ASX Announcement

ASX:GL1

POSITIVE DRILLING RESULTS AT MANNA UNDERPIN POTENTIAL FUTURE RESOURCE UPGRADE

Key Highlights

- Highlights from the latest RC and Diamond results include:
 - MRC0126, 17m @ 1.60% Li2O from 114m
 - MRC0108, 15m @ 1.20% Li2O from 107m
 - MRC0141, 13m @ 1.40% Li2O from 34m
 - MRC0126, 10m @ 1.33% Li2O from 227m
 - MRC0137, 12m @ 1.24% Li2O from 282m
 - MRC0141, 9m @ 1.27% Li2O from 164m
 - MRCD0059, 9.43m @ 1.18% Li2O from 283m
 - MRCD0133, 9.41m @ 1.68% Li2O from 341m
 - MRCD0133, 6.43m @ 1.50% Li2O from 306m
 - MRCD0090, 9.01m @ 1.00% Li2O from 462m
 - MRCD0080, 7.45m @ 1.13% Li2O from 232m
- New significant assay results are not included in the recently upgraded Manna Mineral Resource¹, or the Manna Scoping Study, due for completion in Q1 CY23
- An additional 3,500m assay results from the 2022 drilling program remain outstanding, further underpinning the growth potential of the existing Manna Mineral Resource
- Scale and timely delivery of the Manna 2022 drilling program highlights GL1's commitment to develop the project

Total Metres Drilled for Manna in 2022		
Total RC metres	49,071m	
Total DD metres	5,479m	

Established multi-asset Western Australian lithium company Global Lithium Resources Limited (ASX: GL1, "Global Lithium" or "the Company") is pleased to announce that further assay data has been received for its 100% owned Manna Lithium Project, located 100km east of Kalgoorlie.

¹ See ASX Announcement 15th December 2022, "GL1 Delivers Transformative 50.7Mt Lithium Resource Base"

At the end of the Manna 2022 drilling program there was approximately 5,000 outstanding assays in the laboratory system. These assays were not included in the significant mineral resource estimate (**MRE**) upgrade announced by Global Lithium¹ on 15th December 2022.

The assay results announced today together with these outstanding ~3,500m of assays have not been included in the Scoping Study due for completion in Q1 CY23. These assay results will be added to the current MRE at Manna, to further extend the known size and increase the confidence levels of the classification of the Manna Deposit.

Within the 2022 drilling program, the RC rigs completed 49,071m of drilling along with 5,479m of Diamond core drilling. A drilling campaign of this size carried out safely within a year, is a clear indication of the Company's commitment to develop the Manna Lithium deposit into a mine within the shortest possible timeframe.

The 2023 exploration program is currently underway to map out the larger tenement area since reaching 100% ownership of the Manna Lithium Project through acquisition². This program will target prospective geological structures and host rocks for lithium deposits and follow known structural extensions of the current Manna deposit that previously lay outside the joint venture boundary. Up to 30,000m of RC and Diamond drilling is planned for this program.

The Diamond drilling (core) will be utilised as part of the metallurgical test program³.

² ASX Announcement 25th October 2022, "Global Lithium Agrees to Acquire 100% Interest in Manna Lithium Project"

³ ASX Announcement 25th January 2023, "Metallurgical Processing Program Underway at Manna Lithium Project"

Kambalda

Norseman

MANNA LITHIUM PROJECT

Manna Project Area

Tenements Acquired

SOUTHERN

OCEAN

EL 28/2551

The Manna Lithium Project hosts a Mineral Resource of 32.7Mt @ 1.0% Li2O. The Company recently released an updated MRE¹ with an extended drilling program continuing into 2023 to further expand the existing resource.

Figure 2. Plan view of the Manna Lithium Project drilling plan and resource outlines.

Approved by the board of Global Lithium Resources Limited.

For more information:

Ron Mitchell

Managing Director info@globallithium.com.au +61 8 6103 7488 Victoria Humphries / Ben Creagh Media & Investor Relations victoria@nwrcommunications.com.au benc@nwrcommunications.com.au +61 (0) 431 151 676 / +61 (0) 417 464 233

About Global Lithium

Global Lithium Resources Limited (ASX:GL1, Global Lithium) is a diversified Western Australian focussed mining exploration company with multiple assets in key lithium branded jurisdictions with a primary focus on the 100%-owned Marble Bar Lithium Project (MBLP) in the Pilbara region and the Manna Lithium Project in the Goldfields, Western Australia.

