

Drilling success continues at the El Guayabo Gold Project, Ecuador

<u>Highlights</u>

- 11 hole program targeting the next 8 regionally significant Au-soil anomalies in Ecuador completed with all holes intersecting mineralisation and discoveries on 4 of the 8 additional anomalies
- First Phase 2 drill holes on the GY-B anomaly in the El Guaybo concession significantly upgrade GY-B with results including an intersection of 108.5m at 2.4 g/t AuEq incl 54.2m at 4.0 g/t AuEq.
- Results from the programs include (refer Table 1 and Table 2):
 - 638.2m at 0.6 g/t AuEq²- 0.3 g/t Au, 2.1 g/t Ag, 0.1 % Cu, 10.5 ppm Mo from 10.1m including; 304.3m at 1.0 g/t AuEq²- 0.5 g/t Au, 3.4 g/t Ag, 0.3 % Cu, 14.5 ppm Mo from 344.0m including; 108.5m at 2.4 g/t AuEq²- 1.3 g/t Au, 7.8 g/t Ag, 0.6% Cu, 20.0 ppm Mo from 344.0m including; 54.2m at 4.0 g/t AuEq²-2.2 g/t Au, 12.9 g/t Ag, 1.0% Cu, 24.7 ppm Mo (GYDD-22-024) (GY-B Phase 2 drilling hole ending in mineralisation)
 - 780.1m at 0.3 g/t AuEq²- 0.2 g/t Au, 2.1 g/t Ag, 0.04% Cu, 6.4 ppm Mo from 15.5m including; 290.2m at 0.5 g/t AuEq²- 0.3 g/t Au, 2.7 g/t Ag, 0.04% Cu, 5.1 ppm Mo from 15.5m including; 54.2m at 0.9 g/t AuEq²- 0.7 g/t Au, 4.7 g/t Ag, 0.1% Cu, 10.7 ppm Mo from 228.8m and 116.4m at 0.5 g/t AuEq²- 0.3 g/t Au, 4.0 g/t Ag, 0.1% Cu, 4.4 ppm Mo from 441.5m including; 32.3m at 1.1 g/t AuEq²- 0.7 g/t Au, 6.8 g/t Ag, 0.1% Cu, 6.6 ppm Mo (GYDD-22-023) (GY-B Phase 2 drilling hole ending in mineralisation)
 - 778.2m at 0.3 g/t AuEq²- 0.2 g/t Au, 0.6 g/t Ag, 0.01% Cu, 0.8 ppm Mo from 77.3m including; 171.3m at 0.5 g/t AuEq²- 0.5 g/t Au, 0.9 g/t Ag, 0.01% Cu, 2.1 ppm Mo from 328.1m including 98.4m at 0.7 g/t AuEq² 0.6 g/t Au, 0.6 g/t Ag, 0.01% Cu, 2.3 ppm Mo from 328.1m and 150.8m at 0.5 g/t AuEq²- 0.4 g/t Au, 0.6 g/t Ag, 0.02% Cu, 3.1 ppm Mo from688.2m including 42.5m at 1.4 g/t AuEq² 1.3 g/t Au, 1.2 g/t Ag, 0.1% Cu, 2.4 ppm Mo (GYDD-22-019) (First hole CP-A Anomaly new gold discovery)
- Phase 2 drilling, designed to allow the reporting of a maiden Mineral Resource Estimate on the main discovery Zone (GY-A anomaly), underway with 6 holes completed (assays pending).

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said

"Our El Guayabo project in Ecuador is really shaping up as a potential Tier 1 opportunity. All the 14 regionally significant gold-soil anomalies drilled to date have produced gold intercepts with seven of these now high-priority targets that appear capable of hosting a significant bulk gold resource.

We continue to find zones of high-grade gold mineralisation within a structurally controlled high-grade core to the system. The intersection 108.5m at 2.4 g/t AuEq incl. 54.2m at 4.0 g/t AuEq in hole GYDD-22-024 on the GY-B anomaly extends the historical high-grade intersection of 156m at 3.0 g/t AuEq over 100 metres along strike. Both rigs have now moved to the resource drill out on the main GY-A anomaly discovery zone with results for 5 holes pending and two further holes in progress.

Challenger Exploration (ASX: CEL) ("CEL" the "Company") is pleased to announce results from the remainder of its Phase 1 drilling program which targeted eight of the nine remining regionally significant Au-Ag-Cu soil anomalies in the greater El Guayabo Project area¹. Additionally, the Company has received the results from its first four Phase 2 drill holes on the GY-B Anomaly on the 100% owned El Guaybo concession. The results confirm the potential of the greater El Guayabo project to produce one of South America's next significant gold discoveries.

HIGHLIGHTS

Regional exploration had several highlights, as success continued with the 11 remaining Phase-1 drill holes all intersecting mineralisation. These holes targeted an additional eight regionally significant Au-Cu-soil anomalies. All 14 regionally significant Au-Cu soil anomalies drilled in the greater El Guayabo Gold Project have produced significant gold intercepts with seven anomalies now ranked as high-priority targets for resource definition drilling by the Company. The first four Phase 2 holes on GY-B returned intersections of over **150 gram x metres.** This included one of the best intersections recorded on the project and initial Phase 2 drilling has upgraded the GY-B anomaly significantly.

- GYDD-22-018: 311.7m at 0.3 g/t AuEq including 56.0m at 0.6 g/t AuEq and 42.6m at 0.5 g/t AuEq with the hole ending in mineralisation. First hole on the GY-D anomaly and a discovery. Additionally, GY-D is located on the main GY-A discovery trend and GYDD-22-018 extends the mineralisation 700 metres along strike doubling the length of GY-A to 1.4 kilometres.
- GYDD-22-019: **778.2m at 0.3 g/t AuEq** including **171.3m at 0.5 g/t AuEq** including **98.4m at 0.7 g/t AuEq** and **150.8m at 0.5 g/t AuEq** including **42.5m at 1.4 g/t AuEq.** Significant gold discovery on the CP-A anomaly which is part of a 500m x 600m circular Au-soil anomaly.
- GYDD-22-020: 81.6m at 0.3 g/t AuEq and 48.5m at 0.3 g/t AuEq and 126.5m at 0.4 g/t AuEq including 25.5m at 0.9 g/t AuEq. Drilled targeting a geophysical target with limited geochemical signature and possibility of discoveries away from the main soil anomalies.
- GYDD-22-022: **702.9m** at **0.3** g/t AuEq including **117.6m** at **0.4** g/t AuEq and **77.1m** at **0.7** g/t AuEq. Infill hole confirming GY-B mineralisation is continuous across the GY-B anomaly.
- GYDD-22-023: 780.1m at 0.3 g/t AuEq including 290.2m at 0.5 g/t AuEq and 116.4m at 0.5 g/t AuEq. Extends the GY-B mineralisation 150 metres east of earlier CEL drilling and opens eastern side of GY-B anomaly which remains open and strongly mineralised
- GYDD-22-024: 638.2m at 0.6 g/t AuEq including 304.3m at 1.0 g/t AuEq including 108.5m at 2.4 g/t AuEq. Highest grade Intersection recorded at GY-B which extends the historical highgrade mineralisation (GY-002 156m at 3.0 g/t AuEq) over 100 metres along strike and confirms the presence of a coherent high-grade core to the GY-B mineralisation.

#1 -The greater El Guayabo Project area comprises the following concessions:

- 1. El Guayabo concession (281 Ha) 100% owned
- 2. Colorado V concession (2331 Ha) earning 50% with option to move to 75%
- 3. El Guayabo 2 concession (957 Ha) earning 80% with option to move to 100%
- 4. Cerro Pelado 1, 2 and 3 concessions (64 Ha combined) earning 80% with option to move to 100%

Phase 1 Regional Exploration Drilling

The results of the additional Phase 1 exploration drilling is summarised in Table 1 below. These 11 drill holes tested eight of the nine remaining regionally significant Au-Cu-soil anomalies in the project as shown in Figure 1. All holes intersected mineralisation with all 14 regionally significant Au-Cu soil anomalies drilled in the greater El Guayabo Gold Project having produced significant gold intercepts with seven of these 14 now regarded as high-priority targets for resource drilling by the Company.

Drill Hole	From	То	Interval	AuEq	Anomaly	Gram x
(#)	(m)	(m)	(m)	(g/t)	,	Metres
CVDD-22-011	363.2	455.0	91.8	0.2	Geophysical target 500m NE of CV-	18.2
incl.	397.7	433.7	36.0	0.3	(Colorado V)	11.7
CVDD-22-012	215.4	239.4	24.0	0.3	CV-D anomaly	6.3
and	413.9	429.7	15.8	0.2	(Colorado V)	3.8
CVDD-22-013	227.0	472.8	245.8	0.2	Gap between the CV-A and CV-B	48.1
incl.	396.0	449.9	53.9	0.3	anomalies (Colorado V)	15.1
CVDD-22-014	256.8	271.2	14.4	1.3	CV-E anomaly	18.3
and	401.1	405.6	4.5	4.7	(Colorado V)	21.3
CVDD-22-015	9.1	757.6	748.5	0.2	CV-G anomaly (Colorado V)	128.0
incl.	77.4	233.7	156.3	0.3	ended in mineralisation	39.2
CVDD-22-016	10.8	81.0	70.2	0.5	CV-D anomaly	37.5
from	275.0	515.9	240.9	0.2	(Colorado V)	39.1
and	397.5	436.5	39.0	0.3		10.0
CVDD-22-017	20.3	301.5	281.2	0.2	CV-H anomaly	47.1
incl.	168.0	221.5	53.6	0.3	(Colorado V)	13.4
GYDD-22-017	8.0	110.1	102.1	0.3	GY-E anomaly	26.1
and	406.1	443.8	37.8	0.3	(El Guayabo concession)	10.9
and	521.3	686.7	165.4	0.3		45.7
incl.	591.0	621.3	30.3	0.5		15.6
GYDD-22-018	4.0	734.1	730.1	0.2	GY-D anomaly	151.3
incl.	4.0	315.7	311.7	0.3	(El Guayabo concession)	79.0
incl.	4.0	60.0	56.0	0.6		31.8
and	583.9	626.5	42.6	0.5	ended in mineralisation	23.3
GYDD-22-019	77.3	855.5	778.2	0.3	CP-A anomaly	202.3
and	328.1	499.5	171.3	0.5	(Cerro Pelado concession)	84.0
incl.	328.1	426.5	98.4	0.7		64.7
incl.	688.2	839.0	150.8	0.5		71.8
incl.	796.5	839.0	42.5	1.4		60.4
GYDD-22-020	119.2	200.8	81.6	0.3	Geophysical target and northern	21.0
and	290.5	445.5	155.0	0.2	extension of the Ecuaba Vein	37.4
and	385.0	433.5	48.5	0.3	(El Guayabo concession)	16.9
and	623.5	750.0	126.5	0.4		47.2
incl.	635.5	661.0	25.5	0.9	ended in mineralisation	23.5
GY2DD-22-001	191.00	202.20	11.2	0.9	GY2A - Anomaly	10.50
and	403.10	492.50	89.4	0.2	(El Guayabo 2 concession)	19.9
and	592.60	596.68	4.1	2.4		9.7

