

ASX Announcement Date: 30 Jan 2023

RED HILL DRILLING COMPLETED: PORT GREGORY ASSAYS RECEIVED

- → Maiden Air Core drilling program constituting 48 holes and 1815 metres has been completed at HVY's 100% owned Red Hill Project.
- Horilling has tested approximately half of the Red Hill Project with positive visual results observed.
- Assay results for 40 holes and 1298 samples have been returned from Diamantina Laboratories for the Port Gregory Project
- Additional 23 holes for 726 metres drilled at the Port Gregory Project based on positive assays and visual results returned from the November-December 2022 infill and extension program.

Heavy Minerals Limited (ACN 647 831 833) ("HVY", "Heavy Minerals" or the "Company") is pleased to announce that its maiden drilling program has been completed at its 100% owned Red Hill Project.

The Company has completed a 48 hole, 1815 metre Air Core drill program at its Red Hill Project that was designed to test the Heavy Mineral potential of the project. The Company observed many positive visual results during the drilling program and anticipates receiving assay results in March 2023 with the potential to release a resource in Q2 2023 pending positive results. Timing for the release of the results from both the Port Gregory and Red Hill drilling programs are subject to laboratory throughput capabilities and HVY interpretation and compilation.

The Company decided to complete an additional 23 hole, 726 metre Air Core drill program at its Port Gregory project that was designed to further test the resource extensions to the North, East and South. The decision to add this drilling was based on positive assays and visual results returned from the November-December 2022 infill and extension drilling program.

Figure 1: Maiden Drilling underway at the Red Hill Project with HVY Director Greg Jones observing.

Non-Executive Chairman, Mr. Adam Schofield said:

"The Company is very pleased to have completed the Maiden drilling program at Red Hill. Visual results obtained whilst panning suggest the company could receive positive results for the drilling program which may result in a second resource being delineated within the Company's tenure. We look forward to receiving assay results for the Red Hill drilling program in March 2023.

We are also pleased to have made the decision to extend the drilling at Port Gregory by adding 23 holes for 726 metres to the previous 4403 metres of drilling completed at the end of last year. This decision was based on positive assay results returned recently which complemented positive panning results observed last year. This decision was aided by the availability of the Bostech drill rig post completion of the Red Hill program. The Company has collated the first 4 batches of assays received from Diamantina Laboratories and the summary of the best of these results is presented in Table 1 below.

The company anticipates it will commence its Pre-Feasibility study for the Port Gregory Project in April 2023. The Company will strive to add significant value to the Project via resource expansion and feasibility work over the hext 12 months."

Table 1: Port Gregory Tenement E70/5160 - Significant Summary Assay Results for Q4 2022 Drilling.

*HOLE ID	EASTING	NORTHING	RL	ЕОН	DIP	AZIMUTH	FROM	то	LENGTH	THM	SLIMES	OS
HOLL_ID	(GDA94)	(GDA94)	(m)	(m)	DIF	AZIMOTH	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0188	231477	6885684	73	33	-90	360	9.0	25.0	16.0	5.6	11.8	6.4
PGAC0189	231371	6885931	86.5	33	-90	360	0.0	7.0	7.0	5.1	7.2	6.6
PGAC0189	231371	6885931	77.5	33	-90	360	9.0	16.0	7.0	4.1	12.3	12.6
PGAC0203	230558	6887593	61.5	33	-90	360	26.0	31.0	5.0	4.6	19.5	4.4
PGAC0204	230240	6887628	80	33	-90	360	0.0	20.0	20.0	4.5	9.8	7.8
PGAC0206	229922	6887664	84.5	33	-90	360	0.0	11.0	11.0	4.2	9.2	6.5
PGAC0206	229922	6887664	69.5	33	-90	360	16.0	25.0	9.0	4.3	11.0	14.6
PGAC0207	230629	6887664	87.5	33	-90	360	0.0	5.0	5.0	4.2	12.1	12.2
PGAC0207	230629	6887664	69	33	-90	360	16.0	26.0	10.0	4.6	16.7	4.2
PGAC0208	230311	6887699	64	33	-90	360	24.0	28.0	4.0	4.6	16.6	6.1
PGAC0208	230311	6887699	59	33	-90	360	29.0	33.0	4.0	4.0	16.7	4.6
PGAC0211	229674	6887770	87.5	33	-90	360	0.0	5.0	5.0	4.8	15.4	9.8
PGAC0212	230381	6887770	85.5	33	-90	360	0.0	9.0	9.0	4.3	10.1	17.5
PGAC0213	230063	6887805	82.5	33	-90	360	0.0	15.0	15.0	4.4	9.5	6.1
PGAC0215	230452	6887841	86	33	-90	360	0.0	8.0	8.0	4.6	10.8	6.1
PGAC0218	230205	6887947	83.5	33	-90	360	0.0	13.0	13.0	4.7	7.1	4.9
PGAC0219	229886	6887982	83	33	-90	360	0.0	14.0	14.0	5.1	8.5	3.2
PGAC0220	230275	6888017	83.5	33	-90	360	0.0	13.0	13.0	5.6	8.5	11.2
PGAC0264R	230311	6886638	84.5	33	-90	360	0.0	11.0	11.0	4.9	12.7	3.4
PGAC0289	230063	6887098	72.5	33	-90	360	15.0	20.0	5.0	6.5	12.6	12.5
PGAC0296	230205	6887239	82.5	33	-90	360	0.0	16.0	16.0	4.7	11.2	8.8
PGAC0309	229851	6887593	71	33	-90	360	13.0	25.0	12.0	4.4	13.8	3.6

Red Hill Drilling program

The Maiden Air Core drilling program at Red Hill, which began in early January has been completed with the holes shown in Figure 2 drilled. The objective of this program was to delineate a potential Heavy Mineral Resource at Red Hill.