Global Lithium has now defined a total Inferred and Indicated Mineral Resource of 50.7Mt @ 1.0% Li₂O at its MBLP and Manna Lithium projects, confirming Global Lithium as a significant global lithium player aiming to fast track into development.

Global Lithium's major shareholders include Suzhou TA&A Ultra Clean Technology Co. Limited (Suzhou TA&A), a controlling shareholder of Yibin Tianyi Lithium, a joint venture between Suzhou TA&A (SZSE: 300390) (75%) and CATL (SZSE: 300750) (25%), the world's largest EV battery producer, and ASX listed Mineral Resources Limited (ASX: MIN).

Directors

Warrick Hazeldine	Non-Executive Chair
Ron Mitchell	Managing Director
Dr Dianmin Chen	Non-Executive Director
Greg Lilleyman	Non-Executive Director
Hayley Lawrance	Non-Executive Director

Global Lithium – Mineral Resources

Project Name	Category	Million Tonnes (Mt)	Li ₂ O%	Ta₂O₅ ppm
Marble Bar	Indicated	3.8	0.97	53
	Inferred	14.2	1.01	50
	Subtotal	18.0	1.00	51
Manna	Indicated	18.5	1.03	45
	Inferred	14.2	0.97	43
	Subtotal	32.7	1.00	44
Combined Total		50.7	1.00	46

Competent Persons Statement:

Exploration Results

The information in this announcement that relates to Exploration Results for the Manna Lithium Project complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and is based on, and fairly represents, information and supporting documentation prepared by Mr Stuart Peterson, a full time employee of Global Lithium Resources Limited. Mr Peterson is a member of the Australasian Institute of Geoscientists. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to gualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Peterson considers that the information in the market announcement is an accurate representation of the available data and studies for the mining project. Mr Peterson consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Mineral Resources

Information on historical exploration results and Mineral Resources for the Manna Lithium Project presented in this announcement, together with JORC Table 1 information, is contained in an ASX announcement released on the 15 December 2022.

The Company confirms that it is not aware of any new information or data that materially affects the information in the relevant market announcements, and that the form and context in which the Competent Persons findings are presented have not been materially modified from the original announcements.

Where the Company refers to Mineral Resources for the Manna Lithium Project (MLP) in this announcement (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource estimate in that announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not materially changed from the original announcement.

	Table 1. Drilling Summary							
	Hole ID	Easting (MGA50)	Northing (MGA50)	RL (m)	Dip (degrees)	Azimuth (degrees)	Total Depth (m)	
1	MRC0108	6584263	455355	423.62	-60.89	319.60	222.00	
Ę	MRC0126	6584475	455701	422.55	-57.77	323.45	300.00	
	MRC0137	6584417	455642	420.98	-60.05	326.94	305.00	
Ę	MRC0141	6584582	455710	418.88	-60.99	321.39	202.00	
	MRCD0059	6584491	455886	416.85	-60.36	323.18	530.83	
	MRCD0080	6585375	456357	409.42	-60.59	323.97	605.10	
	MRCD0090	6584507	456086	419.29	-61.11	322.45	639.60	
	MRCD0133	6584637	456086	415.58	-61.00	322.92	513.80	

Table 2. Significant Drillhole Intercepts⁽¹⁾

Hole_ID	Northing	Easting	From (m)	То (m)	Thickness (m)	Li₂O (%)	Ta₂O₅ (ppm)
MRC0108	6584263.77	455355.01	107.00	122.00	15.00	1.207	49.308
MRC0108		and	126.00	131.00	5.00	0.784	30.430
MRC0108		and	144.00	151.00	7.00	0.633	23.149
MRC0108		and	162.00	165.00	3.00	0.959	34.964
MRC0108		and	169.00	178.00	9.00	0.354	13.717
MRC0126	6584475.13	455701.8	90.00	93.00	3.00	0.700	50.472
MRC0126		and	114.00	131.00	17.00	1.603	53.154

Page 6 of 14 | ACN 626 093 150 | ASX: GL1 Suite 8, 7 The Esplanade, Mt Pleasant, WA 6153 info@globallithium.com.au | www.globallithium.com.au