Table 1 - Summary regional Exploration results

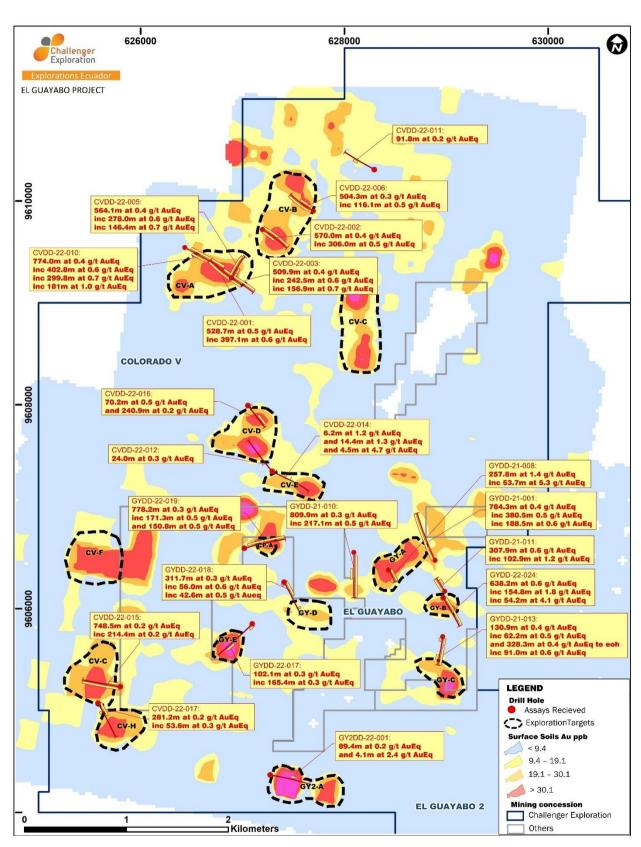


Figure 1 - Regional view of the Greater El Guayabo Gold Project drilling

Issued Capital 1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

The seven high-priority drill targets consist of the main GY-A discovery trend and GY-B which are currently the subject of a resource infill drilling program. GY-C and GY-D are also within the 100% owned El Guayabo concession. CV-A and CV-B are located in the Colorado V concession where the Company is earning a 50% interest, and CP-A is located in the Cerro Pelado concession.

GYDD-22-018 - GY-D Anomaly, El Guayabo concession.

GYDD-22-018 was the first hole drilled to test the GY-D Au-Cu soil anomaly which is located on the greater GY-A discovery trend approximately 700 metres west along strike from all GY-A drilling. The hole intersected 730.1 m at 0.2 g/t AuEq²(0.1 g/t Au, 0.7 g/t Ag, 0.03% Cu, 5.8 ppm Mo) from 4.0m including 311.7m at 0.3 g/t AuEq²(0.2 g/t Au, 0.7 g/t Ag, 0.03% Cu, 7.4 ppm Mo) from 4.0m including 56.0m at 0.6 g/t AuEq²(0.5 g/t Au, 0.7 g/t Ag, 0.02% Cu, 5.7 ppm Mo from 4.0m and 42.6m at 0.5 g/t AuEq²(0.4 g/t Au, 1.0 g/t Ag, 0.1% Cu, 5.4 ppm Mo from 583.9m.

The intersection significantly upgrades the El Guayabo Project as it supports the interpretation of a 1.4 kilometre zone of continuous mineralisation along the trend that contains the GY-A (main discovery zone which has produced intersections including 257.8m at 1.4 g/t AuEq) and GY-D anomalies. The company has drilled two holes on the trend between the bulk of the GY-A drilling and GYDD-22-018, including GYDD-21-010 targeting a geophysical anomaly which intersected 809.9m at 0.3 g/t AuEq from 70.2m, including 217.1m at 0.5 g/t AuEq) and GYDD-21-007 a 200 metre step-out to the west of GY-A which intersected 360.1m at 0.3 g/t from 149.5m including 43.0m at 0.6 g/t AuEq from 450.2m.

GYDD-22-019 - CP-A Anomaly, Cerro Pelado concession.

GYDD-22-019 was the first hole to be drilled on the small Cerro Pelado concession which lies between El Guayabo and Colorado V. The company has entered into an agreement with the local artisanal mining association that owns the three Cerro Pelado concessions where it can farm in to earn an initial 80% interest with the option to move to 100% ownership. The local mining association is currently working narrow high-grade veins which occur through-out the bulk porphyry/Intrusive breccia hosted mineralisation down to a depth of almost 900 metres.

The intersection of 778.2 m at 0.3 g/t AuEq² (0.2 g/t Au, 0.6 g/t Ag, 0.01% Cu, 0.8 ppm Mo) from 77.3m including 277.7m at 0.4 g/t AuEq (0.3 g/t Au, 0.7 g/t Ag, 0.01% Cu, 2.6 ppm Mo) from 292.3m including 171.3m at 0.5 g/t AuEq² (0.5 g/t Au, 0.9 g/t Ag, 0.01% Cu, 2.1 ppm Mo) including 98.4m at 0.7 g/t AuEq² (0.6 g/t Au, 0.6 g/t Ag, 0.01% Cu, 2.3 ppm Mo) from 328.1m and a higher grade zone of 42.0m at 0.9 g/t AuEq (0.8 g/t Au, 0.4 g/t Ag, 0.01% Cu, 3.1 ppm Mo) including 24.0m at 1.3 g/t AuEq (1.3 g/t Au, 0.5 g/t Ag, 0.02% Cu, 3.5 ppm Mo). Additionally, the main intercept includes a deeper higher-grade zone of 167.3m at 0.4 g/t AuEq² (0.4 g/t Au, 0.5 g/t Ag, 0.02% Cu, 3.7 ppm Mo) from 688.2m including 150.8m at 0.5 g/t AuEq² (0.4 g/t Au, 0.6 g/t Ag, 0.02% Cu, 3.1 ppm Mo) from 688.2m including 42.5m at 1.4 g/t AuEq² (1.3 g/t Au, 1.2 g/t Ag, 0.1% Cu, 2.4 ppm Mo) including 22.5m at 2.4 g/t AuEq² (2.3 g/t Au, 1.9 g/t Ag, 0.1% Cu, 2.4 ppm Mo).

The CP-A anomaly Is part of a circular gold in soil feature approximately 600 metres long and 500 metres wide. The results of this first hole on the anomaly coupled with the extensive artisanal workings which have been mapped by the Company indicate an extensive gold discovery.

Phase 2 Drilling GY-B Anomaly

Prior to the Phase 2 resource drilling program on the main GY-A discovery zone a series of four holes were drilled on the GY-B anomaly to follow up CEL drillhole GYDD-21-009 which Intersected 692.7m at 0.3 g/t AuEq including a higher-grade zone of 220.5m at 0.6 g/t AuEq including. 20.7m at 1.0 g/t AuEq and 80.5m at 0.9 g/t AuEq. This drilling has significantly upgraded the GY-B target with all four holes intersecting more than 150 grams x metres of mineralisation from near surface and three of the four holes ending in mineralisation.

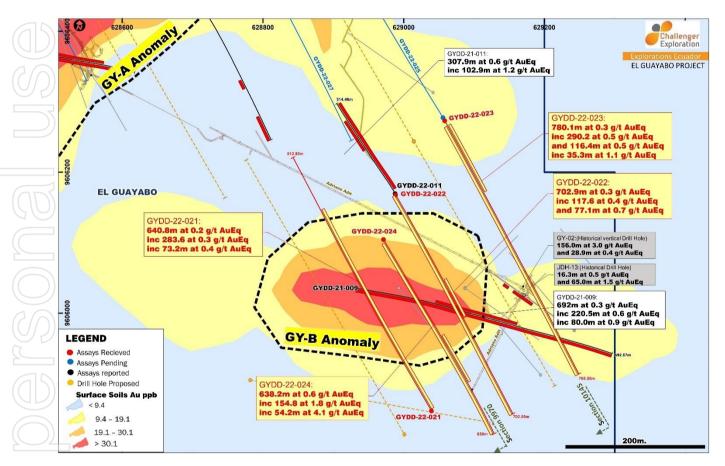
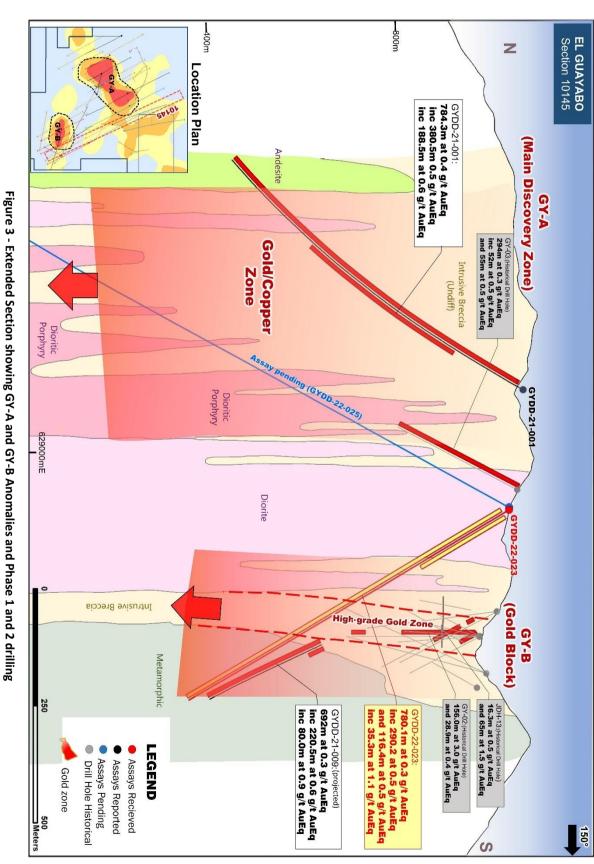



