.3 Mt at 5.6 g/t AuEq for 1.1 Moz AuEq and an intrusion/sediment-hosted component of 41.5Mt at 0.8 g/t AuEq for 1.0 Moz AuEq. The resource was based on 126,000 metres of CEL's 264,000 metre drill program. The project was locked up in a dispute for the 15 years prior to the Company's involvement and as a consequence had seen no modern exploration until CEL acquired the project in 2019. In the past 2 years CEL has completed over 700 drill holes for more than 200,000 metres of drilling. Results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 67.7m @ 7.3 g/t Au, 5.7 g/t Ag, 0.6% Zn, and 63.3m @ 8.5 g/t Au, 7.6 g/t Ag, 2.8% Zn. This drilling intersected high-grade gold over 3.5 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 209.0m at 1.0 g/t Au, 1.4 g/t Ag, 0.1% Zn and 110.5m at 2.5 g/t Au, 7.4 g/t Au, 0.90% Zn in intrusives. CEL's current program which is fully funded will include an additional 60,000 metres of drilling, an updated JORC Compliant Mineral Resource Estimate, and Scoping Study followed by a PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and is located 5 kilometres along strike from the 22-million ounce Cangrejos Gold Project¹. Prior to CEL the project was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t Ag which have never been followed up. CEL's maiden drilling program confirmed the discovery of a major Au-Cu-Ag-Mo gold system spanning several zones of significant scale. results from CEL's maiden drill program included 257.8m at 1.4 g/t AuEq including 53.7m at 5.3 g/t AuEq and 309.8m at 0.7 g/t AuEq including 202.1m at 0.8 g/t AuEq, and 528.7m at 0.5 g/t AuEq from surface to the end of the hole including 397.1m at 0.6 g/t AuEq from surface. The Company has drilled five of fifteen regionally significant Au-soil anomalies with over 500 metres of mineralisation intersected at all anomalies, confirming the potential for a major bulk gold system at El Guayabo. The Company has two rigs on site completing an additional 25,000 metres of diamond core drilling designed to allow the reporting of a maiden JORC 2012 Compliant resource for the main GY-A discovery zone.

 1 Source : Lumina Gold (TSX : LUM) July 2020 43-101 Technical Report

Mineralisation Style	Mt (0.25 g/t AuEq cut-off)	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	Au Eq (g/t)
Skarn (limestone hosted)	6.3	4.4	19.4	2.0	0.2	5.6
intrusion/sediment hosted	41.4	0.6	4.0	0.2	0.04	0.8
Mineralisation Style	Contained Metal	Au (Moz)	Ag (Moz)	Zn (kt)	Pb (kt)	Au Eq (Moz)
Skarn (limestone hosted)		0.9	3.9	123	11	1.13
intrusion/sediment hosted		0.8	5.3	95	19	1.00
Total Contained metal		1.7	9.2	218	29	2.13

Table 3 Interim MRE reported as Skarn and Intrusion/sediment hosted components of mineralisation

Domain	Category	Mt	Au g/t	Ag g/t	Zn %	Pb %	AuEq g/t	AuEq (Moz)
US\$1800 optimised shell	Indicated	18.7	1.1	5.4	0.41	0.07	1.3	0.80
> 0.25ppm AuEq	Inferred	25.0	1.0	5.6	0.39	0.06	1.2	1.00
Below US\$1800 shell >1.0ppm AuEq	4.0	1.9	11.5	1.04	0.07	2.6	0.33	
Total Indicated and Inj	47.7	1.1	6.0	0.45	0.06	1.4	2.13	

Note: Some rounding errors may be present

Total Interim MRE (Combined skarn and Intrusion hosted domains)

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND MINERAL RESOURCES

The information that relates to sampling techniques and data, exploration results, geological interpretation and Mineral Resource Estimate has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results and Mineral Resources. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

The Mineral Resource Estimate for the Hualilan Gold Project was first announced to the ASX on 1 June 2022. The Company confirms it is not aware of any information or assumptions that materially impacts the information included in that announcement and that the material assumptions and technical parameters underpinning the Mineral Resource Estimate continue to apply and have not materially changed.

JORC Code, 2012 Edition – Table 1 report template **Section 1 Sampling Techniques and Data - Hualilan Project**

Criteria	JORC Code explanation	Commentary
ampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard 	Diamond core (HQ3 and NQ3) was cut longitudinally on site using a diamond saw or split using a hand operated hydraulic core sampling splitter. Samples lengths are generally from 0.5m to 2.0m in length (average 1.74m). Sample lengths are selected according to lithology, alteration, and mineralization contacts.
	measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes,	For reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled were collected from a face sample recovery cyclone mounted on the drill machine.
	or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of	Channel samples are cut into underground or surface outcrop using a hand-held diamond edged cutting tool. Parallel sav cuts 3-5cm apart are cut 2-4cm deep into the rock which allows for the extraction of a representative sample using a hammer and chisel. The sample is collected onto a plastic mat and collected into a sample bag.
	 to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	Core, RC and channel samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75 μ m. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.
		A 10g charge was analysed for at least 48 elements by 4-acid digest and ICP-MS determination. Elements determined include Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr.
		For Ag $>$ 100 g/t, Zn, Pb and Cu $>$ 10,000 ppm and S $>$ 10%, overlimit analysis was done by the same method using a different calibration.
	work has been done this would be relatively simple (eg 'reverse	Unused pulps are returned from the laboratory to the Project and stored in a secure location, so they are available for any further analyses. Remaining drill core is stored undercover for future use if required.
	circulation drilling was used to obtain 1 m samples from which 3 kg	Visible gold observed has been observed in only 1 drill core sample only. Coarse gold is not likely to result in sample bias.
	charge for fire assay'). In other cases, more explanation may be	Historic Data: There is little information provided by previous explorers to detail sampling techniques. Selected drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill
	required, such as where there is coarse gold that has inherent sampling problems. Unusual	techniques and sampling.
	commodities or mineralisation types	
	(eg submarine nodules) may warrant disclosure of detailed information.	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

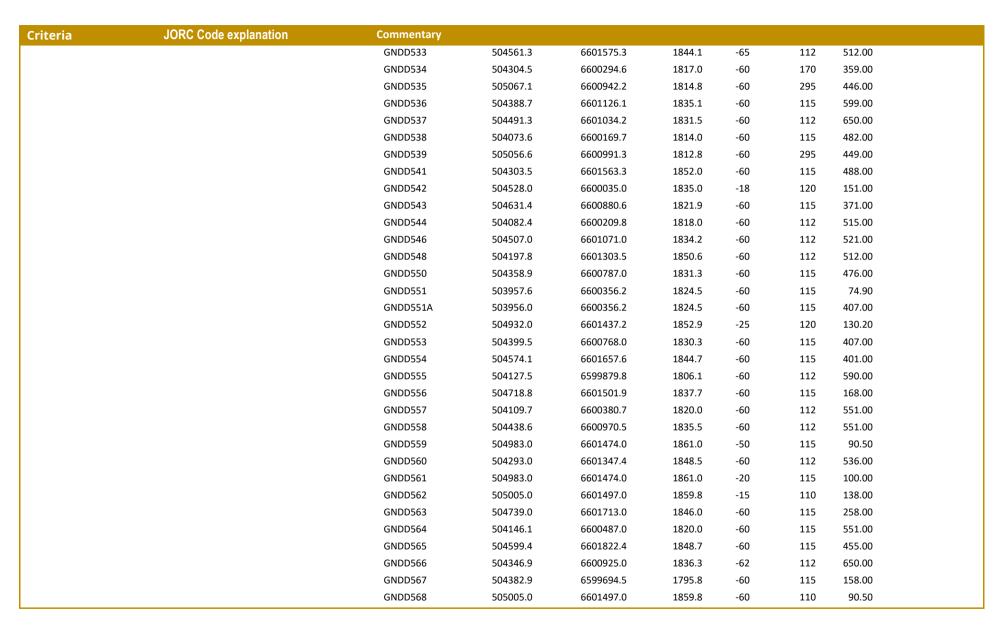
Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria

JORC Code explanation

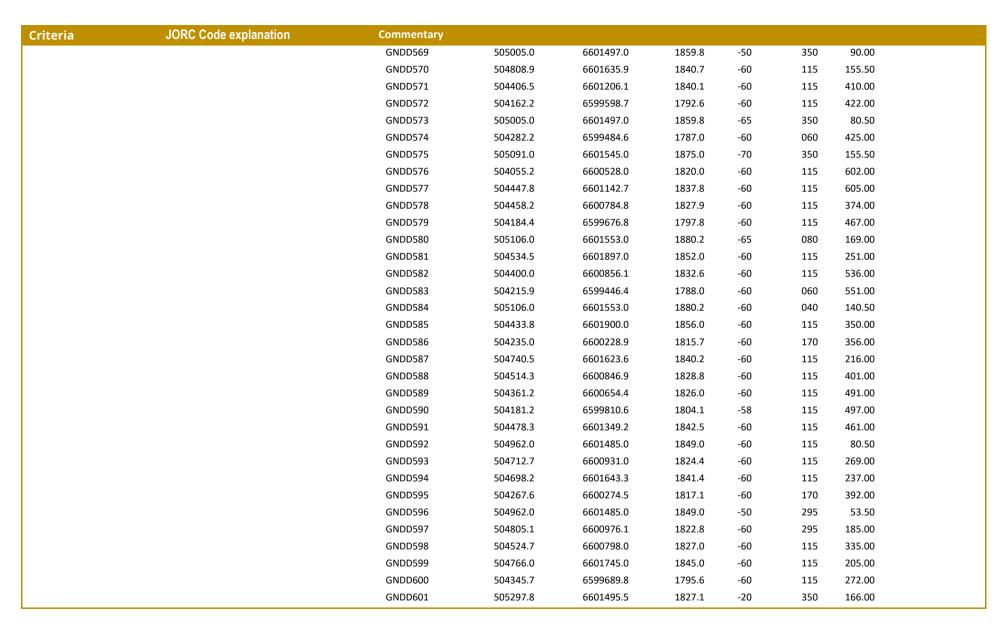
Commentary

Drilling techniques

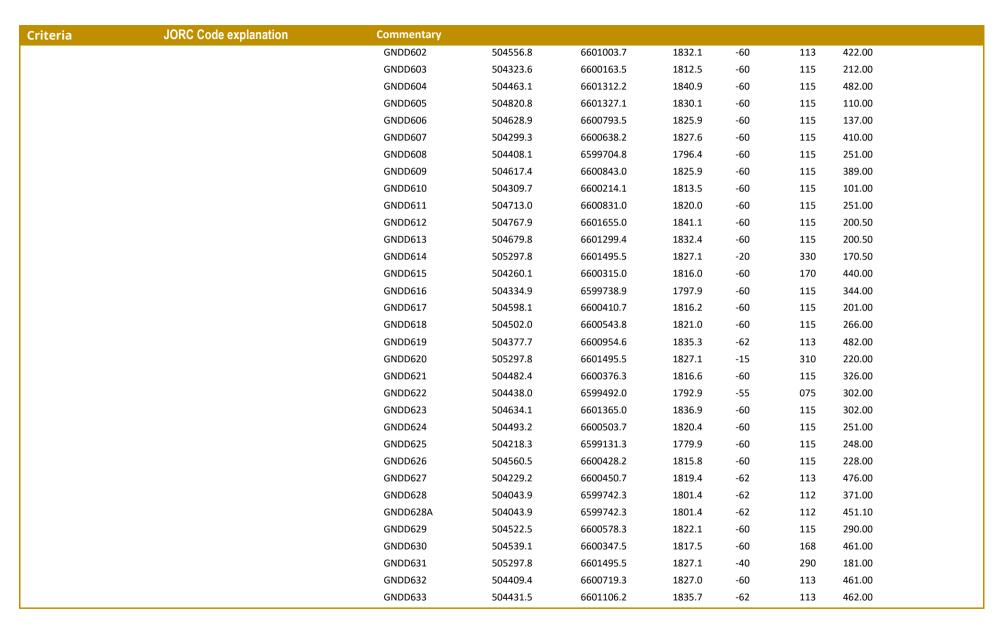

 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). CEL drilling of HQ3 core (triple tube) was done using various truck and track mounted drill machines that are operated by various drilling contractors based in Mendoza and San Juan. The core has not been oriented as the rock is commonly too broken to allow accurate core orientation.

CEL drilling of reverse circulation (RC) drill holes was done using a track mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling was done using a 5.25 inch hammer bit.

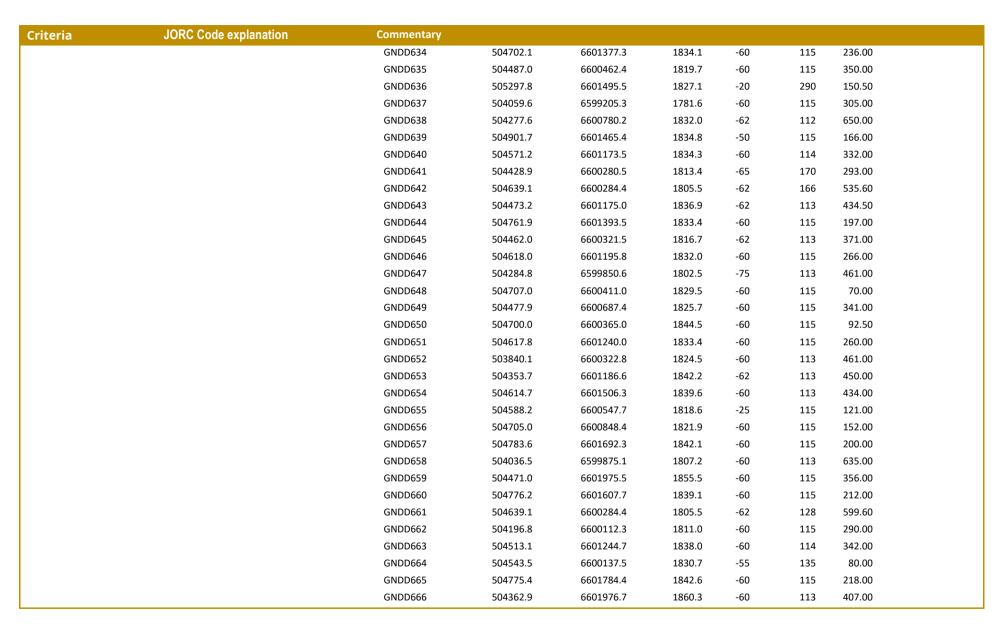
Collar details for DD drill holes not included in the 01 June 2022 Resource Estimate are shown below in WGS84, zone 19s projection. Collar locations for drill holes are surveyed using DGPS following drilling. For drill collar and channel sample details for holes that are included in the 01 June 2022 Resource Estimate, see CEL ASX release of 01 June 2022.