Figure 2: Red Hill Garnet Project showing holes drilled.

Port Gregory Additional Drilling program

The objective of this program was to add to the December 2022 infill and extension drilling program to extend the current resource by drilling the open extensions to the east, north and south. Figure 3 shows the drilled extension holes.

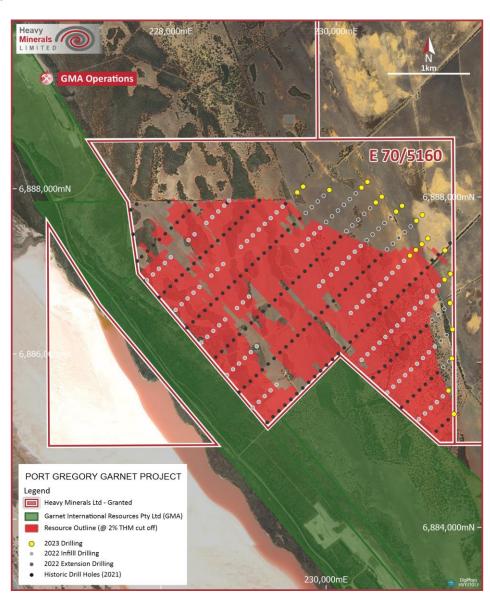


Figure 3: Port Gregory Garnet Project showing holes drilled.

Upcoming News:

- H February 2023: Assay results for Port Gregory drilling campaign
- ★ March 2023: Assay results for Red Hill drilling campaign
- ★ March 2023: Updated Port Gregory JORC Resource
- → April 2023: Maiden Red Hill JORC Resource
- ★ April 2023: Commencement of Port Gregory Pre-Feasibility Study
- ★ June 2023: Red Hill Scoping Level Metallurgical Study

This announcement has been authorised by the Board of Directors of the Company.

Ends

For further information, please contact:

Heavy Minerals Limited

Adam Schofield, Non-Executive Chairman Ph: +61 (08) 9481 0389 E: info@heavyminerals.com

Media & Investor Enquiries

Peter Taylor, NWR Communications Ph: +61 (0) 412 036 231 E: Peter@nwrcommunications.com.au

About Heavy Minerals Limited

Heavy Minerals Limited (ASX: HVY) is an Australian listed industrial mineral exploration company.

The Company's projects are prospective for industrial minerals including but not limited to Garnet, Zircon, Rutile and Ilmenite. The Company's initial focus is the Port Gregory Garnet Project which has a JORC (2012) Mineral Resource of 4.9 million tonnes of contained Garnet and 500 thousand tonnes of ilmenite ¹. The Company's other project is the Inhambane Heavy Mineral Project in Mozambique which contains a JORC (2012) Inferred Mineral Resource of 51 million tonnes @ 3.4% total heavy mineral ².

To learn more please visit: www.heavyminerals.com

1https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02516855-6A1089842?access token=83ff96335c2d45a094df02a206a39ff4 2https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02462745-6A1067130?access token=83ff96335c2d45a094df02a206a39ff4

Competent Persons Statement(s)

The information in this announcement that relates to Exploration Results has been prepared, compiled and reviewed by Mr. Greg Jones (FAusIMM) who is an Independent Non-Executive Director of the Company.

Mr. Jones is a Fellow of the Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being reported on to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr. Jones has reviewed this report and consents to the inclusion in the report of the matters in the form and context with which it appears.

Cautionary Statement

Estimates by experienced, competent geoscientists are considered to be reliable and reproducible semiquantitative estimates of the abundance of minerals present in a sample. Visual estimates of heavy mineral and mineral assemblage abundance should, however, never be considered a proxy or substitute for laboratory analyses where mineral concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding potential impurities or deleterious physical properties relevant to valuations of industrial minerals.

Appendix 1: JORC Code Table 1

	Section 1 Sampling	Techniques and Data
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Aircore drilling was used to obtain samples for analysis at 1 m intervals Each sample was homogenized within the sample bag by rotating the sample bag A appropriate sample of sand, approx. 70 g (or the size of a matchbox), is scooped from the sample bag for an initial visual THM% estimation and logging. A similar sample mass is used for every pan sample for visual THM% estimation The standard sized sample is to ensure calibration is maintained for consistency in visual estimation A sample ledger is kept at the drill rig for recording sample numbers The aircore drill samples have an average range between 6 kg and 9 kg and were split down using a rig based rotary splitter to 1.5 to 2.5 kg. Samples were transported to Diamantina Laboratories for assaying. The laboratory sample was dried for up to 24 hours @ 105-110 degrees Celsius. The sample was then loosened until friable and passed through a rotary splitter to take a 250 g sub-sample. This sub-sample was then wet screened on a Sweco vibrating screen deck at a top aperture of 1 mm (oversize - OS) and a bottom screen of 45 μm (SLIMES fraction). The sand fraction containing the THM (-1 mm and +45 μm) is then dried and a sub-split of approximately 100 g is taken using a micro riffle splitter and used for heavy liquid separation using funnels and a heavy liquid, Tetrabromoethane (TBE), with a density of between 2.92 and 2.96 gcm³ to determine total heavy mineral (THM) content.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-	 Aircore drilling with inner tubes for sample return was used Aircore is considered a standard industry technique for HMS mineralisation. Aircore drilling is a form of reverse circulation drilling where the sample is collected at the