Figure 2 - Plan view GY-B Anomaly showing Phase 1 and Phase 2 drilling

As can be seen in Figure 3 (over the page) which shows the main GY-A Discovery Zone and the GY-B anomaly the Company is eagerly awaiting the results of Drillhole GYDD-22-025 as this is testing the potential for the GY-A and GY-B anomalies to join forming a greater 1-1.2 kilometre wide zone of mineralisation. The only drilling to target this gap between GY-A and GY-B was hole GYDD-21-011 which was drilled from GY-B north and targeted to test 250 metres under the GYDD-21-001 discovery hole on GY-A. This hole was abandoned at 311 metres downhole when the drill pipe became stuck, however the hole returned an intersection of 307.9m at 0.6 g/t AuEq from 3.0m to the end of the hole.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1

1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

GYDD-22-024 - GY-B Anomaly, El Guayabo concession

GYDD-22-024 was the highlight of this drilling returning an outstanding intersection from near surface to the end of the hole including a significant and coherent high-grade zone. The hole intersected 638.2m at 0.6 g/t AuEq (0.3 g/t Au, 2.1 g/t Ag, 0.1% Cu, 10.5 ppm Mo) from 10.1m including 304.3m at 1.0 g/t AuEq (0.5 g/t Au, 3.4 g/t Ag, 0.3 % Cu, 14.5 ppm Mo) from 344.0m including 154.8m at 1.8 g/t AuEq (0.9 g/t Au, 5.7 g/t Ag, 0.5 % Cu, 19.0 ppm Mo) from 332.2m. This Included a discrete high-grade zone of 108.5m at 2.4 g/t AuEq (1.3 g/t Au, 7.8 g/t Ag, 0.6% Cu, 20.0 ppm Mo) from 344.0m including 54.2 m at 4.1 g/t AuEq (2.2 g/t Au, 12.9 g/t Ag, 1.0% Cu, 24.7 ppm Mo) from 369.3m.

The high-grade zone of 54.2 m at 4.1 g/t AuEq is pervasive and consistent with the intercept containing a highest grade internal split of 1.5 metres at 15.1 g/t AuEq with 33 of the 35 splits that comprise this intercept grading over 1 g/t AuEq. The intercept extends the high-grade mineralisation intersected in historical drillhole GY-02 (156m at 3.0 g/t AuEq) some 100 metres along strike and confirms the presence of a coherent high-grade core to the GY-B mineralisation. This high-grade zone of mineralisation in GY-B is interpreted as forming a sub-vertical zone. Cross Section 10145 shows that earlier historical drill holes were likely not drilled deep enough to intersect the zone of high-grade mineralisation.

GYDD-22-023 - GY-B Anomaly, El Guayabo concession

GYDD-22-023 was drilled on the eastern margin of GY-B approximately 150 metres east of GYDD-22-024. The hole intersected 780.1 m at 0.3 g/t AuEq (0.2 g/t Au, 2.1 g/t Ag, 0.04% Cu, 6.4 ppm Mo) from 15.5m to the end of the hole including 290.2m at 0.5 g/t AuEq (0.3 g/t Au, 2.7 g/t Ag, 0.04% Cu, 5.1 ppm Mo) from 15.5m including 54.2 m at 0.9 g/t AuEq (0.7 g/t Au, 4.7 g/t Ag, 0.1% Cu, 10.7 ppm Mo) from 228.8m and 116.4 m at 0.5 g/t AuEq (0.3 g/t Au, 4.0 g/t Ag, 0.1% Cu, 4.4 ppm Mo) from 441.5m including 32.3m at 1.1 g/t AuEq (0.7 g/t Au, 6.8 g/t Ag, 0.1% Cu, 6.6 ppm Mo) from 510.6m.

The intersection correlates with the high-grade historical Intersections in GY-02 (156m at 3.0 g/t AuEq) and JDH-013 (65.0m at 1.5 g/t AuEq) with this higher-grade zone in GY-B trending sub-vertically. This hole is the most easterly hole on the GY-B anomaly drilled by the Company and indicates that GY-B mineralisation remains strong and open to the east and at depth.

GYDD-22-022 - GY-D Anomaly, El Guayabo concession

GYDD-22-022 was an infill hole drilled between GYDD-22-024 and GYDD-22-023. The hole intersected mineralisation from near surface to the end of the hole. Intersecting 702.9m at 0.3 g/t AuEq (0.2 g/t Au, 2.7 g/t Ag, 0.1 % Cu, 6.7 ppm Mo) from surface including 28.1m at 0.6 g/t AuEq (0.2 g/t Au, 30.4 g/t Ag, 0.04 % Cu, 1.4 ppm Mo) from 23.9 and 117.6m at 0.4 g/t AuEq (0.2 g/t Au, 3.2 g/t Ag, 0.1 % Cu, 5.7 ppm Mo) from 278.2m and 77.1m at 0.7 g/t AuEq (0.4 g/t Au, 2.7 g/t Ag, 0.1 % Cu, 5.7 ppm Mo) from 446.5m including 28.4 m at 1.0 g/t AuEq (0.6 g/t Au, 3.6 g/t Ag, 0.2% Cu, 9.6 ppm Mo) from 492.0m. The hole confirms the continuity of the GY-B mineralisation across the GY-B anomaly.

GYDD-22-021 - GY-D Anomaly, El Guayabo concession

GYDD-22-021 was drilled 60 metres to the west of GYDD-22-024 and is the most westerly hole drilled on the GY-B Target. The hole intersected 640.8m at 0.2 g/t AuEq (0.1 g/t Au, 1.9 g/t Ag, 0.1 % Cu, 9.4 ppm Mo) from 5.2m including 283.6m at 0.3 g/t AuEq (0.1 g/t Au, 2.0 g/t Ag, 0.1 % Cu, 6.2 ppm Mo) from

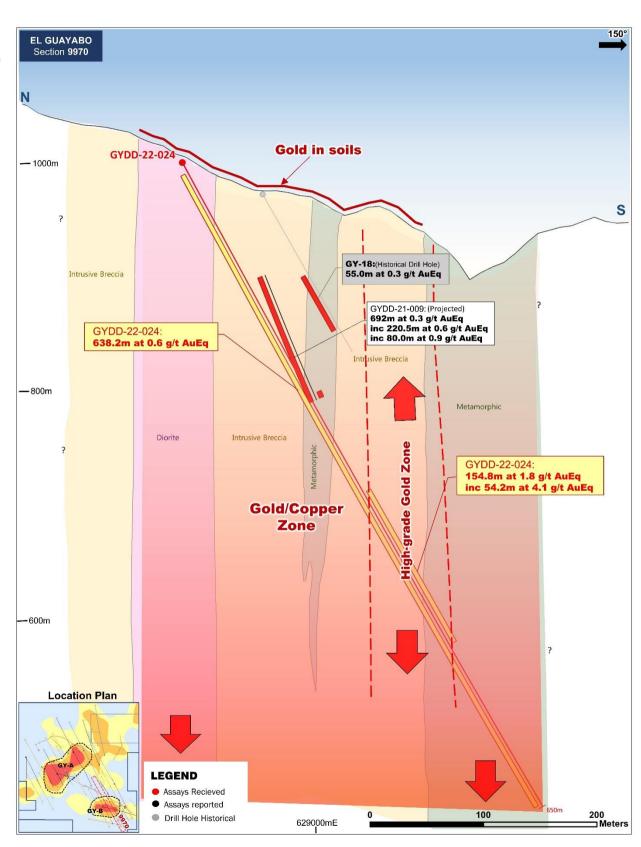


Figure 4 - Cross Section GY-B Anomaly GYDD-22-024

Issued Capital 1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Table 1 - Showing assay results for high-grade zone in Drillhole GYDD-22-024