Hole_id	East (m)	North (m)	Elevation (m)	Dip (°)	Azimuth (°)	Depth (m)
GNDD316 EXT	504121.0	6599927.0	1804.4	-60	115	217.40
GNDD359 EXT	504408.4	6601161.1	1827.6	-60	115	118.00
GNDD483	504127.1	6599924.1	1804.4	-50	115	380.00
GNDD487	504284.6	6601262.1	1844.7	-60	115	602.00
GNDD495	504339.7	6599517.9	1787.6	-60	115	167.00
GNDD497	504339.7	6599517.9	1787.6	-60	060	293.00
GNDD501	504467.0	6599500.0	1797.0	-60	060	290.00
GNDD505	503976.2	6599818.0	1802.9	-60	112	635.00
GNDD506	504635.7	6600966.9	1817.2	-60	115	515.00
GNDD508	504276.1	6600340.1	1818.3	-60	112	560.00
GNDD509	504491.3	6599599.8	1794.7	-60	115	232.00
GNDD510	504517.3	6600933.8	1827.7	-60	115	500.00
GNDD511	504526.0	6600059.0	1833.3	-10	110	175.00
GNDD516	504723.4	6600793.6	1821.3	-60	115	188.00
GNDD518	504468.5	6600287.0	1818.4	-60	170	332.00
GNDD519	504491.2	6599622.0	1794.8	-50	115	101.00
GNDD521	504907.6	6600928.4	1814.5	-60	295	392.00
GNDD525	504331.6	6600372.6	1819.5	-60	170	437.00
GNDD526	504529.0	6599963.0	1840.1	-15	115	190.00
GNDD528	505056.2	6600903.2	1813.2	-60	295	489.00
GNDD529	504539.1	6600347.5	1817.5	-60	170	452.00
GNDD530	504038.0	6600143.0	1815.0	-60	115	557.00
GNDD531	504431.9	6600929.5	1833.0	-60	115	461.00

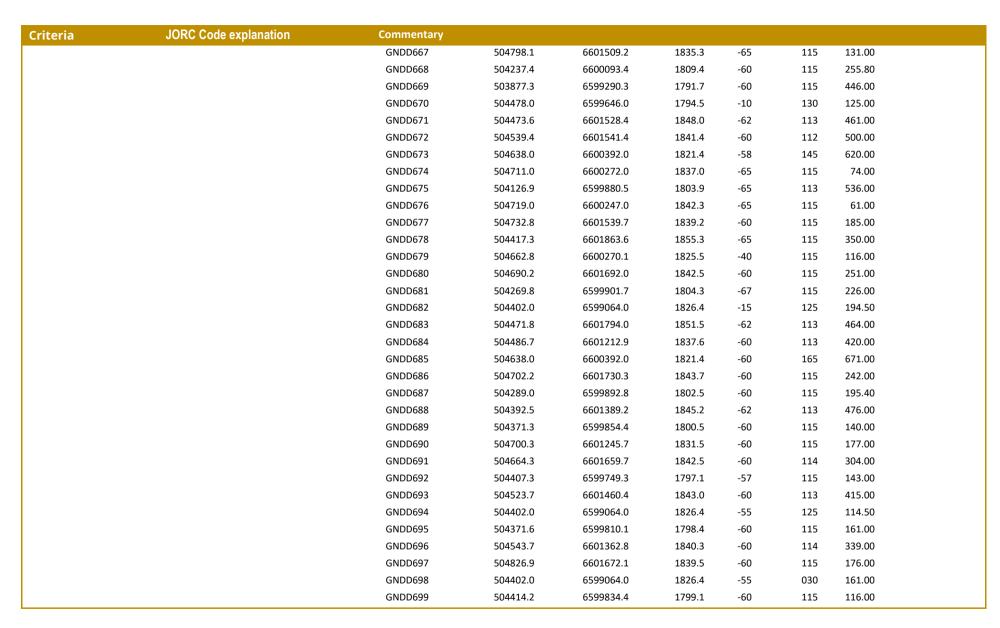
Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director


Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

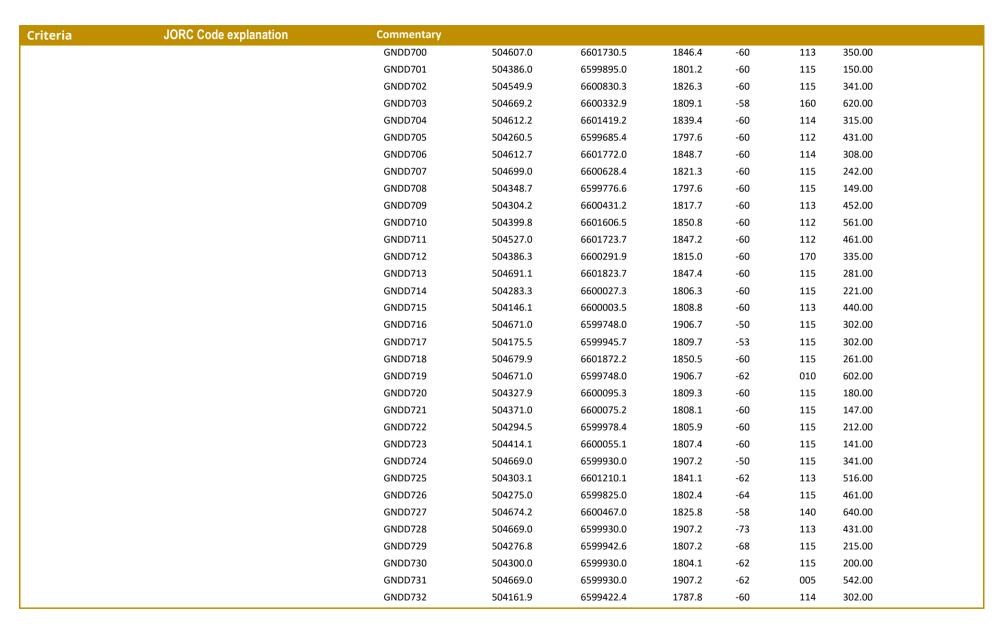
Contact T: +61 8 6380 9235 E: admin@challengerex.com


Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

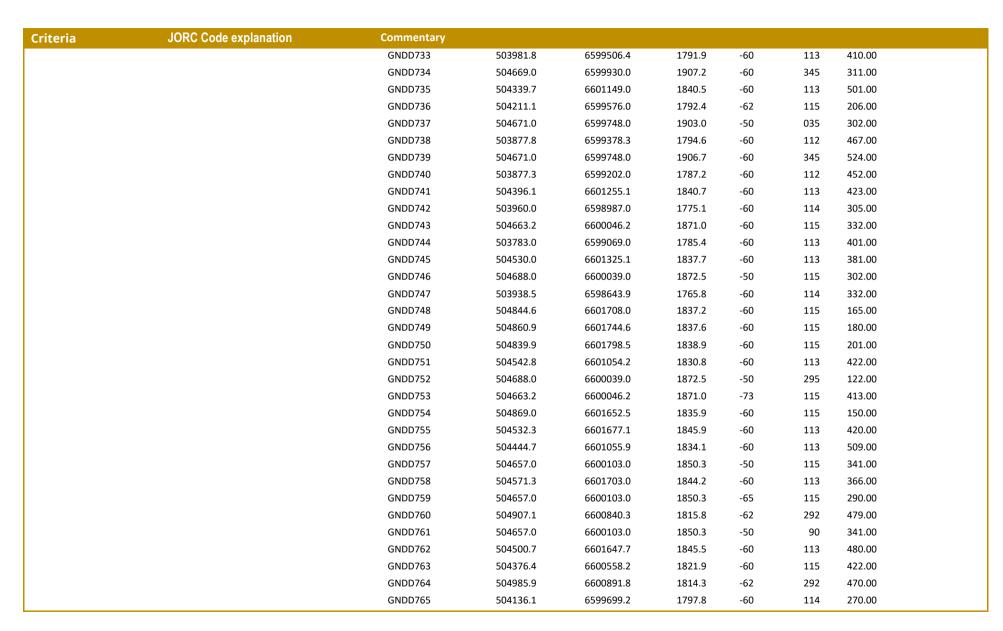
Contact T: +61 8 6380 9235 E: admin@challengerex.com


Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com


Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com


Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

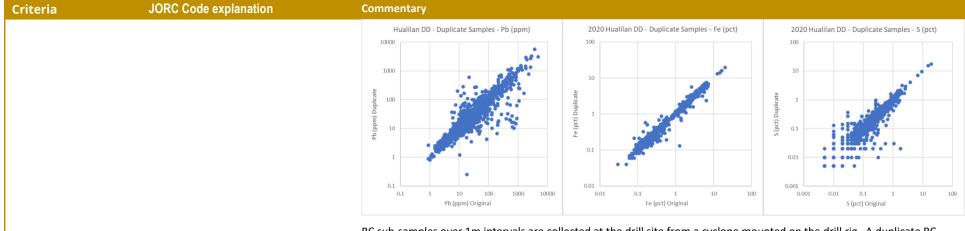
Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	J	ORC Code explanation	Commentary						
			GNDD766	505037.0	6601091.5	1813.7	-50	295	272.00
			GNDD767	504081.7	6599680.5	1798.0	-60	113	326.00
			GNDD768	504966.4	6601074.3	1816.8	-52	295	227.00
			GNDD769	504090.0	6599720.7	1799.3	-60	113	326.00
			GNDD770	504863.5	6601140.5	1822.0	-68	295	149.00
			GNDD771	504519.0	6601506.8	1842.0	-60	113	438.00
			GNDD772	504804.8	6601726.6	1838.5	-60	115	161.00
			GNDD773	504851.1	6602058.1	1843.4	-60	115	203.00
			GNDD774	503949.6	6599786.2	1803.4	-60	112	537.40
			GNDD775	504875.8	6601693.5	1836.3	-50	115	122.00
			GNDD776	504690.0	6602133.2	1849.1	-60	114	333.00
			GNDD777	504842.0	6602585.0	1810.0	-60	80	97.70
			GNDD777A	504842.0	6602585.0	1810.0	-60	80	182.00
			GNDD778	504034.9	6599878.9	1805.3	-60	112	600.30
			GNDD779	504005.8	6599671.7	1797.0	-60	113	402.00
			GNDD780	504785.1	6600721.8	1817.0	-60	165	92.00
			GNDD781	504858.4	6600751.9	1813.6	-60	165	119.00
			GNDD782	504460.9	6601622.1	1847.1	-60	112	602.00
			GNDD783	504002.2	6599717.6	1799.4	-60	113	417.00
			GNDD784	505172.8	6600716.5	1803.7	-60	115	92.00
			GNDD785	505192.9	6600883.6	1806.5	-60	115	167.00
			GNDD786	505220.6	6601047.8	1806.2	-60	115	119.00
			GNDD787	504164.5	6599641.9	1795.6	-60	113	459.00
			GNDD788	504404.9	6601560.0	1847.8	-60	112	590.00
			GNDD789	504673.7	6602670.4	1852.3	-60	113	230.00
			GNDD790	504467.6	6601001.1	1832.6	-60	112	609.00
			· ·	re-CEL diamond co	re drilling (DD) and lease date 01 June		ation (RC) t	hat is relied	on for exploration and
Drill sample recovery	· -	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample	run. These depths drilling has been b	are reconciled by eing done by CEL to	CEL geologists when maximise core rec	n measuring co covery.	ore recover	y and assess	en blocks at the end of each sing core loss. Triple tube
			nc sub-samples ar	e collected from a	ocary spirtter moul	ited to the fac	e sampie r	ecovery cycl	lone. A 2-4 kg sub-samples is

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

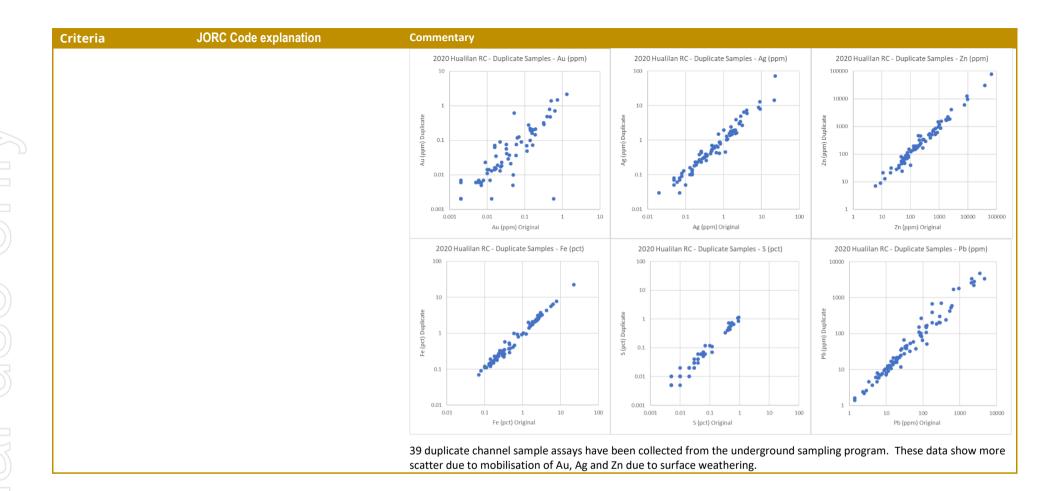

Criteria	JORC Code explanation	Commentary
	recovery and ensure representative nature of the samples. - Whether a relationship exists	collected for each metre of RC drilling. Duplicate samples are taken at the rate of I every 25-30 samples using a riffle splitter to split out a 2-4 kg sub-sample. The whole sample recovered is weighed to measure sample recovery and consistency in sampling.
	between sample recovery and grade and whether sample bias may have occurred due to preferential	Channel samples have been weighed to ensure a consistency between sample lengths and weights. The channel samples are collected from saw-cut channels and the whole sample is collected for analysis. There is no correlation between sample length and assay values.
	loss/gain of fine/coarse material.	A possible relationship has been observed in historic drilling between sample recovery and Au Ag or Zn values whereby low recoveries have resulted lower reported values. Historic core recovery data is incomplete. Core recovery is influenced by the intensity of natural fracturing in the rock. A positive correlation between recovery and RQD has been observed. The fracturing is generally post mineral and not directly associated with the mineralisation.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	For CEL drilling, all the core (100%) is photographed and logged for recovery, RQD, weathering, lithology, alteration, mineralization, and structure to a level that is suitable for geological modelling, Mineral Resource Estimation and metallurgical test work. RC drill chips are logged for geology, alteration and mineralisation to a level that is suitable for geological modelling resource estimation and metallurgical test work. Where possible logging is quantitative. Geological logging is done into MS Excel in a format that can readily be cross-checked and is back-up transferred to a secure, offsite, cloud-based database which holds all drill hole logging sample and assay data. No specialist geotechnical logging has been undertaken. Detailed logs are available for most of the historical drilling. Some logs have not been recovered. No core photographs from the historic drilling have been found. No drill core has survived due to poor storage and neglect. No historic RC sample chips have been found.
Sub-sampling techniques and sample preparation	 If core whether cut or sawn and whether quarter half or all core taken. 	CEL samples have been submitted to the MSA laboratory in San Juan, the ALS laboratory in Mendoza and the former SGS laboratory in San Juan for sample preparation. The sample preparation technique is considered appropriate for the style of mineralization present in the Project.
	 If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. 	Sample sizes are appropriate for the mineralisation style and grain size of the deposit. Sample intervals are selected based on lithology, alteration, and mineralization boundaries. Representative samples of all of the core are selected. Sample length averages 1.74m. Second-half core or ¼ core samples have been submitted for a mineralised interval in 1 drill hole only and for some metallurgical samples. The second half of the core samples has been retained in the core trays for future reference.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	Competent drill core is cut longitudinally using a diamond saw for sampling of ½ the core. Softer core is split using a wide blade chisel or a manual core split press. The geologist logging the core, marks where the saw cut or split is to be made to ensure half-core sample representivity.
	 Measures taken to ensure that the sampling is representative of the in- 	From GNDD073 and later holes, duplicate core samples consisting of two ¼ core samples over the same interval have been

