

2 February 2023

REACH ADDS HIGH-GRADE MANGANESE TO CRITICAL MINERAL PORTFOLIO

HIGHLIGHTS

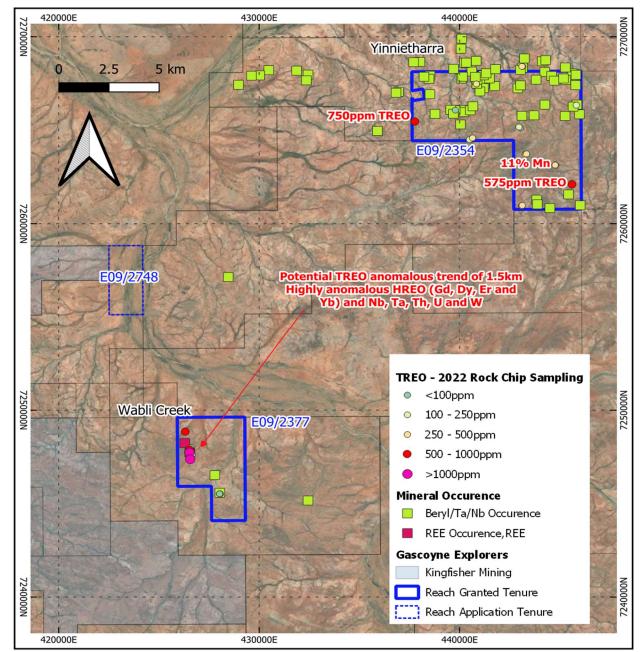
- High-grade assay of 11 % Manganese returned from within the Company's wholly owned Critical Elements Project at Yinnietharra
- All results from the Company's maiden rock chip sampling programs now received
- Highlights shown in Table 2 include:
 - High-grade assays of 6.78% Niobium oxide, 3.71% Tantalum oxide and <u>high grade super</u> <u>critical heavy rare earth oxides (HREO)</u>, returned from the Company's Wabli Creek tenement, within the Critical Elements Project
 - HREO results:
 - 7226 ppm Yttrium oxide
 - 3430 ppm Dysprosium oxide
 - 4880 ppm Ytterbium oxide
 - 2760 ppm Erbium oxide
 - 450 ppm Terbium oxide

- The Wabli Creek Niobium and <u>Total Rare Earth Oxides (TREO)</u> target zone has a <u>potential</u> <u>strike length of up to 1.5km</u>

• Significantly, all three of the Company's granted tenements have returned highly anomalous TREO results >500ppm to a maximum of 25,652 ppm or 2.57% TREO (see Table 2) (ASX Announcement 13 December 2022).

Reach Resources Limited (ASX: RR1) ("**Reach**" or "**the Company**") is pleased to announce the receipt of final laboratory assay results from the Company's maiden rock chip sampling programs recently undertaken at its Skyline and Critical Elements projects (the "**Project/s**") (ASX Announcement – 18 October 2022). Both projects are located in the emerging Gascoyne Mineral Field in Western Australia.

Importantly, these manganese assay results indicate the potential presence of high-grade manganese at Yinnietharra and in addition to the REE and Niobium, the Company looks forward to progressing its exploration program across each of its Gascoyne projects.


Manganese is the 4th most used metal globally and is expected to be in short demand in the coming decades, with no substitute in steel making. Importantly it has been recognised as a critical mineral by the Office of the Chief Economist (Australian Government Department of Industry, Innovation and Science). Further, a White House document (June 2021) states that manganese use in battery cathodes may result in the metals preferred element emergence in next generation battery cells, due to its 'relative safety' and 'having by far the most supply stability'.

REACH RESOURCES LIMITED

Reach CEO Jeremy Bower said "The Company is certainly encouraged by all the results returned from the maiden rock chip sampling program. Conducted over only 5 days, Reach has been able to identify anomalous REE >500ppm at each of its Gascoyne tenements. Most importantly, assays indicate high grades of heavy REE's including Dysprosium and Yttrium, and additionally Niobium over a potential strike length of 1.5km. A significant amount of work has been undertaken over the past few months to understand the area, the geology and we look forward to progressing our activity at these tenements in the short term".

REACH RESOURCES LIMITED

Final manganese results were received from 74 rock chip samples collected within the Skyline and Yinnietharra tenements during 2022. Fourteen of the samples returned anomalous (≥0.1%) manganese results with a maximum of 11% Mn. All anomalous results are listed in Table 1.

