THICK HIGH GRADE LITHIUM ASSAYS RETURNED FROM MAIDEN MORRISON DRILLHOLE

HIGHLIGHTS

- Maiden assays received for the first diamond hole at Morrison, Root:
- RL-22-0364: 10.6m @ 1.25\% $\mathrm{Li}_{2} \mathbf{O}$ from 54.0m(incl. 8.0m @ 1.62\% $\mathrm{Li}_{2} \mathbf{O}$ from 55.Om)
- 12 additional holes completed and awaiting assays.
- Drilling continuing day/night to complete initial 20 hole/2500m programme.
- Assays received for a further 17 diamond holes at McCombe, Root including:
- RL-22-0532: 53.2m combined down hole pegmatite intersections, including:
- 11.7m @ 0.91\% $\mathrm{Li}_{2} \mathbf{O}$ from 90.1 m (incl. $9.8 \mathrm{~m} @ 1.05 \% \mathrm{Li}_{2} \mathrm{O}$ from 92.0m)
- 20.7m @ 1.08\% Li $\mathrm{Li}_{2} \mathrm{O}$ from 113.0 m (incl. $\mathbf{8 . 0 m} @ 1.76 \% \mathrm{Li}_{2} \mathrm{O}$ from 113.0m)
- 20.8m @ 0.83\% $\mathrm{Li}_{2} \mathrm{O}$ from 156.0 m (incl. $14.0 \mathrm{~m} @ 1.23 \% \mathrm{Li}_{2} \mathrm{O}$ from 157.0 m)
- RL-22-0387: 9.8m @ 1.30\% $\mathrm{Li}_{2} \mathbf{O}$ from 31.7m
- RL-22-0499: 7.2m @ 1.31\% $\mathrm{Li}_{2} \mathbf{O}$ from 90.6 m (incl. 3.2m @ 2.78\% $\mathrm{Li}_{2} \mathbf{O}$ from 90.6m)
- RL-22-0501: 8.4m @ 1.23\% Li $\mathrm{Li}_{2} \mathrm{O}$ from 53.7 m (incl. $4.3 \mathrm{~m} @ 1.63 \% \mathrm{Li}_{2} \mathrm{O}$ from 56.3m)
- Maiden Root Mineral Resource Estimate, on track for $\mathbf{0 1} 2023$
- Another 16km of strike at the Root Project as yet untested

Green Technology Metals Limited (ASX: GT1)(GT1 or the Company), a Canadian-focused multi-asset lithium business, is pleased to announce further high-grade lithium assay results returned from its 100%-owned Root Project, located approximately 200km west of the flagship Seymour Project in Ontario, Canada. Drilling at Root was initially focussed on the McCombe LCT pegmatite system, targeting rapid delineation of a maiden Mineral Resource Estimate, exploration has now been expanded to the Morrison prospect, situated 1 km east. An aggressive drill program is actively underway with two drill rigs working day and night shifts at the Root Project.
"Morrison is the second target on the Root Project that hosts multiple lithium bearing pegmatites and it's great news to receive a near surface 10 m wide Spodumene intercept from the very first hole"

- GT1 Chief Executive Officer, Luke Cox

[^0]www.greentm.com.au
info@greentm.com.au

McCombe Deposit (Root Project)

The McCombe LCT (Lithium-Caesium-Tantalum) pegmatite is currently the most advanced prospect at the Root Project. Historical drilling completed by previous owners from 1950 to 2016 intersected numerous pegmatites, generally dipping to the south and striking east-west. Drilling by GT1 has now demonstrated McCombe to be a simpler mineralised system consisting of:

- one major pegmatite averaging 10m true thickness (ranging 2 m to 19 m), striking east-west with shallow dip approximately 30 degrees to the south, open along strike and down dip
- four pegmatites striking north-east with shallow to moderate dip to the south located in the northeast quadrant, all open along strike and down dip (see figure 2 cross section for geospatial location)
- all pegmatites appear to be connected and truncate against each other, forming a swarm
- there are several drill intersections that haven't been assigned to a pegmatite (wireframe) allowing further potential for additional pegmatite discoveries within the system.

Figure 1: Plan view of McCombe interpreted pegmatite, thickness, and recent assays (cross section A-B)

Phase 1 drilling at McCombe has been completed, comprising of twenty-two (22) resource definition diamond holes with assays returned for all holes intersecting thick and continuous high grade spodumene pegmatites from surface. The Phase 1 drilling has delineated, extended, and simplified the historical mineralised pegmatites in all directions, Phase 2 drilling now underway will continue to explore the pegmatites along strike and down dip in the coming weeks for incorporation into the maiden Mineral Resource Estimate.