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

JORC Code explanation Criteria Commentary situ material collected including for collected approximately every 30-50m drilled. instance results for field Duplicate core sample results and correlation plots (log scale for Au, Ag and Zn) are shown below: duplicate/second-half sampling. Whether sample sizes are RSQ median mean variance count appropriate to the grain size of the duplicate original duplicate original duplicate original material being sampled. Au (ppm) 3,523 0.960 0.076 0.077 0.007 0.006 0.640 0.816 Ag (ppm) 3,523 0.696 0.53 0.48 0.17 0.16 7.99 3.55 3,523 0.979 0.08 Cd (ppm) 1.34 1.26 0.08 160.63 144.11 3,523 0.451 14.84 13.85 3.40 3.30 4.3E+03 2.5E+03 Cu (ppm) Fe (%) 3,523 0.990 1.997 1.996 1.700 1.710 3.74 3.75 13.4 Pb (ppm) 3,523 0.940 64.7 62.4 13.7 1.9E+05 2.7E+05 3,523 0.973 0.333 0.330 0.140 0.140 0.346 0.332 S (%) 3,523 0.976 254 243 73 72 3.8.E+06 3.5.E+06 Zn (ppm) RSQ = R squared Hualilan DD - Duplicate Samples - Au (ppm) Hualilan DD - Duplicate Samples - Ag (ppm) Hualilan DD - Duplicate Samples - Zn (ppm) 1000 100000 100 10000 1000 0.01 10 0.001 0.1 100 0.1 1000 100000 Ag (ppm) Original Au (ppm) Original Zn (ppm) Original

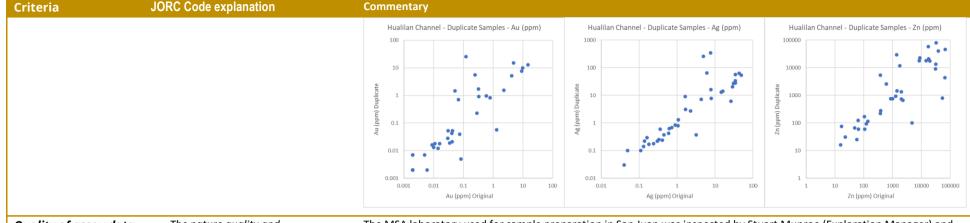
Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director


RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.

The duplicate RC sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

	count	RSQ	mean		me	dian	varia	ance
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
Zn (ppm)	85	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08
RSQ = R square	d							

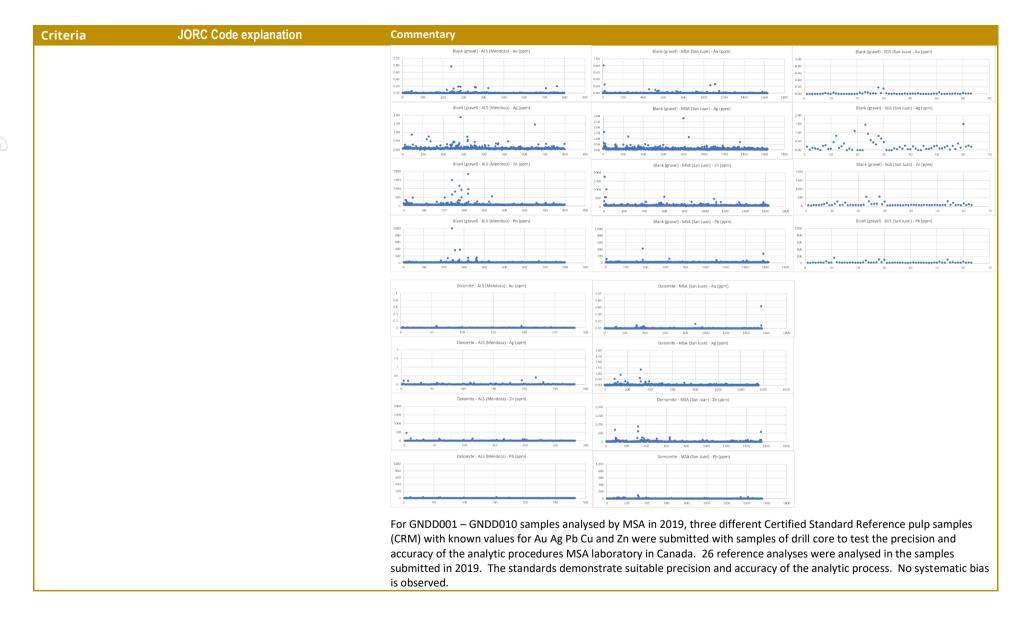

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

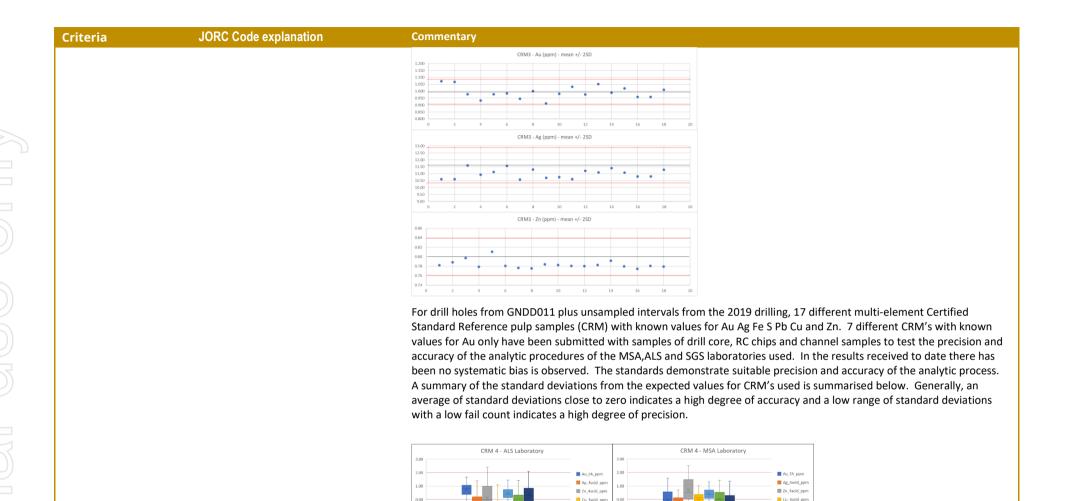
Quality of assay data and laboratory tests


- The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc.
- Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

The MSA laboratory used for sample preparation in San Juan was inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (CEL Director) prior to any samples being submitted. The laboratory has been visited and revied most recently by Stuart Munroe (Exploration Manager) in May 2022. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The SGS laboratory in San Juan and the ALS laboratory in Mendoza has not yet been inspected by CEL representatives due to COVID-19 restrictions. Each laboratory presents internal laboratory standards for each job to gauge precision and accuracy of assays reported.

CEL have used two different blank samples, submitted with drill core and subjected to the same preparation and assay as the core samples, RC sub-samples and channel samples. The blank samples are sourced from surface gravels in the Las Flores area of San Juan and from a commercial dolomite quarry near San Juan. In both cases the blank material is commonly for construction. Commonly, the blank samples are strategically placed in the sample sequence immediately after samples that were suspected of containing higher grade Au, Ag, S or base metals to test the lab preparation and contamination procedures. The values received from the blank samples suggest only rare cross contamination of samples during sample preparation.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL


1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Pb_4acid_ppr

Fe_4acid_pct

Contact T: +61 8 6380 9235 E: admin@challengerex.com Pb_4acid_ppn

Fe_4acid_pct

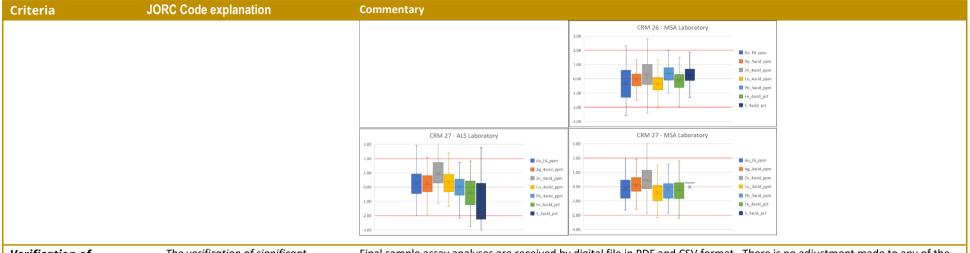
1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director


Contact T: +61 8 6380 9235 E: admin@challengerex.com

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data entry procedures data verification data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

Final sample assay analyses are received by digital file in PDF and CSV format. There is no adjustment made to any of the assay values received. The original files are backed-up and the data copied into a cloud-based drill hole database, stored offsite from the project. The data is remotely accessible for geological modelling and resource estimation.

Assay results summarised in the context of this report have been rounded appropriately to 2 significant figures. No assay data have been otherwise adjusted. Replicate assay of 186 coarse reject samples from 2019 drilling has been done to verify assay precision. Original core samples were from the 2019 DD drilling which were analysed by MSA (San Juan preparation and Vancouver analysis). Coarse reject samples were analysed by ALS (Mendoza preparation and Vancouver analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing high confidence in precision of results between MSA and ALS. A summary of the results for the 186 sample pairs for key elements is provided below:

	Mean		Median		Std Devia	ation	
Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903
Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary							
		Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954
		Cd values >1000 are set at 1000.							

REE is the sum off Ce, La, Sc, Y. CE > 500 is set at 500. Below detection is set at zero

Replicate assay of 192 coarse reject samples from 2021 drilling has been done to verify assay precision. Original core samples were from the 2021 DD drilling which were analysed by SGS Laboratories (San Juan preparation and Lima analysis). Coarse reject samples were prepared and analysed by ALS (Mendoza preparation and Lima analysis). The repeat analysis technique was identical to the original. Except for Mo (molybdenum), the repeat analyses correlate closely with the original analyses providing confidence in precision of results between SGS and ALS. A summary of the results for the 192 sample pairs for key elements is provided below:

		Mean		Medi	an	Std Devia	ation	
								Correlation
Element	count	SGS	ALS	SGS	ALS	SGS	ALS	coefficient
Au (FA and GFA ppm)	192	1.754	1.680	0.432	0.441	20.8	21.5	0.9837
Ag (ICP and ICF ppm)	192	12.14	11.57	0.93	1.03	7085	5925	0.9995
Zn (ICP and ICF ppm)	192	6829	7052	709	685	4.54E+08	5.34E+08	0.9942
Cu (ICP and ICF ppm)	192	203.4	202.9	25.7	24.5	3.30E+05	3.35E+05	0.9967
Pb (ICP and ICF ppm)	192	1768	1719	94.7	91.6	5.04E+07	4.39E+07	0.9959
S (ICP and ICF %)	192	2.23	2.10	0.94	0.87	16.51	15.56	0.9953
Cd (ICP ppm)	192	43.9	42.4	4.1	4.0	19594	18511	0.9956
As (ICP ppm))	192	45.4	45.2	16.0	16.9	10823	9893	0.9947
Fe (ICP %)	189	3.07	3.30	2.38	2.31	4.80	9.28	0.9781
REE (ICP ppm)	192	63.5	72.8	39.4	44.3	3414	4647	0.9096
Mo (ICP and ICF ppm)	192	7.69	1.68	6.74	0.97	85.83	10.33	0.3026

Values below detection were set to half the detection limit

Limit of detection for Fe was exceeded for 3 samples submitted to SGS with no overlimit analysis REE is the sum off Ce, La, Sc, Y. Values below detection were set at zero

CEL have sought to twin and triplicate some of the historic and recent drill holes to check the results of previous

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		exploration. A preliminary analysis of the twin holes indicates similar widths and grades for key elements assayed. The twin holes are: GNDD003 – DDH34 and 04HD08 GNRC110 – DDH53 GNDD144 – GNDD021 – 05HD39 GNRC107 – GNDD008/008A GNDD206 – DDH54 GNDD421 – GNDD424
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys) trenches mine workings and other locations used in Mineral Resource estimation. Specification of the grid system 	Following completion of drilling, collars are marked and surveyed using a differential GPS (DGPS) relative to a nearby Argentinian SGM survey point. The collars have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s. Following completion of the channel sampling, the location of the channel samples is surveyed from a survey mark at the entrance to the underground workings, located using differential GPS. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.
	used.	The drill machine is set-up on the drill pad using hand-held survey equipment according to the proposed hole design.
	 Quality and adequacy of topographic control. 	Diamond core drill holes up to GNDD390 are surveyed down-hole at 30-40m intervals down hole using a down-hole compass and inclinometer tool. RC drill holes and diamond core holes from GNDD391 were continuously surveyed down hole using a gyroscope to avoid magnetic influence from the drill string and rocks. The gyroscope down-hole survey data is recorded in the drill hole database at 10m intervals.
		Ten diamond drill holes have no down hole survey data due to drill hole collapse or blockage of the hole due to loss of drilling equipment. These are GNDD036, 197, 212, 283, 376, 423, 425, 439, 445 and 465. For these holes, a survey of the collar has been used with no assumed deviation to the end of the hole.
		All current and previous drill collar sites, Minas corner pegs and strategic surface points have been surveyed using DGPS to provide topographic control for the Project. In addition, AWD3D DTM model with a nominal 2.5 metre precision has been acquired for the project and greater surrounding areas. Drone-based topographic survey data with 0.1 meter precision is being acquired over the project to provide more detail where required.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and 	No regular drill hole spacing has been applied across the Project, although nominal 80m x 80m, 40m x 80m and 40m x 40m drill spacing is being applied to the drilling to define mineralised areas, where appropriate. Drilling has been completed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. 80m x 80m drilling is designed for broad exploration of intrusion-hosted targets, whereas 40 m x 40m drilling is used to define and area that is expected to form part of a Mineral Resource Estimate in sedimentary and intrusive-hosted targets. Samples have not been composited for reporting.

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	classifications applied. - Whether sample compositing has been applied. - Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material.	As far as is currently understood and where practicable, the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Some exploration holes have drilled at a low angle to mineralisation and have been followed up with drill holes in the opposite direction to define mineralised domains. For underground channel sampling, the orientation of the sample is determined by the orientation of the workings. Where the sampling is parallel with the strike of the mineralisation, plans showing the location of the sampling relative to the orientation of the mineralisation, weighted average grades and estimates of true thickness are provided to provide a balanced report of the mineralisation that has been sampled. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	 The measures taken to ensure sample security. 	Samples were under constant supervision by site security, senior technical personnel and courier contractors prior to delivery to the preparation laboratories in San Juan and Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria

status

JORC Code explanation

Mineral tenement and land tenure

- Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Commentary

The Hualilan Project comprises fifteen Minas (equivalent of mining leases) and five Demasias (mining lease extensions) held under an farmin agreement with Golden Mining SRL (Cerro Sur) and CIA GPL SRL (Cerro Norte). Fourteen additional Minas and eight exploration licences (Cateos) have been transferred to CEL under a separate farmin agreement. Six Cateos and eight requested mining leases are directly held. This covers all of the currently defined mineralization and surrounding prospective ground.