	Criteria	Explanation	Comment
		core is oriented and if so, by what	Aircore drill rods used were 3 m long
		method, etc).	NQ diameter (76mm) drill bits and rods were used
			All drill holes were vertically
	Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC drill sample recovery is monitored by reviewing the sample mass of the total weight of the 1 m interval weighed both on site as a wet sample and at the laboratory as a dried sample Industry leading mineral sand drilling specialists were engaged to drill the holes with experienced drillers to maximize drill recovery such as maintaining drill penetration rates, airflow and water injection While initially collaring the hole, limited sample recovery can occur in the initial 0 m to 1 m sample interval owing to sample and air loss into the surrounding loose soils The initial 0 m to 1 m sample interval is drilled very slowly in order to achieve optimum sample recovery The entire sample passes through the on board rotary splitter and the sample collected in a pre-numbered calico bag. The bulk reject is not collected and is shovelled back down the hole upon completion About 10 samples are placed in numbered poly weave bags and secured with a cable tie All samples were drilled in dry conditions, with no groundwater encountered. Water injection was used to keep dust down and maintain the integrity of the drill hole.
			 At the end of each drill rod, the drill string is cleaned by blowing down with air/water to remove any clay and silt potentially built up in the sample hose. In addition the cyclone lid is opened and cleaned if required
			At the end of each hole the cyclone is inspected for material build up and cleanliness (for potential contamination)
			The twin-tube aircore drilling technique is known to provide high quality samples from the face of the drill hole
	Logging	 Whether core and chip samples have been geologically and geotechnically 	The aircore samples were each qualitatively logged using a field laptop (Toughbook) an entered into Field Marshall
	gg///g	logged to a level of detail to support appropriate Mineral Resource	The aircore samples were logged for lithology, colour, grainsize, rounding, hardness, rock type, sorting,

Criteria	Explanation	Comment
	estimation, mining studies and metallurgical studies.	estimated THM%, estimated Slimes% and any relevant comments
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Every drill hole was logged in full with detailed logging based on a small sample of sand taken from the split sample to improve representivity
	 The total length and percentage of the relevant intersections logged. 	Logging is undertaken with reference to a Drilling Guideline with codes prescribed and guidance on description to ensure consistent and systematic data collection
	 If core, whether cut or sawn and whether quarter, half or all core taken. 	 The AC drill sample collected at the source was split down to 1.5 to 2.5 kg using a rig based rotary splitter The sample size and process is considered an appropriate
Sub-sampling techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 technique for mineral sands The sample sizes were deemed suitable to reliably capture THM, slime, and oversize characteristics, based on industry experience of the geologists involved and consultation with laboratory staff Field duplicates of the samples were completed at a frequency of 1 per 40 primary samples Standard Certified Reference Material samples are inserted into numbered sample bags in the field at a frequency of 1 per 40 samples. These are blind to the laboratory staff and laboratory processing flowsheet
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 The wet panning at the drill site provides an estimate of the THM and SLIMES grade which is expressed as a percentage and is sufficient for the purpose of determining approximate initial concentrations Individual aircore sub-samples (approximately 1.5 - 2.5 kg) were analysed by Diamantina Laboratories in Perth, Western Australia Diamantina Laboratories is considered to be a mineral sands industry leading laboratory The as received sample was dried for up to 24 hours @ 105-110 degrees Celsius.

	Criteria	Explanation	Comment				
		Nature of quality control procedures adopted (eg standards, blanks,	The sample was then loosened until friable and put over a rotary splitter to take a 250 g sub-sample. The sample was then loosened until friable and put over a rotary splitter to take a 250 g sub-sample.				
		duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 This sub-sample was then wet screened on a Sweco vibrating screen deck at a top aperture of 1 mm (oversize - OS) and a bottom screen of 45 μm (SLIMES fraction). 				
			 The sand fraction containing the THM (-1 mm and +45 μm) is then dried and a sub-split of approximately 100 g is taken using a micro riffle splitter and used for heavy liquid separation using funnels and a heavy liquid, Tetrabromomethane (TBE), with a density of between 2.92 and 2.96 gcm⁻³ to determine total heavy mineral (THM) content. 				
			This is considered to be an industry standard technique				
			Field duplicates and HM Standards are alternatively inserted into the sample string at a frequency of 1 per 40 primary samples				
			Diamantina completed its own internal QA/QC checks that included laboratory repeats at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40 prior to the results being released				
			 Analysis of QA/QC samples show the laboratory data to be of acceptable accuracy and precision. 				
			The adopted QA/QC protocols are acceptable and equal to accepted best industry practice				
\Box 5		The verification of significant	All results are checked by the Competent Person				
		intersections by either independent or alternative company personnel.	The Competent Person makes periodic visits to the laboratory to observe sample processing				
		 The use of twinned holes. Documentation of primary data, data entry procedures, data 	A process of laboratory data validation using mass balance is undertaken to identify entry errors or questionable data				
	Verification of sampling and assaying	verification, data storage (physical and electronic) protocols.Discuss any adjustment to assay	Field and laboratory duplicate data pairs (THM / OS / SLIMES) of each batch are plotted to identify potential quality control issues				
	data.	data.	Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2SD) and that there is no bias or drift				
			The field and laboratory data has been updated into a Microsoft Access database and then imported into Datamine drill hole files.				
			Data validation criteria are included to check for overlapping sample intervals, end of hole match between				