Hole \bar{T}	Easting -	Northing -	RL-	Dip -	Azi -	Depth F	From -	To -	Interval -	Vis Est -	Li2O
RL-22-001	590,698	5,643,629	397	59	358	60	11.8	24.2	12.4		1.77
RL-22-002	590,700	5,643,575	394	62	0	72	42.2	57.5	15.3		1.20
RL-22-003	590,699	5,643,517	394	58	358	102	72.0	83.5	11.5		2.03
RL-22-004	590,698	5,643,482	397	61	357	144	80.5	87.4	7.0		1.41
RL-22-005	590,699	5,643,421	396	60	359	147	90.8	100.7	9.9		0.25
RL-22-006	590,800	5,643,604	399	59	360	120	21.7	31.2	9.5		1.54
RL-22-007	590,799	5,643,549	393	61	359	117	64.9	74.7	9.8		1.51
RL-22-008	590,801	5,643,505	392	61	359	162	71.5	80.3	8.8		1.81
RL-22-009	590,799	5,643,441	395	61	2	186	91.7	99.4	7.7		0.54
RL-22-010	590,792	5,643,405	395	61	358	150	107.8	114.7	6.9		0.80
RL-22-013	590,906	5,643,649	397	60	360	132	64.0	72.0	8.0		1.72
RL-22-014	590,900	5,643,602	397	60	360	129	102.0	110.4	8.4		1.32
RL-22-015	590,962	5,643,691	392	60	360	93	28.9	42.3	13.4		1.24
RL-22-016A	590,894	5,643,540	394	61	3	156	67.3	73.6	6.3		1.44
RL-22-016A	590,894	5,643,540	394	61	3	156	126.0	130.1	4.2		0.32
RL-22-017	590,957	5,643,575	396	60	360	120	53.8	60.0	6.2		1.29
RL-22-018	591,011	5,643,702	390	61	1	90	51.8	64.4	12.6		1.18
RL-22-019	591,006	5,643,574	397	60	2	120	23.1	26.7	3.5		1.08
RL-22-020	590,901	5,643,508	389	60	360	150	78.0	82.8	4.8		1.18
RL-22-021	590,999	5,643,481	397	60	360	181	111.3	118.7	7.4		0.95
RL-22-022	590,650	5,643,525	394	59	0	152	47.4	61.4	14.0		1.35
RL-22-023	590,700	5,643,625	397	61	2	189	12.4	25.5	13.1		1.39
RL-22-024	590,900	5,643,425	388	60	2	150	85.6	93.0	7.4		1.04
RL-22-025	590,850	5,643,600	396	60	360	141	30.1	37.8	7.7		1.05
RL-22-027	590,850	5,643,651	397	59	358	108	3.4	15.6	12.3		1.34
RL-22-029	590,850	5,643,475	392	60	360	227	106.4	112.3	5.9		1.09
RL-22-033	590,599	5,643,489	395	58	4	162	2.8	8.0	5.2		1.61
RL-22-035	590,643	5,643,487	397	59	0	162	66.5	79.2	12.7		1.28
RL-22-037	590,596	5,643,419	392	60	-	180	40.1	43.8	3.8		1.02
RL-22-038	591,045	5,643,706	390	60	-	141	81.5	90.0	8.4		1.18
RL-22-040	591,058	5,643,675	389	60	360	120	99.5	107.8	8.3		0.47
RL-22-041	590,633	5,643,399	397	59	359	201	98.1	114.0	15.9		1.12
RL-22-044	591,050	5,643,575	391	60	-	180	18.9	22.5	3.6		1.36
RL-22-044	591,058	5,643,576	397	60	1	180	18.9	22.5	3.6		1.36
RL-22-387	590,648	5,643,581	394	60	1	120	31.7	41.5	9.8		1.30
RL-22-461	590,951	5,643,621	395	61	1	107	5.5	8.4	2.8		0.77
RL-22-490	591,058	5,643,533	389	60	8	201	61.7	66.0	4.3		1.18
RL-22-499	591,106	5,643,727	389	61	1	120	90.6	97.7	7.2		1.31
RL-22-501	591,146	5,643,740	388	60	1	201	53.7	62.1	8.4		1.23
RL-22-501	591,146	5,643,740	388	60	1	201	150.4	154.9	4.5		0.51
RL-22-505	591,197	5,643,774	376	60	1	210	118.8	123.2	4.4		1.13
RL-22-526	590,680	5,643,365	407	60	1	180	120.4	122.5	2.1		0.07
RL-22-529	591,146	5,643,809	387	60	321	150	73.9	80.4	6.6		0.23
RL-22-530	591,193	5,643,824	398	59	322	150	64.4	67.7	3.3		0.02
RL-22-531	591,236	5,643,855	398	61	321	150	22.6	28.8	6.2		1.32
RL-22-532	591,197	5,643,784	376	85	320	231	90.1	101.8	11.7		0.91
RL-22-532	591,197	5,643,784	376	85	320	231	113.0	133.7	20.7		1.08
RL-22-532	591,197	5,643,784	376	85	320	231	156.0	176.8	20.8		0.83
RL-22-533	591,148	5,643,755	379	86	312	204	153.0	162.6	9.6	10	Assays Pending
RL-22-534	591,242	5,643,801	404	61	319	201	117.0	120.5	3.5	5	Assays Pending
RL-22-535	591,303	5,643,859	393	60	321	150	30.8	36.3	5.4		1.01
RL-22-536	591,306	5,643,808	391	60	319	180	91.8	96.1	4.3		0.12
RL-22-537	591,299	5,643,762	389	58	321	201	172.4	175.9	3.6		1.52
RL-22-538	590,618	5,643,440	400	60	360	135	38.2	42.8	4.6		1.04
RL-22-539	590,618	5,643,440	400	70	299	117	53.2	55.4	2.2		0.30
RL-22-542	591,354	5,643,788	389	60	320	220	146.9	151.1	4.2	5	Assays Pending
RL-22-541	591,350	5,643,830	388	59	322	180	79.5	83.8	4.3	1	Assays Pending
RL-22-543	591,361	5,643,785	389	74	323	250	187.5	195.5	8.0		0.87
RL-22-549	591,400	5,643,801	388	59	319	250	124.3	128.6	4.2	5	Assays Pending
RL-22-550	591,436	5,643,838	389	59	313	150	97.5	101.7	4.2	1	Assays Pending
RL-22-540	591,344	5,643,877	394	59	321	150	32.6	39.1	6.5	5	Assays Pending
RL-22-548	591,397	5,643,846	389	60	320	192	70.0	74.0	4.0	5	Assays Pending
RL-22-548	591,397	5,643,846	389	60	320	192	163.3	167.3	4.0	2	Assays Pending
RL-22-552	591,444	5,643,835	389	81	324	252	129.3	132.8	3.5	15	Assays Pending
RL-23-452	590,911	5,643,702	394	60	-	201	10.2	22.8	12.6	5	Assays Pending
RL-23-452	590,911	5,643,702	394	60	-	201	137.7	149.1	11.4	3	Assays Pending
RL-23-454	590,893	5,643,738	394	60	319	180	71.3	77.7	6.5	7	Assays Pending
RL-23-480	591,014	5,643,673	390	59	0	201	16.0	27.3	11.3	2	Assays Pending
RL-23-480	591,014	5,643,673	390	59	0	201	172.9	178.0	5.1	8	Assays Pending
RL-23-544A	591,022	5,643,339	394	61	318	225	159.4	162.8	3.4	8	Assays Pending
RL-23-545	591,083	5,643,362	394	60	320	225	70.3	83.3	13.0	5	Assays Pending
RL-23-546	590,963	5,643,337	389	59	320	210	149.4	152.3	2.9	5	Assays Pending
RL-23-553	591,436	5,643,838	389	46	317	120	80.0	89.6	9.6	1	Assays Pending
RL-23-554	591,085	5,643,764	389	45	360	150	31.6	39.9	8.3	1	Assays Pending
RL-23-554	591,085	5,643,764	389	45	360	150	126.8	130.1	3.4	1	Assays Pending
RL-23-556	591,102	5,643,357	394	60	10	222	55.0	58.0	3.0	5	Assays Pending
RL-23-558	591,099	5,643,365	394	82	313	210	85.8	89.0	3.2	1	Assays Pending
RL-23-558	591,099	5,643,365	394	82	313	210	150.1	152.4	2.3	5	Assays Pending

Table 1: McCombe drilling results - previously reported grey highlight (Vis Est. \% = Visual estimate of Spodumene mineral abundance')
' In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. The reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages).

Figure 2: Cross section A-B of the main McCombe pegmatite (right) with 2 additional pegmatites discovered on the footwall.