There are no royalties held over the tenements.

Granted mining leases (Minas Otorgadas) at the Hualilan Project

Name	Number	Current Owner	Status	Grant Date	Area (ha)
Cerro Sur					
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Cerro Norte					
La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Mining Lease extensions (Demasias) at the Hualilan Project

Name	Number	Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	29/12/1981	2.42
Cerro Norte					

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary					
		South of "Andacollo" Mine	545.208-B-94	CIA GPL S.R.L.	Pending Reconsideration	14/02/1994	1.83
		South of "Sanchez" Mine	545.209-B-94	CIA GPL S.R.L.	Application	14/02/1994	3.50
		South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	29/12/1981	2.42
		South of "Pizarro" Mine	545.207-B-94	Golden Mining S.R.L.	Application	14/02/1994	2.09

Requested Mining Leases (Minas Solicitados)

Name	Number	Status	Area (ha)
Elena	1124.328-G-2021	Application	2,799.24
Juan Cruz	1124.329-G-2021	Application	933.69
Paula (over "Lo Que Vendra")	1124.454-G-2021	Application	1,460.06
Argelia	1124.486-G-2021	Application	3,660.50
Ana Maria (over Ak2)	1124.287-G-2021	Application	5,572.80
Erica (Over "El Peñón")	1124.541-G-2021	Application	6.00
Silvia Beatriz (over "AK3")	1124.572-G-2021	Application	2,290.75
Soldado Poltronieri (over 1124188-20,	1124.108-2022	Application	777.56
545867-R-94 and 545880-O-94)			

Mining Lease Farmin Agreements

Name	Number	Transfrred to CEL	Status	Area (ha)
Marta Alicia	2260-S-58	Yes	Current	23.54
Marta	339.154-R-92	Yes	Current	478.50
Marta 1	339.153-R-92	Yes	Current	163.42
AK4	1124.299-R-18	Yes	Current	1,498.39
Solitario 1-5	545.604-C-94	Yes	Current	685.00
Solitario 1-4	545.605-C-94	Yes	Current	310.83
Solitario 1-1	545.608-C-94	Yes	Subject to Approval	TBA
Solitario 6-1	545.788-C-94	Yes	Subject to Approval	TBA
AGU 3	11240114-2014	Yes	Registered	1,500.00
AGU 5	1124.0343-2014	Yes	Registered	1,443.58
AGU 6	1124.0623-2017	Yes	Registered	1,500.00
AGU 7	1124.0622-S-17	Yes	Registered	1,500.00
Guillermina	1124.045-S-2019	Yes	Registered	2,921.05

Challenger Exploration LimitedACN 123 591 382
ASX: **CEL**

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

JORC Code explanation Criteria Commentary El Petiso 1124.2478-71 Yes Registered 18.00 Exploration Licence (Cateo) Farmin Agreements Name Number Transfrred to CEL Status Area (ha) 295.122-R-1989 Yes Current 1,882.56 228.441-R-1993 Subject to Approval 2,800.00 Yes 545.880-0-1994 Yes Current 149.99 Exploration Licence (Cateo) Held (Direct Award) Grant Name Number Transfrred to CEL **Status** Area (ha) Date 1124.495-I-20 2,059.60 Aven Yes Current 1124-248G-20 Yes Current 933.20 1124-188-G-20 (2 zones) Yes 327.16 Current 1124.313-2021 Yes Current 986.41 Yes 1,521.12 1124.564-G-2021 Current 4,287.38 1124.632-G-2022 Yes Current There are no known impediments to obtaining the exploration licenses or operating the Project. **Exploration done** Intermittent historic sampling has produced a large volume of information and data including sampling, Acknowledgment and appraisal of geological maps, reports, trenching data, underground surveys, drill hole results, geophysical surveys, non-JORC by other parties exploration by other parties. resource estimates plus property examinations and detailed studies by multiple geologists. Prior to exploration by CEL, no work has been completed on the Project since 2006. There is at least 6 km of underground workings that pass through mineralised zones at Hualilan. Surveys of the workings are likely to be incomplete. Commonly incomplete records of the underground geology and sampling have been compiled and digitised as has sample data geological mapping adit exposures and drill hole results. Historic geophysical surveys exist but have been superseded by surveys completed by CEL. Historic drilling on or near the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling programs are: 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totalling 2,040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1,500 RC chip samples 1998 - Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 diamond core holes (DDH-20 to 79) plus 1,700m

RC program

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		- 2003 – 2005 – La Mancha (TSE Listed) undertook 7,447m of DDH core drilling (HD-01 to HD-48)
		- Detailed resource estimation studies were undertaken by EPROM Ltd. (EPROM) in 1996 and CMEC (19
		revised 2000) both of which are well documented and La Mancha 2003 and 2006.
		The collection of all exploration data by the various operators was of a high standard and appropriate
		sampling techniques intervals and custody procedures were used. Not all the historic data has been archiv and so there are gaps in the availability of the historic data.
Geology	 Deposit type geological setting and style of mineralisation. 	Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occur in fault zones and in fracture networks within dacitic intrusions.
		The mineralisation is Zn-(Pb-Cu-Ag) distal skarn (or manto-style skarn) overprinted with vein-hosted mesothermal to epithermal Au-Ag mineralisation. It has been divided into three phases – prograde skarn, retrograde skarn and a later quartz-rich mineralisation consistent with the evolution of a large hydrothermal system. Precise mineral paragenesis and hydrothermal evolution is the subject of on-going work which is bein used for exploration and detailed geometallurgical test work.
		Gold occurs in native form as inclusions with sulphide (predominantly pyrite) and in pyroxene. The mineralisation commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matrix within fractured dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 metres and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important localising the mineralisation.
		Complete oxidation of the surface rock due to weathering is thin. A partial oxidation / fracture oxidation layer near surface is 1 to 40m thick and has been modelled from drill hole intersections.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	Significant intersections reported by previous explorers and used in the Hualilan Mineral Resource Estimate or June 2022 are included in the CEL ASX release date 01 June 2022. A cut-off grade of 1 g/t Au equivalent has be used with up to 2m of internal diltion or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltic has been allowed. No metallurcial or recovery factors have been used in reporting historic drill hole intersections.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	The significant intersections from CEL drill holes and channel samples that have been used in the Mineral Resource Estimate are reported in the CEL ASX release date 01 June 2022. Significant intersections are listed below for drill holes that are not included in the Resource Estimate. Significant intersections are reported to a cut-off of 1.0 g/t AuEq (gold equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.
	 dip and azimuth of the hole 	The following metals and metal prices have been used to report gold grade equivalent (AuEq): Au US\$ 1900 /

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria

JORC Code explanation

- Commentary
- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report the Competent Person should clearly explain why this is the case.

Ag US\$24 /oz, Zn US\$ 4,000 /t and Pb US 2,000/t.

Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from the results of Stage 1 metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation combined metallurgical samples as detailed in the Criteria below.

For the AuEq calculation average metallurgical recovery is estimated as 94.9% for gold, 90.9% for silver, 67.0% for Zn and 57.8% for Pb.

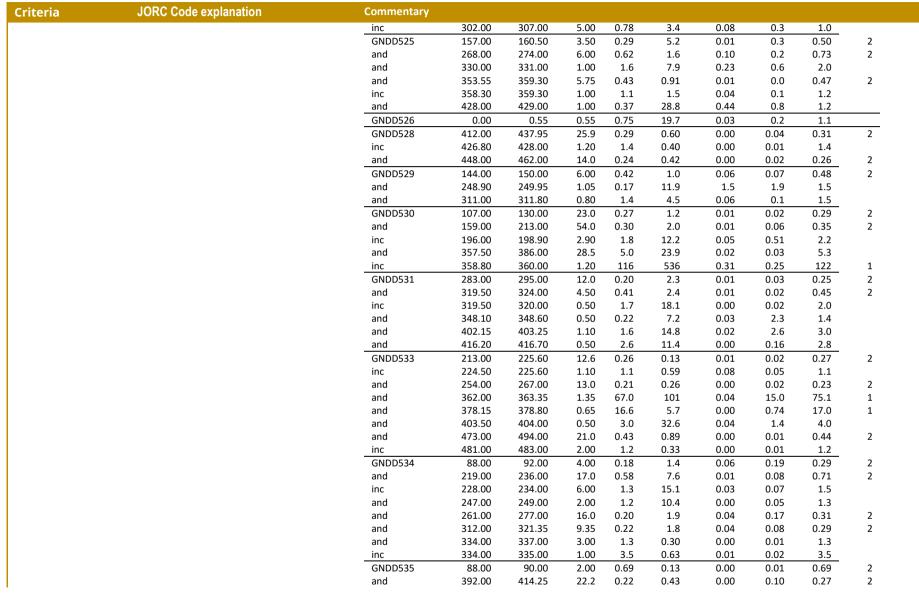
Accordingly, the formula used for Au Equivalent is: AuEq (g/t) = Au (g/t) + [Ag (g/t) \times (24/1900) \times (0.909/0.949)] + [Zn (%) \times (40.00*31.1/1900) \times (0.670/0.949)] + (Pb (%) \times 20.00*31.1/1900) \times (0.578/.9490}.

Hole_id	from (m)	to (m)	int (m)	Au (g/t)	Ag (g/t)	Pb (%)	Zn (%)	AuEq (g/t)	Note
GNDD359 EXT	428.00	466.00	38.00	0.36	0.23	0.00	0.01	0.37	2
inc	440.00	442.00	2.00	2.4	1.2	0.00	0.02	2.4	
and	480.00	490.00	10.00	0.27	0.10	0.00	0.01	0.28	2
GNDD375 EXT	490.70	491.20	0.50	1.1	13.0	0.00	0.64	1.6	
and	508.00	508.50	0.50	6.4	55.0	0.05	2.1	8.0	
and	521.35	524.70	3.35	1.5	15.7	0.02	0.58	1.9	
GNDD487	358.00	362.00	4.00	0.43	0.11	0.00	0.01	0.43	2
and	373.20	376.00	2.80	0.41	5.1	0.01	0.03	0.48	2
and	495.50	518.00	22.5	0.42	0.47	0.00	0.01	0.43	2
inc	497.00	497.50	0.50	4.0	5.8	0.00	0.01	4.1	
and	545.40	547.00	1.60	0.55	3.1	0.00	1.05	1.1	
GNDD495	NSI								
GNDD497	NSI								<u>-</u> '
GNDD501	35.00	53.25	18.2	0.22	32.7	0.02	0.07	0.65	2
inc	39.00	41.00	2.00	1.15	78.7	0.03	0.05	2.1	
inc	52.50	53.25	0.75	0.93	276	0.18	0.88	4.7	
and	187.65	189.00	1.35	2.5	2.0	0.00	0.02	2.5	2
inc	187.65	188.35	0.70	4.4	2.5	0.00	0.03	4.4	
GNDD505	443.00	445.00	2.00	0.29	25.9	0.04	0.41	0.80	2
GNDD506	116.10	118.20	2.10	0.02	4.5	0.09	1.9	0.98	2
inc	117.00	118.20	1.20	0.03	5.2	0.07	2.2	1.1	
and	205.40	216.00	10.6	0.87	1.1	0.00	0.10	0.93	2
inc	205.40	214.00	8.60	0.90	1.3	0.00	0.09	1.0	
and	238.40	273.60	35.2	0.32	1.4	0.01	0.49	0.57	2
inc	238.40	239.60	1.20	0.24	4.1	0.02	2.2	1.3	
inc	267.50	273.60	6.10	0.93	3.1	0.01	1.5	1.7	
and	294.00	302.00	8.00	0.42	0.52	0.01	0.07	0.46	2
and	318.00	323.50	5.50	0.34	0.71	0.01	0.09	0.39	2

