# PAN ASIAMETALS

ASX Announcement | February 2, 2023

# Reung Kiet Lithium Project - Drilling Update

#### **HIGHLIGHTS**

- Assay results for eighteen (18) holes (RKDD073-091 and RKDD032) completed at the Reung Kiet Lithium Project in southern Thailand have been received.
- Step out drilling demonstrates extensions at depth and along strike of the existing Mineral Resource.
- Infill drilling supports geological interpretation of existing Mineral Resource.
- Assay results include:

| Hole ID | from (m) | to (m) | int (m) | Li₂O (%) | Sn<br>(ppm) | Ta₂O₅<br>(ppm) |
|---------|----------|--------|---------|----------|-------------|----------------|
| RKDD077 | 100.00   | 115.75 | 15.75   | 0.55     | 0.11        | 139            |
| RKDD077 | 112.00   | 115.75 | 3.75    | 0.85     | 0.07        | 215            |
| RKDD079 | 91.20    | 112.10 | 20.90   | 0.37     | 0.12        | 124            |
| RKDD079 | 96.00    | 100.00 | 4.00    | 0.75     | 0.10        | 104            |
| RKDD080 | 55.10    | 63.00  | 7.90    | 0.41     | 0.11        | 76             |
| RKDD080 | 58.00    | 63.00  | 5.00    | 0.64     | 0.12        | 92             |
| RKDD080 | 69.30    | 83.90  | 14.60   | 0.43     | 0.08        | 84             |
| RKDD080 | 73.70    | 79.95  | 6.25    | 0.82     | 0.10        | 111            |
| RKDD085 | 203.50   | 217.00 | 13.50   | 0.69     | 0.08        | 117            |
| RKDD085 | 211.00   | 214.85 | 3.85    | 0.89     | 0.07        | 149            |
| RKDD086 | 169.00   | 184.00 | 15.00   | 0.64     | 0.07        | 120            |
| RKDD086 | 177.50   | 182.00 | 4.50    | 0.91     | 0.08        | 155            |
| RKDD089 | 129.30   | 141.90 | 12.60   | 0.62     | 0.09        | 109            |
| RKDD089 | 130.00   | 134.60 | 4.60    | 0.81     | 0.08        | 173            |
| RKDD089 | 146.00   | 154.50 | 8.50    | 0.73     | 0.07        | 114            |
| RKDD090 | 10.65    | 35.85  | 24.60   | 0.48     | 0.05        | 89             |
| RKDD090 | 23.50    | 25.50  | 2.00    | 1.20     | 0.13        | 179            |
| RKDD090 | 55.50    | 60.95  | 5.45    | 0.58     | 0.03        | 197            |
| RKDD090 | 58.05    | 60.95  | 2.90    | 0.92     | 0.05        | 326            |
| RKDD091 | 12.00    | 16.80  | 4.80    | 0.73     | 0.05        | 164            |
| RKDD091 | 52.00    | 63.50  | 11.50   | 0.75     | 0.14        | 128            |

- Infill and extensional drilling is ongoing, currently drilling hole RKDD101.
- Drilling planned at the Bang I Tum lithium prospect 8km to the north of Reung Kiet to evaluate recently reported Exploration Target and adjacent target zones.

#### **PAN ASIA METALS LIMITED**



Battery and critical metals explorer and developer Pan Asia Metals Limited (ASX: PAM) ('PAM' or 'the Company') is pleased to provide an update for eighteen (18) more drill holes completed at the Reung Kiet lithium prospect. Results continue to support the geological model of extensive lithium mineralisation hosted in lepidolite rich pegmatite dykes-veins and adjacent metasediments. The mineralised zone is currently defined over a strike length of plus 1km and remains open along strike to the north and south, and at depth especially in the south.

Pan Asia Metals Managing Director Paul Lock said: "We near the end of the drilling program at the Reung Kiet Lithium Prospect and the results remain very positive with the step out drilling continuing to demonstrate extensions at depth and along strike of the existing Mineral Resource and the infill drilling supporting and enhancing the existing Mineral Resource. The results at the southern end of the prospect are particularly good. Final assays required for the updated Mineral Resource will be received shortly and then CSA Global will start the required modelling and estimation work. A move to Bang I Tum is imminent and then we can start our diamond drilling program there to test the Exploration Target as well as the extension zone as previously reported. We are quite excited about this program; non-selective rock chip and channel assays were some of the highest received at Reung Kiet, with 44 of 64 samples average 1.56% Li<sub>2</sub>O at a 0.30% Li<sub>2</sub>O cutoff, 35 samples were greater than 1.00% Li<sub>2</sub>O, 12 samples greater than 2.00% Li<sub>2</sub>O and the maximum grade was 2.62% Li<sub>2</sub>O."

The Reung Kiet Lithium Project (RKLP) is one of PAM's key assets. RKLP is a hard rock lithium project with lithium hosted in lepidolite/mica rich pegmatites chiefly composed of quartz, albite, lepidolite and muscovite, with minor cassiterite and tantalite as well as other accessory minerals. Previous open pit mining extracting tin from the weathered pegmatites was conducted into the early 1970's.

PAM's objective has been to continue drilling with the aim of increasing and upgrading the existing Mineral Resource, which will then be used as part of a Pre-Feasibility Study that will consider various options to determine the technical and economic viability of the project including the production profile of lithium carbonate and or lithium hydroxide and associated by-products. PAM is focusing on lepidolite as a source of lithium as peer group studies indicate that lithium carbonate and lithium hydroxide projects using lepidolite as their plant feedstock have the potential to be placed near the bottom of the cost curve. Lepidolite has also been demonstrated to have a lower carbon emission intensity than other lithium sources.



### **Reung Kiet Prospect (RK)**

The RK Prospect was a relatively large open cut tin mine. The old pit is about 500m long and up to 125m wide (see Figure 1).

Mining of the weathered pegmatites extended up to 30m below surface, to the top of hard rock. Pan Asia has identified a prospective zone at least 1km long, reporting an Inferred Mineral Resource estimate as shown in Table 1. Please refer to PAM ASX announcement, "Inaugural Mineral Resource Estimate Reung Kiet Lithium" dated June 28, 2022.

Table 1. RKLP - Reung Kiet Prospect - Inferred Mineral Resource, 28 June, 2022

|                         | Million<br>Tonnes | Li₂O % | Sn % | Ta <sub>2</sub> O <sub>5</sub> % | Rb % | Cs % | LCE (t) |
|-------------------------|-------------------|--------|------|----------------------------------|------|------|---------|
| Oxide &<br>Transitional | 3.2               | 0.49   | 0.03 | 0.009                            | 0.15 | 0.02 | 38,611  |
| Fresh                   | 7.2               | 0.42   | 0.04 | 0.009                            | 0.16 | 0.02 | 74,416  |
| Total                   | 10.4              | 0.44   | 0.04 | 0.009                            | 0.16 | 0.02 | 113,027 |

Mineral Resource reported above 0.25% Li<sub>2</sub>O% cut-off. Appropriate rounding applied.

The Mineral Resource is based upon the first 46 holes drilled at Reung Kiet. Ongoing drilling has seen the completion of an additional 54 holes, most of which will be included in the Mineral Resource update which aims to increase the Mineral Resource tonnage and upgrade portions of the Mineral Resource from Inferred to Indicated and possibly Measured classification.

The pegmatite swarms remain open to the north and south and at depth on many sections (see Figure 1).



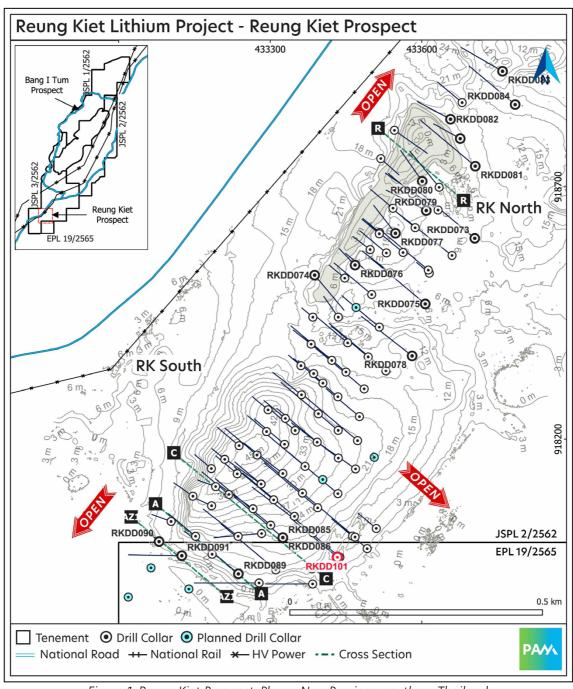



Figure 1. Reung Kiet Prospect, Phang Nga Province, southern Thailand



#### **Reung Kiet Prospect - Drilling**

Pan Asia Metals has been conducting diamond core drilling at the Reung Kiet Lithium prospect since March 2021. PAM has recently received assay results for drillholes RKDD073 -RKDD091, as well as a 'tail' on RKDD032, but excluding RKDD087 and 088. The holes are a mix of infill and extensional drilling.