GYDD-22-024	From	То	Interval	Au	Ag	Cu	Мо	AuEq
(Sample number)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(G/t)
EX52001	369.25	370.75	1.50	0.707	61.000	1.88500	6.12	4.643
EX52003	370.75	372.25	1.50	1.914	36.200	1.23600	16.7	4.457
EX52004	372.25	373.75	1.50	7.672	28.500	4.19100	13.4	15.100
EX52005	373.75	375.25	1.50	3.963	20.600	2.50400	6.28	8.444
EX52006	375.25	376.75	1.50	4.339	76.000	3.25500	18.35	10.779
EX52007	376.75	378.25	1.50	2.374	11.100	1.34700	3.84	4.785
EX52008	378.25	379.75	1.50	1.019	4.270	0.74820	3.89	2.336
EX52009	379.75	381.25	1.50	1.648	17.200	1.39400	150.47	4.317
EX52010	381.25	382.75	1.50	1.352	6.830	0.63180	3.98	2.504
EX52011	382.75	384.25	1.50	2.318	7.930	2.11700	15.21	5.996
EX52013	384.25	385.75	1.50	1.852	5.320	1.04600	10.5	3.689
EX52014	385.75	387.25	1.50	0.733	2.620	0.62910	14.23	1.836
EX52015	387.25	388.75	1.50	0.808	2.570	0.55580	14.88	1.787
EX52016	388.75	390.25	1.50	2.236	8.520	1.58400	5.88	5.016
EX52017	390.25	391.75	1.50	3.284	9.210	1.51200	63.34	5.992
EX52018	391.75	393.25	1.50	0.947	10.900	0.90760	19.11	2.625
EX52019	393.25	394.75	1.50	1.561	8.310	1.14800	10.6	3.607
EX52020	394.75	396.25	1.50	2.631	4.740	0.35400	18.84	3.300
EX52021	396.25	397.75	1.50	4.241	7.230	1.12500	7.4	6.232
EX52023	397.75	399.25	1.50	6.065	3.250	0.26980	21.19	6.575
EX52024	399.25	400.75	1.50	2.948	1.360	0.11060	31.6	3.174
EX52025	400.75	402.25	1.50	0.966	8.590	0.49470	28.28	1.926
EX52026	402.25	403.75	1.50	2.057	3.140	0.30720	13.52	2.623
EX52027	403.75	405.25	1.50	1.397	8.430	0.57670	4.66	2.477
EX52028	405.25	406.75	1.50	0.735	2.230	0.46240	3.64	1.545
EX52029	406.75	408.25	1.50	0.319	2.610	0.44730	5.5	1.109
EX52030	408.25	409.75	1.50	0.619	16.100	0.92370	33.72	2.399
EX52031	409.75	411.25	1.50	1.485	3.550	1.18200	84.57	3.582
EX52033	411.25	412.75	1.50	1.230	2.060	0.59230	81.51	2.312
EX52034	412.75	414.25	1.50	4.383	41.800	1.91600	8.11	8.136
EX52035	414.25	415.75	1.50	2.744	28.100	1.17300	82.37	5.127
EX52036	415.75	417.25	1.50	5.546	6.840	0.33570	5.38	6.200
EX52037	417.25	418.75	1.50	1.767	3.500	0.25390	62.57	2.283
EX52038	418.75	420.25	1.50	0.200	1.720	0.07964	4.67	0.359
EX52039	420.25	421.75	1.50	0.703	1.260	0.08581	6.95	0.868
EX52040	421.75	423.43	1.68	0.768	2.470	0.18450	9.7	1.116

56.1m including a higher-grade component of **73.2m at 0.4** g/t AuEq (**0.2** g/t Au, **2.1** g/t Ag, **0.1** % Cu, **8.3** ppm Mo) from 56.1m. Additionally, the hole intersected a second zone of mineralisation near the end of the hole intersecting **57.0m at 0.2** g/t AuEq (**0.1** g/t Au, **1.0** g/t Ag, **0.04**% Cu, **14.4** ppm Mo from 703m.

This intersection successfully extends the GY-B mineralisation 60 metres west along strike and confirms that the GY-B mineralisation remains open to the west. A follow up hole is planned to test another 100 metres west of GYDD-22-021.

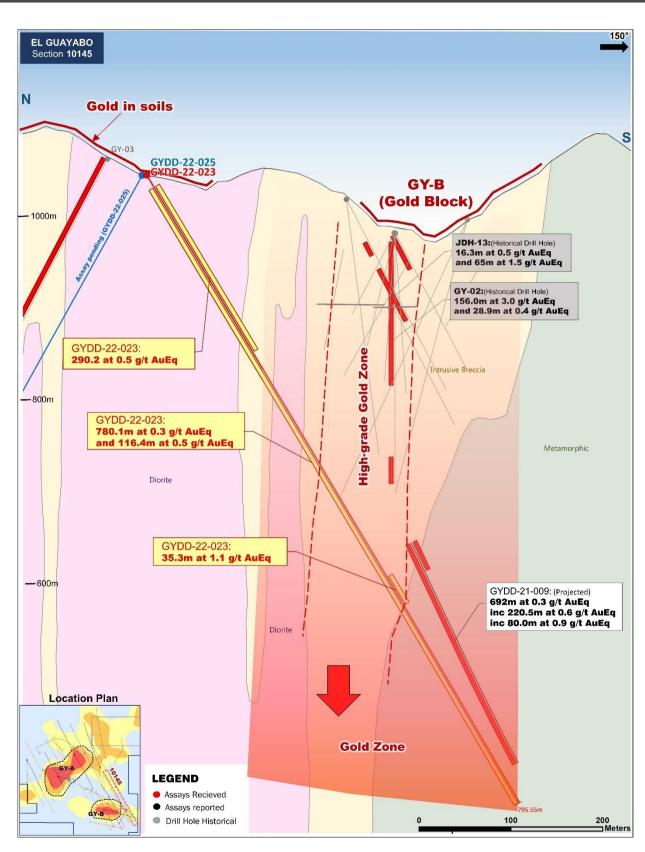


Figure 5 - Cross Section GY-B Anomaly GYDD-22-023

Issued Capital 1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Next steps

Both drill rigs remain on site, now completing the Phase 2 drill program on the GY-A anomaly designed to allow the reporting of a maiden Mineral Resource Estimate in accordance with the JORC 2012 Code. Six holes have been completed on GY-A (assays pending) for 4900 metres of drilling with two holes in progress and an additional eight holes programmed. At least one additional hole is programmed on GY-B with two further GY-B holes being considered.

Ends

This ASX announcement was approved and authorised by the Board.

For further information contact:

Kris Knauer Scott Funston Media Enquiries

Managing Director Chief Financial Officer Jane Morgan

+61 411 885 979 +61 413 867 600 +61 405 555 618

kris.knauer@challengerex.com scott.funston@challengerex.com jm@janemorganmanagement.com.au

Previous announcements referred to in this release include:

13 Jan 2022- First drill hole in Ecuador confirms the discovery of a major gold-copper system with a 748 metre Intersection 23 Feb 2022 - Ongoing drilling at the El Guayabo Project in Ecuador confirms the discovery of a major Au-Cu-Ag mineralised system

9 Mar 2022 - Significant high-grade intersection at Challenger's 100% owned El Guayabo gold-copper Project in Ecuador **22 April 2022** - Drilling confirms significant scale over multiple zones at CEL's 100% owned El Guayabo Au-Cu Project in Ecuador

6 June 2022 - Two New Copper Gold Discoveries at Colorado V Ecuador

4 July 2022 - Drilling Expands Colorado V Discoveries in Ecuador

5 October 2022 - Several 500 metre intersections continue to extend CEL's gold discoveries in Colorado V and indicate significant scale

Drill Hole	Ercm	To	Interval	۸	۸~	C	N/-	۸۰۰۲۰۰	Commonts	Gran
(#)	From (m)	To (m)	Interval (m)	Au (g/t)	Ag (g/t)	(%)	(ppm)	AuEq (g/t)	Comments	Gram Metres
CVDD-22-011	168.3	174.3	6.0	0.07	0.77	0.07	15.18	0.2	0.1 g/t AuEq cut	1.2
and	194.5	202.0	7.5	0.07	0.77	0.07	11.53	0.2	0.1 g/t AuEq cut	1.3
and	363.2	455.0	91.8	0.13	0.56	0.04	4.03	0.2	0.1 g/t AuEq cut	18.2
incl.	363.2	367.7	4.5	0.13	0.62	0.05	11.91	0.4	0.1 g/t AuEq cut	1.9
and	397.7	433.7	36.0	0.24	0.61	0.03	3.03	0.4	0.1 g/t AuEq cut	11.7
CVDD-22-012 and	46.1 123.9	48.8 153.9	2.6 30.0	0.63 0.17	1.89 1.03	0.02 0.01	1.92 1.78	0.7 0.2	0.1 g/t AuEq cut 0.1 g/t AuEq cut	1.8 5.9
									0.1 g/t AuEq cut	
and and	215.4 413.9	239.4 429.7	24.0	0.19	4.70	0.01	1.86	0.3	0.1 g/t AuEq cut	6.3
			15.8	0.23	0.58	0.00	1.54	0.2		3.8
CVDD-22-013	227.0	472.8	245.8	0.16	1.37	0.01	2.65	0.2	0.1 g/t AuEq cut	48.1
incl.	265.0	291.0	26.0	0.20	2.50	0.01	1.32	0.2	0.1 g/t AuEq cut	6.5
and	319.0	333.0	14.0	0.23	4.16	0.02	2.91	0.3	0.1 g/t AuEq cut	4.4
and	366.4	367.4	1.0	1.56	1.19	0.01	1.80	1.6	1.0 g/t AuEq cut	1.6
and	396.0	449.9	53.9	0.27	2.02	0.01	2.47	0.3	0.1 g/t AuEq cut	15.1
incl.	434.5	435.9	1.4	1.72	11.00	0.08	0.90	2.0	1.0 g/t AuEq cut	2.8
and	731.7	733.2	1.5	0.30	0.39	0.01	1425.60	1.3	1.0 g/t AuEq cut	2.0
CVDD-22-014	59.7	65.9	6.2	1.13	1.30	0.01	1.80	1.2	0.1 g/t AuEq cut	7.2
and	171.2	172.1	0.9	11.63	16.10	0.03	1.60	11.9	1.0 g/t AuEq cut	10.7
and	198.2	216.0	17.8	0.44	1.18	0.01	1.94	0.5	0.1 g/t AuEq cut	8.5
incl.	210.2	215.3	5.1	0.90	1.33	0.01	1.83	0.9	1.0 g/t AuEq cut	4.8
and	256.8	271.2	14.4	1.17	4.73	0.03	2.22	1.3	1.0 g/t AuEq cut	18.3
and	344.7	346.2	1.5	1.46	0.39	0.01	1.60	1.5	1.0 g/t AuEq cut	2.2
and	401.1	405.6	4.5	4.58	9.62	0.02	1.76	4.7	1.0 g/t AuEq cut	21.3
and	486.7	506.2	19.5	0.39	0.71	0.01	2.79	0.4	0.1 g/t AuEq cut	8.0
incl.	504.7	506.2	1.5	3.04	4.11	0.03	1.70	3.1	1.0 g/t AuEq cut	4.7
and	605.1	606.6	1.5	1.11	2.53	0.01	1.40	1.2	1.0 g/t AuEq cut	1.7
and	687.6	693.6	6.0	0.71	3.66	0.01	1.56	0.8	1.0 g/t AuEq cut	4.6
and	845.6	846.3	0.7	8.59	4.57	0.00	1.80	8.7	1.0 g/t AuEq cut	6.3
CVDD-22-015	9.1	757.6	748.5	0.10	0.42	0.04	9.15	0.2	0.1 g/t AuEq cut	128.0
incl.	23.2	23.8	0.6	2.24	6.04	0.22	16.30	2.7	1.0 g/t AuEq cut	1.6
and	77.4	233.7	156.3	0.13	0.75	0.06	17.80	0.3	0.5 g/t AuEq cut	39.2
incl.	169.6	171.1	1.5	0.97	0.64	0.06	8.40	1.1	1.0 g/t AuEq cut	1.6
and	364.2	365.7	1.5	0.88	1.11	0.15	8.40	1.2	1.0 g/t AuEq cut	1.7
and	440.7	442.2	1.5	1.25	0.71	0.05	0.80	1.3	1.0 g/t AuEq cut	2.0
and	646.6	648.1	1.5	5.96	0.71	0.02	1.50	6.0	1.0 g/t AuEq cut	9.0
CVDD-22-016		81.0	70.2			0.01		0.5	0.5 g/t AuEq cut	37.5
incl.	10.8 10.8	22.8	70.2 12.0	0.42 0.58	7.15 5.86	0.01	4.08 2.14	0.5 0.7	1.0 g/t AuEq cut	37.5 8.2
and	36.3	48.7	12.4	1.48	18.52	0.02	14.33	1.7	1.0 g/t AuEq cut	21.6
						0.01	3.34	0.2	0.1 g/t AuEq cut	39.1
and	275.0	515.9	240.9	0.11	2.26				-	
incl.	312.5	326.0	13.5	0.14	5.42	0.04	5.66	0.3	0.1 g/t AuEq cut	3.6
and	397.5	436.5	39.0	0.20	2.60	0.01	2.44	0.3	0.1 g/t AuEq cut	10.0
CVDD-22-017	20.3	301.5	281.2	0.08	0.62	0.05	4.56	0.2	0.1 g/t AuEq cut	47.1
incl.	53.2	54.7	1.5	0.33	4.75	0.43	2.90	1.1	1.0 g/t AuEq cut	1.7
and	168.0	221.5	53.6	0.14	0.88	0.06	8.94	0.3	0.1 g/t AuEq cut	13.4
and	388.5	445.5	57.0	0.10	0.36	0.03	3.01	0.2	0.1 g/t AuEq cut	8.9
incl.	388.5	390.0	1.5	1.17	0.20	0.01	1.00	1.2	1.0 g/t AuEq cut	1.8
and	648.1	664.6	16.5	0.02	1.19	0.10	1.32	0.2	0.1 g/t AuEq cut	3.4