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

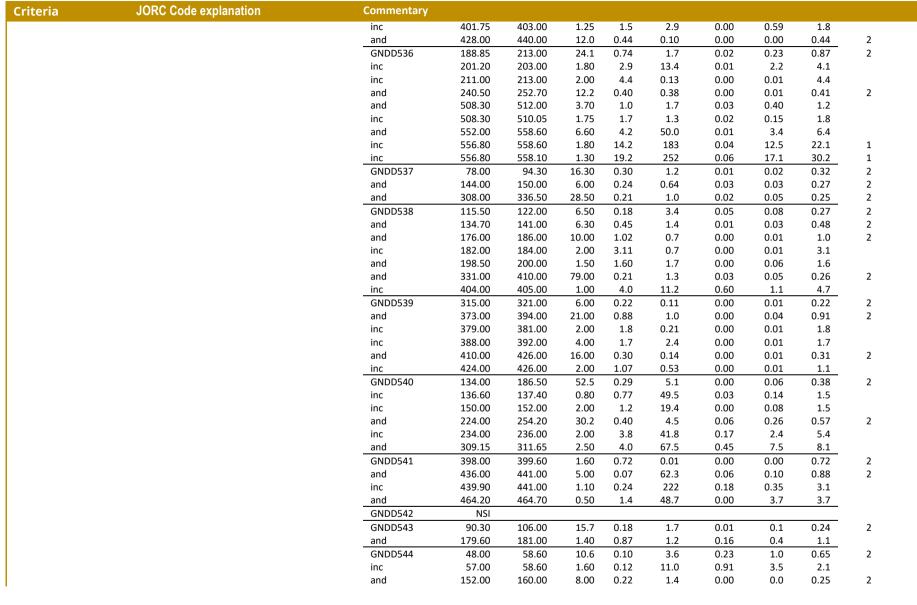

Criteria	JORC Code explanation	Commentary									
		and	430.35	438.65	8.30	0.29	0.26	0.02	0.03	0.31	2
		GNDD508	89.75	91.10	1.35	0.85	2.01	0.10	0.32	1.0	
		and	125.00	128.40	3.40	0.24	8.6	0.00	0.19	0.43	2
		and	167.00	191.00	24.0	0.33	0.47	0.04	0.06	0.37	2
		and	331.00	333.00	2.00	1.1	7.0	0.02	0.09	1.2	
		and	388.35	389.00	0.65	1.0	40.0	0.03	1.6	2.2	
		and	498.80	499.30	0.50	2.6	30.6	0.01	3.1	4.4	
		GNDD509	17.00	19.00	2.00	0.72	8.0	0.01	0.04	0.83	2
		and	61.00	63.00	2.00	2.0	15.5	0.00	0.01	2.2	
		and	223.75	227.30	3.55	2.3	2.5	0.00	0.03	2.4	
		GNDD510	167.00	169.00	2.00	1.4	0.30	0.00	0.01	1.4	
		and	224.00	284.00	60.0	0.24	2.0	0.03	0.07	0.31	2
		inc	238.00	240.00	2.00	0.78	7.8	0.06	0.44	1.1	
		and	348.00	350.00	2.00	3.7	5.9	0.44	1.2	4.4	
		and	430.00	447.00	17.0	0.91	0.43	0.00	0.00	0.91	2
		inc	439.60	447.00	7.40	1.8	0.32	0.00	0.00	1.8	
		and	461.00	465.00	4.00	0.40	0.82	0.00	0.01	0.41	2
		GNDD511	68.00	70.00	2.00	0.54	2.9	0.06	0.07	0.62	2
		and	130.00	132.00	2.00	0.26	26.5	0.03	0.07	0.62	2
		GNDD513	148.00	172.00	24.0	0.24	1.2	0.00	0.02	0.26	2
		and	186.00	188.00	2.00	0.96	15.2	0.23	0.30	1.3	
		and	239.00	243.00	4.00	0.34	1.0	0.00	0.01	0.36	2
		and	484.00	486.00	2.00	2.1	4.8	0.01	0.01	2.20	
		and	508.00	512.00	4.00	0.46	0.23	0.00	0.00	0.47	2
		and	532.00	542.00	10.0	0.32	1.0	0.04	0.08	0.37	2
		and	644.10	653.00	8.90	0.13	3.2	0.01	0.53	0.42	2
		inc	644.10	644.70	0.60	0.40	12.4	0.00	5.4	3.0	
		GNDD514	294.00	295.40	1.40	0.60	268	0.63	1.45	4.6	
		and	307.80	315.85	8.05	1.0	12.7	0.07	1.0	1.6	
		and	324.10	326.45	2.35	8.5	59.1	0.14	5.2	11.6	
		and	349.30	351.15	1.85	0.69	11.0	0.06	2.6	2.0	
		and	401.50	406.05	4.55	0.53	5.3	0.03	1.3	1.2	2
		inc	402.60	404.45	1.85	0.94	8.7	0.02	2.4	2.1	
		and	418.10	419.00	0.90	1.5	2.9	0.00	0.21	1.7	
		and	548.95	549.50	0.55	0.76	11.7	0.00	1.4	1.5	
		GNDD516	NSI								_
		GNDD518	172.00	175.00	3.0	0.39	1.3	0.00	0.00	0.40	2
		and	183.50	185.00	1.50	1.5	25.0	0.58	0.79	2.3	_
		and	201.00	206.00	5.00	0.83	2.5	0.17	0.21	1.0	2
		inc	203.00	204.25	1.25	2.2	0.87	0.05	0.14	2.2	
		GNDD519	NSI								
		GNDD521	82.00	86.00	4.00	0.26	0.20	0.00	0.0	0.26	2
		and	267.00	307.00	40.0	0.22	2.0	0.04	0.1	0.31	2

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

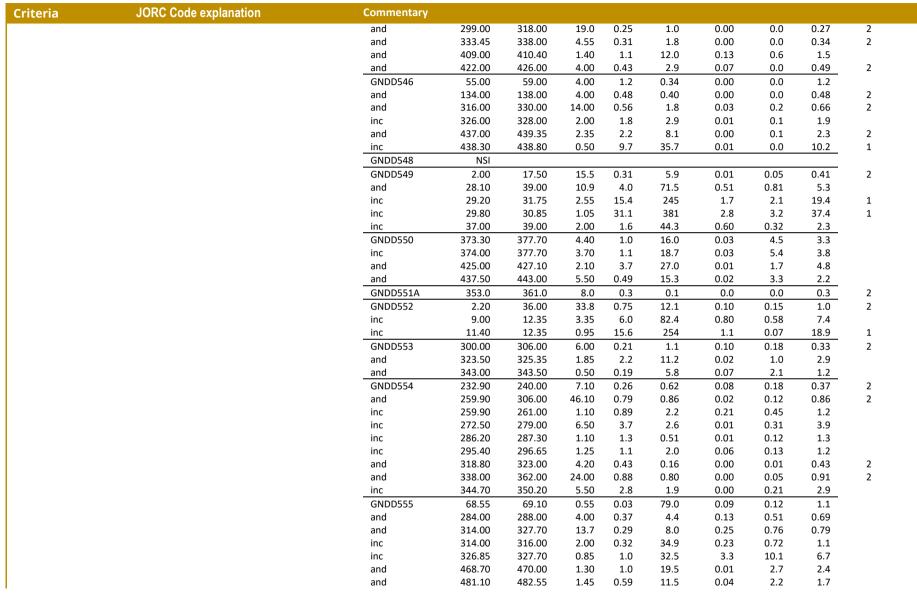


Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com



Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

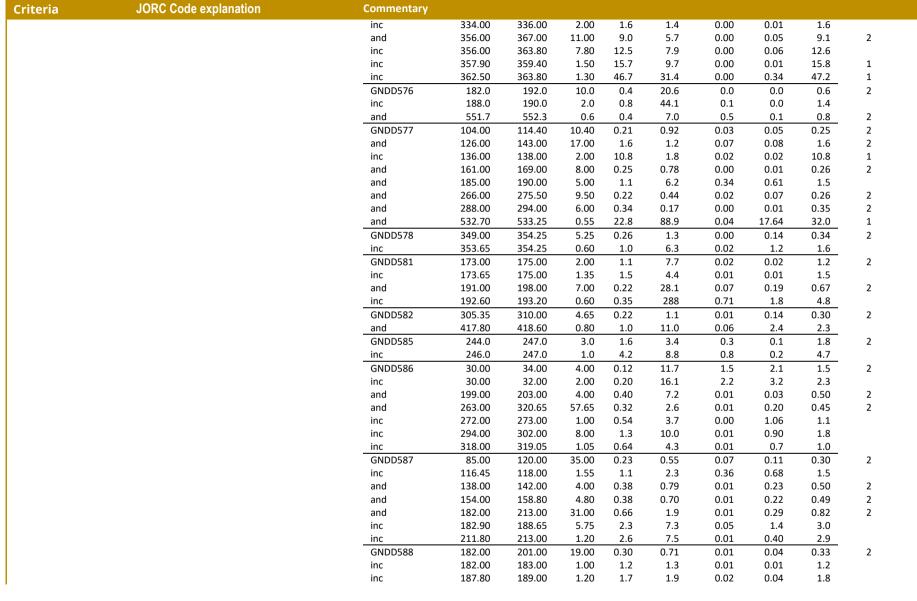
T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com


Criteria	JORC Code explanation	Commentary									
		and	489.75	490.25	0.50	0.23	6.0	0.05	1.7	1.1	
		and	495.00	498.70	3.70	0.90	11.3	0.01	1.2	1.6	
		inc	496.35	498.70	2.35	1.1	15.6	0.01	1.6	2.0	
		and	520.85	522.50	1.65	1.3	16.5	0.00	0.20	1.6	2
		inc	521.80	522.50	0.70	2.3	26.7	0.00	0.42	2.8	
		and	531.80	532.40	0.60	9.4	19.8	0.02	1.6	10.4	1
		and	538.80	539.55	0.75	1.7	20.0	0.00	0.92	2.4	
		GNDD556	83.20	97.00	13.8	0.35	1.3	0.09	0.14	0.45	2
		inc	86.00	87.50	1.5	1.0	1.1	0.09	0.17	1.1	
		inc	94.60	95.80	1.2	1.0	2.2	0.11	0.17	1.1	
		and	115.00	124.00	9.00	0.25	0.35	0.03	0.10	0.30	2
		GNDD557	271.3	333.0	61.7	0.3	1.2	0.0	0.0	0.3	2
		inc	286.0	286.8	0.9	1.9	9.0	0.0	0.0	2.0	
		inc	330.3	331.6	1.3	2.4	6.7	0.0	0.0	2.5	
		and	460.0	485.6	25.6	0.4	5.1	0.1	0.0	0.5	2
		GNDD558	310.00	314.00	4.00	0.25	0.62	0.05	0.11	0.32	2
		and	348.00	353.00	5.00	0.25	1.1	0.10	0.14	0.35	2
		and	380.00	382.50	2.50	0.29	0.88	0.04	0.29	0.45	2
		GNDD559	14.00	18.00	4.00	0.23	0.45	0.01	0.10	0.28	2
		GNDD560	407.00	409.00	2.00	0.55	0.74	0.00	0.00	0.56	2
		and	483.40	486.00	2.60	0.33	4.9	0.05	0.05	0.25	2
		GNDD561	NSI	480.00	2.00	0.13	4.5	0.03	0.03	0.23	2
		GNDD563	59.00	93.40	34.4	0.46	2.0	0.23	0.48	0.75	2
		inc	76.00	82.30	6.30	1.1	7.7	1.1	2.2	2.4	2
		inc	90.00	92.00	2.00	3.0	0.39	0.04	0.05	3.1	
		and	125.00	128.10	3.10	0.43	0.59	0.04	0.03	0.48	2
		and	148.00	154.00	6.00	0.43	2.0	0.02	0.07	0.46	2
		and	182.00	202.00	20.0	0.11	1.7	0.07	0.23	0.20	2
		inc	184.00	184.50	0.50	5.1	16.8	1.2	2.1	6.5	2
											2
		GNDD564	40.0	47.0	7.0	0.2	11.6	0.2	0.2	0.4	2 2
		and	453.0	457.0	4.0	0.5	2.0	0.0	0.0	0.6	2
		and	484.0	486.0	2.0	0.2	3.7	2.3	0.0	1.3	
		GNDD565	NSI	452.25	10.20	0.05	0.65	0.00	0.2	0.10	2
		GNDD566	434.05	452.25	18.20	0.05	0.65	0.00	0.3	0.19	2
		and	608.15	608.65	0.50	6.4	79.8	0.00	0.81	7.7	_
		GNDD570	55.80	78.00	22.20	0.60	3.7	0.36	0.43	0.91	2
		inc	55.80	57.00	1.20	0.60	2.8	0.41	0.80	1.1	
		inc	63.00	70.30	7.30	1.4	9.0	0.82	0.41	1.8	
		and	95.00	105.00	10.00	0.33	1.4	0.02	0.15	0.43	2
		inc	103.00	105.00	2.00	0.94	2.6	0.08	0.32	1.1	
		GNDD571	213.00	260.00	47.00	0.34	1.1	0.00	0.08	0.39	2
		and	280.00	312.00	32.00	0.19	0.71	0.00	0.02	0.21	2
		and	328.00	338.00	10.00	0.59	0.49	0.00	0.01	0.61	2

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

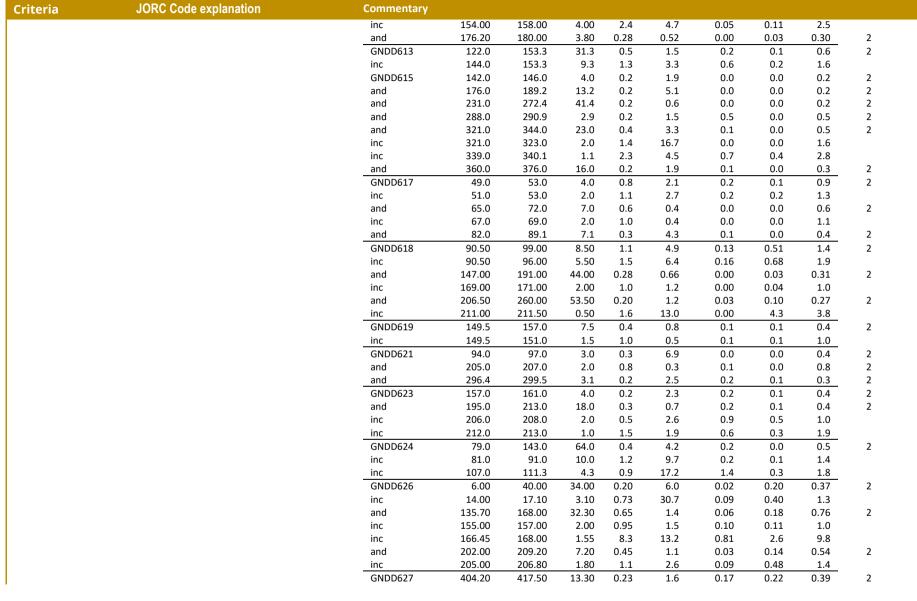
riteria	JORC Code explanation	Commentary									
		and	213.00	220.30	7.30	0.57	0.58	0.00	0.01	0.58	2
		and	242.00	254.00	12.00	0.22	1.3	0.14	0.17	0.34	2
		and	281.40	299.50	18.10	2.3	2.8	0.23	0.46	2.6	2
		inc	281.40	282.65	1.25	4.6	13.3	1.51	3.4	6.6	
		inc	289.70	290.70	1.00	32.6	18.1	1.57	1.9	34.0	1
		inc	298.85	299.50	0.65	2.1	4.4	0.33	1.9	3.1	
		and	314.00	401.00	87.00	0.67	1.4	0.00	0.01	0.69	2
		inc	315.00	323.00	8.00	2.9	3.4	0.01	0.01	3.0	
		inc	331.00	341.00	10.00	1.2	1.6	0.00	0.05	1.3	
		inc	379.00	381.00	2.00	2.2	0.4	0.00	0.00	2.3	
		inc	399.00	401.00	2.00	1.0	0.30	0.00	0.00	1.0	
		GNDD589	394.00	395.00	1.00	4.2	8.5	1.0	0.83	4.9	
		and	266.00	269.25	3.25	0.59	6.3	0.09	0.24	0.79	2
		and	273.80	274.40	0.60	0.93	9.6	0.03	0.14	1.1	-
		GNDD591	224.00	238.00	14.00	1.2	0.91	0.02	0.0	1.2	2
		inc	229.25	232.00	2.75	4.4	3.5	0.05	0.1	4.5	_
		inc	236.00	238.00	2.00	1.3	0.48	0.02	0.0	1.3	
		and	250.00	254.00	4.00	1.7	3.7	0.07	0.4	2.0	2
		inc	253.30	254.00	0.70	8.80	17.7	0.39	2.2	10.1	_
		and	382.70	386.00	3.30	4.6	12.4	0.02	1.3	5.4	2
		inc	382.70	383.40	0.70	20.5	55.7	0.01	5.6	23.8	1
		and	425.00	429.60	4.60	0.53	0.63	0.00	0.01	0.5	2
		inc	429.00	429.60	0.60	3.1	0.56	0.00	0.01	3.1	2
		and	436.40	437.00	0.60	1.4	13.1	0.00	2.3	2.6	
		GNDD593	105.50	124.00	18.50	0.16	2.2	0.00	0.08	0.23	2
			139.00	141.00	2.00	0.18	0.92	0.00	0.08	0.23	2
		and			11.00	0.83		0.00	0.10	0.74	2
		and	153.00	164.00			1.7				Z
		inc	153.00	157.00	4.00	1.7	4.0	0.05	0.20	1.8	2
		GNDD594	104.00	116.00	12.00	0.72	1.8	0.21	0.51	1.0	2
		inc	108.00	110.00	2.00	3.1	6.5	0.48	1.5	3.9	
		and	162.00	163.40	1.40	2.1	0.30	0.00	0.01	2.1	•
		and •	198.00	204.00	6.00	0.63	3.3	0.02	0.13	0.73	2
		inc	198.00	198.50	0.50	1.7	3.3	0.12	0.32	2.0	_
		GNDD595	198.35	212.10	13.75	0.32	2.5	0.00	0.02	0.36	2
		and	226.00	247.20	21.20	0.58	4.0	0.06	0.14	0.71	2
		inc	230.00	231.30	1.30	1.2	3.6	0.10	0.40	1.5	
		inc	240.45	242.00	1.55	3.2	20.3	0.28	0.86	3.9	
		and	266.00	305.80	39.80	0.26	2.9	0.08	0.30	0.45	2
		inc	266.00	268.00	2.00	1.6	8.5	0.01	0.04	1.7	
		inc	304.45	305.80	1.35	1.2	28.5	2.1	8.0	5.7	
		and	375.20	382.10	6.90	0.28	3.8	0.08	0.31	0.48	2
		inc	381.35	382.10	0.75	2.3	30.8	0.17	2.3	3.8	
		GNDD597	NSI								