	Criteria	Explanation	Comment
			'Lithology', 'Sample', 'Survey' files, duplicate sample numbers and other common errors
			No adjustments are made to the primary assay data
			Down hole surveys for shallow vertical aircore holes are not required
		Accuracy and quality of surveys used to locate drill holes (collar and)	 A handheld GPS was initially used to identify the positions of the drill holes in the field. The handheld GPS has an accuracy of +/- 5-10 m in the horizontal
	Location of data points	down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used.	 Adjusted SRTM (Shuttle Radar Topography Mapping) at 30 arc seconds was used for indicative topography and RL prior to photogrammetry drone mapping that is planned to take place once field cropping is completed. At this stage of the exploration program this is considered to be of adequate indicative accuracy.
30		 Quality and adequacy of topographic control. 	Following the completion of the drilling program, a professional survey pickup of all the drill hole collar coordinates will be undertaken
			The datum used is GDA94 and coordinates are projected as UTM zone 50
		Data spacing for reporting of Exploration Results.	Aircore drilling was used to test the deposit mineralisation
		 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the 	The planned drill density was 100 m east-west by 400 m north-south for Red Hill. The infill drilling at Port Gregory was completed on 100 m east-west by 250 m north-south
		Mineral Resource and Ore Reserve	Drilling completed to date consists of the following:
		estimation procedure(s) and classifications applied.	• The Red Hill program tested the southern-most area of E70/5161 and approximately half of the area denoted as
	Data spacing and distribution	Whether sample compositing has been applied.	the Red Hill project area (see Figure 2). 48 holes and 2 twin holes were drilled in the Red Hill project area. The drill spacing is designed for supporting the development of Mineral Resource Estimation pending that the ensuing results of drilling and assaying will support the development of a Mineral Resource estimate
			The Port Gregory extension program was targeted to test the mineralisation to the east of the currently defined portion of the Mineral Resource which is classified as Indicated. This spacing is designed to bring the Indicated status up to Measured as well as extending the footprint of the current resource
			Each aircore drill sample is a single 1 m sample of material intersected down the hole

Criteria	Explanation	Comment
Criteria	Explanation	 No compositing has been applied for values of THM, slime and oversize, other than the summary reporting of mineralisation intervals in this announcement
		Microscope scanning and high level grain counting of the THM sinks fraction will be carried out to aid the mineralogical and geological interpretation
		It is planned to prepare compositing of heavy samples for mineral assemblage determination based on the mineralogical and geological interpretation
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the	The aircore drilling section lines were oriented perpendicular to the strike of mineralisation for Port Gregory and in the case of Red Hill, the inferred strike of mineralisation
Orientation of data in relation to geological structure	 deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have 	 The strike of the mineralisation is sub-parallel to the contemporary coastline and is interpreted to be controlled by limestone basement Drill holes were vertical because the nature of the
	introduced a sampling bias, this should be assessed and reported if material.	 mineralisation is relatively horizontal The orientation of the drilling is considered appropriate for testing the lateral and vertical extent of mineralisation limiting bias
Sample	The measures are taken to ensure sample security.	 Aircore samples remained in the custody of Company representatives until they were trucked to Perth using a independent contractor or samples were transported by Company representatives
security		The samples were transported to Perth and delivered directly to the laboratory along with a sample manifest for checking of samples
		The laboratory inspected the packages and did not report tampering of the samples
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Internal reviews were undertaken and Richard Stockwel of Placer Consulting Pty Ltd was engaged to undertake supervision and training of onsite Company engaged contractors.

	Section 2 Reporting of Exploration	Results
Criteria	Explanation	Comment
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The planned / completed drilling lies within the granted exploration licence (E70/5160 and E70/5161). At the time of reporting all tenure was secure and any administrative costs of fees were fully paid up.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous tenement holders in the area GMA, conducted Air Core drilling over the tenement for Port Gregory. The aircore drilling at Red Hill is the maide drilling program for the project area
Geology	Deposit type, geological setting and style of mineralisation.	The deposit style is a combination of dunal and fluvial / marine sediments. Heavy mineral accumulations are preserved throughout the stratigraphic sequence.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	 All significant drill results and drill hole collar locations for Port Gregory have been identified in Appendices 2 and 3 respectively of this report. The results for Red Hill are pending completion by the laboratory No relevant material data has been
	 down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this 	excluded from this report.
Data	exclusion does not detract from the understanding of the report, the Independent Geologist should clearly explain why this is the case.	All long other waights of intermedia
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	 All length weighted intervals are reported for each hole in (Appendix 2) for grades above 2.0% THM
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical	

Criteria	 examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Comment
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All drill holes are vertical and perpendicular to the dip and strike of mineralisation and therefore all interceptions are approximately true thickness. Drill holes are inferred to intersect the mineralisation approximately perpendicularly. The deposit style is flat-lying and so the vertical holes are assumed to intersect the true width of any mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figures and plans are displayed in the main text of the Release
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drill results > 2.0% THM have been summarised as composited intervals and reported and tabulated in Appendix 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Samples have not yet been tested for situ density. Passive seismic surveys have been carried out over the deposit in alignment with planned drilling. Deep ground penetrating radar (DGPI was carried out on selected Port Gregory and Red Hill drill lines Processing of the passive seismic surveys and DGPR is still ongoing however preliminary results correlate to the identification of bands of limestone and calcrete in the drilling carried out to date.

Criteria	Explanation	Comment
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work via infill drilling to target high grade and continuous mineralisation is recommended.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially consisting.	 Exploration by geophysical and drilling is planned on other parts of the tenement.
	information is not commercially sensitive.	 Refer to the main body of the release for further information regarding diagrams.

Appendix 2: Composited drill assay results for 2022 drilling. Results are prepared from drill hole assays at a cut-off grade of 2% THM and all composited intervals are continuous and unbroken.