Figure 3: RL-22-0499: Whole NO diamond core showing high density spodumene crystal laths, $7.2 \mathrm{~m} @ 1.31 \% \mathrm{Li}_{2} \mathrm{O}$ from 90.6m (incl. 3.2m @ 2.78\% $\mathrm{Li}_{2} \mathrm{O}$ from 90.6m)

Morrison Deposit (Root Project)

The Morrison LCT spodumene pegmatites are located approximately 1 km east of McCombe and were explored in the mid to late 1950's. The pegmatites strike east west and dip about 30 degrees towards the south. Outcrop of the pegmatite is approximately 200 m long and tested by trenching, but historical drilling has also proven the strike of the pegmatite to be at least 1.6 km to the west with additional occurrences to the north.

Initial drilling at Morrison comprising of twenty (20) holes for 2,500m is targeted to confirm historical drilling and sampling. Thirteen (13) diamond holes have intersected pegmatites with the maiden drill hole RL-22-0364 returning $10.6 \mathrm{~m} @ 1.25 \% \mathrm{Li}_{2} \mathrm{O}$ from 54.0 m (incl. $8.0 \mathrm{~m} @ 1.62 \% \mathrm{Li}_{2} \mathrm{O}$ from 55.0 m). Drilling is continuing on a 24 -hour basis with core samples being regularly transported to Thunder Bay for assaying.

The second phase of drilling at Morrison will then be designed to test for extensions of the mineralised pegmatites in all directions, infill key sections and rapidly facilitate delineation of a Mineral Resource estimate.

Figure 4: Morrison outcrop, mapped pegmatites, and holes drilled showing various thickness of intersected pegmatite.

Hole -T	Easting -	Northing -	RL -		Dip -	Azi -	Depth -	From -	To -	Interval -	Vis Est -	Li2O -
*RL-22-345	592,737	5,643,612	409	-	45	186	180	38.2	41.0	2.8	5	Assays Pending
*RL-22-348	592,941	5,643,520	411		45	1	201	100.2	102.4	2.2	3	Assays Pending
*RL-22-349	592,835	5,643,519	412		43	0	225	112.3	115.4	3.1	3	Assays Pending
*RL-22-364	592,518	5,643,563	468		45	359	201	54.0	64.6	10.6		1.25
*RL-22-366	592,639	5,643,531	407		45	0	201	94.3	101.9	7.6	10	Assays Pending
*RL-22-367	592,733	5,643,531	411		45	360	222	56.8	58.9	2.1	1	Assays Pending
*RL-22-367	592,733	5,643,531	411	-	45	360	222	107.8	114.3	6.4	1	Assays Pending
*RL-23-342A	593,227	5,643,527	406		60	360	150	116.5	119.1	2.6	5	Assays Pending
*RL-23-346	593,112	5,643,528	408		45	0	150	103.7	107.5	3.8	3	Assays Pending
*RL-23-347	593,040	5,643,524	408	-	43	1	204	80.8	88.4	7.6	10	Assays Pending
*RL-23-358	592,230	5,643,570	402		61	3	150	123.9	131.3	7.5	1	Assays Pending
*RL-23-360	592,324	5,643,576	394		60	1	150	88.2	93.4	5.2	2	Assays Pending
*RL-23-362	592,436	5,643,580	397	-	50	359	150	43.9	49.4	5.5	10	Assays Pending

Table 2: Morrison drilling results (Vis Est. \% = Visual estimate of Spodumene mineral abundance')
＇In relation to the disclosure of visual mineralisation，the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis．Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging．The Company will update the market when laboratory analytical results become available．The reported intersections are down hole measurements and are not necessarily true width．Descriptions of the mineral amounts seen and logged in the core are qualitative，visual estimates only（they are listed in order of abundance of estimated combined percentages）．

Figure 5：Root Project location map，McCombe，Morrison and Root Bay prospects

Root Project Infrastructure

The Root Project is readily accessible via all－weather roads and airports with emergency response capability in Slate Falls and Sioux Lookout．The Transcontinental railway connects Root and Seymour projects with a direct line and sidings managed by CN Rail．Hydro power lines run through the eastern side of the Root Project electrifying the region with green energy．

INFRASTRUCTURE CORRIDOR

This ASX release has been approved for release by the Board．

KEY CONTACTS

Investors

Luke Cox
Chief Executive Officer
info@greentm.com.au
+61865576825

Media

Jacinta Martino
Investor Relations and Media
ir@greentm.com.au
+61430 147046

Green Technology Metals (ASX:GT1)

GT1 is a North American focussed lithium exploration and development business. The Company's 100\% owned Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of $9.9 \mathrm{Mt} @ 1.04 \% \mathrm{Li}_{2} \mathrm{O}$ (comprised of 5.2 Mt at $1.29 \% \mathrm{Li}_{2} \mathrm{O}$ Indicated and 4.7 Mt at $0.76 \% \mathrm{Li}_{2} \mathrm{O}$ Inferred). ${ }^{1}$ Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

${ }^{1}$ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, Interim Seymour Mineral Resource Doubles to 9.9 Mt . The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

Information in this report relating to Exploration Results is based on information reviewed by Mr Luke Cox (Fellow AusIMM). Mr Cox has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Cox consents to the inclusion of the data in the form and context in which it appears in this release. Mr Cox is the Chief Executive Officer of the Company and holds securities in the Company.

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 23 June 2022. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GT1's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GT1's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

APPENDIX B: JORC CODE, 2012 EDITION - Table 1 Report

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation
Sampling techniques	- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types(eg submarine nodules)may warrant disclosure of detailed information.

Commentary
 99 Historic holes were drilled by various companies, mainly in the 1950's. Sampling methodologies could not be verified.

Ardiden drilled 8 diamond holes in 2016 And 16 channel samples over the McCombe and Morrison pegmatite outcrops using similar methodologies to GT1 as outlined below..

An excavator has exposed and enlarged the McComb outcrop area to make it amenable to mapping and sampling and was further extended along strike by GT1 in 2022.

GT1 commenced a diamond drilling on September 3, 2022 at the McCombe prospect and more recently commenced drilling at the Morrision deposit 1km east of the McCombe deposit. GT1 have drilled 91 holes to date with more planned.

Diamond Drilling

- Diamond drilling was used to obtain nominally 1 m downhole samples of core.
- NO core samples were $1 / 2$ cored using a diamond saw with $1 / 2$ the core placed in numbered sample bags for assaying and the other half retained in sequence in the core tray.
- $\quad 1 / 2$ core samples were approximately 3.0 kg in weight with a minimum weight of 500grams.
- Core was cut down the apex of the core and the same downhole side of the core selected for assaying to reduce potential sampling bias.

Channel Samples

- Preparation prior to obtaining the channel samples including grid and georeferences and marking of the pegmatite structures.
- \quad Samples were cut across the pegmatite with a diamond saw perpendicular to strike.
- Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance with QAOC procedures.
- Sampling continued past the Spodumene-Pegmatite zone, even if it is truncated by Mafic Volcanic a later intrusion.
- Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms.
- Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups.
- One tag from a triple tag book was inserted in the sample bag.