1,045.8m shares 10m options 120m perf shares 16m perf rights **Australian Registered Office**

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

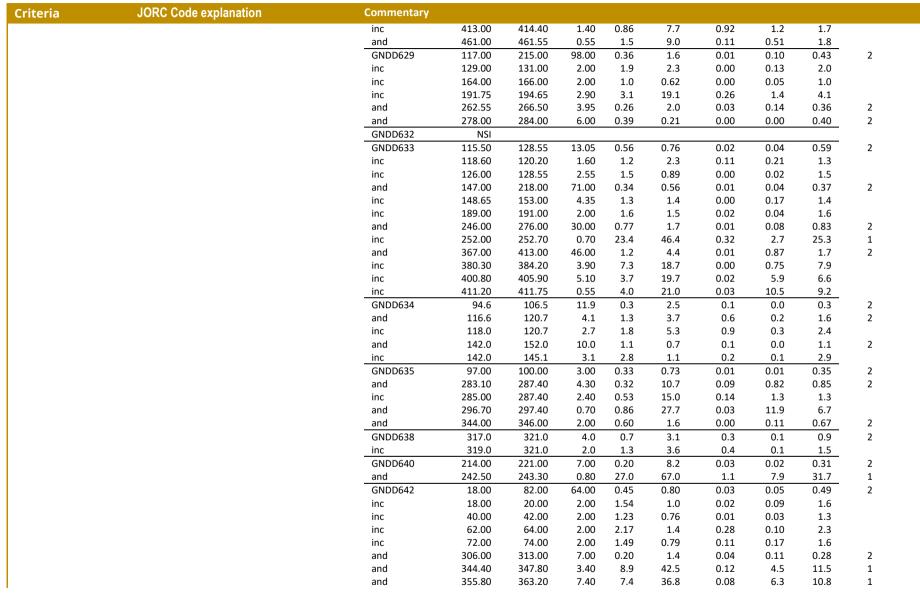

Criteria	JORC Code explanation	Commentary									
		GNDD598	114.85	120.35	5.50	0.41	1.6	0.06	0.06	0.47	2
		inc	114.85	115.65	0.80	1.0	3.0	0.17	0.16	1.1	
		and	168.00	240.00	72.00	0.24	1.0	0.01	0.10	0.30	2
		inc	204.00	206.00	2.00	1.4	0.86	0.00	0.00	1.4	
		and	253.00	271.00	18.00	0.34	0.62	0.00	0.01	0.35	2
		and	283.00	295.00	12.00	0.40	1.5	0.00	0.01	0.42	2
		GNDD599	NSI								
		GNDD602	351.0	355.0	4.0	0.2	0.9	0.1	0.0	0.3	2
		GNDD603	61.00	85.90	24.90	0.20	7.7	0.00	0.0	0.31	2
		inc	81.00	83.00	2.00	0.88	17.4	0.00	0.1	1.1	
		and	124.00	132.00	8.00	0.22	2.3	0.03	0.1	0.29	2
		GNDD604	163.45	166.70	3.25	2.0	15.7	1.3	2.5	3.6	
		and	236.00	260.65	24.65	2.3	6.4	0.04	1.0	2.8	2
		inc	236.00	238.00	2.00	1.0	10.8	0.05	0.52	1.4	
		inc	247.50	249.00	1.50	5.0	3.4	0.18	0.26	5.2	
		inc	259.45	260.65	1.20	36.2	92.1	0.09	17.3	45.3	1
		and	375.00	375.90	0.90	24.9	15.3	0.01	3.5	26.7	1
		and	417.60	419.85	2.25	3.3	30.1	0.01	8.2	7.5	
		and	426.40	428.20	1.80	1.4	0.14	0.00	0.01	1.4	
		GNDD605	15.00	19.00	4.00	0.12	1.8	0.16	0.32	0.32	2
		and	46.00	70.00	24.00	0.13	2.6	0.01	0.54	0.41	2
		GNDD606	42.00	62.00	20.00	0.40	1.6	0.01	0.16	0.50	2
		inc	48.00	50.00	2.00	2.3	2.6	0.01	0.17	2.4	
		GNDD607	215.6	226.0	10.4	0.3	3.4	0.2	0.1	0.4	2
		inc	215.6	216.3	0.7	0.6	15.3	2.2	0.8	2.0	
		and	348.5	350.0	1.5	2.6	21.1	0.8	0.1	3.2	2
		inc	348.5	349.4	0.9	4.2	33.5	1.3	0.2	5.2	
		and	368.0	370.0	2.0	0.1	97.8	0.1	0.0	1.3	
		GNDD609	76.0	90.0	14.0	0.2	0.6	0.0	0.0	0.3	2
		and	123.5	127.0	3.5	0.3	0.4	0.1	0.0	0.3	2
		and	151.0	171.0	20.0	0.4	0.2	0.0	0.0	0.4	2
		inc	165.0	171.0	6.0	0.9	0.4	0.1	0.0	1.0	
		and	359.2	359.7	0.5	0.8	13.2	1.2	0.0	1.5	
		GNDD610	93.00	99.00	6.00	0.19	4.8	0.01	0.05	0.27	2
		GNDD611	68.0	72.0	4.0	0.3	1.7	0.3	0.1	0.5	2
		and	213.3	215.4	2.0	0.5	6.9	0.4	0.1	0.7	2
		inc	214.2	215.4	1.2	0.8	2.6	0.4	0.1	1.0	
		GNDD612	64.90	100.15	35.25	0.93	2.7	0.30	0.49	1.2	2
		inc	76.00	84.00	8.00	3.4	8.4	0.91	1.7	4.5	
		inc	99.00	100.15	1.15	0.76	3.8	0.70	0.82	1.3	
		and	117.00	131.00	14.00	1.0	1.1	0.01	0.22	1.1	2
		inc	117.00	121.00	4.00	3.0	3.1	0.02	0.61	3.3	
		and	148.00	162.50	14.50	0.93	6.3	0.04	0.10	1.1	2

1,045.8m shares 10m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

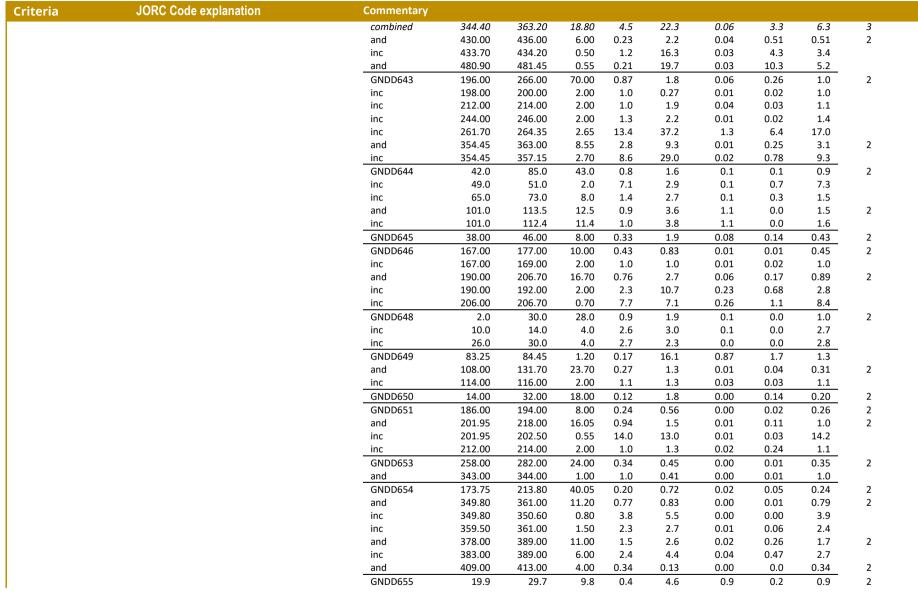


Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com



Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

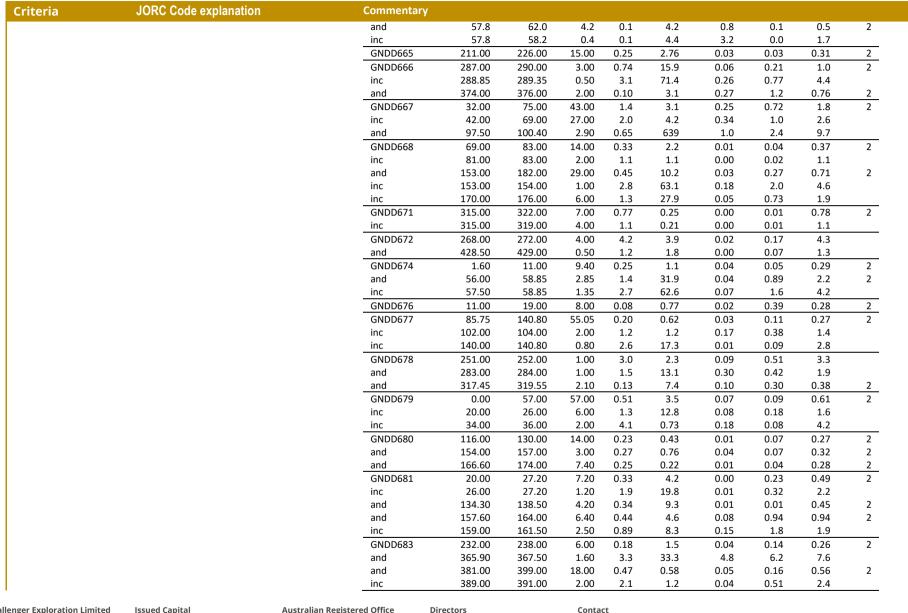
T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights **Australian Registered Office**

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com


Criteria	JORC Code explanation	Commentary									
		inc	21.7	26.5	4.9	0.6	6.2	1.0	0.4	1.3	
		and	46.0	54.6	8.6	0.3	0.6	0.0	0.0	0.3	2
		and	69.5	72.0	2.5	0.4	0.8	0.1	0.0	0.5	2
		and	96.9	104.7	7.8	0.9	4.3	0.6	0.1	1.2	2
		inc	96.9	101.8	4.9	1.2	6.4	0.8	0.1	1.7	
		GNDD656	70.0	86.0	16.0	0.1	0.9	0.1	0.0	0.2	2
		GNDD657	54.55	84.60	30.05	0.39	1.1	0.17	0.29	0.58	2
		inc	64.00	69.00	5.00	1.4	2.9	0.46	0.59	1.8	
		inc	83.00	84.60	1.60	0.58	1.7	0.37	0.79	1.0	
		and	100.00	114.00	14.00	0.87	1.1	0.10	0.14	1.0	2
		inc	104.00	114.00	10.00	1.1	1.2	0.10	0.13	1.2	
		GNDD659	230.00	235.15	5.15	0.40	12.9	0.16	0.18	0.67	2
		inc	234.00	235.15	1.15	1.7	27.8	0.65	0.46	2.4	
		and	343.30	349.00	5.70	0.33	9.6	0.12	1.3	1.1	2
		inc	343.30	347.00	3.70	0.48	11.4	0.16	1.8	1.5	
		GNDD660	71.50	114.30	42.80	1.2	3.3	0.18	0.41	1.4	2
		inc	74.25	76.00	1.75	2.0	1.9	0.18	0.16	2.1	
		inc	80.45	83.00	2.55	1.3	7.0	0.32	0.24	1.6	
		inc	86.00	88.00	2.00	0.89	6.5	0.31	0.17	1.1	
		inc	95.00	97.00	2.00	1.0	5.0	0.32	0.75	1.5	
		inc	109.00	114.30	5.30	5.4	6.0	0.10	1.7	6.3	
		and	127.90	128.40	0.50	12.9	62.1	3.9	18.4	23.0	1
		and	174.45	208.00	33.55	0.19	0.18	0.00	0.01	0.20	2
		GNDD661	17.0	111.0	94.0	0.6	1.2	0.1	0.0	0.7	2
		inc	17.0	24.5	7.5	2.2	2.2	0.2	0.1	2.3	
		inc	44.0	46.0	2.0	1.0	0.3	0.1	0.0	1.0	
		inc	64.0	66.0	2.0	2.8	0.2	0.0	0.0	2.8	
		inc	74.0	76.0	2.0	8.8	0.2	0.1	0.0	8.8	
		inc	109.0	111.0	2.0	1.0	3.5	0.2	0.1	1.2	
		and	135.0	139.0	4.0	2.9	1.3	0.2	0.0	3.0	2
		and	163.0	208.0	45.0	0.5	6.3	0.2	0.0	0.6	2
		inc	183.0	185.0	2.0	1.1	4.5	0.0	0.0	1.2	
		inc	191.0	192.4	1.4	5.4	50.1	0.7	0.3	6.4	
		inc	197.6	202.0	4.4	2.0	10.5	1.0	0.1	2.6	
		GNDD662	34.00	48.00	14.00	0.47	1.3	0.01	0.03	0.50	2
		inc	42.00	44.00	2.00	1.1	1.7	0.01	0.02	1.1	
		and	74.00	78.00	4.00	1.1	3.5	0.03	0.07	1.1	
		and	208.00	224.00	16.00	0.18	3.4	0.07	0.19	0.33	2
		inc	218.00	220.00	2.00	0.47	11.9	0.30	0.85	1.1	
		and	236.80	237.65	0.85	23.5	13.4	0.00	0.06	23.7	1
		and	254.50	263.40	8.90	0.24	3.8	0.20	0.41	0.52	2
		inc	260.70	261.30	0.60	0.87	26.0	1.8	2.9	2.9	
		GNDD664	37.5	38.3	0.8	2.8	47.2	0.3	0.1	3.5	

1,045.8m shares 10m options 120m perf shares 16m perf rights **Australian Registered Office**