Issued Capital 1,045.8m shares 10.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

GYDD-22-017	8.0	110.1	102.1	0.22	1.13	0.01	1.30	0.3	0.1 g/t AuEq cut	26.1
incl.	8.0	70.4	62.4	0.30	1.57	0.02	1.30	0.4	0.1 g/t AuEq cut	22.2
incl.	9.5	24.5	15.0	0.71	3.65	0.04	2.43	0.8	1.0 g/t AuEq cut	12.4
and	154.0	172.0	18.1	0.47	2.63	0.02	1.82	0.5	1.0 g/t AuEq cut	9.6
and	380.8	382.8	2.0	1.21	0.46	0.02	1.30	1.3	1.0 g/t AuEq cut	2.5
and	406.1	443.8	37.8	0.25	0.54	0.02	1.26	0.3	1.0 g/t AuEq cut	10.9
and	521.3	686.7	165.4	0.21	0.73	0.04	2.85	0.3	0.1 g/t AuEq cut	45.7
incl.	544.5	552.0	7.5	0.43	1.26	0.54	1.61	0.5	0.5 g/t AuEq cut	4.0
and	591.0	621.3	30.3	0.45	0.86	0.03	1.22	0.5	0.5 g/t AuEq cut	15.6
and	644.7	652.2	7.5	0.49	1.43	0.10	1.87	0.7	0.5 g/t AuEq cut	5.1
and	667.2	668.7	1.5	1.18	0.41	0.01	0.70	1.2	1.0 g/t AuEq cut	1.8
and	818.5	821.0	2.5	0.43	2.84	0.91	0.58	0.6	0.5 g/t AuEq cut	1.5
GYDD-22-018	4.0	734.1	730.1	0.14	0.67	0.03	5.85	0.2	0.1 g/t AuEq cut	151.
incl.	4.0	315.7	311.7	0.20	0.73	0.03	7.37	0.3	0.1 g/t AuEq cut	79.0
incl.	4.0	60.0	56.0	0.53	0.66	0.02	5.67	0.6	1.0 g/t AuEq cut	31.8
incl.	32.0	60.0	28.0	0.82	0.78	0.02	5.83	0.9	1.0 g/t AuEq cut	24.1
and	129.0	130.5	1.5	1.96	0.26	0.01	2.50	2.0	1.0 g/t AuEq cut	3.0
and	177.3	178.8	1.5	1.12	1.11	0.05	5.60	1.2	1.0 g/t AuEq cut	1.8
and	243.3	244.8	1.5	1.05	1.28	0.04	4.50	1.1	1.0 g/t AuEq cut	1.7
and	383.3	388.7	5.4	0.14	1.45	0.09	3.20	0.3	0.1 g/t AuEq cut	1.7
and	423.2	434.4	11.3	0.24	0.84	0.03	6.58	0.3	0.1 g/t AuEq cut	3.5
and	583.9	626.5	42.6	0.44	0.95	0.06	5.43	0.5	1.0 g/t AuEq cut	23.3
and	698.3	701.3	3.0	0.51	0.54	0.04	1.68	0.6	0.5 g/t AuEq cut	1.8
GYDD-22-019	77.3	855.5	778.2	0.23	0.58	0.01	0.79	0.3	0.1 g/t AuEq cut	202.
incl.	77.3 77.3	92.1	14.8	0.23	3.75	0.01	3.30	0.3	0.1 g/t AuEq cut	5.6
and	292.3	570.0	277.7	0.33	0.75	0.02	2.59	0.4	0.1 g/t AuEq cut	100.
incl.	328.1	499.5	171.3	0.46	0.89	0.01	2.13	0.5	1.0 g/t AuEq cut	84.0
incl.	328.1	499.5	98.4	0.40	0.64	0.01	2.13	0.7	1.0 g/t AuEq cut	64.
									<u>.</u>	
incl.	328.1	334.9	6.8	1.87	4.70	0.07	1.28	2.1	1.0 g/t AuEq cut	13.
and	384.5	426.5	42.0	0.85	0.36	0.01	3.08	0.9	1.0 g/t AuEq cut	36.
incl.	384.5	408.5	24.0	1.30	0.46	0.02	3.54	1.3	1.0 g/t AuEq cut	32.
and	463.5	465.0	1.5	1.51	4.49	0.02	1.90	1.6	1.0 g/t AuEq cut	2.4
and	497.0	499.5	2.4	3.13	24.21	0.16	2.51	3.7	1.0 g/t AuEq cut	9.0
and	538.5	540.0	1.5	2.13	5.89	0.13	2.30	2.4	1.0 g/t AuEq cut	3.6
and	688.2	855.5	167.3	0.40	0.53	0.02	3.67	0.4	0.5 g/t AuEq cut	74.
incl.	688.2	839.0	150.8	0.43	0.56	0.02	3.09	0.5	0.5g/t AuEq cut off	71.
incl.	796.5	839.0	42.5	1.31	1.20	0.05	2.35	1.4	1.0 g/t AuEq cut	60.
incl.	796.5	819.0	22.5	2.26	1.94	0.08	2.36	2.4	1.0 g/t AuEq cut	54.
GYDD-22-020	0.0	12.0	12.0	0.31	0.53	0.02	4.55	0.3	0.1 g/t AuEq cut	4.2
and	69.7	75.7	6.0	0.69	0.69	0.02	3.47	0.7	1.0 g/t AuEq cut	4.4
and	95.2	242.8	147.6	0.18	1.02	0.02	5.45	0.2	0.5g/t AuEq cut off	33.
incl.	119.2	200.8	81.6	0.20	1.09	0.03	6.24	0.3	1.0 g/t AuEq cut	21.
and	290.5	445.5	155.0	0.13	1.70	0.05	3.65	0.2	0.1 g/t AuEq cut	37.
incl.	292.0	299.5	7.5	0.46	3.75	0.16	4.06	0.8	0.5g/t AuEq cut off	5.9
and	385.0	433.5	48.5	0.19	2.59	0.08	4.59	0.3	0.1g/t AuEq cut off	16.
incl.	385.0	409.5	24.5	0.22	2.83	0.08	5.55	0.4	0.5g/t AuEq cut off	9.5
and	623.5	750.0	126.5	0.28	0.98	0.04	5.73	0.4	0.1g/t AuEq cut off	47.
incl.	635.5	661.0	25.5	0.75	1.81	0.09	2.88	0.9	0.5g/t AuEq cut off	23.