		EASTING	NORTHING	RL	ЕОН			FROM	то	LENGTH	THM	SLIMES	OS
	HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
	PGAC0188	231477	6885684	86.0	33.0	-90	360	0.0	8.0	8.0	3.7	11.7	14.0
Ī	PGAC0188	231477	6885684	73.0	33.0	-90	360	9.0	25.0	16.0	5.6	11.8	6.4
\	PGAC0188	231477	6885684	57.5	33.0	-90	360	32.0	33.0	1.0	3.3	8.3	1.2
4	PGAC0189	231371	6885931	86.5	33.0	-90	360	0.0	7.0	7.0	5.1	7.2	6.6
١	PGAC0189	231371	6885931	77.5	33.0	-90	360	9.0	16.0	7.0	4.1	12.3	12.6
4	PGAC0189	231371	6885931	72.5	33.0	-90	360	17.0	18.0	1.0	2.0	9.6	1.5
	PGAC0189	231371	6885931	70.0	33.0	-90	360	19.0	21.0	2.0	2.1	5.5	0.6
	PGAC0189	231371	6885931	58.0	33.0	-90	360	31.0	33.0	2.0	3.2	11.5	5.1
	PGAC0190	231442	6886002	89.0	33.0	-90	360	0.0	2.0	2.0	3.1	9.0	9.4
٦	PGAC0190	231442	6886002	80.5	33.0	-90	360	6.0	13.0	7.0	2.2	9.1	5.0
1	PGAC0190	231442	6886002	68.5	33.0	-90	360	20.0	23.0	3.0	2.4	13.1	0.9
	PGAC0190	231442	6886002	63.5	33.0	-90	360	26.0	27.0	1.0	2.2	17.9	21.0
	PGAC0190	231442	6886002	61.5	33.0	-90	360	28.0	29.0	1.0	2.8	15.3	16.3
	PGAC0191	231336	6886250	89.0	33.0	-90	360	0.0	2.0	2.0	2.1	6.3	0.3
	PGAC0191	231336	6886250	84.5	33.0	-90	360	5.0	6.0	1.0	2.4	28.4	22.8
	PGAC0191	231336	6886250	79.5	33.0	-90	360	9.0	12.0	3.0	2.8	20.3	1.0
4	PGAC0191	231336	6886250	60.5	33.0	-90	360	29.0	30.0	1.0	2.9	12.7	5.1
١	PGAC0192	231407	6886320	88.0	33.0	-90	360	1.0	3.0	2.0	2.4	9.9	0.9
4	PGAC0192	231407	6886320	85.0	33.0	-90	360	4.0	6.0	2.0	2.5	16.9	27.5
	PGAC0192	231407	6886320	76.0	33.0	-90	360	10.0	18.0	8.0	2.5	11.2	8.5
	PGAC0192	231407	6886320	67.0	33.0	-90	360	19.0	27.0	8.0	3.1	9.3	7.3
	PGAC0193	231230	6886497	89.0	36.0	-90	360	0.0	2.0	2.0	3.6	10.9	8.7
	PGAC0193	231230	6886497	82.0	36.0	-90	360	6.0	10.0	4.0	2.2	13.3	14.5
	PGAC0193	231230	6886497	72.0	36.0	-90	360	17.0	19.0	2.0	2.5	10.2	12.5
	PGAC0193	231230	6886497	60.0	36.0	-90	360	27.0	33.0	6.0	3.3	15.6	5.3
	PGAC0194	231301	6886568	77.5	33.0	-90	360	12.0	13.0	1.0	2.4	15.5	23.0
.	PGAC0194	231301	6886568	71.0	33.0	-90	360	17.0	21.0	4.0	3.1	16.8	10.7
	PGAC0194	231301	6886568	63.5	33.0	-90	360	26.0	27.0	1.0	2.1	3.0	1.9
) [PGAC0195	231371	6886638	89.5	27.0	-90	360	0.0	1.0	1.0	2.5	8.5	1.5
	PGAC0195	231371	6886638	87.5	27.0	-90	360	2.0	3.0	1.0	2.2	10.6	19.6
ŀ	PGAC0195	231371	6886638	83.5	27.0	-90	360	5.0	8.0	3.0	2.2	20.5	2.4
ا 1	PGAC0195	231371	6886638	79.5	27.0	-90	360	10.0	11.0	1.0	2.6	16.8	2.5
ļ	PGAC0195	231371	6886638	76.5	27.0	-90	360	12.0	15.0	3.0	2.5	13.9	9.7
	PGAC0199	230806	6887487	83.5	33.0	-90	360	4.0	9.0	5.0	2.6	14.4	24.1
ļ	PGAC0199	230806	6887487	79.5	33.0	-90	360	10.0	11.0	1.0	3.2	17.5	1.1
ļ	PGAC0199	230806	6887487	76.0	33.0	-90	360	13.0	15.0	2.0	2.1	16.5	13.6
ļ	PGAC0199	230806	6887487	73.5	33.0	-90	360	16.0	17.0	1.0	2.2	7.9	6.8
ŀ	PGAC0199	230806	6887487	69.5	33.0	-90	360	20.0	21.0	1.0	2.1	5.7	3.8
	PGAC0199	230806	6887487	64.5	33.0	-90	360	24.0	27.0	3.0	2.7	7.4	5.2