Collar details for these holes are provided in Table 2 - Reung Kiet Drillhole Collars, with assay results reported in Table 3 - Reung Kiet Drilling Assay Results, both located in Appendix 1. Further technical details are provided in Appendix 2, being JORC Table 1. Appropriate plans and sections are provided throughout this report.

#### **Technical Discussion**

The RK pegmatite trend is divided into two main parts, RK North and RK South, each about 500m long (see Figure 1). RK North includes the old open cut and immediate surrounds. RK South extends along strike to the southeast and encompasses a prominent knoll associated with an extensive pegmatite dyke and vein swarm.

At RK North the pegmatite dykes and veins dip at 65-70 degrees to the south-east. The Main dyke intersected in drilling beneath the pit can be up to 30m wide, narrower dykes and veins also occur, particularly to the east. At RK South the pegmatites form a dyke and vein swarm that dips at angles of 60 to 35 degrees. The pegmatite dykes and veins at RK South are typically more numerous when compared to RK North. The pegmatite dykes and veins host the bulk of the lithium mineralisation. However, it is relatively common for adjacent and intercalated meta-siltstone to contain elevated lithium values in the order of 0.1-0.3%  $\rm Li_2O$ .

From west to east the pegmatite swarm at RK South occurs in a zone approximately 100m wide which appears to taper slightly to the northeast as RK North is approached.

Mineralisation remains open along strike to the north and south, and down dip especially at RK South. Additional infill and extensional drilling are ongoing with drillhole RKDD101 currently in progress. The reported maiden Mineral Resource estimate used only drillholes up to RKDD046. The additional infill and extensional holes will be used to update the Mineral Resource which is expected to reported in late February-early March.

In this report newly received lithium assay intersections for drillholes RKDD073-RKDD091 (excluding RKDD087 and 088) are presented and discussed from south to north. Relevant plans and cross sections are also shown.



#### New results RKDD073-091

On Section Z1, RKDD090 and 091 were drilled as extensional holes and represent the most southern holes now drilled along the trend. Both holes intersected lithium mineralisation over appreciable widths (see Figure 2). In hole RKDD090, from 6.5m to 60.95m an aggregate mineralised width of 32.7m @ 0.49%  $\text{Li}_2\text{O}$  was intersected. This included a continuous intersection of 24.6m @ 0.48%  $\text{Li}_2\text{O}$  from 10.65m.

In hole RKDD091 from 12.0m to 113.15m an aggregate mineralised width of 58.5m @ 0.52% Li<sub>2</sub>O was intersected (see Figure 2). This includes a continuous zone of 11.50m @ 0.75% Li<sub>2</sub>O from 52m, as well as other wide but lower grade zones (see Table 3).



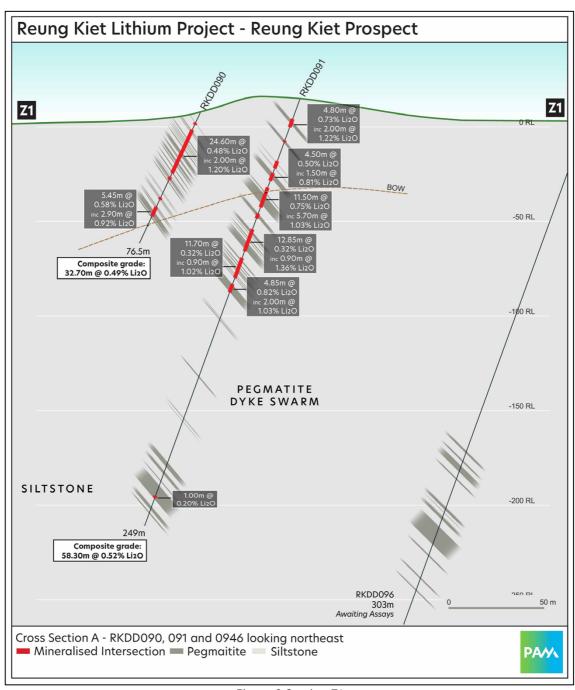



Figure 2 Section Z1

On Section A, RKDD089 was drilled originally as an extensional hole to test down-dip of RKDD009. Results for RKDD089 from 136.45m to 170.4m returned an aggregate mineralised width of 36.3m @ 0.59%  $\text{Li}_2\text{O}$ . This includes continuous intersections of 12.6m @ 0.62%  $\text{Li}_2\text{O}$  from 129.3m and 8.5m @ 0.73%  $\text{Li}_2\text{O}$  from 146m (see Figure 3).



Additional narrower lepidolite pegmatites were intersected above and below these zones (see Table 3).

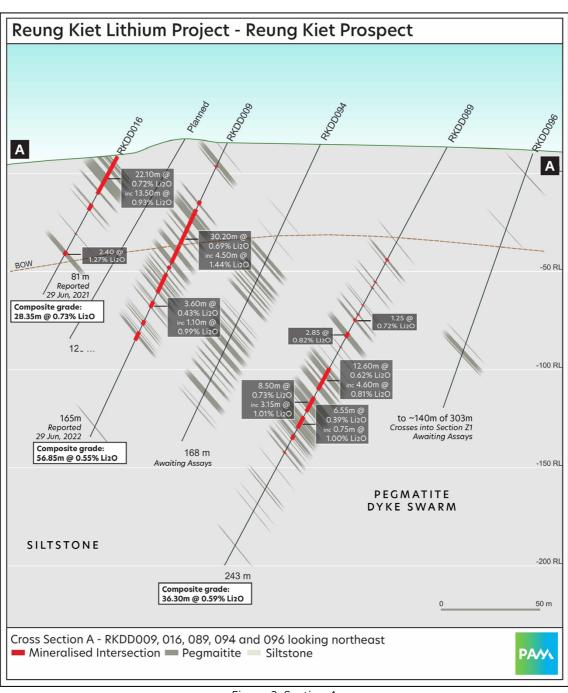



Figure 3. Section A

Additional drilling has been undertaken on this section with RKDD094 drilled as an infill hole and intersected 31.8m of aggregate lepidolite pegmatite width from 64.4m to



147.4m. RKDD096 was drilled as an extensional hole and intersected lepidolite rich pegmatite over 11m width from 179.3m as well as many other narrower zones. Assay results for both holes are awaited.

On Section C, RKDD085 was drilled as an extensional hole to test down-dip of RKDD015. From 203.5m RKDD085 returned an intersection of 13.5m @ 0.69%  $\rm Li_2O$  (see Figure 4). This represents one of the deepest lithium intersections at the project to date. Further down the hole a pegmatite zone returned an intersection of 31.5m @ 0.12% Sn from 295.65m (see Table 3). RKDD085 is a vertical hole, as such estimated true width is around 66% of the reported downhole width.

RKDD086 was drilled as an infill hole up-dip from RKDD085. From 110m to 210.55m RKDD085 intersected an aggregate mineralised zone of 32.35m @ 0.49%  $\text{Li}_2\text{O}$  (see Figure 4). This includes a continuous zone of 15m @ 0.64%  $\text{Li}_2\text{O}$  from 169m. Further down the hole a pegmatite zone returned an intersection of 15.2m @ 0.18% Sn and 0.13%  $\text{Li}_2\text{O}$  from 235.6m (see Table 3).

RKDD093 was drilled to target down-dip extensions of the zones intersected in hole RKDD086 and intersected several pegmatites including a 6.6m wide pegmatite from 505.95m. Assay results for this hole are awaited.



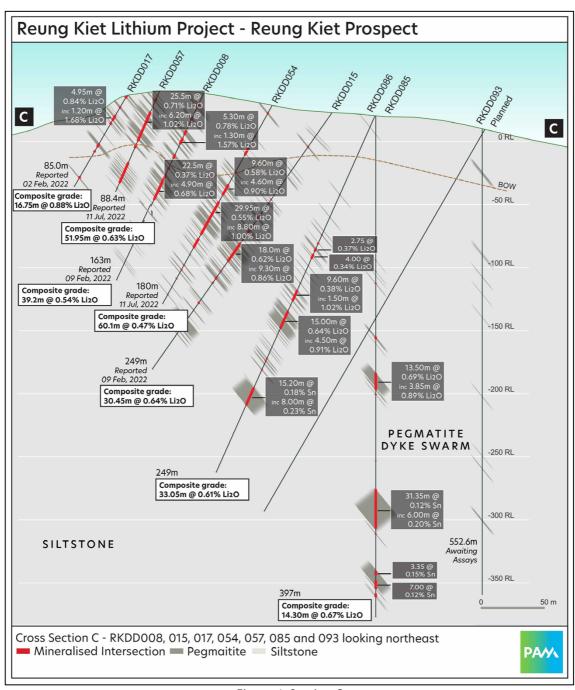



Figure 4. Section C

On Section L, RKDD074 was drilled from the west side of the pit to target up-dip extensions from RKDD049. The main pegmatite occurred over 21.8m from 96.6m and whilst containing only anomalous lithium, this zone averaged 0.10% Sn and 130ppm  $Ta_2O_5$ . RKDD074 intersected some narrow pegmatites with low grade lithium around 65m and 70m (see Table 3).