Grab Samples

- Preparation prior to obtaining the grab sample including logging location with D/GPS geological setting and rock identification and mineralogy
- Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms.
- Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups.
- One tag from a triple tag book was inserted in the sample bag.
- Tri-cone drilling was undertaken through the thin overburden prior to NQ diamond drilling through the primary rock using a standard tube.

Criteria	JORC Code explanation	Commentary
	diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- No core was recovered through the overburden tri-coned section of the hole (top 5 m of the hole) - Core recovery through the primary rock and mineralised pegmatite zones was 98%. Country rock, mainly meta basalts showed high, 96% recoveries. - The core has not been assayed yet so no correlation between grade and recovery can be made at this time. Recovery was determined by measuring the recovered metres in the core trays against the drillers core block depths for each run.
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.	- Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. - Logging is qualitative in nature. - Samples are representative of an interval or length. - Sampling will be undertaken for the entire cross strike length of the intersected pegmatite unit at nominal 1 m intervals with breaks at geological contacts. Sampling extended into the country mafic rock.
Subsampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	- Each $1 / 2$ core sample was dried, crushed to entirety to $90 \%-10$ mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to $95 \%-150$ mesh) (includes cleaner sand). - Blanks and Certified Reference samples will be inserted in each batch submitted to the laboratory at a rate of approximately 1:20. - The sample preparation process is considered representative of the whole core sample.
Quality of assay data and	- The nature, quality and appropriateness of the assaying and laboratory procedures used	- Sample were submitted to AGAT Laboratories in Thunder Bay. AGAT inserted internal standards, blanks and pulp duplicates within each sample batch as part of their own

Criteria	JORC Code explanation	Commentary
		Blank_Li
	-	
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- Most of the holes in the McCombe and Morrison programs to date are drilled close to existing historic drilling from the 1950's. Whilst the historic drilling suggests some spatial issues with the holes collar locations, the current drilling largely supports the existence of significant pegmatite and $\mathrm{Li}_{2} \mathrm{O}$ intersections at McCombe and pegmatite presence at Morrison. - Historic drilling data could not be verified and QAQC was likely not included in the testing regime at the time. - The laboratory assay results have been sourced directly from the laboratory and the laboratory file directly imported directly into GT1's SOLL database. - All north seeking gyroscope surveys are uploaded directly from the survey tool output file and visually validated. - Geological logs and supporting data are uploaded directly to the database using custom built importers to ensure no chance of typographical errors. - No adjustment to laboratory assay data was made other than conversion of Li ppm to $\mathrm{Li}_{2} \mathrm{O}$ using a factor of 2.153
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- A GPS reading was taken for each sample location using UTM NAD83 Zone15 (for Seymour); waypoint averaging or dGPS was performed when possible. - GT1 undertook a Lidar survey of the Root area in $2022(+/-0.15 \mathrm{~m})$ which underpins the local topographic surface. - GT1 has used continuous measurement north seeking gyroscope tools with readings retained every 5 m downhole.

	Criteria	JORC Code explanation	Commentary
	Data spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	- NA - insufficient drilling has been undertaken to estimate the degree of geological and grade continuity to support a Mineral Resource or Ore Reserve.
	Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- The current drilling program is drilled to achieve as close to a representative intersection of the pegmatites as possible which dip moderately to the south. Holes are orientated approximately north and 60 degrees inclination. - Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite.
$\sqrt{7}$	Sample security	- The measures taken to ensure sample security.	- All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivered to AGAT in Thunder Bay for cutting, preparation and analysis.
	Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- NA

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- Green Technology Metals(ASX:GT1) holds a 100% interest in the Ontario Lithium Projects (Seymour, Root and Wisa). - Root Lithium Asset consist of 249 single and boundary cell claims (Exploration Licences), 33 patent claims and 3 mining licence of occupation claims (total 285 claims) with a total claim area of approximately 5,376 ha. - All Cell Claims are in good standing - An Active Exploration Permit for 3 years exist over the Root Lithium Assets, including the McCombe Deposit, Morrison Prospect and Root Bay Prospect. - There is an Early Exploration Agreement with Slate Falls Nation and Lac Seul First Nation, who are supportive of GT1 exploration activities.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- Regional exploration for lithium deposits commenced in the 1950's. In 1955-1956 Capital Lithium Mines Ltd. geologically mapped and sampled dikes near the McCombe Deposit with the highest recorded channel sample of 1.52 m at $3.06 \% \mathrm{Li}_{2} \mathrm{O} .7$ drill holes ($1,042.26 \mathrm{~m}$ total) within the McCombe Deposit and Root Lake Prospect yielding low lithium assays. According to Mulligan (1965), Capital Lithium Mines Ltd. reported to Mulligan that they drilled at least 55 holes totalling 10469.88 m in 1956. They delineated 4 pegmatite zones and announced a non-compliant $\mathrm{NI} 41-101$ reserve calculation of 2.297 million tons at $1.3 \% \mathrm{Li}_{2} \mathrm{O}$. However, none of that information is available on the government database. In 1956, Consolidated Morrison Explorations Ltd drilled 16 holes(1890m total) at the Morrison prospect recording 3.96 m at $2.63 \% \mathrm{Li}_{2} \mathrm{O}$. In 1956, Three Brothers Mining Exploration southwest of the McCombe Deposit that did not intersect pegmatite In 1957, Geo-Technical Development Company Limited on behalf of Continental Mining Exploration conducted a magnetometer survey and an electromagnetic check survey on the eastern claims of the Root Lithium Project to locate pyrrhotite mineralization In 1977, Northwest Geophysics Limited on behalf of Noranda Exploration Company Ltd. conducted an electromagnetic and magnetometer survey for sulphide conductors on a small package of claims east of the Morrison Prospect. Noranda also conducted a mapping and sampling program over the same area, mapped a new pegmatite dike and sampled a graphitic schist assaying $0.03 \% \mathrm{Cu}$ and $0.15 \% \mathrm{Zn}$. In 1998, Harold A. Watts prospected, trenched and sampled spodumene-bearing pegmatites with the Morrison Prospect assaying up to $5.91 \% \mathrm{Li}_{2} \mathrm{O}$. In 2002 stripped and blasted 2 more spodumene-bearing pegmatites near the Morrison prospect.