HOLE ID	EASTING	NORTHING	RL	ЕОН	DIP	AZI	FROM	то	LENGTH	THM	SLIMES	os
HOLL_ID	(GDA94)	(GDA94)	(m)	(m)	Dil	AZI	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0202	230876	6887558	77.5	33.0	-90	360	12.0	13.0	1.0	2.4	10.3	3.0
PGAC0202	230876	6887558	68.5	33.0	-90	360	21.0	22.0	1.0	2.4	9.9	1.6
PGAC0203	230558	6887593	84.5	33.0	-90	360	0.0	11.0	11.0	3.8	8.8	13.2
PGAC0203	230558	6887593	74.0	33.0	-90	360	13.0	19.0	6.0	3.6	10.0	4.8
PGAC0203	230558	6887593	67.0	33.0	-90	360	21.0	25.0	4.0	2.7	15.8	2.1
PGAC0203	230558	6887593	61.5	33.0	-90	360	26.0	31.0	5.0	4.6	19.5	4.4
PGAC0204	230240	6887628	80.0	33.0	-90	360	0.0	20.0	20.0	4.5	9.8	7.8
PGAC0204	230240	6887628	67.5	33.0	-90	360	21.0	24.0	3.0	2.7	14.1	20.0
PGAC0204	230240	6887628	61.5	33.0	-90	360	27.0	30.0	3.0	3.3	14.9	5.5
PGAC0205	230947	6887628	74.5	33.0	-90	360	12.0	26.0	14.0	2.7	11.5	8.8
PGAC0206	229922	6887664	84.5	33.0	-90	360	0.0	11.0	11.0	4.2	9.2	6.5
PGAC0206	229922	6887664	77.5	33.0	-90	360	12.0	13.0	1.0	2.0	8.2	11.4
PGAC0206	229922	6887664	69.5	33.0	-90	360	16.0	25.0	9.0	4.3	11.0	14.6
PGAC0206	229922	6887664	63.5	33.0	-90	360	26.0	27.0	1.0	2.7	7.6	5.0
PGAC0207	230629	6887664	87.5	33.0	-90	360	0.0	5.0	5.0	4.2	12.1	12.2
PGAC0207	230629	6887664	82.5	33.0	-90	360	7.0	8.0	1.0	2.0	12.0	21.1
PGAC0207	230629	6887664	80.5	33.0	-90	360	9.0	10.0	1.0	2.1	7.7	12.6
PGAC0207	230629	6887664	76.5	33.0	-90	360	13.0	14.0	1.0	2.3	17.7	0.4
PGAC0207	230629	6887664	69.0	33.0	-90	360	16.0	26.0	10.0	4.6	16.7	4.2
PGAC0208	230311	6887699	89.5	33.0	-90	360	0.0	1.0	1.0	7.8	9.4	0.8
PGAC0208	230311	6887699	81.0	33.0	-90	360	2.0	16.0	14.0	3.6	10.3	8.7
PGAC0208	230311	6887699	64.0	33.0	-90	360	24.0	28.0	4.0	4.6	16.6	6.1
PGAC0208	230311	6887699	59.0	33.0	-90	360	29.0	33.0	4.0	4.0	16.7	4.6
PGAC0209	229993	6887734	85.5	33.0	-90	360	0.0	9.0	9.0	3.3	8.2	9.8
PGAC0209	229993	6887734	77.5	33.0	-90	360	12.0	13.0	1.0	2.1	6.9	1.8
PGAC0209	229993	6887734	71.0	33.0	-90	360	18.0	20.0	2.0	2.3	11.7	26.4
PGAC0210	230700	6887734	74.5	33.0	-90	360	15.0	16.0	1.0	2.3	3.1	0.2
 PGAC0210	230700	6887734	71.0	33.0	-90	360	18.0	20.0	2.0	2.7	15.2	18.2
PGAC0210	230700	6887734	67.5	33.0	-90	360	22.0	23.0	1.0	2.3	12.1	2.5
PGAC0210	230700	6887734	59.5	33.0	-90	360	28.0	33.0	5.0	3.5	16.3	17.2
PGAC0211	229674	6887770	87.5	33.0	-90	360	0.0	5.0	5.0	4.8	15.4	9.8
PGAC0211	229674	6887770	83.0	33.0	-90	360	6.0	8.0	2.0	2.5	6.5	9.6
PGAC0211	229674	6887770	65.5	33.0	-90	360	24.0	25.0	1.0	2.2	20.0	4.2
PGAC0211	229674	6887770	57.5	33.0	-90	360	32.0	33.0	1.0	2.1	11.9	1.9
PGAC0212	230381	6887770	85.5	33.0	-90	360	0.0	9.0	9.0	4.3	10.1	17.5
PGAC0212	230381	6887770	76.0	33.0	-90	360	11.0	17.0	6.0	2.6	12.6	12.9
PGAC0212	230381	6887770	71.5	33.0	-90	360	18.0	19.0	1.0	2.0	18.5	3.1
PGAC0212	230381	6887770	68.5	33.0	-90	360	21.0	22.0	1.0	2.2	19.0	1.2
PGAC0212	230381	6887770	66.0	33.0	-90	360	23.0	25.0	2.0	2.5	19.6	0.6
PGAC0212	230381	6887770	62.0	33.0	-90	360	26.0	30.0	4.0	2.4	19.6	1.6
PGAC0212	230381	6887770	57.5	33.0	-90	360	32.0	33.0	1.0	2.2	4.8	0.2