MRC0126		and	203.00	209.00	6.00	0.909	53.342
MRC0126		and	260.00	267.00	7.00	1.237	52.263
MRC0137	6584417.19	455642.99	111.00	119.00	8.00	0.482	10.318
MRC0137		and	140.00	147.00	7.00	0.652	32.656
MRC0137		and	223.00	228.00	5.00	1.037	38.904
MRC0137		and	282.00	294.00	12.00	1.241	49.902
MRC0141	6584582.1	455710.3	12.00	14.00	2.00	1.172	64.230
MRC0141		and	23.00	27.00	4.00	1.695	60.689
MRC0141		and	34.00	47.00	13.00	1.400	63.150
MRC0141		and	89.00	93.00	4.00	0.962	47.135
MRC0141		and	164.00	173.00	9.00	1.269	72.981
MRCD0059	6584491.3	455886.38	187.22	192.80	5.58	1.404	100.526
MRCD0059		and	207.57	210.00	2.43	1.520	99.602
MRCD0059		and	227.76	235.97	8.21	1.512	27.224
MRCD0059		and	252.49	256.75	4.26	1.790	36.047
MRCD0059		and	283.68	293.11	9.43	1.182	26.630
MRCD0080	6585375.29	456357.9	232.09	239.54	7.45	1.130	109.352
MRCD0080		and	402.47	410.63	8.16	1.226	42.975
MRCD0080		and	450.19	452.00	1.81	0.831	17.805
MRCD0090	6584507.29	456086.28	114.00	115.00	1.00	0.533	165.825
MRCD0090		and	462.23	471.24	9.01	1.004	22.609
MRCD0133	6584637.69	456086.94	306.15	312.58	6.43	1.504	33.509
MRCD0133		and	341.59	351.00	9.41	1.686	29.432

 Table 2: Significant intercepts calculated using a 0.4% Li₂O cut-off grade, minimum 1m thickness and widths including up to 2m internal dilution.

JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	٠	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	• • • •	RC drilling was undertaken by Profile Drilling and K-Drill drilling both using 4.5-inch (140 mm) rods using a 5.5-inch (150 mm) diameter face sampling hammer. RC and Diamond core drillholes were drilled under supervision of a geologist. RC samples were cone split in 1 m intervals to produce a ~2 to 3 kg sample. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Quarter Core samples were taken, generally on 1 m intervals or on geological boundaries where appropriate (minimum 0.4 m to maximum of 1.2 m). Diamond drilling was undertaken to produce core for geological logging, assaying and future metallurgical test work. Select intervals of cut 1/4 core samples were crushed and riffle split to 2 to 2.5 kg for pulverising to 80% passing 75 microns. Prepared samples are to be fused with sodium peroxide and digested in dilute hydrochloric acid. The resultant solution is analysed by ICP by Jinning Testing and Inspection Laboratory in Perth. The assay technique is considered to be robust as the method used offers total dissolution of the sample and is useful for mineral matrices that may resist acid digestions The Manna diamond drilling was

Criteria J	ORC Code explanation	•	Commentary
		•	 HQ2 sized core was drilled from surface for the entire length of each of the two diamond drill holes. Core was orientated using a Reflex ACT III digital core orientation tool. All diamond drill holes were angled at approximately -60 degrees, drilled to 320 degrees, unless otherwise noted in the drilling statistics Table 1.
 Drilling techniques 	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 F ir f A a a a n p 	C drilling was undertaken by Profile Drilling or K-Drill using 4.5- nch (140 mm) rods using a 5.5-inch 150 mm) diameter face sampling nammer. All RC drill holes were angled at approximately -60 degrees, drilled to 20 degrees (west) unless otherwise noted in the drilling statistics presented in Table 1.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	S S www.reference erections R C R C R C R C P C C C C C C C C C C C C C C C C C C	Sample chip recovery for RC drilling vas visually estimated. Sample chip ecovery is very good through the interpreted mineralised zones and is estimated to be greater than 80%. RC drilling utilised an on-board compressor and auxiliary booster to eep samples dry and maximise ecoveries. The diamond drill core recovered is hysically measured by tape neasure and the length recovered is ecorded for every run. Core recovery is calculated as a percentage recovery. This is confirmed by Company geologists luring core orientation activities on ite. Average recovery is over 95%. No relationship between grade and ecovery has been identified.
Logging •	Whether core and chip samples • have been geologically and geotechnically logged to a level of	• C w e	Geological logs exist for all drill holes vith lithological codes via an established reference legend.