Criteria	JORC Code explanation
-	

- In 2005, Landore Resources Canada Inc. created a reconnaissance survey, mapping and sampling project mostly within the McCombe Deposit, but also in the Morrison and Root Lake Prospects. Highest sample was $3.69 \% \mathrm{Li}_{2} \mathrm{O}$ with the McCombe Deposit.
- In 2008, Rockex Ltd. on behalf of Robert Allan Ross stripped and trenched 40 trenches for iron, gold and base metals associated with oxide iron formation. All Fe assays were above 25% (up to 47.5% Fe). 3 gold zones were discovered with assays up to $4.0 \mathrm{~g} / \mathrm{t}$ Au in Zone A (Root Bay Gold Prospect), $1.3 \% \mathrm{~g} / \mathrm{t}$ Au over 0.5 m in Trench $9,0.19 \% \mathrm{Cu}-\mathrm{Zn}$ over 8 m and up to $0.14 \% \mathrm{Li}_{2} \mathrm{O}$ in Zone B. Best assays of samples collected north-east area of Root Bay had up to $394 \mathrm{ppm} \mathrm{Zn}, 389 \mathrm{ppm} \mathrm{Cu}, 185 \mathrm{ppm} \mathrm{Ni}, 102 \mathrm{ppm} \mathrm{Co}$ and 57.0ppm Mo.
- In 2009, Golden Dory Resources along with Harold A. Watts conducted a due diligence sampling program to validate historic data from the Morrison Prospect. Highest grab sample was $5.10 \% \mathrm{Li}_{2} \mathrm{O}$ and a channel sample of 5 m at $4.44 \% \mathrm{Li}_{2} \mathrm{O}$.
- In 2011, Geo Data Solutions GDS Inc. on behalf of Rockex Ltd. flew a high-resolution helicopter borne aeromagnetic survey intersecting a small portion of the south-central claims owned by GM1.
- In 2012, Stares Contracting on behalf of Golden Dory Resources Corporation conducted a ground magnetic survey near the Morrison Prospect to look for magnetic contrasts between pegmatites and metasedimentary units. They also conducted a prospecting (lithium) and soil sampling (gold) program at the Rook Lake Prospect and east of the Morrison Prospect. Highest Li assays within GM1 claims was $0.0037 \% \mathrm{Li}_{2} \mathrm{O}$ and a gold soil assay of 52 ppb Au .
- In 2016, the previous owner conducted a drilled 7 diamond drill holes(469 m total) within the McCombe deposit. Highest assay was 1 m at $3.8 \% \mathrm{Li}_{2} \mathrm{O}$. A hole drilled down dip intersected 70 m at $1.7 \% \mathrm{Li}_{2} \mathrm{O}$. An outcrop sampling within the Morrison and Root Bay Prospects yielded $0.04 \% \mathrm{Li}_{2} \mathrm{O}$. Channel sample within the Morrison Prospect had 5 m at $2.09 \% \mathrm{Li}_{2} \mathrm{O}$ and within the Root Bay Prospect, 14 m at $1.67 \% \mathrm{Li}_{2} \mathrm{O}$.
- In 2021, KBM Resources Group on behalf of Kenorland Minerals North America Ltd. conducted an $800 \mathrm{~km}^{2}$ aerial LIDAR acquisition survey over their South Uchi Property which intersects a very small portion of the patented claims held by GM1, just west of the McCombe Deposit.
- Regional Geology: The Root Lithium Asset is located within the Uchi Domain, predominately metavolcanic units interwoven with granitoid batholiths and English River Terrane, a highly metamorphosed to migmatized, clastic and chemical metasedimentary rock with abundant granitoid batholiths. They are part of the Superior craton, interpreted to be the amalgamation of Archean aged microcontinents and accretionary events. The boundary between the Uchi Domain and the English River Terrane is defined by the Sydney Lake - Lake St. Joseph fault, an east west trending, steeply dipping brittle ductile shear zone over 450km along strike and $1-3 \mathrm{~m}$ wide. Several S-Type, peraluminous granitic plutons host rare-element mineralization near the Uchi Domain and English River subprovince boundary. These pegmatites include the Root Lake Pegmatite Group, Jubilee Lake Pegmatite Group, Sandy Creek Pegmatite and East Pashkokogan Lake Lithium Pegmatite.
- Local Geology: The Root Lithium Asset contains most of the pegmatites within the Root Lake Pegmatite Group including the McCombe Pegmatite, Morrison Prospect, Root Lake Prospect and Root Bay Prospect. The McCombe Pegmatite and Morrison Prospect are hosted in predominately mafic metavolcanic rock of the Uchi Domain. The Root Lake and Root Bay Prospects are hosted in predominately metasedimentary rocks of the English River Terrane. On the eastern end of the Root Lithium Asset there is a gold showing (Root Bay Gold Prospect) hosted in or proximal to silicate, carbonate, sulphide, and oxide iron formations of the English River Terrane.
- Ore Geology: The McCombe Pegmatite is internally zoned. These zones are classified by the tourmaline discontinuous zone along the pegmatite contact, white feldspar-rich wall zone, tourmaline-bearing, equigranular to porphyritic potassium feldspar sodic apalite zone, tourmaline-being, porphyritic potassium feldspar spodumene pegmatite zone and lepidolite-rich pods and seams (Breaks et al., 2003). Both the McCombe and Morrison pegmatites have been classified as complex-type, spodumene-subtype (Černý 1991a classification) based on the abundance of spodumene, highly evolved potassium feldspar chemistry and presence of petalite, mircolite, lepidolite and lithium-calcium liddicoatite (Breaks et al., 2003).
Criteria

Drill hole Information

JORC Code explanation

- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
- easting and northing of the drill hole collar
- elevation or RL (Reduced Level -
elevation
above sea level in metres) of the drill hole collar
- dip and azimuth of the hole
- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent
Person should clearly explain why this is the case.
- McCombe lies within the western edge of the Root project and hosts a non-JORC compliant Mineral Resource based on 1950's drilling.
- Morrison is approximately 1 km east of the McCombe deposit and has a demonstrated pegmatite strike of 1.6 km from historic drilling.
- The deposits are being re-drilled to modern industry standards sampling NQ diamond core. Collar locations are noted below and all coordinates are in North American Datum 1983 (NAD83) Zone 15:
- McCombe and Morrison downhole pegmatite intercepts are summarised below. The downhole intervals of the pegmatites are approximate to true widths.

Criteria	$\begin{array}{l}\text { JORC Code } \\ \text { explanation }\end{array}$

Data
aggregation methods

- In reporting

Exploration
Results,
weighting
averaging
techniques,
maximum and/or
minimum grade
truncations (eg
cutting of high grades) and cut-
off grades are usually Material and should be stated.

- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions
used for any
reporting of metal equivalent values should be clearly stated.
- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the
mineralisation with respect to

Relationship
between mineralisation widths and intercept lengths

Hole $\quad 7$	Easting -	Northing -	RL		Dip -	Azi -	Depth -	From -	To -	Interval -	Vis Est -	Li2O -
*RL-22-345	592,737	5,643,612	409		45	186	180	38.2	41.0	2.8	5	Assays Pending
*RL-22-348	592,941	5,643,520	411		45	1	201	100.2	102.4	2.2	3	Assays Pending
*RL-22-349	592,835	5,643,519	412		43	0	225	112.3	115.4	3.1	3	Assays Pending
*RL-22-364	592,518	5,643,563	468		45	359	201	54.0	64.6	10.6		1.25
*RL-22-366	592,639	5,643,531	407		45	0	201	94.3	101.9	7.6	10	Assays Pending
*RL-22-367	592,733	5,643,531	411		45	360	222	56.8	58.9	2.1	1	Assays Pending
*RL-22-367	592,733	5,643,531	411		45	360	222	107.8	114.3	6.4	1	Assays Pending
*RL-23-342A	593,227	5,643,527	406		60	360	150	116.5	119.1	2.6	5	Assays Pending
*RL-23-346	593,112	5,643,528	408		45	0	150	103.7	107.5	3.8	3	Assays Pending
*RL-23-347	593,040	5,643,524	408		43	1	204	80.8	88.4	7.6	10	Assays Pending
*RL-23-358	592,230	5,643,570	402.		61	3	150	123.9	131.3	7.5	1	Assays Pending
*RL-23-360	592,324	5,643,576	394		60	1	150	88.2	93.4	5.2	2	Assays Pending
*RL-23-362	592,436	5,643,580	397		50	359	150	43.9	49.4	5.5	10	Assays Pending

- Length weighted $\mathrm{Li}_{2} \mathrm{O}$ averages are used across the downhole length of intersected pegmatites
- Grade cut-offs have not been incorporated.
- No metal equivalent values are quoted.

Commentary

- Holes drilled by GT1 attempt to pierce the mineralised pegmatite approximately perpendicular to strike, and therefore, the downhole intercepts reported are approximately equivalent to the true width of the mineralisation.
- Trenches are representative widths of the exposed pegmatite outcrop. Some exposure may not be a complete representation of the total pegmatite width due to recent glacial deposit cover limiting the available material to be sampled.

Criteria	JORC Code explanation	Commentary
	the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	- The appropriate maps are included in the announcement.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- Pegmatite downhole interval summary with associated assay results are listed in Appendix C
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations;	- GT1 completed a high resolution Heliborne Magnetic geophysical survey over the property in July 2022. The survey was undertaken by Propsectair using their Robinson R-44 and EC120B helicopters. - Survey details, 1,201 line-km, 50 m line spacing, direction 179 degrees to crosscut pegmatite strike, 50 m altitude. Control lines were flown perpendicular to these lines at 500 m spacing. - Images have been received Total Magnetics.

Criteria	JORC Code explanation	Commentary
	geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- Interpretation is currently being completed by Southern Geoscience
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	- Further extensional drilling is currently being carried out at McCombe testing strike extents over 500 m in length and downdip extensions up to 300 m from the current outcrop. - Morrison pegmatites have been traced over a 1.6 km strike length starting approximately 1 km east of the McCombe deposit. Morrison pegmatites are currently being drilled to test downdip extents.

References

Breaks, F.W., Selway, J.B. and Tindle, A.G., (2003) Fertile peraluminous granites and related rare element mineralization in pegmatites, Superior province, northwest and northeast Ontario: Operation Treasure Hunt. Ontario Geological Survey, Open File Report 6099, 179 p.

Černý, P. (1991a) Rare-element granitic pegmatites, part I. Anatomy and internal evolution of pegmatite deposits; Geoscience Canada, v.18, p.49-67.

Appendix C Downhole Interval Summary

(In addition to intercepts quoted in previous announcements)

HOLEID	From	to	Interval	Lithology	Lizoppm	$\mathrm{Ta}_{2} \mathrm{O}_{5} \mathrm{ppm}$
RL-22-345	0.0	6.7	6.7	Overburden	-	
RL-22-345	6.7	38.2	31.5	Sediment	166	0
RL-22-345	38.2	41.0	2.8	Pegmatite	8,085	114
RL-22-345	41.0	180.0	139.0		35	0
RL-22-497	0.0	12.4	12.4	Overburden	-	-
RL-22-497	12.4	19.6	7.2	Mafic	-	-
RL-22-497	19.6	25.5	5.9	Felsic	-	-
RL-22-497	25.5	124.0	98.5	Mafic	-	-
RL-22-499	0.0	14.8	14.8	Overburden	-	-
RL-22-499	14.8	90.6	75.8	Mafic	20	-
RL-22-499	90.6	97.7	7.2	Pegmatite	13,050	132
RL-22-499	97.7	114.0	16.3	Sediment	416	0
RL-22-499	114.0	120.0	6.0	Sediment	-	-
RL-22-501	0.0	9.0	9.0	Overburden	-	-
RL-22-501	9.0	53.7	44.7	Sediment	59	0
RL-22-501	53.7	53.9	0.2	Pegmatite	1,386	10
RL-22-501	53.9	56.3	2.4	Sediment	1,709	3
RL-22-501	56.3	62.1	5.8	Pegmatite	12,339	113
RL-22-501	62.1	150.4	88.3	Sediment	72	0
RL-22-501	150.4	155.0	4.5	Pegmatite	5,143	109
RL-22-501	155.0	171.2	16.2	Sediment	229	1
RL-22-501	171.2	181.2	10.1	Felsic	-	-
RL-22-501	181.2	201.0	19.8	Mafic	-	-
RL-22-505	0.0	5.9	5.9	Overburden	-	-
RL-22-505	5.9	12.0	6.1	Felsic	-	-
RL-22-505	12.0	118.8	106.8	Mafic	79	0
RL-22-505	118.8	123.2	4.4	Pegmatite	11,294	128
RL-22-505	123.2	169.3	46.0	Mafic	122	0
RL-22-505	169.3	170.4	1.1	Felsic	-	-
RL-22-505	170.4	210.0	39.6	Mafic	-	-
RL-22-521	0.0	7.4	7.4	Overburden	-	-
RL-22-521	7.4	15.2	7.8	Sediment	263	0
RL-22-521	15.2	16.3	1.2	Pegmatite	415	130
RL-22-521	16.3	58.1	41.8	Mafic	42	0
RL-22-521	58.1	59.0	0.9	Felsic	-	-
RL-22-521	59.0	66.1	7.1	Mafic	-	-
RL-22-521	66.1	131.2	65.1	Sediment	-	-
RL-22-521	131.2	131.8	0.6	Mafic	-	-
RL-22-521	131.8	136.7	4.9	Sediment	-	-
RL-22-521	136.7	147.8	11.1	Felsic	-	-