U	FACTING	NORTHING	DI.	FOU			50014		LENGTH	T110.0	CLINATO	20
HOLE_ID	(GDA94)	NORTHING (CDA94)	RL (m)	EOH (m)	DIP	AZI	FROM (m)	TO (m)	LENGTH	THM	SLIMES	OS (%)
PGAC0213	(GDA94) 230063	(GDA94) 6887805	(m) 82.5	(m) 33.0	-90	360	(m) 0.0	(m) 15.0	(m) 15.0	(%) 4.4	(%) 9.5	(%) 6.1
PGAC0213	230063	6887805	68.5	33.0	-90		19.0	24.0	5.0	3.2	10.7	18.7
PGAC0213	230063	6887805	61.5	33.0	-90	360 360	27.0	30.0	3.0	2.2	7.1	19.2
PGAC0213	229745	6887841	88.0	33.0	-90	360	0.0	4.0	4.0	3.1	9.8	20.1
PGAC0214	229745	6887841	82.0	33.0	-90	360	5.0	11.0	6.0	3.1	7.2	4.9
PGAC0214	229745	6887841	73.0	33.0	-90	360	16.0	18.0	2.0	3.0	13.9	14.4
PGAC0215	230452	6887841	86.0	33.0	-90	360	0.0	8.0	8.0	4.6	10.8	6.1
PGAC0215	230452	6887841	76.5	33.0	-90	360	9.0	18.0	9.0	2.8	14.6	12.6
PGAC0215	230452	6887841	67.0	33.0	-90	360	22.0	24.0	2.0	2.5	14.0	5.2
PGAC0215	230452	6887841	61.0	33.0	-90	360	25.0	33.0	8.0	3.4	14.8	7.0
PGAC0216	230134	6887876	84.0	33.0	-90	360	0.0	12.0	12.0	3.8	8.9	3.5
PGAC0216	230134	6887876	71.0	33.0	-90	360	17.0	21.0	4.0	2.3	7.2	20.8
PGAC0216	230134	6887876	66.5	33.0	-90	360	22.0	25.0	3.0	2.2	13.8	3.6
PGAC0216	230134	6887876	60.5	33.0	-90	360	29.0	30.0	1.0	2.7	18.8	2.8
PGAC0216	230134	6887876	58.0	33.0	-90	360	31.0	33.0	2.0	2.3	15.1	26.4
PGAC0217	229816	6887911	85.0	33.0	-90	360	0.0	10.0	10.0	3.7	9.3	4.5
PGAC0218	230205	6887947	83.5	33.0	-90	360	0.0	13.0	13.0	4.7	7.1	4.9
PGAC0218	230205	6887947	74.5	33.0	-90	360	14.0	17.0	3.0	2.6	10.4	6.2
PGAC0219	229886	6887982	83.0	33.0	-90	360	0.0	14.0	14.0	5.1	8.5	3.2
PGAC0219	229886	6887982	58.0	33.0	-90	360	31.0	33.0	2.0	2.7	11.2	14.1
PGAC0220	230275	6888017	83.5	33.0	-90	360	0.0	13.0	13.0	5.6	8.5	11.2
PGAC0260	230240	6886568	88.5	33.0	-90	360	0.0	3.0	3.0	4.0	5.1	0.5
PGAC0260	230240	6886568	85.0	33.0	-90	360	4.0	6.0	2.0	2.2	15.9	3.0
PGAC0260	230240	6886568	82.5	33.0	-90	360	7.0	8.0	1.0	2.6	9.8	2.0
PGAC0260	230240	6886568	68.0	33.0	-90	360	21.0	23.0	2.0	3.8	10.4	4.0
PGAC0264R	230311	6886638	84.5	33.0	-90	360	0.0	11.0	11.0	4.9	12.7	3.4
PGAC0264R	230311	6886638	71.0	33.0	-90	360	16.0	22.0	6.0	2.3	17.6	18.3
PGAC0264R	230311	6886638	65.0	33.0	-90	360	24.0	26.0	2.0	2.8	16.7	11.0
PGAC0285	229993	6887027	89.5	33.0	-90	360	0.0	1.0	1.0	3.8	5.6	35.2
PGAC0285	229993	6887027	86.5	33.0	-90	360	2.0	5.0	3.0	3.6	6.1	9.3
PGAC0285	229993	6887027	79.0	33.0	-90	360	9.0	13.0	4.0	3.2	13.9	5.9
PGAC0285	229993	6887027	74.0	33.0	-90	360	14.0	18.0	4.0	3.6	9.7	6.9
PGAC0285	229993	6887027	70.5	33.0	-90	360	19.0	20.0	1.0	2.4	12.1	10.7
PGAC0289	230063	6887098	84.5	33.0	-90	360	0.0	11.0	11.0	3.5	11.3	7.0
PGAC0289	230063	6887098	72.5	33.0	-90	360	15.0	20.0	5.0	6.5	12.6	12.5
PGAC0289	230063	6887098	68.5	33.0	-90	360	21.0	22.0	1.0	2.3	11.0	4.5
PGAC0289	230063	6887098	61.0	33.0	-90	360	28.0	30.0	2.0	2.7	11.5	12.7
PGAC0293	230134	6887169	84.5	33.0	-90	360	0.0	11.0	11.0	3.9	6.2	2.1
PGAC0293	230134	6887169	77.5	33.0	-90	360	12.0	13.0	1.0	2.6	12.1	6.8
PGAC0293	230134	6887169	70.5	33.0	-90	360	19.0	20.0	1.0	2.2	12.8	0.1
PGAC0293	230134	6887169	60.5	33.0	-90	360	29.0	30.0	1.0	2.2	8.7	4.0