Issued Capital 1,045.8m shares 10.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

incl.	729.0	731.0	2.0	0.94	1.24	0.08	3.50	1.1	1.0 g/t AuEq cut	2.2
GYDD-22-021	5.2	646.0	640.8	0.11	1.88	0.06	9.45	0.2	0.1g/t AuEq cut off	158.3
incl.	56.1	339.7	283.6	0.14	2.04	0.07	6.22	0.3	0.5g/t AuEq cut off	83.2
incl.	56.1	129.3	73.2	0.19	2.14	0.09	8.30	0.4	0.5g/t AuEq cut off	27.4
and	703.0	760.0	57.0	0.11	0.96	0.04	14.35	0.2	0.1g/t AuEq cut off	11.4
GYDD-22-022	0.0	702.9	702.9	0.16	2.75	0.05	6.65	0.3	0.1g/t AuEq cut off	204.4
incl.	23.9	52.0	28.1	0.18	30.43	0.04	1.44	0.6	1.0 g/t AuEq cut	17.6
and	278.2	395.8	117.6	0.22	3.16	0.09	5.67	0.4	0.1 g/t AuEq cut	49.7
incl.	292.4	307.8	15.4	0.43	4.27	0.09	5.95	0.6	0.5g/t AuEq cut off	9.9
incl.	352.0	365.7	13.7	0.29	4.60	0.16	3.29	0.6	0.5g/t AuEq cut off	8.5
incl.	378.2	385.3	7.1	0.59	2.50	0.11	8.98	0.8	0.5g/t AuEq cut off	5.8
and	446.5	523.6	77.1	0.42	2.74	0.12	5.68	0.7	1.0 g/t AuEq cut	51.3
incl.	446.5	450.5	4.0	2.14	5.01	0.19	7.16	2.5	1.0 g/t AuEq cut	10.2
and	492.2	520.6	28.4	0.63	3.59	0.18	9.96	1.0	1.0 g/t AuEq cut	28.0
GYDD-22-023	15.5	795.6	780.1	0.18	2.07	0.04	6.36	0.3	0.1 g/t AuEq cut	240.0
incl.	15.5	305.7	290.2	0.34	2.70	0.04	5.11	0.5	0.1 g/t AuEq cut	130.9
incl.	35.0	44.0	9.0	0.95	1.20	0.03	0.76	1.0	1.0 g/t AuEq cut	9.2
incl.	144.7	161.2	16.5	0.73	3.21	0.06	7.09	0.9	1.0 g/t AuEq cut	14.4
and	195.3	196.8	1.5	0.79	56.00	0.03	1.80	1.5	1.0 g/t AuEq cut	2.3
and	222.8	277.0	54.2	0.73	4.72	0.07	10.75	0.9	0.5g/t AuEq cut off	49.5
incl.	224.3	252.7	28.4	1.05	3.45	0.05	7.54	1.2	1.0 g/t AuEq cut	33.3
and	441.5	557.9	116.4	0.35	3.97	0.08	4.39	0.5	0.1 g/t AuEq cut	62.4
incl.	461.0	462.5	1.5	0.99	13.40	0.22	4.50	1.5	1.0 g/t AuEq cut	2.3
incl.	510.6	545.9	35.3	0.74	6.76	0.14	6.64	1.1	1.0 g/t AuEq cut	37.4
GYDD-22-024	10.1	648.3	638.2	0.30	2.07	0.13	10.53	0.6	0.1 g/t AuEq cut	351.2
incl.	10.1	53.7	43.6	0.19	3.17	0.02	3.16	0.3	0.1 g/t AuEq cut	11.5
and	94.8	118.8	24.0	0.17	0.39	0.03	11.41	0.2	0.1 g/t AuEq cut	5.5
and	144.8	146.3	1.5	7.89	2.85	0.02	2.10	8.0	1.0 g/t AuEq cut	11.9
and	332.2	648.3	316.1	0.49	3.31	0.24	14.53	0.9	0.1 g/t AuEq cut	298.8
OR	344.0	648.3	304.3	0.50	3.37	0.25	14.46	1.0	0.1 g/t AuEq cut	296.9
incl.	332.2	487.0	154.8	0.92	5.72	0.45	18.96	1.8	0.1 g/t AuEq cut	272.5
incl.	344.0	452.5	108.5	1.28	7.78	0.62	20.00	2.4	1.0 g/t AuEq cut	264.3
OR	369.3	423.4	54.2	2.20	12.91	1.04	24.70	4.1	1.0 g/t AuEq cut	224.1
GY2DD-22-1	191.00	202.40	11.40	0.74	14.46	0.01	2.26	0.94	0.1 g/t AuEq cut	10.70
and	403.10	492.50	89.40	0.13	6.71	0.01	3.13	0.22	0.1 g/t AuEq cut	19.93
incl.	403.10	412.80	9.70	0.61	0.41	15.24	0.01	1.84	0.1 g/t AuEq cut	17.86
	592.60	596.68	4.08	0.85	120.96	0.01	4.05	2.37	0.1 g/t AuEq cut	9.68

Table 2 - Significant Intersections reported this release

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$22 Oz, Cu US\$9,650 /t, Mo US\$40,500 /t,
- Metallurgical recovery factors for gold, silver, copper, and molybdenum are assumed to be equal. No metallurgical factors have been applied in calculating the Au Eq.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (22/1780)] + [Cu (%) x (9650/100*31.1/1780)] + [Mo (%) x (40500/100*31.1/1780)].
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have reasonable potential to be recovered and sold.

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the 100% owned Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation at both Hualilan and El Guayabo in Ecuador.

The Company is fully funded into 2024 following completion of a \$25 million capital raise and is undertaking a 254,000-metre drill program at its Flagship Hualilan Gold project.

1. Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has an Interim JORC 2012 Compliant resource of 2,133,065 ounces which remains open in most directions. This resource contains a high-grade Skarn component 6.3 Mt at 5.6 g/t AuEq for 1.1 Moz AuEq and an intrusion/sediment-hosted component of 41.5Mt at 0.8 g/t AuEq for 1.0 Moz AuEq. The resource was based on 126,000 metres of CEL's 254,000 metre drill program. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. In the past 2 years CEL has completed over 700 drill holes for more than 200,000 metres of drilling. Results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over 3.5 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 209.0m at 1.0 g/t Au, 1.4 g/t Ag, 0.1% Zn and 110.5m at 2.5 g/t Au, 7.4 g/t Au, 0.90% Zn in intrusives. CEL's current program which is fully funded will take metres drilled by CEL to 254,000 metres, and include metallurgical test work of key ore types, an initial JORC Compliant Resource and PFS.

El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t Ag which had never been followed up. The initial results from CEL's Phase I drilling campaign include 257.8m at 1.4 g/t AuEq incl. 53.7m at 5.3 g/t AuEq and 309.8m at 0.7 g/t AuEq incl. 202.1m at 0.8 g/t AuEq at the GY-A anomaly and 180.9m at 1.0 g/t AuEq incl. 62.4m at 1.8 g/t AuEq and 528.7m at 0.5 g/t AuEq incl. 397.1m at 0.6 g/t AuEq at the CV-A anomaly. The Project has multiple targets including hydrothermal intrusive breccia hosted mineralisation, extensive shallow dipping late-stage vein systems and an underlying Au-Ag-Cu-Mo porphyry system. CEL's first results confirm the discovery of large-scale Au-Ag-Cu-Mo system. CEL's current Phase II drilling program will concentrate on infill drilling at the 100% owned GY-A and GY-B anomalies in order to enable a JORC Compliant Maiden Resource estimate on both Target areas within the Guayabo Project.

JORC 2012 Mineral Resource Estimate for the Hualilan Gold Project										
Domain	Category	Mt	Au g/t	Ag g/t	Zn %	Pb %	AuEq g/t	AuEq (mozs)		
US\$1800 optimised shell > 0.25ppm AuEq	Indicated	18.7	1.1	5.4	0.41	0.07	1.3	0.80		
	Inferred	25.0	1.0	5.6	0.39	0.06	1.2	1.00		
Below US\$1800 shell >1.0ppm AuEq	Inferred	4.0	1.9	11.5	1.04	0.07	2.6	0.33		
Total		47.7	1.1	6.0	0.45	0.06	1.4	2.13		

Mineralisation Style	Mt (0.25 g/t AuEq cut-off)	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	Au Eq (g.t)
Skarn (limestone hosted)	6.3	4.4	19.4	2.0	0.2	5.6
intrusion/sediment hosted	41.4	0.6	4.0	0.2	0.04	0.8
Mineralisation Style	Contained Metal	Au (Moz)	Ag (Moz)	Zn (kt)	Pb (kt)	Au Eq (kOz
Skarn (limestone hosted)		0.9	3.9	123	11	1.13
intrusion/sediment hosted		0.8	5.3	95	19	1.00
Total Contained metal		1.7	9.2	218	29	2.13

Table 2 Interim MRE reported as Skarn and Intrusion/sediment hosted components of mineralisation

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND MINERAL RESOURCES

The information in this report that relates to sampling techniques and data, exploration results and geological interpretation and Mineral Resources has been compiled by Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results and Mineral Resources. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

JORC Code, 2012 Edition – Table 1 report template

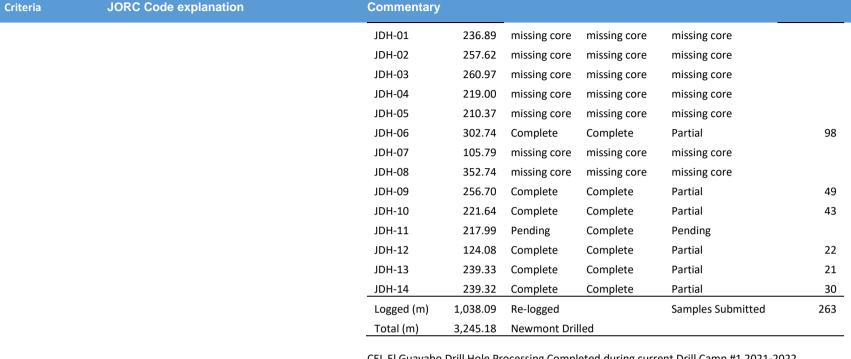
Section 1 Sampling Techniques and Data -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	El Guayabo: CEL Drilling: CEL have drilled HQ diamond core which is sampled by cutting the core longitudinal into two halves. One half is retained for future reference and the other half is sent for sampling. Sampling is done according to the geology. Sample lengths range from 0.5 to 2.5 metres. The average sample length is 1.5m. Samples are prepared at SGS Laboratories in Guayaquil for 30g fire assay and 4-acid digest ICPMS and then assayed in SGS Lima. The sample size is considered representative for the geology and style of mineralisation intersected. All the core All collected material is sampled for assay. Historic Drilling: Newmont Mining Corp (NYSE: NEM) ("Newmont") and Odin Mining and Exploration Ltd (TSX: ODN) ("Odin") core drilled the property between February 1995 and November 1996 across two drilling campaigns. The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality Diamond drilling produced core that was sawed in half with one half sent to the laboratory for assaying per industry standards and the remaining core retained on site. Cu assays above 2% were not re-assayed using a technique calibrated to higher value Cu results hence the maximum reported assay for copper is 2%. All core samples were analysed using a standard fire assay with atomic absorption finish on a 30 g charge (30 g FAA). Because of concerns about possible reproducibility problems in the