HOLEID	From	to	Interval	Lithology	$\mathrm{Li}_{2} \mathrm{Oppm}$	$\mathrm{Ta}_{2} \mathrm{O}_{5} \mathrm{ppm}$
RL-22-521	147.8	151.1	3.3	Mafic	-	-
RL-22-521	151.1	160.9	9.8	Felsic	-	-
RL-22-521	160.9	180.0	19.1	Mafic	-	-
RL-22-522	0.0	10.5	10.5	Overburden	-	-
RL-22-522	10.5	44.2	33.6	Sediment	7	0
RL-22-522	44.2	44.3	0.1	Pegmatite	243	60
RL-22-522	44.3	50.1	5.8	Sediment	54	1
RL-22-522	50.1	53.4	3.3	Felsic	108	2
RL-22-522	53.4	53.6	0.2	Pegmatite	327	81
RL-22-522	53.6	56.8	3.2	Felsic	120	3
RL-22-522	56.8	67.7	10.9	Sediment	11	1
RL-22-522	67.7	67.8	0.1	Pegmatite	157	54
RL-22-522	67.8	69.8	2.0	Sediment	180	3
RL-22-522	69.8	131.6	61.8	Felsic	-	-
RL-22-522	131.6	140.9	9.3	Sediment	-	-
RL-22-522	140.9	147.4	6.5	Felsic	-	-
RL-22-522	147.4	153.4	6.1	Sediment	-	-
RL-22-522	153.4	154.7	1.3	Felsic	-	-
RL-22-522	154.7	175.6	20.9	Sediment	-	-
RL-22-522	175.6	177.1	1.6	Felsic	-	-
RL-22-522	177.1	192.5	15.4	Sediment	-	-
RL-22-522	192.5	193.1	0.6	Felsic	-	-
RL-22-522	193.1	201.0	7.9	Sediment	-	-
RL-22-524	0.0	6.0	6.0	Overburden	-	-
RL-22-524	6.0	105.0	99.0	Sediment	-	-
RL-22-524	105.0	180.0	75.0	Felsic	51	2
RL-22-524	180.0	201.0	21.0	Sediment	-	-
RL-22-525	0.0	4.5	4.5	Overburden	-	-
RL-22-525	4.5	56.7	52.2	sediment	-	-
RL-22-525	56.7	58.9	2.2	Felsic	-	-
RL-22-525	58.9	94.6	35.8	Sediment	-	-
RL-22-525	94.6	97.5	2.8	Felsic	-	-
RL-22-525	97.5	102.5	5.0	Sediment	-	-
RL-22-525	102.5	108.5	6.0	Felsic	-	-
RL-22-525	108.5	112.9	4.4	Sediment	-	-
RL-22-525	112.9	114.6	1.8	Felsic	-	-
RL-22-525	114.6	116.4	1.8	sediment	-	-
RL-22-525	116.4	119.4	3.0	Felsic	-	-
RL-22-525	119.4	136.2	16.8	sediment	-	-
RL-22-525	136.2	137.0	0.7	Felsic	-	-
RL-22-525	137.0	138.6	1.7	sediment	-	-
RL-22-525	138.6	139.5	0.9	Felsic	-	-
RL-22-525	139.5	198.6	59.0	sediment	-	-

HOLEID	From	to	Interval	Lithology	$\mathrm{Li}_{2} \mathrm{Oppm}$	$\mathrm{Ta}_{2} \mathrm{O}_{5} \mathrm{ppm}$
RL-22-525	198.6	200.1	1.5	Felsic	-	-
RL-22-525	200.1	208.3	8.2	sediment	-	-
RL-22-525	208.3	211.4	3.1	Felsic	-	-
RL-22-525	211.4	225.0	13.6	sediment	-	-
RL-22-526	0.0	8.9	8.9	Overburden	-	-
RL-22-526	8.9	12.3	3.4	Sediment	-	-
RL-22-526	12.3	18.2	5.9	Felsic	-	-
RL-22-526	18.2	21.1	2.9	Sediment	-	-
RL-22-526	21.1	21.8	0.7	Felsic	-	-
RL-22-526	21.8	39.7	17.9	Sediment	-	-
RL-22-526	39.7	42.8	3.1	Felsic	-	-
RL-22-526	42.8	58.0	15.2	Sediment	-	-
RL-22-526	58.0	61.6	3.6	Felsic	-	-
RL-22-526	61.6	82.3	20.7	Sediment	-	-
RL-22-526	82.3	86.3	3.9	Felsic	-	-
RL-22-526	86.3	120.4	34.2	Sediment	356	0
RL-22-526	120.4	122.5	2.1	Pegmatite	736	129
RL-22-526	122.5	171.8	49.2	Sediment	84	0
RL-22-526	171.8	172.0	0.2	Pegmatite	159	250
RL-22-526	172.0	180.0	8.0	Sediment	5	2
RL-22-527	0.0	3.0	3.0	Overburden	-	-
RL-22-527	3.0	9.5	6.5	Sediment	-	-
RL-22-527	9.5	10.4	0.8	Felsic	-	-
RL-22-527	10.4	18.9	8.5	Sediment	-	-
RL-22-527	18.9	20.8	1.9	Felsic	-	-
RL-22-527	20.8	22.8	2.0	Sediment	-	-
RL-22-527	22.8	24.1	1.3	Felsic	-	-
RL-22-527	24.1	32.2	8.1	Sediment	-	-
RL-22-527	32.2	33.0	0.8	Lost Core	-	-
RL-22-527	33.0	42.4	9.4	Sediment	-	-
RL-22-527	42.4	50.5	8.1	Felsic	-	-
RL-22-527	50.5	58.8	8.3	Sediment	-	-
RL-22-527	58.8	68.3	9.5	Felsic	-	-
RL-22-527	68.3	83.5	15.2	Sediment	-	-
RL-22-527	83.5	83.8	0.3	Lost Core	-	-
RL-22-527	83.8	87.4	3.6	Sediment	-	-
RL-22-527	87.4	88.2	0.8	Lost Core	-	-
RL-22-527	88.2	130.1	41.9	Sediment	-	-
RL-22-527	130.1	151.8	21.7	Mafic	-	-
RL-22-527	151.8	153.0	1.2	Lost Core	-	-
RL-22-527	153.0	165.1	12.1	Mafic	-	-
RL-22-527	165.1	169.9	4.8	Sediment	-	-
RL-22-527	169.9	170.4	0.5	Mafic	-	-