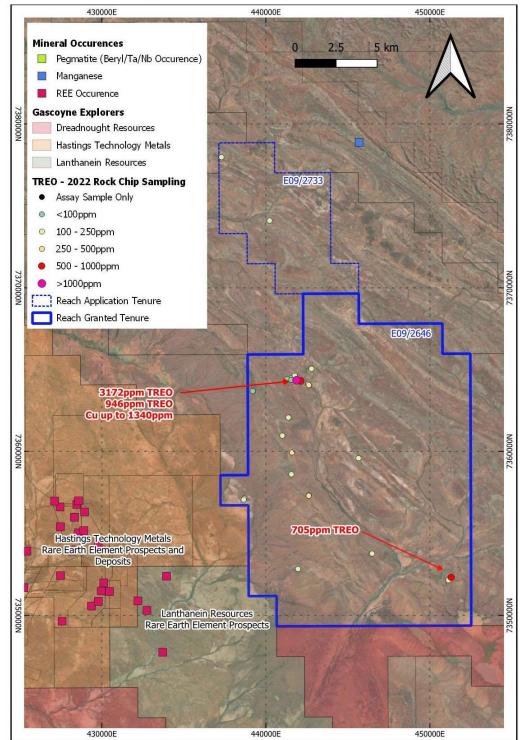

Sample Number	Location	Easting	Northing	Mn (%)
ST013	Skyline	440230	7374110	0.13
ST014	Skyline	437293	7377980	0.16
ST015	Skyline	442775	7365090	0.40
ST016	Skyline	442783	7365071	0.49
ST020	Skyline	442583	7364111	0.47
ST027	Skyline	445649	7359592	0.25
ST031	Skyline	441960	7352843	0.54
YT007	Yinnietharra	444260	7262300	0.31
YT009	Yinnietharra	444770	7263140	11.0
YT010	Yinnietharra	444777	7263150	0.64
YT013	Yinnietharra	443280	7263712	0.34
YT019	Yinnietharra	440539	7264513	0.14
YT020	Yinnietharra	437806	7265472	0.14
YT026	Yinnietharra	440840	7267478	0.13


Table 1 - Skyline and Critical Element Projects – Anomalous (≥0.1%) Mn results

Sample No.	Location	Easting	Northing	LREO (ppm)	HREO (ppm)	TREO (ppm)	Nb2O5 (ppm)	Ta2O5 (ppm)
ST003	Skyline	442126	7364306	864.0	81.5	945.5	49.9	0.1
ST005	Skyline	441869	7364340	3068.4	104.8	3173.2	27.2	0.2
ST037	Skyline	451304	7352334	410.5	294.3	704.8	68.7	0.7
CEWC2	Wabli Creek	426524	7247737	1860.1	23792.8	25653.0	67805.7	37121.4
CEWC3	Wabli Creek	426587	7247836	657.7	336.5	994.2	2324.6	1471.4
WT007	Wabli Creek	426565	7247376	1477.2	396.7	1874.0	67.9	6.0
WT013	Wabli Creek	426525	7247896	683.3	230.6	913.9	74.1	2.8
WT017	Wabli Creek	426317	7248853	408.6	95.6	504.2	30.6	2.3
YT005	Yinnietharra	445612	7262108	708.7	41.9	750.6	18.5	1.6
YT021	Yinnietharra	437770	7265470	544.5	31.0	575.5	10.1	0.2

ASX RR1 ASX ANNOUNCEMENT

This announcement has been authorised by the Board of Reach Resources Limited

For further information please contact:

Jeremy Bower Chief Executive Officer Level 4, 216 St Georges Terrace Perth, 6000 W.A jeremy@reachresources.com.au

-ENDS-

About Reach Resources Limited

Reach Resources is an critical mineral explorer. It has built up a portfolio of gold tenements in the wellknown and historically producing gold district of Payne's Find with a significant Inferred Resource Estimate and Exploration Target and a strategy to continue exploration to inform future development of this asset.

With the acquisition of several highly prospective REE tenements and exposure to a unique REE magnet recycling technology, the Company has the flexibility to also position itself towards the REE side of the minerals exploration sector with exposure to downstream processing. The company is committed to maximising shareholder value through the development of those opportunities

Competent Person's Statement

Information in this announcement that relates to exploration results is based on and fairly represents information and supporting documentation prepared and compiled by Mr Matthew Svensson, who is a Member of the Australian Institute of Geoscientists. Mr Svensson is Exploration Manager for Auris Minerals Limited and consults to Reach Resources Limited on a part-time basis. Mr Svensson has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking to qualify as a Competent Person, as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Svensson consents to the inclusion in the announcement of the matters based on this information in the form and context in which it appears.