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		 totaling 1,094.29m were collected. Sampling was done for Au analysis by fire assay of a 30g charge and 43 element 4-acid digest with ICP_AES determination. Field mapping (creek traverse) by CEL includes collection of rock chip samples for assay for Au by fire assay (50g with AAS determination and gravimetric determination for values > 10 g/t Au and assay for 48 elements by 4-acid digest with ICP-MS determination. Rock chip samples are taken so as to be as representative as possible of the exposure being mapped. Colorado V: Soil sampling: A database of 4,495 soil analyses has been provided by Goldking Mining Company S.A. (GK) has been fully evaluated. No information has been provided on the method of sample collection or assay technique
		The soil analyses include replicate samples and second split analyses. Pulps have been securely retained by Goldking Mining Company and have been made available to CEL for check assaying. Check assaying is planned, including collection of field duplicates. • Rock chip sampling during regional mapping has been done on selected exposures. Sampling involves taking 2-3
		 kg of rock using a hammer from surface exposures that is representative of the exposure. Selected intervals of drill core have been cut longitudinally and half core were submitted for gold determination at GK's on-site laboratory prior to CEL's involvement with the Project.
		• Re-sampling of the core by CEL involves taking ½ core (where the core has previously been sampled) or ½ core (where the core has not previously been sampled). The core is cut longitudinally and sample intervals of 1 – 3 meters have been collected for analysis. ZKO-1 and ZK1-3 have been analysed for gold by fire assay (30g) with ICP determination and other elements by 4 acid digest with ICP-AES finish (36 elements) at SGS del Peru S.A.C. SAZKO-1, SAZKO-2, SAZK2-1, ZKO-2, ZKO-5, ZK1-5, ZK1-6, ZK2-1, ZK3-1, ZK3-4, ZK13-1 and ZK18-1 have been analysed for of gold by fire assay (30g) with ICP determination and other elements by 4 acid digest with combined ICP-AES and ICP-MS finish (50 elements) at SGS del Peru S.A.C. Samples from other holes have been analysed for gold by fire assay (30g) with ICP determination and overlimit (>10 g/t Au) by fire assay with gravimetric determination and other elements by 4-acid digest with ICP-MS (48 elements) at ALS Laboratories in Peru.
		 Underground development has been mapped and channel sampled. Channel samples have been taken by cutting a horizontal channel of approximately 5 cm width and 4 cm depth into the walls at a nominal height of 1m above the ground. The channel cuts were made with an angle grinder mounted with a diamond blade. Samples were extracted from the channel with a hammer and chisel to obtain a representative sample with a similar weight per metre as would be obtained from a drill core sample. Analysis of the samples has been done by ALS Laboratories in Peru using the same preparation and analysis as has been used for drill core samples.
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangk sonic, etc) and details (eg core diameter, trip 	a, CEL Drilling:


1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
	or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Historic Drilling: Diamond core drilling HQ size from surface and reducing to NQ size as necessary. The historical records do not indicate if the core was oriented Colorado V: Diamond drilling was done using a rig owned by GK. Core size collected includes HQ, NQ and NQ3. There is no indication that oriented core was recovered.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	El Guayabo: CEL Drilling: Core run lengths recovered are recorded against the drillers depth markers to determine core recovery. Core sample recovery is high using standard HQ and NQ drilling No relationship between sample recovery and grade has been observed. Historic Drilling: In a majority of cases core recovery was 100%. In the historical drill logs where core recoveries were less than 100% the percentage core recovery was noted. No documentation on the methods to maximise sample recovery was reported in historical reports however inspection of the available core and historical drilling logs indicate that core recoveries were generally 100% with the exception of the top few metres of each drill hole. No material bias has presently been recognised in core. Observation of the core from various drill holes indicate that the rock is generally fairly solid even where it has been subjected to intense, pervasive hydrothermal alteration and core recoveries are generally 100%. Consequently, it is expected that the samples obtained were not unduly biased by significant core losses either during the drilling or cutting processes
		 Colorado V: Core from Goldking has been re-boxed prior to sampling where boxes have deteriorated, otherwise the original boxes have been retained. Core lengths have been measured and compared to the depth tags that are kept in the boxes from the drilling and recovered lengths have been recorded with the logging. Where re-boxing of the core is required, core has been placed in the new boxes, row-by row with care taken to ensure all of the core has been transferred. No relationship has been observed between core recovery and sample assay values.

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentar	у				
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the 	whePee100	ere appropriate r review of cor % of all core ir gress of curren ow:	e. All core logger re logging is dor acluding all relev	ed has been phot ne to check that t vant intersections	drill core has been logge ographed after logging a he logging is representa s are logged olorado V drill core re-lo Sampling Status	and before sampl
	relevant intersections logged.	GY-01	249.2	Complete	Complete	Partial	25
		GY-02	272.9	Complete	Complete	Partial	88
		GY-03	295.99	Pending	Complete	Pending	
		GY-04	172.21	Pending	Complete	Pending	
		GY-05	258.27	Partial	Complete	Partial	56
		GY-06	101.94	Pending	Complete	Pending	
		GY-07	127.0	Pending	Complete	Pending	
		GY-08	312.32	Pending	Complete	Pending	
		GY-09	166.25	Pending	Complete	Pending	
		GY-10	194.47	missing core	missing core	missing core	
		GY-11	241.57	Complete	Complete	Partial	84
		GY-12	255.7	Partial	Complete	Pending	
		GY-13	340.86	missing core	missing core	missing core	
		GY-14	309.14	missing core	missing core	missing core	
		GY-15	251.07	missing core	missing core	missing core	
		GY-16	195.73	missing core	missing core	missing core	
		GY-17	280.04	Complete	Complete	Partial	36
		GY-18	160.35	Pending	Complete	Pending	
		GY-19	175.42	Pending	Complete	Pending	
		Logged (m)	1,043.71	Re-logged		Samples Submitted	289
		Total (m)	4,185.01	Odin Drilled			

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

CEL El Guayabo Drill Hole Processing Completed during current Drill Camp #1 2021-2022

	Depth	Logging	Core		Total
Hole_ID	(m)	Status	Photograph	Sampling Status	Samples
GYDD-21-001	800.5	Complete	Complete	Complete	581
GYDD-21-002	291.7	Complete	Complete	Complete	204
GYDD-21-002A	650.6	Complete	Complete	Complete	282
GYDD-21-003	723.2	Complete	Complete	Complete	545
GYDD-21-004	696.1	Complete	Complete	Complete	513
GYDD-21-005	632.1	Complete	Complete	Complete	445
GYDD-21-006	365.3	Complete	Complete	Complete	258
GYDD-21-007	651.8	Complete	Complete	Complete	407
GYDD-21-008	283.7	Complete	Complete	Complete	214

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,045.8m shares 10.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

iteria	JORC Code explanation	Commentary					
		GYDD-21-009	692.7	Complete	Complete	Complete	517
		GYDD-21-010	888.6	Complete	Complete	Complete	620
		GYDD-21-011	314.5	Complete	Complete	Complete	227
		GYDD-21-012	797.7	Complete	Complete	Complete	588
		GYDD-21-013	517.5	Complete	Complete	Complete	388
		GYDD-22-014	783.6	Complete	Complete	Complete	546
		GYDD-22-015	368.3	Complete	Complete	Complete	265
		GYDD-22-016	469.8	Complete	Complete	Complete	314
		Logged (m)	9927.23			Samples Submitted	6915
		Total (m)	9927.23				

Colorado V:

- Core has been logged for lithology, alteration, mineralisation and structure. Where possible, logging is quantitative.
- Colorado V core re-logging and re-sampling is summarized below:

Historic Colorado V Drilling

Hole_ID	Depth (m)	Logging Status	Core Photograph	Sampling Status	Total Samples
ZK0-1	413.6	Complete	Complete	Samples Submitted	281
ZK0-2	581.6	Complete	Complete	Samples Submitted	388
ZK0-3	463.0	Complete	Complete	Samples Submitted	330
ZK0-4	458.0	Complete	Complete	Samples Submitted	350
ZK0-5	624.0	Complete	Complete	Samples Submitted	482
ZK1-1	514.6	Complete	Complete	Samples Submitted	288
ZK1-2	403.1	Complete	Complete	Not Re-Sampled	
ZK1-3	425.0	Complete	Complete	Samples Submitted	279
ZK1-4	379.5	Complete	Complete	Samples Submitted	267
ZK1-5	419.5	Complete	Complete	Samples Submitted	266
ZK1-6	607.5	Complete	Complete	Samples Submitted	406
ZK1-7	453.18	Complete	Complete	Samples Submitted	370

Challenger Exploration LimitedACN 123 591 382
ASX: **CEL**

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

Criteria	JORC Code explanation	Commentary					
		ZK1-8	556.0	Complete	Complete	Not Re-Sampled	
		ZK1-9	220.0	Complete	Complete	Samples Submitted	140
		ZK2-1	395.5	Complete	Complete	Samples Submitted	320
		ZK3-1	372.48	Complete	Complete	Samples Submitted	250
		ZK3-1A	295.52	Pending	Pending	Pending	
		ZK3-2	364.80	Complete	Complete	Samples Submitted	235
		ZK3-4	322.96	Complete	Complete	Samples Submitted	156
		ZK4-1	434.0	Complete	Complete	Not Re-sampled	
		ZK4-2	390.5	Complete	Complete	Not Re-sampled	
		ZK4-3	650.66	Complete	Complete	Not Re-sampled	
		ZK4-4	285.0	Complete	Complete	Not Re-sampled	
		ZK5-1	321.90	Complete	Complete	Not Re-sampled	
		ZK5-2	321.0	Complete	Complete	Not Re-sampled	
		ZK5-3	446.5	Complete	Complete	Not Re-sampled	
		ZK5-4	508.0	Complete	Complete	Not Re-sampled	
		ZK5-5	532.0	Complete	Complete	Samples Submitted	378
		ZK6-1	552.6	Complete	Complete	Not Re-sampled	
		ZK6-2	531	Complete	Complete	Not Re-sampled	
		ZK10-1	454.0	Complete	Complete	Samples Submitted	229
		ZK10-2	318.82	Complete	Complete	Samples Submitted	206
		ZK10-3	331.52	Complete	Complete	Samples Submitted	220
		ZK11-1	237.50	Complete	Complete	Not Re-sampled	
		ZK12-1	531.50	Complete	Complete	Not Re-sampled	
		ZK12-2	510.6	Complete	Complete	Not Re-sampled	
		ZK13-1	394.0	Complete	Complete	Samples Submitted	246
		ZK13-2	194.0	Complete	Complete	Not Re-sampled	
		ZK16-1	324.0	Complete	Complete	Samples Submitted	212
		ZK16-2	385.83	Complete	Complete	Samples Submitted	223
		ZK18-1	410.5	Complete	Complete	Samples Submitted	286