RKDD078 was drilled as an extensional hole down-dip from RKDD049, with two narrow zones of lithium mineralisation were intersected, being 1.7m @ 0.69% Li<sub>2</sub>O from 27.7m and 1.65m @ 0.58% Li<sub>2</sub>O from 185.2m. Other pegmatite related mineralisation occurred in two zones, being 14.60m 0.12% Sn and 122ppm  $Ta_2O_5$  from 210.4m and the second 6.7m @ 0.15% Sn and 104 ppm  $Ta_2O_5$  from 247m. Both these zones contained <0.1% Li<sub>2</sub>O.

On Section M, RKDD076 was an up-dip infill hole. From 38.9m the hole intersected a 17.1m zone of mineralisation averaging 0.15%  $\text{Li}_2\text{O}$ . 0.08% Sn and 186ppm  $\text{Ta}_2\text{O}_5$ . This included a 3m zone @ 0.79%  $\text{Li}_2\text{O}$  from 53m (see Table 3).

On Section N, RKDD075 was drilled to test downdip extensions from RKDD040. RKDD075 returned an intersection of  $30.45m @ 0.15\% Li_2O$ , 0.15% Sn and  $106ppm Ta_2O_5$  from 193.15m. This zone included several narrower zones with an aggregate width of  $14m @ 0.24\% Li_2O$  (see Table 3).

On Section O, RKDD077 was drilled as an infill hole. From 15.5m to 115.75m the hole returned an aggregate intersection of 28.1m @ 0.45% Li<sub>2</sub>O, this included a continuous zone of 15.75m @ 0.55% Li<sub>2</sub>O from 100m and 9.25m @ 0.24 Li<sub>2</sub>O from 86.95m. Further up the hole are several 1-5m wide zones averaging 0.24% Li<sub>2</sub>O (see Table 3).

RKDD079 was drilled as an infill hole between Section P and Q. The hole yielded several lithium rich intersections, including 20.9m @ 0.37%  $\text{Li}_2\text{O}$  from 91.2m and 3.7m @ 0.46%  $\text{Li}_2\text{O}$  from 124.2m, along with several other narrower zones up and downhole (see Table 3).

On Section Q, RKDD073 was drilled looking for potential extensions beneath RK Main pit. The hole intersected several narrow zones of pegmatite from 70.8m to 73.8m and 182.5m -189.9m. Both these zones averaged around 0.3% Li<sub>2</sub>O (see Table 3).

On Section R, RKDD080 was drilled looking for up-dip extensions up-dip of RKDD031 (See Figure 5). From 43.5m to 94.6m RKDD080 returned an aggregate intersection of 29.15m @ 0.43% Li<sub>2</sub>O, including a continuous zone of 14.6m @ 0.43% from 69.3m, along with other intersections in the hole (see Table 3).



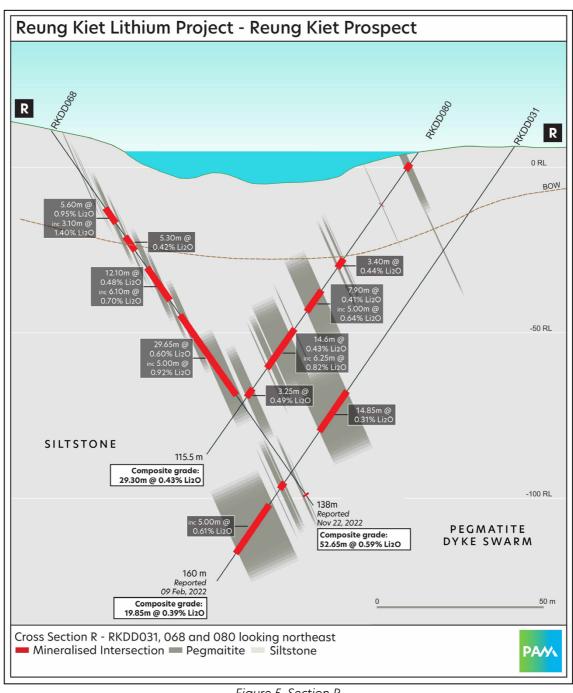



Figure 5. Section R

On Section S, RKDD081 was drilled as a deep extensional hole at the northern limit of the old open pit. The hole intersected several zones of pegmatite from 5.5-7m wide. The best lithium intersection was 5.45m @ 0.17% Li<sub>2</sub>O from 196.4m. Other zones of low-grade tin and tantalum are reported (see Table 3).



On Section T, a 'tail' or extension to RKDD032 was drilled from 120m-190.2m. An aggregate thickness of 27.65m of pegmatite was intersected from 134.95m to 181.25m. The best intersection is 12.05m @ 0.16%Sn, 72ppm  $Ta_2O_5$  with some zones of >0.1%  $Li_2O$  (see Table 3).

RKDD082 was drilled as an up-dip infill hole on Section T above RKDD032. The hole intersected 17.55m @ 0.12% Sn, 121ppm  $Ta_2O_5$  and <0.1%  $Li_2O$  from 55.45m.

RKDD084 was drilled on Section V as a deeper extensional hole between sections U and W. The hole intersected two zones of pegmatite associated mineralisation, such of 2.05m @ 0.15% Sn and 64ppm  $Ta_2O_5$  from 100.9m and 11.05m @ 0.12% Sn and 89ppm  $Ta_2O_5$  from 132.5m. Near the base of the hole an intersection of 1.05m @ 0.52%  $Li_2O$  from 199.45m is reported.

RKDD083 was drilled on Section W and represents the northern-most hole so far drilled at Reung Kiet. The hole intersected numerous narrow dykes and veins with an aggregate thickness of 16m from 24m to 178.1m. The best intersections are 5.35m @ 0.29%  $\rm Li_2O$  from 32.45m and 3.95m @ 0.24%  $\rm Li_2O$  from 125.3m.



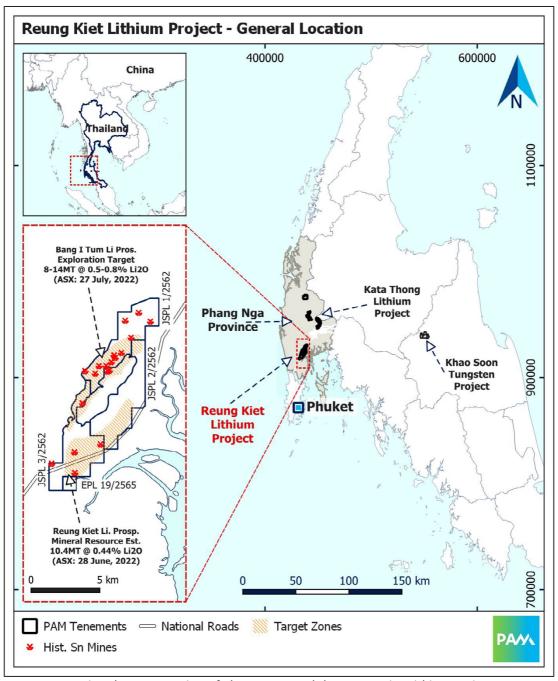
# Forward planning

PAM is continuing to drill at Reung Kiet with the aim of increasing the existing the Mineral Resource and also upgrading parts of the Mineral Resource from the Inferred to Indicated and possibly Measured classification. A Mineral Resource update is planned for late February-early March and will aid in the completion of additional project studies.

PAM is currently drilling hole RKDD101, and is awaiting results for holes RKDD0092-095. Logging and sampling of holes RKDD096 onwards is continuing with a new batch of samples recently dispatched to the laboratory. All results will be reported as they become available.

After the completion of drilling at RK, the drill rigs will move to the Bang I Tum prospect where PAM will evaluate the existing Exploration Target and more recently reported adjacent target zones. This move is imminent.

The Company looks forward to keeping Shareholders and the market updated on the drilling progress and results obtained from the drilling program and other activities related to the Company's ongoing evaluation of the Reung Kiet Lithium Project.