Criteria	JORC Code explanation	Commentary
	 detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Logging and sampling has been carried out to industry standards support a Mineral Resource estimate. Drill holes have been geologically logged in their entirety. Where logging was detailed, the subjective indications of spodumene content were estimated and recorded. All drill holes were logged in full, from start to finish of the hole.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Dry RC samples were collected at 1 m intervals and cone split from the rig cyclone on-site to produce a subsample less than 5 kg. Quarter Core samples were taken, generally on 1 m intervals or on geological boundaries where appropriate (minimum 0.4 m to maximum of 1.2 m). Sample preparation is according to industry standards, including oven drying, coarse crush, and pulverisation to 80% passing 75 microns. Field duplicate samples, field standards, laboratory standards and laboratory repeats were used to monitor quality of analyses. Sample sizes are considered to be appropriate and correctly represent the style and type of mineralisation. Rock chip samples were taken whole to the laboratory, crushed and riffled to obtain a sub-fraction and assayed using the same lab and method as the RC samples. The sample size was considered appropriate for reconnaissance sampling for lithium mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control 	 The assay technique is considered to be robust as the method used offers total dissolution of the sample and is useful for mineral matrices that may resist acid digestions. Multielement analysis was carried out on all samples for the following elements: Al, Be, Ca, Cs, Fe, Ga, K, Li and Li2O, Mg, Mn, Mo, Nb, P, Rb, S, Si, Sn, Ta, Ti and V.

Criteria	JORC Code explanation		Commentary
	procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	•	The 2022 RC drilling campaign was supervised by Global Lithium staff. The Li assays from previous programs show a marked correlation with the mineralised pegmatite intersections via elevated downhole grades. There were no twin holes drilled during the RC program in 2022. Drill logs exist for all holes as electronic files and hardcopy. Logging was completed on paper logs at time of drilling and electronically sent to Perth daily for data-entry to digital logs. All digital logs are exported to an external Database Administrator, validated and loaded to a database and validated prior to use. No adjustments made to primary assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	•	Prior to drilling, collar coordinates are situated using handheld GPS (considered accurate to within 4 m). DGPS collar surveying has been completed post program to improve accuracy and has been draped onto a high-resolution digital elevation model. Grid used is MGA94 datum and Zone 50 SUTM ("MGA") projection. All holes have been surveyed with an Axis Champ north seeking gyro to determine hole deviation.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	•	Exploration drilling has been drilled on a grid pattern to systematically cover the strike length in a reportable manner. Previous drill lines also used a grid pattern. Drill spacing varies between a 160m by 80m to 40m x 80m grid in selected areas. Exploration holes targeting specific geochemical, outcrops or structural targets are not on a uniform grid spacing. Historic Breaker resources drilling

	JORC Code explanation	Commentary
	•	 undertaken was widely spaced across separate lines targeting outcrop and geochemical anomalies. No soil sampling was completed. No sample compositing was applied. The rock chip data are not appropriate for use in estimating a Mineral Resource and are not intended for such use.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling has been angled to achieve the most representative (near perpendicular) intersections through mineralisation (i.e. angled holes for moderately dipping pegmatite bodies). The identified target lithium bearing pegmatite dykes are generally steeply dipping (70° to 85°) Southeast in nature. The true width of pegmatites is generally considered 80% to 90% of the intercept width, with minimal opportunity for sample bias. No Rock chips were collected during the 2022 drilling program
Sample security	The measures taken to ensure sample security.	 The drill samples were collected from the drilling rig by experienced personnel, stored securely and transported to the laboratory by a registered courier and handed over by signature.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audits have been undertaken to date.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to 	 The drilling and rock chip samples are located on tenement E28/2522, which is held 100% Global Lithium. Global Lithium Limited acquired an 100% of the Manna Lithium Project from Breaker Resources on 25 October 2022. There are no material interests or issues associated with the tenement. The tenement is in good

	obtaining a licence to operate in the area.		standing and no known impediments exist.
Exploration done by other • parties	Acknowledgment and appraisal of exploration by other parties.	•	No previous exploration or identification of lithium mineralisation is recorded in the area or historical exploration observed.
Geology •	Deposit type, geological setting and style of mineralisation.	•	The pegmatites are LCT type lithium bearing-pegmatites for both projects.
Drillhole Information •	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length.	•	Diagrams in the announcement show the location of and distribution of drillholes in relation to both of the Mineral Resources.
Data aggregation methods •	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	•	No weighting or cut-off values were used other than where stated.
Relationship between • mineralisation widths and intercept lengths •	If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	•	Downhole angle and direction is known. True width of the intersect is not known but the drilling angle is orientated to reduce any difference.
Diagrams •	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include.	•	A plan view have been included in the announcement.

	but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Not relevant – a Mineral Resource Estimate has been defined.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Where relevant, this information has been included or referred to elsewhere in this Table.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Additional drilling is planned for extension and infill of the existing mineral resource for both projects