No New Information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

Forward Looking Statement

This report contains forward looking statements concerning the projects owned by Reach Resources Limited. If applicable, statements concerning mining reserves and resources may also be deemed to be forward looking statements in that they involve estimates based on specific assumptions. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward looking statements as a result of a variety of risks, uncertainties and other factors. Forward looking statements are based on management's beliefs, opinions and estimates as of the dates the forward looking statements are made and no obligation is assumed to update forward looking statements.

ASX RR1 ASX ANNOUNCEMENT

JORC Code, 2012 Edition, Table 1 Section 1: Sampling Techniques and Data

Criteria	Section 1: Sampling Techniqu JORC Code Explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut channels,	Rock chip samples, weighing approximately 2-3
techniques	random chips, or specific specialised industry	kilograms, were collected for laboratory analysis
	standard measurement tools appropriate to the	All rock chip samples comprise a close representative
	minerals under investigation, such as down hole	selection of chips collected from predominantly
	gamma sondes, or handheld XRF instruments, etc.).	outcropping lithologies
	These examples should not be taken as limiting the	
	broad meaning of sampling.	
	Include reference to measures taken to ensure	Each rock chip sample comprised chips from variou
	sample representivity and the appropriate calibration	locations along the selected outcrop to be sample
	of any measurement tools or systems used.	within an approximate 5m radius, to ensure a sampl
		that closely represented the overall outcrop wa
		submitted for analysis.
D)		,
0	Aspects of the determination of mineralisation that	A representative sample of each outcrop was taken fo
	are Material to the Public Report.	laboratory analysed samples. The sample fo
	In cases where 'industry standard' work has been	laboratory analysis weighed approximately 2-
	done this would be relatively simple (e.g. 'reverse	kilograms.
2	circulation drilling was used to obtain 1 m samples	
	from which 3 kg was pulverised to produce a 30 g	
	charge for fire assay'). In other cases more	
	explanation may be required, such as where there is	
	coarse gold that has inherent sampling problems.	
1	Unusual commodities or mineralisation types (e.g.	
1	submarine nodules) may warrant disclosure of	
Ð	detailed information.	
Drilling	Drill type (e.g. core, reverse circulation, open-hole	Not applicable - No new drill sampling reported.
techniques	hammer, rotary air blast, auger, Bangka, sonic, etc.)	
	and details (e.g. core diameter, triple or standard	
	tube, depth of diamond tails, face-sampling bit or	
))	other type, whether core is oriented and if so, by	
K	what method, etc.).	
Drill sample	Method of recording and assessing core and chip	Not applicable - No new drill sampling reported.
recovery	sample recoveries and results assessed.	
	Measures taken to maximise sample recovery and	Not applicable - No new drill sampling reported.
	ensure representative nature of the samples.	
))		
	Whether a relationship exists between sample	Not applicable - No new drill sampling reported.
22	recovery and grade and whether sample bias may	
	have occurred due to preferential loss/gain of	
	fine/coarse material.	
Logging	Whether core and chip samples have been	Not applicable - No new drill sampling reported.
Ľ -	geologically and geotechnically logged to a level of	
0	detail to support appropriate Mineral Resource	
1)	estimation, mining studies and metallurgical studies.	
	Whether logging is qualitative or quantitative in	Not applicable - No new drill sampling reported.
	nature. Core (or costean, channel, etc.) photography.	
	The total length and percentage of the relevant	Not applicable - No new drill sampling reported.
Cub annu llui	intersections logged.	
Sub-sampling	If core, whether cut or sawn and whether quarter,	Not applicable - No new drill sampling reported.
techniques	half or all core taken.	

Criteria			Commentary			
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Not applicable - No new drill sampling reported.				
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Laboratorie analysis Sample pre that >70%	hip samples were s in Perth for samp paration comprised o of material is <6mm, terial is <75 micron.	le preparation	n and es so	
\bigcirc	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Not applical	ble - No new drill samı	oling reported.		
D	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Not applical	ble - No new drill samı	oling reported.		
\mathcal{P}	Whether sample sizes are appropriate to the grain size of the material being sampled.	Not applical	ble - No new drill samı	oling reported.		
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Laboratorie and rare ear	hip samples were s in Perth for analysis th minerals via ME-M I-TL43 and manganes	s via multi eler S81 and ME-4A	ments CD81,	
0	For goophysical tools, spectrometers, bandhold VPE	An Olympu	. Vanta was used to	undortaka tha	DVDE	
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc	sampling. A	s Vanta was used to All three beams were u element and a seled	utilised to dete	rmine	
Ď	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	submitted. relevant sta	y standards, blanks or The laboratory in ndards as part of the a	ncorporates se analysis.		
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Not applical	ble - No new drill samı	oling reported.		
assaying	The use of twinned holes.		ble - No new drill samı			
))	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Not applical	ble - No new drill samı	oling reported.		
	Discuss any adjustment to assay data.		of elemental analys undertaken by spreac factors.			
		Element	Conversion Factor	Oxide Form		
		Ce	1.1713	Ce ₂ O ₃		
		Dy	1.1477	Dy ₂ O ₃		
		Er	1.1435	Er ₂ O ₃		
		Eu	1.1573	Eu ₂ O ₃		