**Ends** 

Authorised by: Board of Directors



### **About the Reung Kiet Lithium Project**

The Reung Kiet Lithium Project is a lepidolite style lithium project located about 70km north-east of Phuket in the Phang Nga Province in southern Thailand. Pan Asia holds a 100% interest in 3 contiguous Special Prospecting Licenses (SPL) and 1 Exclusive Prospecting License (EPL) covering about 40km<sup>2</sup>.



Regional map: Location of Phang Nga and the Reung Kiet Lithium Project



### About Pan Asia Metals Limited (ASX:PAM)

Pan Asia Metals Limited (ASX:PAM) is a battery and critical metals explorer and developer focused on the identification and development of projects in Asia and elsewhere that have the potential to position the Company to produce metal compounds and other value-added products that are in high demand.

Pan Asia Metals is Exploring A Better Future<sup>®</sup>, we explore with principles, and we intend to mine and process with principles, conducting ourselves in a way that will bring benefit to all stakeholders, knowing that success includes community and environment.

Pan Asia Metals owns two lithium projects and one tungsten project. The projects are located in Thailand, a low cost advanced industrial economy, and fit the Company's strategy of developing downstream value-add opportunities situated in low-cost environments proximal to end market users.

Complementing Pan Asia Metal's existing project portfolio is its target generation program, aiming to identify desirable assets in the region. Pan Asia Metals plans to develop its existing projects while also expanding its portfolio via targeted and value-accretive acquisitions.

To learn more, please visit: www.panasiametals.com

Stay up to date with the latest news by connecting with PAM on LinkedIn and Twitter.

#### **Investor and Media Enquiries**

Paul Lock
Pan Asia Metals Limited
Managing Director
paul.lock@panasiametals.com

Viriathus Capital Pty Ltd 1300 509 924 investors@viriathus.com.au

Stay up to date and be informed by scanning this QR Code, we will deliver the latest news and updates directly to you.





#### **Competent Persons Statement**

The information in this report that relates to Mineral Resources is based on information compiled by Ms Millicent Canisius and Mr Anthony Wesson, both full-time employees of CSA Global. Mr Anthony Wesson is a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy and Ms Millicent Canisius is a Member of the Australasian Institute of Mining and Metallurgy. Mr Anthony Wesson and Ms Millicent Canisius have sufficient experience, relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking, to qualify as Competent Persons as defined in the 2012 Edition of the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr Anthony Wesson and Ms Millicent Canisius consent to the disclosure of the information in this report in the form and context in which it appears.

The information in this report that relates to Exploration Targets and Exploration Results, is based on information compiled by Mr. David Hobby, is a Member of the Australasian Institute of Mining and Metallurgy. Mr. Hobby is a full time employee, Director and Shareholder of Pan Asia Metals Limited. Mr. Hobby has sufficient experience, relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr. Hobby consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

#### **Forward Looking Statements**

Various statements in this document constitute statements relating to intentions, future acts and events which are generally classified as "forward looking statements". These forward looking statements are not guarantees or predictions of future performance and involve known and unknown risks, uncertainties and other important factors (many of which are beyond the Company's control) that could cause those future acts, events and circumstances to differ materially from what is presented or implicitly portrayed in this document. For example, future reserves or resources or exploration targets described in this document may be based, in part, on market prices that may vary significantly from current levels. These variations may materially affect the timing or feasibility of particular developments. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Pan Asia Metals cautions security holders and prospective security holders to not place undue reliance on these forwardlooking statements, which reflect the view of Pan Asia Metals only as of the date of this document. The forward-looking statements made in this document relate only to events as of the date on which the statements are made. Except as required by applicable regulations or by law, Pan Asia Metals does not undertake any obligation to publicly update or review any forward-looking statements, whether as a result of



new information or future events. Past performance cannot be relied on as a guide to future performance.

# **Important**

To the extent permitted by law, PAM and its officers, employees, related bodies corporate and agents (Agents) disclaim all liability, direct, indirect or consequential (and whether or not arising out of the negligence, default or lack of care of PAM and/or any of its Agents) for any loss or damage suffered by a Recipient or other persons arising out of, or in connection with, any use or reliance on this document or information.



# **APPENDIX 1**

Table 2 - Reung Kiet Drillhole Collars

| Hole ID | East     | North    | mASL | Dip | Azimuth<br>(mag) | Tot.Depth<br>(m) |
|---------|----------|----------|------|-----|------------------|------------------|
| RKDD032 | 433676.3 | 918795.6 | 8.53 | -60 | 299              | 190.2            |
| RKDD073 | 433698   | 918600   | 9    | -60 | 310              | 296              |
| RKDD074 | 433388   | 918525   | 12   | -55 | 140              | 157              |
| RKDD075 | 433607   | 918468   | 6    | -60 | 310              | 278.4            |
| RKDD076 | 433468   | 918545   | 11   | -55 | 315              | 78.1             |
| RKDD077 | 433548   | 918608   | 15   | -58 | 322              | 144              |
| RKDD078 | 433581   | 918365   | 16   | -60 | 308              | 295              |
| RKDD079 | 433587   | 918654   | 8    | -53 | 297              | 110              |
| RKDD080 | 433610   | 918711   | 8    | -55 | 310              | 115.5            |
| RKDD081 | 433706   | 918741   | 9    | -60 | 310              | 230              |
| RKDD082 | 433657   | 918834   | 9    | -55 | 298              | 115              |
| RKDD083 | 433760   | 918930   | 16   | -55 | 310              | 189              |
| RKDD084 | 433785   | 918863   | 11   | -55 | 300              | 207              |
| RKDD085 | 433325   | 918005   | 20   | -90 | 0                | 397              |
| RKDD086 | 433324   | 918005   | 20   | -66 | 310              | 309              |
| RKDD089 | 433237   | 917933   | 15   | -62 | 310              | 243              |
| RKDD090 | 433080   | 917997   | 8    | -65 | 310              | 76.5             |
| RKDD091 | 433125   | 917969   | 15   | -65 | 271              | 249              |

Table 3 - Reung Kiet Drilling Assay Results

|         |             |           | <u>,                                      </u> |             |             |                |             |             |          |
|---------|-------------|-----------|------------------------------------------------|-------------|-------------|----------------|-------------|-------------|----------|
| Hole ID | from<br>(m) | to<br>(m) | interval<br>(m)                                | Li₂O<br>(%) | Sn<br>(ppm) | Ta₂O₅<br>(ppm) | Cs<br>(ppm) | Rb<br>(%)   | K<br>(%) |
| RKDD032 | 134.95      | 147.00    | 12.05                                          | 0.03        | 0.16        | 72             | These       | elements    | to he    |
| RKDD032 | 151.50      | 159.10    | 7.60                                           | 0.05        | 0.09        | 117            |             | d at a late |          |
| RKDD032 | 177.55      | 181.45    | 3.90                                           | 0.06        | 0.09        | 130            |             |             |          |
| RKDD073 | 70.8        | 73.8      | 3.00                                           | 0.27        | 0.04        | 159            |             |             |          |
| RKDD073 | 182.5       | 189.9     | 2.40                                           | 0.31        | 0.01        | 70             |             |             |          |