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 1,045.8m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commentary									
		GNDD684	115.0	142.0	27.0	0.3	0.7	0.0	0.0	0.3	2
		inc	125.0	127.0	2.0	1.1	6.8	0.3	0.2	1.4	
		and	209.0	274.3	65.3	2.3	1.7	0.2	0.1	2.4	2
		inc	256.0	257.3	1.3	1.1	0.8	0.0	0.0	1.1	
		inc	265.6	267.5	1.9	71.6	41.1	3.8	3.5	74.5	10
		and	324.9	337.0	12.2	10.1	11.7	1.5	0.1	11.0	2
		inc	324.9	333.1	8.3	14.8	17.1	2.2	0.1	16.0	10
		and	354.5	362.0	7.6	1.1	0.7	0.1	0.0	1.2	2
		inc	359.8	362.0	2.2	3.2	0.9	0.0	0.0	3.2	
		and	408.0	418.0	10.0	0.6	0.7	0.0	0.0	0.6	2
		inc	408.0	412.0	4.0	1.4	1.8	0.0	0.0	1.4	
		GNDD685	3.0	57.0	54.0	0.2	2.8	0.1	0.1	0.3	2
		and	91.0	104.6	13.6	0.1	8.7	0.1	0.0	0.3	2
		and	362.4	370.8	8.4	4.5	5.3	2.0	0.0	5.5	2
		inc	362.4	365.0	2.6	14.3	16.1	6.3	0.0	17.4	
		inc	362.4	363.7	1.3	26.5	29.5	12.3	0.0	32.5	10
		and	409.0	429.0	20.0	1.0	0.9	0.2	0.0	1.1	2
		inc	413.0	418.5	5.5	2.4	1.1	0.4	0.0	2.6	
		inc	425.0	427.0	2.0	1.5	1.4	0.1	0.0	1.6	
		and	548.0	549.7	1.7	0.4	8.1	2.1	0.0	1.5	2
		and	624.6	627.0	2.4	0.2	0.6	1.2	0.0	0.8	2
		and	651.2	653.0	1.9	20.0	8.3	6.8	0.0	23.3	2
		GNDD686	93.50	103.45	9.95	0.63	2.7	0.19	0.39	0.88	2
		inc	93.50	94.60	1.10	1.3	3.4	0.09	0.25	1.5	
		inc	102.40	103.45	1.05	2.3	12.8	1.3	2.3	3.8	
		and	163.00	173.00	10.00	0.10	1.5	0.09	0.25	0.26	2
		and	220.00	229.50	9.50	0.29	0.15	0.00	0.01	0.30	2
		GNDD687	116.00	134.00	18.00	0.16	2.9	0.11	0.14	0.28	2
		inc	126.00	128.00	2.00	0.86	15.0	0.67	0.67	1.5	
		and	171.75	172.25	0.50	1.0	37.7	3.1	4.5	4.1	
		GNDD688	307.00	323.00	16.00	0.24	0.21	0.01	0.0	0.25	2
		GNDD689	56.00	58.00	2.00	0.61	7.3	0.02	0.02	0.71	2
		GNDD690	90.50	116.00	25.50	0.36	1.2	0.02	0.07	0.41	2
		inc	94.00	96.00	2.00	1.0	2.7	0.01	0.02	1.1	_
		inc	111.90	114.00	2.10	1.2	2.6	0.10	0.35	1.4	
		and	140.00	146.00	6.00	0.08	11.5	0.02	0.14	0.28	2
		GNDD691	146.20	159.00	12.80	0.22	0.31	0.05	0.08	0.27	2
		inc	156.00	157.30	1.30	1.0	1.1	0.35	0.53	1.4	_
		and	232.50	245.55	13.05	0.42	2.2	0.04	0.24	0.57	2
		inc	243.70	245.55	1.85	2.2	8.0	0.04	0.50	2.6	_
		and	263.00	293.00	30.00	0.84	1.2	0.01	0.08	0.89	2
		inc	269.00	271.00	2.00	1.2	0.69	0.00	0.12	1.3	_
		inc	275.00	277.00	2.00	1.2	4.1	0.01	0.25	1.3	
		IIIC	273.00	277.00	2.00	1.2	7.1	0.01	0.23	1.5	

1,045.8m shares 10m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNDD692	37.00	63.15	26.15	0.31	13.6	0.02	0.04	0.50	2
		inc	44.00	46.00	2.00	0.66	35.0	0.02	0.02	1.1	
		inc	50.00	52.00	2.00	0.94	42.7	0.04	0.08	1.5	
		inc	62.00	63.15	1.15	2.6	86.9	0.03	0.17	3.8	
		GNDD693	231.20	253.40	22.20	0.86	2.3	0.01	0.29	1.0	2
		inc	234.60	236.00	1.40	1.5	1.5	0.00	0.18	1.6	
		inc	251.50	253.40	1.90	6.1	22.9	0.05	3.03	7.8	
		and	350.00	356.50	6.50	1.0	2.5	0.01	0.70	1.3	
		inc	350.00	353.90	3.90	1.6	4.0	0.01	1.0	2.1	
		and	378.00	387.05	9.05	4.6	9.2	0.01	2.2	5.7	
		inc	386.45	387.05	0.60	44.0	67.8	0.08	18.7	53.5	1
		and	400.90	402.70	1.80	4.6	2.9	0.00	0.5	4.9	
		GNDD696	200	206.00	6.00	0.22	0.12	0.00	0.01	0.23	2
		and	220.00	226.00	6.00	0.35	0.29	0.01	0.07	0.39	2
		GNDD697	41.0	106.3	65.3	0.5	2.0	0.2	0.4	0.7	2
		inc	52.5	57.0	4.5	2.4	6.6	0.8	1.4	3.3	-
		inc	65.0	68.6	3.6	2.9	14.0	2.0	3.3	5.0	
		GNDD700	198.00	210.00	12.00	0.68	1.5	0.13	0.46	0.94	2
		inc	199.20	202.00	2.80	1.1	2.6	0.15	1.0	1.6	_
		inc	208.00	210.00	2.00	1.4	1.3	0.13	0.16	1.5	
		and	249.00	269.00	20.00	0.44	1.3	0.06	0.23	0.58	2
		inc	255.00	259.00	4.00	1.1	3.1	0.14	0.23	1.5	2
		and	296.40	305.35	8.95	0.18	5.7	0.14	0.71	0.26	2
		GNDD701	42.00	44.00	2.00	1.2	7.6	0.02	0.03	1.3	2
		and	77.30	82.20	4.90	0.28	14.2	0.02	0.10	0.50	2
		inc	80.90	82.20	1.30	0.28	45.5	0.03	0.08	1.5	2
		and	121.00	150.00	29.00	0.80	45.5	0.18	0.27	0.26	2
		inc	122.50	125.50	3.00	1.1	4.0 17.3	0.03	0.03	1.5	2
						1.2				1.4	2
		GNDD702	53.00	62.00	9.00		6.6	0.07	0.19		2
		inc	57.00	62.00	5.00	1.8	8.4	0.10	0.29	2.0	2
		and	117.00	125.50	8.50	1.6	0.29	0.00	0.02	1.6	2
		inc	117.00	121.00	4.00	3.2	0.41	0.00	0.03	3.2	2
		and	155.00	164.60	9.60	0.20	0.32	0.00	0.02	0.22	2
		and	213.50	214.20	0.70	0.95	1.3	0.02	0.20	1.1	
		GNDD703	9.00	20.00	11.00	0.15	2.7	0.09	0.37	0.37	2
		and ·	182.75	210.00	27.25	0.32	1.3	0.02	0.12	0.39	2
		inc	182.75	183.25	0.50	2.4	12.2	0.03	2.4	3.7	
		inc	200.15	200.80	0.65	5.4	4.6	0.05	0.80	5.9	_
		and	326.00	330.00	4.00	0.10	1.8	0.03	0.27	0.26	2
		_ and	597.00	597.50	0.50	1.0	0.72	0.00	0.71	1.4	
		GNDD704	170.00	201.30	31.30	0.42	1.0	0.01	0.18	0.52	2
		inc	174.00	176.00	2.00	1.2	2.1	0.00	0.24	1.3	
		inc	183.00	185.00	2.00	1.2	0.92	0.02	0.19	1.3	

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	227.00	228.40	1.40	0.84	3.4	0.01	0.70	1.2	
		and	295.65	296.20	0.55	5.4	89.2	0.09	16.2	14.0	1
		GNDD706	267.00	273.00	6.00	0.52	1.7	0.06	0.04	0.57	2
		inc	267.00	269.00	2.00	1.3	2.1	0.16	0.06	1.4	
		GNDD707	NSI								
		GNDD709	66.00	72.00	6.00	0.05	2.2	0.01	0.51	0.32	2
		GNDD710	372.00	378.50	6.50	0.31	0.14	0.00	0.01	0.31	2
		and	435.00	437.00	2.00	0.92	1.0	0.04	0.13	1.0	
		and	466.50	477.00	10.50	0.35	0.20	0.00	0.01	0.36	2
		and	521.00	523.00	2.00	1.4	0.75	0.00	0.00	1.4	
		GNDD711	270.60	280.50	9.90	0.38	0.91	0.22	0.44	0.64	2
		inc	276.00	277.50	1.50	1.5	2.2	0.60	0.70	2.0	
		and	295.00	303.45	8.45	0.32	0.38	0.08	0.23	0.45	2
		inc	298.00	299.10	1.10	0.80	1.2	0.24	0.75	1.2	
		inc	302.30	303.45	1.15	0.78	0.53	0.09	0.49	1.0	_
		and	319.00	361.00	42.00	5.31	5.91	0.14	1.02	5.9	2
		inc	320.75	321.70	0.95	1.12	6.98	0.92	1.16	1.9	
		inc	357.70	359.60	1.90	113	117	1.72	21.2	125	
			10 g/t Au equi 2 g/t Au equiva								
Data aggregation methods	- In reporting Exploration Results v	(4)combine NSI: no signi veighting Weighted	d zones with 0. d zones with 1. ficant intersect average sign to cut-off gra	0 g/t Au cut- tion ificant inter	off (grades	include i	nternal dilat d to a gold	ion from be	tween zone ivalent (Au	s) ıEq). Resu	
methous	minimum grade truncations (eg o high grades) and cut-off grades o Material and should be stated.	utting of internal direction internal directions internal directions.	llution betwe llution betwe I to report go	en samples en samples	above th	e cut-off e cut-off	grade and grade. The	l 0.2 g/t Au e following	equivaler metals an	t allowing d metal pr	up to 10m o
	- Where aggregate intercepts inco short lengths of high-grade resul longer lengths of low-grade resul procedure used for such aggrega be stated and some typical exam aggregations should be shown in	rs and ts the tion should ples of such detail.	ts have been	applied to	the repor	ted grade	es.				
Relationship between	 The assumptions used for any represental equivalent values should be stated. These relationships are particular important in the reporting of 	e clearly		•		-					

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
mineralisation widths and intercept lengths	Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not	the exploration program. Apparent widths may be thicker in the case where the dip of the mineralisation changes and/or bedding-parallel mineralisation intersects NW or ENE-striking cross faults and veins. Representative cross section interpretations have been provided periodically with releases of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of reports released to the ASX.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available final data have been reported where possible and plans of all drilling with results.
Other substantive exploration data	- Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. Specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are used to estimate densities in Resource Estimates. Eight Induced Polarisation (IP) lines have been completed in the northern areas of the Project. Stage 1 surveying was done on 1 kilometre length lines oriented 115° azimuth, spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Stage 2 surveying was done across the entire field on 1 – 3 kilometre length lines oriented 090°, spaced 400m apart with a 50m dipole. On-going data interpretation is being done as drilling proceeds. Two ground magnetic surveys and a drone magnetic survey have been completed. The results of these data and subsequent geological interpretations are being used to guide future exploration.
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-	 CEL Plans to undertake the following over the next 12 months Additional resource extension, infill and exploration drilling;

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
	out drilling).	Detailed interpretation of known mineralized zones;
	 Diagrams clearly highlighting the areas 	 Geophysical tests for undercover areas.
	of possible extensions including the	• Structural interpretation and alteration mapping using high resolution satellite data and geophysics to
	main geological interpretations and	better target extensions of known mineralisation.
	future drilling areas provided this information is not commercially	 Field mapping program targeting extensions of known mineralisation.
	sensitive.	 Further metallurgical and comminution test work.
	Scholere.	 A preliminary economic assessment / scoping study for a mining project.

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into a series of excel spreadsheets. These data have been checked for errors. Checks have been made against the original logs and with follow-up twin and close spaced drilling. Only some of the historic drill holes have been used in the Resource Estimate, including the results presented in Section2. Some drill holes have been excluded where the geology indicates that the drill hole is likely mis-located or where the drill hole has been superseded by CEL drilling. For CEL drilled holes, assay data is received in digital format. Backup copies are backed up into a cloud-based file storage system and the data is entered into a drill hole database which is also securely backed up off site.
		The drill hole data is backed up and is updated periodically by the CEL GIS and data management team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The Competent Person has undertaken site visits during exploration. Site visits were undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020 before COVID-19 closed international travel. Post COVID site visits were undertaken from 21 November – 4 December 2021 and 11 – 23 May 2022. The performance of the drilling program, collection of data, sampling procedures, sample submission and exploration program were initiated and reviewed during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The geological interpretation is considered appropriate given the drill core density of data that has been collected, access to mineralisation at surface and underground exposures. Given the data, geological studies past and completed by CEL, the Competent Person has a high level of confidence in the geological model that has been used to constrain the mineralised domains. It is assumed that networks of fractures controlled by local geological factors have focussed hydrothermal fluids and been the site of mineralisation in both the prograde zinc skarn and retrograde mesothermal – epithermal stages of hydrothermal evolution. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities. Mineralised domains have been built using explicit wireframe techniques from 0.2 – 0.5 g/t AuEq mineralised intersections, joined between holes by the instruction from the geology and structure. Continuity of grade between drill holes is determined by the intensity of fracturing, the host rock contacts (particularly dacite – limestone contacts) and by bedding parallel faults, particularly within limestone, at the limestone and overlying sedimentary rock contact and within the lower sequences of the sedimentary rocks within 40m of the contact. No alternative interpretations have been made form which a Mineral Resource Estimate has been made.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the 	30 separate domains were interpreted over a strike length of 2.2kms. The domains vary in width and orientation from 2m up to 100m in width. The deepest interpreted domain extends from the surface down approximately 550m below the surface.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary						
	Mineral Resource.							
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. 	Estimation was made being the elements the for bocks in the Miner No previous JORC Rescompare to the currer A 2m composite length length of 1.54m for sa A statistical analysis won a domain-by-doma top cuts were applied the high-grade compograde population with table shows the top cuts	at for pyrite which is of all Resource Estimate. Durce estimates or no at Resource estimate. In was selected after remples taken within the as undertaken on the in basis. The domains in order to reduce the sites too severely. The in each group and selected in each group and e	n-JORC Foreign No production eviewing the emineralised sample comparts were then go influence of expecting the valuecting the valuecting the value of the control of the co	gn Resource eon records are domains. posites Top curouped by how fextreme values were chosture above wh	estimates were available to ble lengths fro buts were appliest rock and mues on the resen by assessing the distrib	e made with provide com m the drilling ed to the Au, ineralisation ource estimang the high-e	similar metho parisons. g which showe , Ag, Zn and Pt style and grou ites without do and distribution
	- Estimation of deleterious elements or other non-grade variables of economic	table shows the top et	Group	Domain	Au (ppm)	Ag (ppm)	Zn (%)	Pb (%)
	significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed.		ult Zone hosted nata and Sanchez)	101 102 103 104 201	80	300	20	2.5
	Any assumptions behind modelling of selective mining units.Any assumptions about correlation	LUT	(siltstone) hosted	111 114 212	14	70	4.5	0.8
	 between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data 	DAC	(intrusive) hosted	112 113 115 131 132 133 134 203	9	65	7	1.2

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
	data if available		301					
			302					
			303					
			304					
			305					
			202					
			121					
			211					
		CAL (limestone) ho		80	300	20	2.5	
			222					
			223					
			224					

Block modelling was undertaken in Surpac™ V6.6 software.