	HOLE ID	EASTING	NORTHING	RL	ЕОН	DID	AZI	FROM	то	LENGTH	THM	SLIMES	os
	HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
	PGAC0296	230205	6887239	82.5	33.0	-90	360	0.0	16.0	16.0	4.7	11.2	8.8
\[PGAC0296	230205	6887239	71.5	33.0	-90	360	18.0	21.0	3.0	2.4	13.3	2.9
	PGAC0298	230275	6887310	80.5	33.0	-90	360	0.0	19.0	19.0	3.6	9.6	9.3
ſ	PGAC0301	230346	6887381	89.0	33.0	-90	360	0.0	2.0	2.0	4.7	7.2	10.5
	PGAC0301	230346	6887381	81.5	33.0	-90	360	3.0	14.0	11.0	3.2	5.4	10.1
	PGAC0301	230346	6887381	72.5	33.0	-90	360	15.0	20.0	5.0	2.6	12.7	5.2
	PGAC0301	230346	6887381	68.5	33.0	-90	360	21.0	22.0	1.0	2.2	10.7	2.1
	PGAC0301	230346	6887381	66.5	33.0	-90	360	23.0	24.0	1.0	2.3	6.5	0.4
4	PGAC0301	230346	6887381	58.5	33.0	-90	360	31.0	32.0	1.0	2.0	9.7	0.4
3	PGAC0307	229780	6887522	88.5	33.0	-90	360	0.0	3.0	3.0	3.1	9.9	16.4
7	PGAC0307	229780	6887522	81.0	33.0	-90	360	5.0	13.0	8.0	3.3	9.3	10.8
	PGAC0309	229851	6887593	86.0	33.0	-90	360	0.0	8.0	8.0	3.4	9.3	14.2
- [PGAC0309	229851	6887593	80.5	33.0	-90	360	9.0	10.0	1.0	2.1	9.9	38.2
1	PGAC0309	229851	6887593	78.5	33.0	-90	360	11.0	12.0	1.0	2.1	17.8	9.5
)	PGAC0309	229851	6887593	71.0	33.0	-90	360	13.0	25.0	12.0	4.4	13.8	3.6

Appendix 3: Drill hole collar coordinates for 2022 drilling program and assays returned.

			EASTING	NORTHING	RL	EOH	LOGGED			HOLE	HOLE			DRILLING
	LEASE	HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	BY	DATE	SPLIT	TYPE	SIZE	DIP	AZI	COMPANY
)	E70/5160	PGAC0188	231477	6885684	90.3	33	RS	25/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0189	231371	6885931	80.0	33	RS	25/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0190	231442	6886002	76.8	33	RS	25/11/2022	25/75	AC	NQ	90	360	BOSTECH
)	E70/5160	PGAC0191	231336	6886250	88.4	33	RS	28/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0192	231407	6886320	85.6	33	RS	28/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0193	231230	6886497	89.9	36	RS	28/11/2022	25/75	AC	NQ	90	360	BOSTECH
7	E70/5160	PGAC0194	231301	6886568	86.3	33	RS	28/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0195	231371	6886638	85.0	27	RS	28/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0196	230664	6887346	94.9	33	RS	29/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0197	230735	6887416	95.6	33	RS	29/11/2022	25/75	AC	NQ	90	360	BOSTECH
1	E70/5160	PGAC0198	230417	6887452	98.9	33	RS	29/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0199	230806	6887487	96.3	33	YC	30/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0200	230488	6887522	102.0	33	RS	29/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0201	230169	6887558	93.9	33	YC	1/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0202	230876	6887558	92.8	33	RS	29/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0203	230558	6887593	104.5	33	RS	29/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0204	230240	6887628	101.3	33	RS	29/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0205	230947	6887628	96.1	33	RS	29/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0206	229922	6887664	89.0	33	RS	29/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0207	230629	6887664	100.2	33	RS	29/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0208	230311	6887699	102.4	33	YC	1/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0209	229993	6887734	91.1	33	YC	2/12/2022	25/75	AC	NQ	90	360	BOSTECH
7	E70/5160	PGAC0210	230700	6887734	98.2	33	YC	30/11/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0211	229674	6887770	89.4	33	YC	3/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0212	230381	6887770	103.7	33	YC	1/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0213	230063	6887805	96.0	33	YC	2/12/2022	25/75	AC	NQ	90	360	BOSTECH
)	E70/5160	PGAC0214	229745	6887841	93.8	33	YC	2/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0215	230452	6887841	104.5	33	YC	1/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0216	230134	6887876	102.1	33	YC	1/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0217	229816	6887911	95.1	33	YC	2/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0218	230205	6887947	104.9	33	YC	2/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0219	229886	6887982	98.4	33	YC	2/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0220	230275	6888017	112.2	33	YC	1/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0260	230240	6886568	70.3	33	YC	4/12/2022	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0264R	230311	6886638	71.4	33	YC	4/12/2022	25/75	AC	NQ	90	360	BOSTECH

LEASE	HOLE ID	EASTING	NORTHING	RL	ЕОН	LOGGED	DATE	SPLIT	HOLE	HOLE	DIP	AZI	DRILLING
LLASL	HOLL_ID	(GDA94)	(GDA94)	(m)	(m)	BY	DATE	31 211	TYPE	SIZE	DII.	741	COMPANY
E70/5160	PGAC0285	229993	6887027	75.6	33	YC	3/12/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0289	230063	6887098	76.7	33	YC	3/12/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0293	230134	6887169	80.0	33	YC	3/12/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0296	230205	6887239	85.5	33	YC	3/12/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0298	230275	6887310	91.4	33	YC	3/12/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0301	230346	6887381	99.8	33	YC	3/12/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0307	229780	6887522	88.5	33	YC	3/12/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0309	229851	6887593	92.3	33	YC	3/12/2022	25/75	AC	NQ	90	360	BOSTECH