| Hole ID | from<br>(m) | to<br>(m) | interval<br>(m) | Li <sub>2</sub> O<br>(%) | Sn<br>(ppm) | Ta₂O₅<br>(ppm) | Cs<br>(ppm) | Rb<br>(%) | l<br>(% |
|---------|-------------|-----------|-----------------|--------------------------|-------------|----------------|-------------|-----------|---------|
| RKDD073 | 263.05      | 265.45    | 2.40            |                          | 0.20        | 128            |             | '         |         |
| RKDD074 | 65.4        | 66.6      | 1.20            | 0.19                     | 0.01        | 39             |             |           |         |
| RKDD074 | 70.25       | 72.2      | 1.95            | 0.48                     | 0.03        | 52             |             |           |         |
| RKDD074 | 96.60       | 118.40    | 21.80           |                          | 0.10        | 130            |             |           |         |
| RKDD075 | 107.90      | 108.70    | 0.80            | 0.70                     | 0.07        | 162            |             |           |         |
| RKDD075 | 193.15      | 223.60    | 30.45           | 0.15                     | 0.15        | 106            |             |           |         |
| RKDD075 | 197.00      | 201.00    | 4.00            | 0.23                     | 0.13        | 131            |             |           |         |
| RKDD075 | 207.00      | 208.00    | 1.00            | 0.23                     | 0.18        | 110            |             |           |         |
| RKDD075 | 211.00      | 220.00    | 9.00            | 0.24                     | 0.17        | 115            |             |           |         |
| RKDD075 | 226.75      | 227.00    | 0.25            |                          | 0.10        | 111            |             |           |         |
| RKDD075 | 239.85      | 243.20    | 3.35            |                          | 0.15        | 82             |             |           |         |
| RKDD076 | 38.90       | 56.00     | 17.10           | 0.15                     | 0.08        | 186            |             |           |         |
| RKDD076 | 53.00       | 56.00     | 3.00            | 0.79                     | 0.08        | 162            |             |           |         |
| RKDD077 | 15.50       | 20.70     | 5.20            | 0.10                     | 0.07        | 199            |             |           |         |
| RKDD077 | 31.50       | 32.50     | 1.00            | 0.18                     | 0.09        | 95             |             |           |         |
| RKDD077 | 46.00       | 46.60     | 0.60            |                          | 0.07        | 148            |             |           |         |
| RKDD077 | 49.40       | 51.10     | 1.70            | 0.77                     | 0.08        | 169            |             |           |         |
| RKDD077 | 70.80       | 72.20     | 1.40            | 0.27                     | 0.08        | 111            |             |           |         |
| RKDD077 | 76.60       | 77.75     | 1.15            | 0.11                     | 0.10        | 115            |             |           |         |
| RKDD077 | 86.95       | 96.20     | 9.25            | 0.24                     | 0.11        | 103            |             |           |         |
| RKDD077 | 89.00       | 94.00     | 5.00            | 0.35                     | 0.12        | 101            |             |           |         |
| RKDD077 | 100.00      | 115.75    | 15.75           | 0.55                     | 0.11        | 139            |             |           |         |
| RKDD077 | 112.00      | 115.75    | 3.75            | 0.85                     | 0.07        | 215            |             |           |         |
| RKDD078 | 27.70       | 29.40     | 1.70            | 0.69                     | 0.08        | 158            |             |           |         |
| RKDD078 | 185.20      | 186.85    | 1.65            | 0.58                     | 0.05        | 94             |             |           |         |
| RKDD078 | 210.40      | 225.00    | 14.60           |                          | 0.12        | 122            |             |           |         |
| RKDD078 | 247.00      | 253.70    | 6.70            |                          | 0.15        | 104            |             |           |         |
| RKDD079 | 17.60       | 19.50     | 1.90            | 0.47                     | 0.05        | 93             |             |           |         |
| RKDD079 | 63.30       | 64.30     | 1.20            | 0.18                     | 0.06        | 167            |             |           |         |



| Hole ID | from<br>(m) | to<br>(m) | interval<br>(m) | Li₂O<br>(%) | Sn<br>(ppm) | Ta₂O₅<br>(ppm) | Cs<br>(ppm) | Rb<br>(%) |  |
|---------|-------------|-----------|-----------------|-------------|-------------|----------------|-------------|-----------|--|
| RKDD079 | 81.70       | 83.15     | 1.45            | 0.13        | 0.18        | 85             |             | '         |  |
| RKDD079 | 86.50       | 86.95     | 0.45            | 0.04        | 0.21        | 128            |             |           |  |
| RKDD079 | 91.20       | 112.10    | 20.90           | 0.37        | 0.12        | 124            |             |           |  |
| RKDD079 | 96.00       | 100.00    | 4.00            | 0.75        | 0.10        | 104            |             |           |  |
| RKDD079 | 104.10      | 104.45    | 0.35            | 2.45        | 0.02        | 16             |             |           |  |
| RKDD079 | 115.50      | 116.80    | 1.30            | 0.17        | 0.09        | 77             |             |           |  |
| RKDD079 | 124.20      | 127.90    | 3.70            | 0.46        | 0.11        | 79             |             |           |  |
| RKDD079 | 135.00      | 135.45    | 0.45            | 0.02        | 0.06        | 128            |             |           |  |
| RKDD080 | 8.35        | 10.80     | 2.45            | 0.08        | 0.06        | 119            |             |           |  |
| RKDD080 | 23.50       | 23.65     | 0.15            | 0.27        | 0.01        | 232            |             |           |  |
| RKDD080 | 43.50       | 46.90     | 3.40            | 0.44        | 0.07        | 44             |             |           |  |
| RKDD080 | 55.10       | 63.00     | 7.90            | 0.41        | 0.11        | 76             |             |           |  |
| RKDD080 | 58.00       | 63.00     | 5.00            | 0.64        | 0.12        | 92             |             |           |  |
| RKDD080 | 69.30       | 83.90     | 14.60           | 0.43        | 0.08        | 84             |             |           |  |
| RKDD080 | 73.70       | 79.95     | 6.25            | 0.82        | 0.10        | 111            |             |           |  |
| RKDD080 | 91.35       | 94.60     | 3.25            | 0.49        | 0.08        | 173            |             |           |  |
| RKDD081 | 22.00       | 23.70     | 1.70            | 0.33        | 0.01        | 31             |             |           |  |
| RKDD081 | 107.50      | 107.65    | 0.15            | 0.14        | 0.23        | 115            |             |           |  |
| RKDD081 | 134.60      | 134.90    | 0.30            | 0.02        | 0.03        | 550            |             |           |  |
| RKDD081 | 153.00      | 153.75    | 0.75            | 0.006       | 0.35        | 102            |             |           |  |
| RKDD081 | 160.95      | 161.95    | 1.00            | 0.013       | 0.18        | 97             |             |           |  |
| RKDD081 | 163.75      | 164.25    | 0.50            | 0.24        | 0.18        | 73             |             |           |  |
| RKDD081 | 168.90      | 169.65    | 0.75            | 0.73        | 0.02        | 9              |             |           |  |
| RKDD081 | 181.35      | 182.40    | 1.05            | 0.38        | 0.02        | 4              |             |           |  |
| RKDD081 | 192.85      | 194.40    | 1.55            | 0.24        | 0.02        | 22             |             |           |  |
| RKDD081 | 196.40      | 201.85    | 5.45            | 0.17        | 0.03        | 36             |             |           |  |
| RKDD081 | 198.20      | 199.20    | 1.00            | 0.35        | 0.02        | 7              |             |           |  |
| RKDD081 | 200.80      | 201.85    | 1.05            | 0.35        | 0.02        | 7              |             |           |  |
| RKDD081 | 203.15      | 209.00    | 5.85            | 0.01        | 0.12        | 39             |             |           |  |



| Hole ID | from<br>(m) | to<br>(m) | interval<br>(m) | Li₂O<br>(%) | Sn<br>(ppm) | Ta₂O₅<br>(ppm) | Cs<br>(ppm) | Rb<br>(%) | K<br>(%) |
|---------|-------------|-----------|-----------------|-------------|-------------|----------------|-------------|-----------|----------|
| RKDD081 | 233.50      | 235.65    | 2.15            | 0.09        | 0.05        | 53             |             |           |          |
| RKDD081 | 234.75      | 235.20    | 0.45            | 0.01        | 0.14        | 60             |             |           |          |
| RKDD081 | 238.80      | 240.00    | 1.20            | 0.25        | 0.01        | 6              |             |           |          |
| RKDD081 | 244.40      | 251.30    | 6.90            |             | 0.11        | 68             |             |           |          |
| RKDD082 | 50.10       | 52.00     | 1.90            | 0.02        | 0.12        | 72             |             |           |          |
| RKDD082 | 55.45       | 73.00     | 17.55           | 0.01        | 0.12        | 121            |             |           |          |
| RKDD083 | 27.65       | 27.85     | 0.20            | 0.02        | 0.20        | 537            |             |           |          |
| RKDD083 | 32.45       | 37.80     | 5.35            | 0.29        | 0.03        | 93             |             |           |          |
| RKDD083 | 32.90       | 33.50     | 0.60            | 0.98        | 0.06        | 214            |             |           |          |
| RKDD083 | 34.45       | 35.30     | 0.85            | 0.40        | 0.02        | 227            |             |           |          |
| RKDD083 | 37.25       | 37.80     | 0.55            | 0.55        | 0.04        | 121            |             |           |          |
| RKDD083 | 41.40       | 41.75     | 0.35            | 0.20        | 0.03        | 124            |             |           |          |
| RKDD083 | 46.05       | 46.35     | 0.30            | 0.06        | 0.03        | 423            |             |           |          |
| RKDD083 | 51.10       | 51.40     | 0.30            | 0.04        | 0.02        | 347            |             |           |          |
| RKDD083 | 57.70       | 69.40     | 11.70           | 0.09        | 0.01        | 82             |             |           |          |
| RKDD083 | 57.70       | 58.55     | 0.85            | 0.34        | 0.02        | 189            |             |           |          |
| RKDD083 | 61.40       | 61.55     | 0.15            | 0.05        | 0.04        | 227            |             |           |          |
| RKDD083 | 63.00       | 63.20     | 0.20            | 0.07        | 0.04        | 220            |             |           |          |
| RKDD083 | 65.40       | 65.80     | 0.40            | 0.07        | 0.05        | 345            |             |           |          |
| RKDD083 | 67.00       | 67.80     | 0.80            | 0.15        | 0.03        | 239            |             |           |          |
| RKDD083 | 69.05       | 69.40     | 0.35            | 0.03        | 0.06        | 432            |             |           |          |
| RKDD083 | 125.30      | 129.25    | 3.95            | 0.24        | 0.03        | 99             |             |           |          |
| RKDD083 | 134.80      | 136.25    | 1.45            | 0.01        | 0.03        | 124            |             |           |          |
| RKDD083 | 143.60      | 144.55    | 0.95            |             | 0.01        | 113            |             |           |          |
| RKDD083 | 152.90      | 156.10    | 3.20            |             | 0.02        | 173            |             |           |          |
| RKDD083 | 160.60      | 162.50    | 1.90            | 0.08        | 0.06        | 114            |             |           |          |
| RKDD083 | 170.30      | 170.60    | 0.30            | 0.02        | 0.06        | 97             |             |           |          |
| RKDD083 | 177.85      | 178.05    | 0.20            | 0.02        | 0.09        | 49             |             |           |          |
| RKDD084 | 100.90      | 102.90    | 2.00            | 0.02        | 0.15        | 64             | •           |           |          |