A block model was set up with a parent cell size of 10m (E) x 20m (N) x 10m (RL) with standard sub-celling to 2.5m (E) x 5.0m (N) x 2.5m (RL) to maintain the resolution of the mineralised domains. The 20m Y and vertical block dimensions were chosen to reflect drill hole spacing and to provide definition for potential mine planning. The shorter 10m X dimension was used to reflect the geometry and orientation of the majority of the domain wireframes.

Variography was carried out using Leapfrog Edge software on the two metre composited data from each of the 28 domains for each variable.

All relevant variables; Au, Ag, Zn, Fe and S in each domain were estimated using Ordinary Kriging using only data from within that domain. The orientation of the search ellipse and variogram model was controlled using surfaces designed to reflect the local orientation of the mineralized structures.

An oriented "ellipsoid" search for each domain was used to select data for interpolation.

A 3 pass estimation search was conducted, with expanding search ellipsoid dimensions and decreasing minimum number of samples with each successive pass. First passes were conducted with ellipsoid radii corresponding to 40% of the complete range of variogram structures for the variable being estimated. Pass 2 was conducted with 60% of the complete range of variogram structures for the variable being estimated. Pass 3 was conducted with dimensions corresponding to 200% of the semi-variogram model ranges. Blocks within the model where Au was not estimated during the first 3 passes were assigned as unclassified. Blocks for Ag, Zn, Fe and S that were not estimated were assigned the average values on a per-domain basis.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

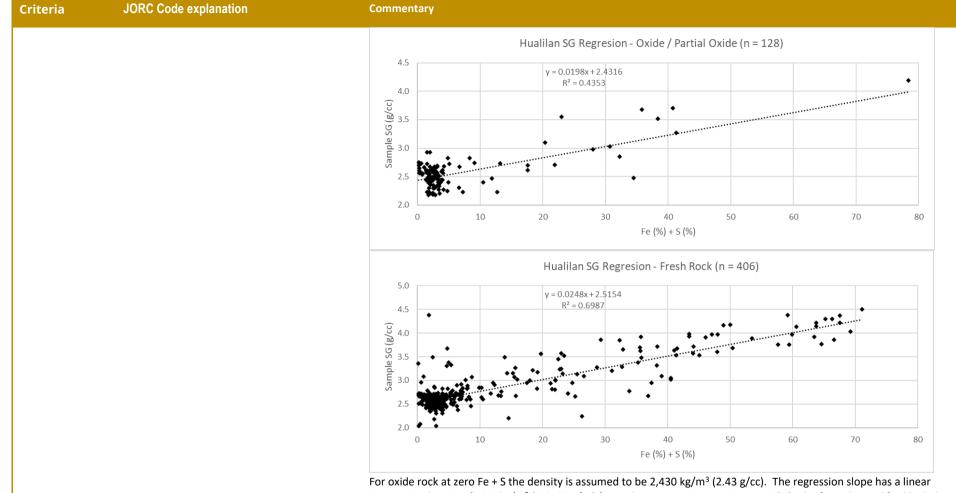
Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary	
		Validation checks included statistical comparison between drill sample grades and Ordinary Kriging block estimate results for each domain. Visual validation of grade trends for each element along the drill sections was also completed in addition to swath plots comparing drill sample grades and model grades for northings, eastings and elevation. These checks show good correlation between estimated block grades and drill sample grades.	
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	Tonnage is estimated on a dry basis.	
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The following metals and metal prices have been used to report gold grade equivalent (AuEq): Au US\$ 1900 / oz Ag US\$24 /oz, Zn US\$ 4,000 /t and Pb US 2,000/t. Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from the results of Stage 1 metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation combined metallurgical samples as detailed in the Criteria below. For the AuEq calculation average metallurgical recovery is estimated as 94.9% for gold, 90.9% for silver, 67.0% for Zn and 57.8% for Pb. Accordingly, the formula used for Au Equivalent is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x (0.909/0.949)] + [Zn (%) x (40.00*31.1/1900) x (0.670/0.949)] + (Pb (%) x 20.00*31.1/1900) x (0.578/.9490). Based on the break-even grade for an optimised pit shell for gold equivalent, a AuEq cut-off grade of 0.25 ppm is used to report the resource within an optimised pit shell run at a gold price of US\$1,800 per ounce and allowing for Ag, Zn and Pb credits. Under this scenario, blocks with a grade above the 0.25 g/t Au Eq cut off are considered to have reasonable prospects of mining by open pit methods. A AuEq cut-off grade of 1.0 ppm was used to report the resource beneath the optimised pit shell run as these blocks are	
Mining factors or assumptions	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should	considered to have reasonable prospects of future mining by underground methods. The Resource estimate has assumed that near surface mineralisation would be amenable to open pit mining given that the mineralisation is exposed at surface and under relatively thin unconsolidated cover. A surface mine optimiser has been used to determine the proportion of the Resource estimate model that would be amenable to eventual economic extraction by open pit mining methods. The surface mine optimiser was bult using the following parameters with prices in USD: - Au price of \$1,800 per oz, Ag price of \$23.4 per oz, Zn price of \$3,825 per tonne and Pb price of \$1,980 per tonne - Average metallurgical recoveries of 94.9% for Au, 90.9 % for Ag and 67 % for Zn and 57.8 % for Pb. - Ore and waste mining cost of \$2.00 per tonne - Unconsolidated cover removal cost of \$0.10 per tonne - Processing cost of \$10.00 per tonne - Transport and marketing of \$50 / oz of AuEq (road to Jan Juan then rail to Rosario Port) - Royalty of \$60 per oz Au, 3% for Ag, Zn and Pb.	

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	be reported with an explanation of the	- Assumed concentrate payability of 94.1% for Au, 82.9% for Ag, 90 % for Zn and 95 % for Pb.
	basis of the mining assumptions made.	- 45° pit slopes on the western side of the pit and 55° on the eastern side of the pit
		Blocks above a 0.25 g/t AuEq within the optimised open pit shell are determined to have reasonable prospects of future economic extraction by open pit mining and are included in the Resource estimate on that basis.
		Blocks below the open pit shell that are above 1.0 g/t AuEq are determined to have reasonable prospects of future
		economic extraction by underground mining methods and are included in the Resource estimate on that basis.
Metallurgical	- The basis for assumptions or predictions	CEL has completed Stage 1 metallurgical test work on representative composite sample of mineralisation from:
factors or	regarding metallurgical amenability. It is	1. Two separate composite samples of limestone-hosted massive sulphide (manto) Sample A has a weighted average grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn and 0.46 % Pb. Sample B has a weighted average grade of 9.7 g/t Au, 41.6
assumptions	always necessary as part of the process of determining reasonable prospects for	grade of 10.4 g/t Ad, 51.7 g/t Ag, 5.2 % 2ff and 0.46 % Pb. Sample B has a weighted average grade of 9.7 g/t Ad, 41.6 g/t Ag, 4.0% Zn and 0.48% Pb.
	eventual economic extraction to consider	2. One dacite (intrusive) composite sample with a weighted average grade of 1.1 g/t Au, 8.1 g/t Ag and 0.10 % Zn and
	potential metallurgical methods but the	0.04% Pb.
	assumptions regarding metallurgical	3. One sediment hosted (fine grained sandstone and siltstone) composite sample with a weighted average grade of
	treatment processes and parameters made	0.68 g/t Au, 7.5 g/t Ag, 0.34 % Zn and 0.06 % Pb.
	when reporting Mineral Resources may not	4. One oxidised limestone (manto oxide) composite sample with a weighted average grade of 7.0 g/t Au, 45 g/t Ag,
	always be rigorous. Where this is the case	3.7% Zn and 0.77% Pb.
	this should be reported with an explanation	
	of the basis of the metallurgical	Gravity recovery and sequential flotation tests of the higher-grade limestone hosted mineralisation involved;
	assumptions made.	1. primary P80 = 51 micron primary grind,
		2. gravity recovery,
		3. Pb-Cu followed by Zn rougher flotation,
		4. p80 = 29 micron regrind of the Zh rougher concentrate,
		5. two re-cleaning stages of the Pb/Cu rougher concentrate, 6. four re-cleaning Sages on the Zn rougher concentrate, and
		7. additional gravity recovery stages added to the Zn Rougher concentrate
		This results in the following products that are likely to be saleable
		- Au-Ag concentrate (118 g/t Au, 286 g/t Ag) with low deleterious elements,
		- Pb concentrate (65% Pb, 178 g/t Au, 765 g/t Ag) with low deleterious elements, and
		- Zn concentrate (51% Zn, 10 g/t Au, 178 g/t Ag) with low deleterious elements, relatively high Cd, but at a level that is
		unlikely to attract penalties.
		- tailing grades of 2 to 3 g/t Au which respond to intensive cyanide leach with recoveries of 70-80% of any residual
		gold and silver to a gold doré bar.
		Gravity recovery and flotation tests of the intrusive-hosted mineralisation involved;
		1. primary P80 = 120-80 micron primary grind,
		2. gravity recovery,


1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		3. single stage rougher sulphide flotation,
		4. P80 = 20-30 micron regrind of the rougher concentrate (5-10% mass),
		5. one or two re-cleaning stages of the Au-Ag Rougher concentrate
		At primary grind of p80 = 76 micron and regrind of p80 = 51 micron an AuAg concentrate can be produced grading
		g/t Au and 284 g/t Ag with total recoveries of 97% (Au) and 85% (Ag).
		One test of a sediment hosted composite sample (5-10% of the mineralisation at the Project) was a repeat of the
		testing done on the intrusive-hosted mineralisation. This produced an Au-Ag concentrate grading 23.6 g/t Au and
		g/t Ag at total recoveries of 85% (Au) and 87% (Ag). Further test work is likely to be done as part of more detailed
		studies. It is likely that the concentrate produced from the sediment-hosted mineralisation will be combined with
		Au-Ag concentrate from the limestone and intrusive-hosted mineralisation.
		Applying recoveries of 70% for both gold and silver to the various concentrate tailings components
		where leaching is likely to be undertaken during production generates recoveries of:
		• 95% (Au), 93% (Ag), 89% (Zn), 70% (Pb) from the high-grade skarn (manto) component of the mineralisation;
		 96% (Au) and 88% (Ag) from the intrusion-hosted component of the mineralisation;
		 85% (Au) and 87% (Ag) from the sediment-hosted component of the mineralisation;
		An intensive cyanide leach test of oxide (limestone and dacite hosted mineralisation has produced recoveries of 7
		(Au) and 64% (Ag) which is expected to be recovered into gold doré bar. While the oxide component of the
		mineralisation comprises only a small percentage of the Hualilan mineralisation its lies in the top 30-40 metres ar
		would be mined early in the case of an open pit operation.
		Based on the test work to date and the proportions of the various mineralisation types in the current geological
		model, it is expected that overall average recoveries for potentially saleable metals will be:
		- 94.9% Au,
		- 90.9% for Ag
		- 67.0% for Zn and
		- 57.8% for Pb
		Additional Stage 2 work involving comminution and variability testing, blended test work, and pilot plant testing is ongoing and planned.
Environmental	- Assumptions made regarding possible	It is considered that there are no significant environmental factors which would prevent the eventual extraction of gol
factors or	waste and process residue disposal options.	from the project. Environmental surveys and assessments have been completed in the past and will form a part of future
assumptions	It is always necessary as part of the process	pre-feasibility studies.
	of determining reasonable prospects for	

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
	eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	CEL has collected specific gravity measurements from drill core, which have been used to estimate block densities for the Resource estimate. Within the mineralised domains there are 534 specific gravity measurements made on drill core samples of 0.1 – 0.2 metres length. Measurements we determined on a dry basis by measuring the difference in sample weight in water and weight in air. For porous samples, the weight in water was measured after wrapping the sample so that no water enters the void space during weighing. A regression model for block density determination in oxide / partial oxide / fracture oxide (oxide) rock and a separate regression model for fresh rock samples has been made by plotting assay interval Fe (%) + S (%) from the interval where the SG measurement was made against the SG measurement. Fe and S are the two elements that form pyrite which is the mineral that is commonly associated with gold and base metal mineralisation at Hualilan. SG plotted against (Fe+S) follows a linear trend within the mineralised domains for oxide and fresh rock as shown in the graphs below.

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

For oxide rock at zero Fe + S the density is assumed to be 2,430 kg/m 3 (2.43 g/cc). The regression slope has a linear increase in density of 19.8 kg/m 3 (0.0198 g/cc) for each 1 percent increase in Fe + S (%). The formula used for block density (kg/m 3) determination in oxide rock is 2,430 + 19.8 x (Fe % + S%).

For fresh rock at zero Fe + S the density is assumed to be 2,520 kg/m 3 (2.52 g/cc). The regression slope has a linear increase in density of 24.8 kg/m 3 (0.0248 g/cc) for each 1 percent increase in Fe + S (%). The formula used for block density (kg/m 3) determination in oxide rock is 2,520 + 24.8 x (Fe % + S%).

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The Mineral Resource has been classified based on the guidelines specified in the JORC Code. The classification level is based upon semi-qualitative assessment of the geological understanding of the deposit, geological and mineralisation continuity, drill hole spacing, QC results, search and interpolation parameters and an analysis of available density information. The estimation search strategy was undertaken in three separate passes with different search distances, and the minimum number of samples used to estimate a block which were then used as a guide for the classification of the resource into Indicated, Inferred and Unclassified. The classification was then further modified to restrict the Indicated Resource to the domains with closer spaced drilling. The potential open pit resource was constrained within an optimised pit shell run using a gold price of \$1,800 per ounce. Resources reported inside the pit shell were reported above a AuEq cut-off grade of 0.25 ppm and Resources outside the pit shell were reported above a AuEq cut-off grade of 1.0 ppm. Resource reported outside the pit shell above a 1.0 g/t AuEq cut-off is considered 100% Inferred. The Competent Person has reviewed the result and determined that these classifications are appropriate given the confidence in the data and results from drilling.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	The Mineral Resource estimate has not been independently audited or reviewed.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. 	There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach and procedure is deemed appropriate given the confidence limits. The main factors which could affect relative accuracy are: - domain boundary assumptions - orientation - grade continuity - top cut. Grade continuity is variable in nature in this style of deposit and has not been demonstrated to date and closer spaced drilling is required to improve the understanding of the grade continuity in both strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha are encouraging in terms of grade repeatability. The deposit contains very high grades and there is need for the use of top cuts. No production data is available for comparison.

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

	Criteria	JORC Code explanation	Commentary
- These statements of relative accuracy and		- These statements of relative accuracy and	
		confidence of the estimate should be	
		compared with production data where	
		available.	

1,045.8m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director