HOLEID	From	to	Interval	Lithology	$\mathrm{Li}_{2} \mathrm{Oppm}$	$\mathrm{Ta}_{2} \mathrm{O}_{5} \mathrm{ppm}$
RL-22-527	170.4	174.8	4.4	Sediment	-	-
RL-22-527	174.8	192.6	17.8	Felsic	21	0
RL-22-527	192.6	193.3	0.7	Pegmatite	114	120
RL-22-527	193.3	200.1	6.8	Felsic	94	3
RL-22-527	200.1	200.2	0.1	Pegmatite	267	162
RL-22-527	200.2	230.9	30.7	Felsic	11	0
RL-22-527	230.9	236.8	6.0	Sediment	-	-
RL-22-527	236.8	241.0	4.2	Mafic	-	-
RL-22-527	241.0	249.0	8.0	Sediment	-	-
RL-22-528	0.0	3.0	3.0	Overburden	-	-
RL-22-528	3.0	125.0	122.0	Sediment	-	-
RL-22-528	125.0	201.0	76.0	Mafic	-	-
RL-22-529	0.0	3.9	3.9	Overburden	-	-
RL-22-529	3.9	73.9	70.0	Mafic	106	0
RL-22-529	73.9	80.4	6.6	Pegmatite	2,304	108
RL-22-529	80.4	142.5	62.1	Mafic	65	0
RL-22-529	142.5	144.0	1.5	Lost Core	-	-
RL-22-529	144.0	150.0	6.0	Mafic	-	-
RL-22-530	0.0	9.0	9.0	Overburden	-	-
RL-22-530	9.0	46.7	37.7	Mafic	18	0
RL-22-530	46.7	47.0	0.2	Pegmatite	618	50
RL-22-530	47.0	51.7	4.8	Mafic	316	1
RL-22-530	51.7	52.2	0.5	Pegmatite	263	86
RL-22-530	52.2	56.7	4.5	Mafic	399	0
RL-22-530	56.7	57.0	0.3	Pegmatite	553	1
RL-22-530	57.0	62.2	5.2	Mafic	673	0
RL-22-530	62.2	64.0	1.7	Felsic	1,759	1
RL-22-530	64.0	64.5	0.5	Mafic	3,853	2
RL-22-530	64.5	67.7	3.3	Pegmatite	223	100
RL-22-530	67.7	106.2	38.5	Mafic	287	0
RL-22-530	106.2	111.4	5.2	Felsic	-	-
RL-22-530	111.4	150.0	38.6	Mafic	-	-
RL-22-531	0.0	6.1	6.1	Overburden	-	-
RL-22-531	6.1	9.2	3.1	Mafic	-	-
RL-22-531	9.2	22.6	13.4	Felsic	194	0
RL-22-531	22.6	28.8	6.2	Pegmatite	13,215	132
RL-22-531	28.8	104.5	75.7	Felsic	62	0
RL-22-531	104.5	131.9	27.4	Mafic	-	-
RL-22-531	131.9	150.0	18.1	Felsic	-	-
RL-22-532	0.0	90.1	90.1	Mafic	40	1
RL-22-532	90.1	101.8	11.7	Pegmatite	9,120	110
RL-22-532	101.8	113.0	11.2	Sediment	5,477	3
RL-22-532	113.0	133.7	20.7	Pegmatite	10,842	94

HOLEID	From	to	Interval	Lithology	$\mathrm{Li}_{2} \mathrm{Oppm}$	$\mathrm{Ta}_{2} \mathrm{O}_{5} \mathrm{ppm}$
RL-22-532	133.7	156.0	22.3	Sediment	3,270	0
RL-22-532	156.0	176.8	20.8	Pegmatite	8,344	80
RL-22-532	176.8	231.0	54.2	Mafic	121	1
RL-22-535	0.0	3.2	3.2	Overburden	-	-
RL-22-535	3.2	3.7	0.5	Mafic	-	-
RL-22-535	3.7	4.5	0.9	Felsic	-	-
RL-22-535	4.5	15.3	10.8	Mafic	-	-
RL-22-535	15.3	16.8	1.5	Felsic	-	-
RL-22-535	16.8	30.8	14.0	Mafic	292	1
RL-22-535	30.8	36.3	5.5	Pegmatite	10,055	138
RL-22-535	36.3	142.8	106.5	Mafic	38	0
RL-22-535	142.8	144.0	1.2	Felsic	37	1
RL-22-535	144.0	150.0	6.0	Mafic	57	0
RL-22-536	0.0	6.3	6.3	Overburden	-	-
RL-22-536	6.3	91.9	85.6	Felsic	301	1
RL-22-536	91.9	96.1	4.3	Pegmatite	2,267	94
RL-22-536	96.1	127.6	31.5	Felsic	123	0
RL-22-536	127.6	138.8	11.2	Mafic	-	-
RL-22-536	138.8	162.2	23.4	Felsic	-	-
RL-22-536	162.2	176.7	14.5	Mafic	-	-
RL-22-536	176.7	180.0	3.3	Felsic	-	-
RL-22-539	0.0	6.0	6.0	Overburden	-	-
RL-22-539	6.0	53.2	47.2	Sediment	258	0
RL-22-539	53.2	55.4	2.2	Pegmatite	2,947	95
RL-22-539	55.4	59.2	3.8	Sediment	1,446	1
RL-22-539	59.2	75.1	15.9	Felsic	37	0
RL-22-539	75.1	117.0	41.9	Sediment	-	-
RL-22-543	0.0	7.7	7.7	Overburden	-	-
RL-22-543	7.7	57.4	49.7	Sediment	-	-
RL-22-543	57.4	61.4	4.1	Felsic	-	-
RL-22-543	61.4	137.6	76.2	Sediment	-	-
RL-22-543	137.6	139.3	1.7	Pegmatite	-	-
RL-22-543	139.3	187.5	48.3	Mafic	516	0
RL-22-543	187.5	195.5	8.0	Pegmatite	8,387	97
RL-22-543	195.5	249.0	53.5	Mafic	149	0
RL-22-543	249.0	252.0	3.0	Sediment	-	-
RL-22-547	0.0	4.5	4.5	Overburden	-	-
RL-22-547	4.5	45.5	41.0	Sediment	-	-
RL-22-547	45.5	57.3	11.8	Felsic	-	-
RL-22-547	57.3	67.0	9.7	Sediment	-	-
RL-22-547	67.0	79.9	12.9	Felsic	-	-
RL-22-547	79.9	92.3	12.4	Sediment	-	-
RL-22-547	92.3	126.0	33.7	Felsic	-	-

HOLEID	From	to	Interval	Lithology	Lizoppm	$\mathrm{Ta}_{2} \mathrm{O}_{5} \mathrm{ppm}$
RL-22-551	0.0	7.7	7.7	Overburden	-	-
RL-22-551	7.7	35.6	27.9	Sediments	-	-
RL-22-551	35.6	39.5	3.9	Felsic	-	-
RL-22-551	39.5	99.7	60.2	Sediment	-	-
RL-22-551	99.7	102.2	2.6	Felsic	-	-
RL-22-551	102.2	126.0	23.8	Sediment	-	-
RL-23-383	0.0	6.0	6.0	Overburden	-	-
RL-23-383	6.0	119.0	113.0	Sediment	-	-
RL-23-383	119.0	122.5	3.5	Shear	-	-
RL-23-383	122.5	132.0	9.5	Sediment	-	-
RL-23-383	132.0	139.0	7.0	Shear	-	-
RL-23-383	139.0	172.8	33.8	Sediment	-	-
RL-23-383	172.8	173.8	1.0	Lost Core	-	-
RL-23-383	173.8	194.0	20.3	Sediment	-	-

[^0]: Green Technology Metals
 1/338 Barker Road, Subiaco, Western Australia 6008
 +61865576825