| Hole ID | from<br>(m) | to<br>(m) | interval<br>(m) | Li₂O<br>(%) | Sn<br>(nnm)   | Ta₂O₅<br>(ppm) | Cs    | Rb<br>(%) |  |
|---------|-------------|-----------|-----------------|-------------|---------------|----------------|-------|-----------|--|
| RKDD084 | 132.35      | 143.40    | 11.05           | 0.03        | (ppm)<br>0.12 | (ppiii)<br>89  | (ppm) | (70)      |  |
| RKDD084 | 172.20      | 173.40    | 1.20            | 0.006       | 0.13          | 92             |       |           |  |
| RKDD084 | 199.45      | 200.50    | 1.05            | 0.52        | 0.01          | 2              |       |           |  |
| RKDD085 | 114.15      | 114.40    | 0.25            |             | 0.09          | 128            |       |           |  |
| RKDD085 | 122.90      | 123.15    | 0.25            | 0.32        | 0.28          | 219            |       |           |  |
| RKDD085 | 132.35      | 132.95    | 0.60            |             | 0.11          | 230            |       |           |  |
| RKDD085 | 174.70      | 176.60    | 1.90            |             | 0.10          | 173            |       |           |  |
| RKDD085 | 203.50      | 217.00    | 13.50           | 0.69        | 0.08          | 117            |       |           |  |
| RKDD085 | 205.00      | 207.00    | 2.00            | 0.93        | 0.09          | 101            |       |           |  |
| RKDD085 | 211.00      | 214.85    | 3.85            | 0.89        | 0.07          | 149            |       |           |  |
| RKDD085 | 220.30      | 220.85    | 0.55            | 0.29        | 0.13          | 188            |       |           |  |
| RKDD085 | 273.05      | 273.30    | 0.25            |             | 0.22          | 96             |       |           |  |
| RKDD085 | 295.65      | 327.00    | 31.35           |             | 0.12          | 42             |       |           |  |
| RKDD085 | 317.00      | 323.00    | 6.00            |             | 0.20          | 56             |       |           |  |
| RKDD085 | 330.90      | 331.50    | 0.60            |             | 0.13          | 67             |       |           |  |
| RKDD085 | 360.65      | 364.00    | 3.35            |             | 0.15          | 48             |       |           |  |
| RKDD085 | 368.00      | 375.00    | 7.00            |             | 0.12          | 77             |       |           |  |
| RKDD085 | 378.40      | 381.45    | 3.05            |             | 0.09          | 107            |       |           |  |
| RKDD086 | 67.90       | 68.20     | 0.30            |             | 0.04          | 249            |       |           |  |
| RKDD086 | 102.75      | 103.35    | 0.60            |             | 0.05          | 327            |       |           |  |
| RKDD086 | 110.00      | 111.00    | 1.00            | 0.21        | 0.02          | 2              |       |           |  |
| RKDD086 | 114.45      | 117.20    | 2.75            | 0.37        | 0.04          | 99             |       |           |  |
| RKDD086 | 119.70      | 123.70    | 4.00            | 0.34        | 0.01          | 23             |       |           |  |
| RKDD086 | 144.75      | 145.15    | 0.40            |             | 0.10          | 109            |       |           |  |
| RKDD086 | 150.85      | 160.45    | 9.60            | 0.38        | 0.03          | 51             |       |           |  |
| RKDD086 | 155.85      | 157.35    | 1.50            | 1.02        | 0.07          | 131            |       |           |  |
| RKDD086 | 169.00      | 184.00    | 15.00           | 0.64        | 0.07          | 120            |       |           |  |
| RKDD086 | 177.50      | 182.00    | 4.50            | 0.91        | 0.08          | 155            |       |           |  |
| RKDD086 | 186.00      | 186.40    | 0.40            |             | 0.07          | 225            |       |           |  |



| Hole ID | from<br>(m) | to<br>(m) | interval<br>(m) | Li <sub>2</sub> O<br>(%) | Sn<br>(ppm) | Ta <sub>2</sub> O <sub>5</sub><br>(ppm) | Cs<br>(ppm) | Rb<br>(%) | K<br>(%) |
|---------|-------------|-----------|-----------------|--------------------------|-------------|-----------------------------------------|-------------|-----------|----------|
| RKDD086 | 209.85      | 210.55    | 0.70            | 0.51                     | 0.10        | 172                                     |             |           |          |
| RKDD086 | 211.85      | 212.55    | 0.70            |                          | 0.08        | 125                                     |             |           |          |
| RKDD086 | 219.60      | 220.30    | 0.70            |                          | 0.26        | 200                                     |             |           |          |
| RKDD086 | 235.60      | 250.80    | 15.20           | 0.13                     | 0.18        | 105                                     |             |           |          |
| RKDD086 | 236.00      | 244.00    | 8.00            | 0.15                     | 0.23        | 121                                     |             |           |          |
| RKDD089 | 66.30       | 67.30     | 1.00            | 0.29                     | 0.10        | 61                                      |             |           |          |
| RKDD089 | 68.75       | 69.00     | 0.25            | 0.01                     | 0.16        | 109                                     |             |           |          |
| RKDD089 | 79.35       | 79.85     | 0.50            | 0.27                     | 0.12        | 72                                      |             |           |          |
| RKDD089 | 82.75       | 83.10     | 0.35            |                          | 0.13        | 84                                      |             |           |          |
| RKDD089 | 92.85       | 93.20     | 0.35            |                          | 0.12        | 93                                      |             |           |          |
| RKDD089 | 97.95       | 98.60     | 0.65            | 0.48                     | 0.13        | 112                                     |             |           |          |
| RKDD089 | 101.00      | 102.25    | 1.25            | 0.72                     | 0.12        | 78                                      |             |           |          |
| RKDD089 | 108.80      | 111.65    | 2.85            | 0.82                     | 0.12        | 117                                     |             |           |          |
| RKDD089 | 117.10      | 117.35    | 0.25            |                          | 0.09        | 234                                     |             |           |          |
| RKDD089 | 129.30      | 141.90    | 12.60           | 0.62                     | 0.09        | 109                                     |             |           |          |
| RKDD089 | 130.00      | 134.60    | 4.60            | 0.81                     | 0.08        | 173                                     |             |           |          |
| RKDD089 | 136.45      | 137.35    | 0.90            | 1.16                     | 0.16        | 158                                     |             |           |          |
| RKDD089 | 140.00      | 141.90    | 1.90            | 0.88                     | 0.18        | 120                                     |             |           |          |
| RKDD089 | 146.00      | 154.50    | 8.50            | 0.73                     | 0.07        | 114                                     |             |           |          |
| RKDD089 | 147.00      | 148.75    | 1.75            | 1.02                     | 0.11        | 120                                     |             |           |          |
| RKDD089 | 149.85      | 153.00    | 3.15            | 1.01                     | 0.10        | 181                                     |             |           |          |
| RKDD089 | 157.40      | 163.95    | 6.55            | 0.39                     | 0.07        | 197                                     |             |           |          |
| RKDD089 | 160.60      | 161.50    | 0.90            | 0.72                     | 0.11        | 87                                      |             |           |          |
| RKDD089 | 163.20      | 163.95    | 0.75            | 1.00                     | 0.07        | 339                                     |             |           |          |
| RKDD089 | 168.00      | 170.40    | 2.40            | 0.39                     | 0.02        | 117                                     |             |           |          |
| RKDD089 | 177.75      | 178.35    | 0.60            | 0.06                     | 0.07        | 209                                     |             |           |          |
| RKDD090 | 6.50        | 7.60      | 1.10            | 0.27                     | 0.01        | 20                                      |             |           |          |
| RKDD090 | 10.65       | 35.85     | 24.60           | 0.48                     | 0.05        | 89                                      |             |           |          |
| RKDD090 | 21.10       | 21.60     | 0.50            | 1.01                     | 0.07        | 242                                     |             |           |          |