ASX RR1 ASX ANNOUNCEMENT

Criteria	JORC Code Explanation	Commentar	ry in the second s		
		Gd	1.1526	Gd ₂ O ₃	
		Но	1.1455	Ho ₂ O ₃	
		La	1.1728	La ₂ O ₃	
		Lu	1.1371	Lu ₂ O ₃	
		Nd	1.1664	Nd ₂ O ₃	
		Pr	1.1703	Pr ₂ O ₃	
		Sm	1.1596	Sm ₂ O ₃	
$\mathbb{D})$		Tb	1.151	Tb ₂ O ₃	
		Tm	1.1421	Tm ₂ O ₃	
		Y	1.2699	Y ₂ O ₃	
		Yb	1.1387	Yb ₂ O ₃	
		Nb	1.4305	Nb ₂ O ₅	
		Та	1.2211	Ta ₂ O ₅	
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used.	+ Nd ₂ O ₃ + S Ho ₂ O ₃ + Er ₂ (HREO (Hear Gd ₂ O ₃ + Tb ₂) + LREO (Light + Nd ₂ O ₃ All locations	Rare Earth Oxide) = $Sm_2O_3 + Eu_2O_3 + Gd_2$ $D_3 + Tm_2O_3 + Yb_2O_3 + Vy Rare Earth Oxide O_3 + Dy_2O_3 + Ho_2O_3 + Ey_2O_3Rare Earth Oxide) =Swere determined vided to be within 3-200$	$O_{3} + Tb_{2}O_{3} + Dy$ $Y_{2}O_{3} + Lu_{2}O_{3}.$ $) = Sm_{2}O_{3} + Eu$ $Er_{2}O_{3} + Tm_{2}O_{3} + N$ $+$ $La_{2}O_{3} + Ce_{2}O_{3} +$ $a a GPS. All local$	/2O3 12O3 (b2O Lu2(Pr2(atior
Ð					
Data spacing	Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results.		ble - No new drill sam spacing of pXRF and s		rator
and distribution		analysis is reconnaissa	considered sufficience nature of the sar	ent considered npling.	
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.		ble – Reconnaissance ble - No new drill sam		
Orientation of	Whether the orientation of sampling achieves		ble - No new drill sam		
data in relation to geological	unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.				
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Not applical	ble - No new drill sam	pling reported.	

1	Criteria	JORC Code Explanation	Commentary
	Sample security	The measures taken to ensure sample security.	All samples were stored securely once collected and were transported to the laboratory in Perth for analysis.
	\sim		
	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits were undertaken of the pXRF results.
		Section 2: Reporting of Explor	
\square	Criteria	JORC Code Explanation	Commentary
	Mineral tenement and land tenure status	e issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Critical Elements Project (Walbi Creek (E09/2377) and Yinnietharra (E09/2354)) covers an area of approximately 65km ² and located 270km east of Carnarvon. Gascoyne Junction is situated 110km to the west-southwest. The Skyline (E09/2646 and ELA09/2733) project covers an area of approximately 327km ² and are located 300km east-northeast of Carnarvon. Gascoyne Junction is situated 170km to the southwest.
) J	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Reach owns 100% of both projects.
R	Exploration done by other parties	e Acknowledgment and appraisal of exploration by other parties.	Historic exploration has been limited comprising of limited rock chip sampling and stream sediment sampling
	Geology	Deposit type, geological setting and style of mineralisation.	Reach's projects within the Gascoyne Mineral Field are prospective for rare earths mineralisation associated with carbonatite intrusions and associated fenitic alteration as well as Lithium mineralisation associated with pegmatites.
	Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Not applicable - No new drilling reported.

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Not applicable - No new drilling reported.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Not applicable - No new drilling reported.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are used.
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	Not applicable - No new drilling reported.
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	Not applicable - No new drilling reported.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Not applicable - No new drilling reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps are included within the body of the accompanying document.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Not applicable - No new drilling or sampling reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable - No other data reported.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Target delineation from geophysical image collation, to inform more effective rock chip sampling and stream sediment sampling and mapping. This work will inform a future drill program.