| Hole ID | from<br>(m) | to<br>(m) | interval<br>(m) | Li₂O<br>(%) | Sn<br>(ppm) | Ta₂O₅<br>(ppm) | Cs<br>(ppm) | Rb<br>(%) | K<br>(%) |
|---------|-------------|-----------|-----------------|-------------|-------------|----------------|-------------|-----------|----------|
| RKDD090 | 23.50       | 25.50     | 2.00            | 1.20        | 0.13        | 179            |             |           | '        |
| RKDD090 | 29.00       | 32.25     | 3.25            | 0.69        | 0.11        | 105            |             |           |          |
| RKDD090 | 33.00       | 33.50     | 0.50            | 1.32        | 0.10        | 322            |             |           |          |
| RKDD090 | 35.25       | 35.85     | 0.60            | 1.26        | 0.09        | 271            |             |           |          |
| RKDD090 | 38.15       | 39.70     | 1.55            | 0.44        | 0.04        | 155            |             |           |          |
| RKDD090 | 50.00       | 51.30     | 1.30            | 0.12        | 0.04        | 140            |             |           |          |
| RKDD090 | 55.50       | 60.95     | 5.45            | 0.58        | 0.03        | 197            |             |           |          |
| RKDD090 | 58.05       | 60.95     | 2.90            | 0.92        | 0.05        | 326            |             |           |          |
| RKDD091 | 12.00       | 16.80     | 4.80            | 0.73        | 0.05        | 164            |             |           |          |
| RKDD091 | 13.00       | 15.00     | 2.00            | 1.22        | 0.07        | 286            |             |           |          |
| RKDD091 | 24.45       | 25.50     | 1.05            | 0.38        | 0.03        | 133            |             |           |          |
| RKDD091 | 36.60       | 40.75     | 4.15            | 0.31        | 0.008       | 20             |             |           |          |
| RKDD091 | 40.50       | 40.75     | 0.25            | 1.15        | 0.04        | 71             |             |           |          |
| RKDD091 | 43.50       | 48.00     | 4.50            | 0.50        | 0.04        | 114            |             |           |          |
| RKDD091 | 43.50       | 45.00     | 1.50            | 0.81        | 0.07        | 167            |             |           |          |
| RKDD091 | 52.00       | 63.50     | 11.50           | 0.75        | 0.14        | 128            |             |           |          |
| RKDD091 | 56.30       | 62.00     | 5.70            | 1.03        | 0.26        | 198            |             |           |          |
| RKDD091 | 67.10       | 70.00     | 2.90            | 0.93        | 0.06        | 98             |             |           |          |
| RKDD091 | 76.30       | 89.15     | 12.85           | 0.32        | 0.02        | 70             |             |           |          |
| RKDD091 | 78.00       | 78.90     | 0.90            | 1.36        | 0.07        | 161            |             |           |          |
| RKDD091 | 84.25       | 85.25     | 1.00            | 0.51        | 0.03        | 123            |             |           |          |
| RKDD091 | 93.00       | 104.70    | 11.70           | 0.32        | 0.03        | 89             |             |           |          |
| RKDD091 | 97.05       | 97.95     | 0.90            | 1.02        | 0.70        | 331            |             |           |          |
| RKDD091 | 100.65      | 101.15    | 0.50            | 1.01        | 0.07        | 206            |             |           |          |
| RKDD091 | 104.40      | 104.70    | 0.30            | 1.06        | 0.10        | 216            |             |           |          |
| RKDD091 | 108.30      | 113.15    | 4.85            | 0.82        | 0.07        | 219            |             |           |          |
| RKDD091 | 111.00      | 113.00    | 2.00            | 1.03        | 0.07        | 219            |             |           |          |



# APPENDIX 2 - JORC Code, 2012 Edition - Table 1

# **PAM Lithium Projects - Drilling**

# Section 1 Sampling Techniques and Data

| Criteria                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques                          | Nature and quality of sampling (e.g. cut channels, random chips, downhole gamma sondes, handheld XRF instruments, etc).  Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.  Aspects of determination of mineralisation that are Material to the Report (eg 'RC drilling used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'; or where there is coarse gold that has inherent sampling problems). | Cut drill core samples were selected in order to ascertain the degree of lithium enrichment. The samples are representative of the lithium mineralisation within the samples collected.  Drill core is subjected to spot analysis by handheld XRF at intervals of around 0.3-0.5m within and adjacent to pegmatite dykes. The quality of this sampling is not representative of the core as a whole and so the results are viewed as preliminary indications of the grade of target elements.  Certified Reference Material is routinely analysed to ensure the XRF is operating accurately and/or precisely.  The mineralisation is contained within alpopegmatites. Half HQ3 or NQ3 samples were used with sample weights of 2.5kg-3.5kg and average sample interval is 0.99m. The whole sample is fine crushed, and then split to obtain a 0.5-1kg sub-sample all of which is pulverised to provide the assay pulp. |
| Drilling<br>techniques                          | Drill type (eg core, reverse circulation, etc) and details (eg core diameter, triple tube, depth of diamond tails, face-sampling bit, whether core is oriented; if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                             | All holes are diamond core from surface. HQ and NQ triple tube diameters were employed. The core was oriented using the spear method, as directed by the rig geologist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Drill<br>sample<br>recovery                     | Method of recording and assessing core and chip sample recoveries and results assessed.  Measures taken to maximise sample recovery, ensuring representative nature of samples.  Is sample recovery and grade related; has sample bias occurred due to preferential loss/gain of fine/coarse material?                                                                                                                                                                                                                                   | Drill core recovery is recorded for every drill run by measuring recovered solid core length over the actual drilled length for that run.  Triple tube drill methods were used to assist with maximising sample recovery especially in the weathered zone.  Sample recovery through the mineralised zones averages 96%, so little bias would be anticipated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Logging                                         | Have core/chip samples been geologically/geotechnically logged to a level of detail to support appropriate resource estimation, mining studies and metallurgical studies.  Is logging qualitative or quantitative in nature. Core (or costean, channel, etc) photography.  The total length and percentage of the relevant intersections logged.                                                                                                                                                                                         | The drill core was geologically logged at sufficient detail. Geotechnical logging was limited to contact zones and major structures.  The logging is mostly qualitative in nature, with some quantitative data recorded. Photographs of each core tray wet and dry, and of wet cut core were taken. The total length of core logged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sub-<br>sampling<br>techniques<br>and<br>sample | If core, cut or sawn and whether quarter, half or all core taken.  If non-core, riffled, tube sampled etc and sampled wet or dry?  For all sample types, nature, quality and appropriateness of sample preparation technique.                                                                                                                                                                                                                                                                                                            | All core for sampling was cut in half with a diamond saw. Some samples were cut as ½ core from the original half core, for QA/QC.  The sample preparation technique is industry standard, fine crush to 70% less than 2mm. A subsample of 0.5-1kg or 100% of sample weight if less than 1kg is obtained via rotary splitting. This sample is pulverised to 85% passing 75 microns. The laboratory reports QA/QC particle size analysis for crushed and pulverised samples. The laboratory also reports                                                                                                                                                                                                                                                                                                                                                                                                                 |



| Criteria                                          | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of                                        | QAQC procedures for all sub-sampling stages to maximise representivity of samples.  Measures taken to ensure sampling is representative of the material collected, e.g. results for field duplicate/second-half sampling.  Whether sample sizes are appropriate to the grain size of the material being sampled.  Nature, quality and appropriateness of the assaying                                                                                                                            | results for internal standards, duplicates, prep duplicates and blanks. Pan Asia has collected ¼ core pairs. Comparison of results indicate excellent agreement between Li <sub>2</sub> O grades from each ¼ pair.  The sample weights average 2.8kg. This is considered appropriate for the material being sampled.  Analysis in by ALS Method ME-MS89L, which uses a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| assay data<br>and<br>laboratory<br>tests          | and laboratory procedures used; whether the technique is considered partial or total.  For geophysical tools, spectrometers, handheld XRF instruments etc, parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied, their derivation, etc.  Nature of QAQC procedures adopted (eg standards, blanks, duplicates, external laboratory checks); whether acceptable accuracy levels (ie lack of bias) / precision established. | Analysis in by ALS Method Mic-Missel, whilch uses a sodium peroxide digestion with ICP finish, all by ALS Chemex in Vancouver or Perth. The method is considered a total technique. Multielement analysis is done by sodium peroxide digestion with ICP-MS finish with 49 elements reported.  The laboratory reports results for internal standards, duplicates, prep duplicates and blanks. PAM has conducted ¼ sampling and re-analysis of sample pulps utilising different digestion and assay methods. Pan Asia inserts its own internal Li "standards" as pulps and blanks as 0.5kg. Both the lab QA/QC and additional PAM data indicate acceptable levels of accuracy and precision for Li assays, PAM has only utilised internal ALS QA/QC for the multielement data. For spot hhXRF analysis, an Olympus Vanta* X-Ray Flourescence analyser in Geochem3_extra mode, with analysis for 30 seconds. Li cannot be analysed by hhXRF. However, Rb, Cs, Mn, show good correlation with lab reported Li results. Other elements of interest such as Sn. Ta and Nb are also recorded by hhXRF as well as many others. Certified standards are routinely analysed. |
| Verification<br>of<br>sampling<br>and<br>assaying | Verification of significant intersections by independent / alternative company personnel.  The use of twinned holes.  Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.  Discuss any adjustment to assay data.                                                                                                                                                                                                          | Sample results have been checked by company Chief Geologist and Senior Geologist. Li mineralisation is associated with visual zones of distinctively coloured lepidolite.  Assays reported as Excel xls files and secure pdf files. Data entry carried out both manually and digitally by Geologists. To minimize transcription errors field documentation procedures and database validation are conducted to ensure that field and assay data are merged accurately.  The adjustments applied to assay data for reporting purposes: Li x 2.153 to convert to Li to Li <sub>2</sub> O. Ta is converted to Ta <sub>2</sub> O <sub>5</sub> , by multiplying Ta by 1.221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Location of data points                           | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings etc used in estimation.  Specification of grid system used.  Quality and adequacy of topographic control.                                                                                                                                                                                                                                                                     | Drill hole locations up to RKDD050 are derived from DGPS, with approximately 10cm accuracy. RKDD051 and onwards are sited by handheld GPS with accuracy of 2-5m in XY. The Z value is derived from topographic model with 1m accuracy.  All locations reported are UTM WGS84 Zone 47N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>spacing<br>and<br>distribution                              | Data spacing for reporting of Exploration Results.  Is data spacing and distribution sufficient to establish degree of geological and grade continuity appropriate for Resource / Reserve estimation procedure(s) and classifications applied?  Whether sample compositing has been applied. | The drilling was conducted on variably spaced sections with holes 50-100m apart on section, with two holes on many sections giving down-dip separations of about 50-100m between holes.  Resources or reserves are not being reported.                                                                                     |
|                                                                     |                                                                                                                                                                                                                                                                                              | Sample compositing relates to reporting total aggregate pegmatite thickness, over a drilled interval. Grades are then reported by weighted average.                                                                                                                                                                        |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | Does the orientation of sampling achieve unbiased sampling of possible structures; extent to which this is known/understood.                                                                                                                                                                 | The sampling of half core and $\frac{1}{4}$ core supports the unbiased nature of the sampling.                                                                                                                                                                                                                             |
|                                                                     | If relationship between drilling orientation and orientation of mineralised structures has introduced a sampling bias, this should be assessed and reported if material.                                                                                                                     | The drill holes reported are drilled normal or very near normal to the strike of the mineralised zone.                                                                                                                                                                                                                     |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                | Samples are securely packaged and transported by company personnel or reputable carrier to the Thai-Laos border, where ALS laboratory personnel take delivery or the samples are on forwarded to ALS Laos. Pulp samples for analysis are then air freighted to Vancouver or Perth in accordance with laboratory protocols. |
| Audits or reviews                                                   | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                        | No formal audits conducted at this stage of the exploration program.                                                                                                                                                                                                                                                       |

# **Section 2 Reporting of Exploration Results**

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.  The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Three contiguous Special Prospecting Licences (JSPL1, 2 and 3) covering an area of 48sq km are registered to Thai company Siam Industrial Metals Co. Ltd. (SIM). Pan Asia Metals holds 100% of SIM located 60km north of Phuket in southern Thailand. The tenure is secure and there are no known impediments to obtaining a licence to operate, aside from normal considerations.                                                                                                                                                                                                                                              |
| Exploration<br>done by other<br>parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                          | The Institute of Geological Sciences, a precursor of the British Geological Survey (BGS) in the late 1960's conducted geological mapping, documenting old workings, surface geochemical sampling, mill concentrates and tailings sampling and metallurgical test work on the pegmatite then being mined at Reung Kiet. This work appears to be of high quality and is in general agreement with Pan Asia's work. In 2014 ECR Minerals reported Li results for rock samples collected in Reung Kiet project area. The locations and other details of the samples were not reported. But the samples showed elevated Li contents. |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                          | The project is located in the Western Province of the South-East Asia Tin Tungsten Belt. The Reung project area sits adjacent and sub-parallel to the regionally extensive NE trending Phangnga fault. The Cretaceous age Khao Po granite intrudes into                                                                                                                                                                                                                                                                                                                                                                         |



| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Palaeozoic age Phuket Group sediments along the fault zone, Tertiary aged LCT pegmatite dyke swarms intrude parallel to the fault zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Drillhole<br>Information                                                        | A summary of information material to the understanding of the exploration results including a tabulation for all Material drill holes of:  easting and northing of the drill hole collar  elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar  dip and azimuth of the hole  downhole length and interception depth  hole length.  If exclusion of this information is not Material, the Competent Person should clearly explain why this is the case. | Drillhole information and intersections are reported in tabulated form within the public report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Data<br>aggregation<br>methods                                                  | Weighting averaging techniques, maximum/ minimum grade cutting and cut-off grades are Material and should be stated.  Where compositing short lengths of high grade results and longer lengths of low grade results, compositing procedure to be stated; typical examples of such aggregations to be shown in detail.  Assumptions for metal equivalent values to be clearly stated.                                                                                                             | Li <sub>2</sub> O Intersections are reported at > 0.2% Li <sub>2</sub> O, and allow for up to 2m intervals of internal dilution of < 0.2% Li <sub>2</sub> O. Sn, Ta2O5, Cs, Rb and K are also reported For reporting purposes only the Sn and Ta <sub>2</sub> O <sub>5</sub> intersections occurring outside the Li <sub>2</sub> O intersections are reported at >1000ppm (Sn+Ta) which is derived by Sn +3.5x Ta <sub>2</sub> O <sub>5</sub> (in ppm). All intersections are weighted averages with no top cut being applied. Higher grade zones within the bulk lower grade zones are reported, where considered material. |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | These relationships are particularly important in the reporting of Exploration Results.  If mineralisation geometry with respect to the drillhole angle is known, its nature should be reported.  If it is not known and only down hole lengths are reported, a clear statement to this effect is required (eg 'down hole length, true width not known').                                                                                                                                        | Intercept lengths are reported as downhole length.  The mineralised zones dip around 65-50 degrees southeast. Holes were drilled at -55 to -65 degrees towards the northwest (normal to strike). The true width of the mineralisation reported is around 75-90% of the reported downhole width. This can be measured on Cross Sections in the Public Report.                                                                                                                                                                                                                                                                 |
| Diagrams                                                                        | Appropriate maps and sections (with scales) and tabulations of intercepts to be included for any significant discovery. These to include (not be limited to) plan view of collar locations and appropriate sectional views.                                                                                                                                                                                                                                                                      | Appropriate plans and sections are provided in the public report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Balanced reporting                                                              | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                                                                                                                                        | Results are reported for every drillhole, that are above cut-off grade. Some results below $\mathrm{Li}_2\mathrm{O}$ cut-off grade are reported to assist interpretation.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Other<br>substantive<br>exploration<br>data                                     | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock                                                                                                                                                                                | The drilling results reported are from holes targeting mineralisation beneath and along strike from an old open cut. Soil, rock-chip and trench sampling by Pan Asia indicate additional mineralisation is present along trend to the south, where drillholes are also reported Weaker surface Li anomalism is also                                                                                                                                                                                                                                                                                                          |



| Criteria     | JORC Code explanation                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | characteristics; potential deleterious or contaminating substances.                                                                                                                                                                                                                                            | present immediately north of the pit. The whole mineralised trend at RK are potentially 1km or more. Garson et al 1969 conducted work on concentrates, tailings and met test-work on a sample taken from the mine. This work was positive, no deleterious substances have been identified to date.        |
| Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).  Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas (if not commercially sensitive). | Planned further work will include drilling especially along strike to the south. Infill drilling is also planned around existing holes that have intersected higher grade mineralisation. This may later lead to deeper/step out drilling should geological controls on higher grade zones be identified. |