1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Criteria	JORC Code explanation	Commentary	<u> </u>				
		ZK19-1	548.60	Complete	Complete	Not Re-sampled	
		ZK100-1	415.0	Complete	Complete	Not Re-sampled	
		ZK103-1	524.21	Complete	Complete	Not Re-sampled	
		ZK105-1	404.57	Complete	Complete	Not Re-sampled	
		ZK205-1	347.0	Complete	Complete	Samples Submitted	211
		SAZKO-1A	569.1	Complete	Complete	Samples Submitted	396
		SAZK0-2A	407.5	Complete	Complete	Samples Submitted	260
		SAZK2-1	430.89	Complete	Complete	Samples Submitted	195
		SAZK2-2	354.47	Complete	Complete	Not Re-Sampled	
		CK2-1	121.64	missing core	missing core	missing core	
		CK2-2	171.85	missing core	missing core	missing core	
		CK2-3	116.4	missing core	missing core	missing core	
		CK2-4	146.12	missing core	missing core	missing core	
		CK2-5	357.56	Complete	Complete	Complete	
		CK2-6	392.56	Complete	Complete	Complete	
		CK3-1	185.09	missing core	missing core	missing core	
		CK3-2	21.75	missing core	missing core	missing core	
		CK3-3	138.02	missing core	missing core	missing core	
		CK5-1	273.56	Complete	Complete	Not Re-Sampled	
		CK5-2	273.11	Complete	Complete	Not Re-Sampled	
		CK13-1	227.1	Complete	Complete	Not Re-Sampled	
		CK13-2	231.16	Complete	Complete	Not Re-Sampled	
		CK13-3	197.06	Complete	Complete	Not Re-Sampled	
		CK13-4	176.57	Complete	Complete	Not Re-Sampled	
		CK13-5	184.70	Complete	Complete	Not Re-Sampled	
		CK21-1	143.47	Complete	Complete	Not Re-Sampled	
		Logged (m)	25,315.07	Re-logged		Samples Submitted	7,894
		Total (m)	24,414.20	Core Shack			

1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

Criteria	JORC Code explanation	Commentary					
		Total (m) 2	6,528.26	Drilled			
		CEL Colorado V D	rill Hole Prod Depth (m)	cessing Comple Logging Status	eted during curren Core Photograph	t Drill Camp #1 202 Sampling Status	2 Total Samples
		CVDD-22-001	533.20	Complete	Complete	Complete	398
		CVDD-22-002	575.00	Complete	Complete	Complete	412
		CVDD-22-003	512.40	Complete	Complete	Complete	384
		CVDD-22-004	658.95	Complete	Complete	Complete	478
		CVDD-22-005	607.15	Complete	Complete	Complete	456
		CVDD-22-006	600.70	Complete	Complete	Complete	427
		CVDD-22-007	808.00	Complete	Complete	Complete	602
		CVDD-22-008	535.70	Complete	Complete	Complete	306
		CVDD-22-009	890.80	Complete	Complete	Complete	668
		CVDD-22-010	890.20	Complete	Complete	Complete	645
		CVDD-22-011	672.50	Complete	Complete	Complete	481
		CVDD-22-012	756.70	Complete	Complete	Complete	556
		CVDD-22-013	752.45	Complete	Complete	Complete	467
		CVDD-22-014	863.40	Complete	Complete	Complete	642
		CVDD-22-015	758.35	Complete	Complete	Complete	558
		CVDD-22-016	558.45	Complete	Complete	Complete	380
		CVDD-22-017	746.05	Complete	Complete	Complete	540
		Logged (m) Total (m)	11720.0 0 11720.0 0			Samples Submitted	8400
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or 	and the	other retair	_	a diamond saw, lor reference. Where ates.	-	

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Criteria	JORC Code explanation	Commentary
	dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 The location of the cut is marked on the core by the geologist that logged the core to ensure the cut creates a representative sample. The sample preparation technique is appropriate for the material being sampled Historic: Core was cut with diamond saw and half core was taken All drilling was core drilling as such this is not relevant Sample preparation was appropriate and of good quality. Each 1-3 m sample of half core was dried, crushed to nominal – 10 mesh (ca 2mm), then 250 g of chips were split out and pulverized. A sub-sample of the pulp was then sent for analysis for gold by standard fire assay on a 30 g charge with an atomic absorption finish with a nominal 5 ppb Au detection limit. Measures taken to ensure that the sampling is representative of the in-situ material collected is not outlined in the historical documentation however a program of re-assaying was undertaken by Odin which demonstrated the repeatability of original assay results The use of a 1-3 m sample length is appropriate for deposits of finely disseminated mineralisation where long mineralised intersections are to be expected. CEL ½ core sampling was done by cutting the core with a diamond saw. Standards (CRM) and blanks were inserted into the batched sent for preparation and analysis. No duplicate samples were taken and ½ core was retained for future reference. The sample size is appropriate for the style of mineralisation observed. CEL rock chip samples of 2-3 kg are crushed to a nominal 2mm and a 500 g sub-sample is pulverized. The rock chips are collected from surface expose in creeks. Sampling is done so as to represent the material being mapped. The sample size is appropriate for the grain size of the material being sampled. No information is available on the method/s that have been used to collect the soil samples. Selected intervals of drill core have been cut longitudinally
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	El Guayabo: CEL: All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where overlimit. Sub-
enger Exploration Limited 123 591 382	Issued Capital Australian Registered 1,045.8m shares Level 1	

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

Mr Fletcher Quinn, Chairman

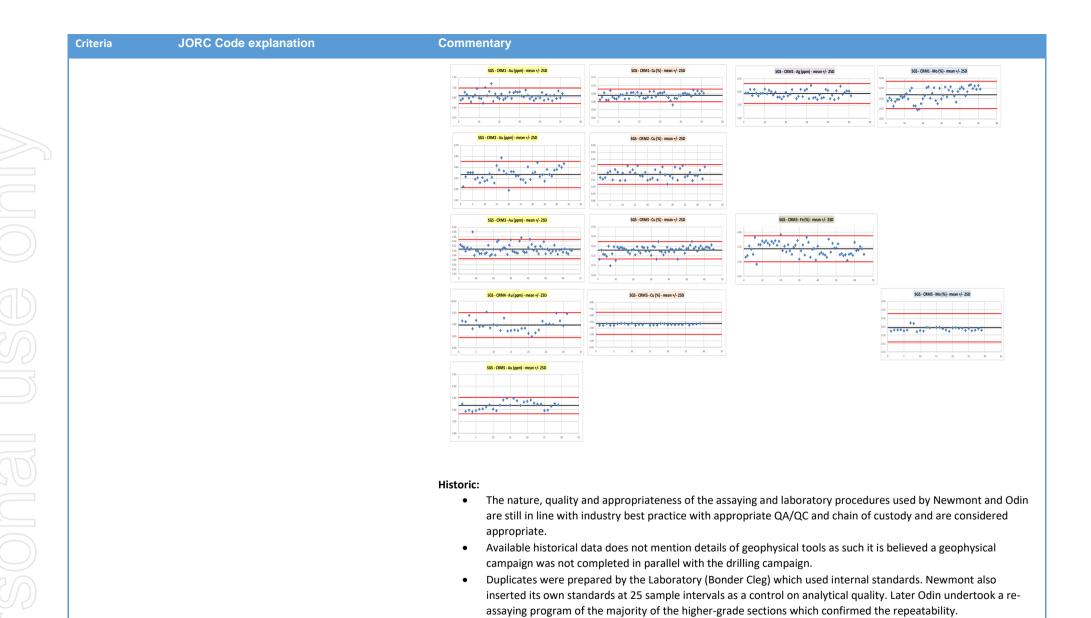
E: admin@challengerex.com

www.challengerex.com

10.0m options

16m perf rights

120m perf shares


1205 Hay Street

West Perth WA 6005

ASX: CEL

Criteria	JORC Code explanation	Commentary
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	samples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample. • Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses. • 5 different CRM pulp samples have been submitted with the core samples. All 5 are certified for Au, 1 is certified for Ag, 4 are certified for Cu, 1 is certified for Fe and 2 are certified for Mo. • For Au, of 219 CRM pulp analyses, 212 are within +/- 2 SD (97%) • For Ag, of 51 CRM pulp analyses, all are within +/- 2 SD (100%) • For Cu, of 188 CRM pulp analyses, 180 are within +/- 2 SD (96%) • For Mo, of 80 CRM pulp analyses, 78 are within +/- 2 SD (93%) • To Fe, of 56 CRM pulp analyses, 54 are within +/- 2 SD (93%) • 118 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 16 samples returned Au values of >5 ppb (up to 11 ppb) indicating only mild instrument calibration or contamination during fire assay. • 137 % core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate sample analyses follow very closely the original analyses providing assurance that the sample size and technique is appropriate.

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Issued Capital 1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

No duplicate samples have been submitted.

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Two different blanks have been included randomly within the sample batches. A CRM blank with a value of

JORC Code explanation Criteria Commentary <0.01 ppm (10 ppb) Au was used initially. More recent batches have used a blank gravel material which has no certified reference value. The results are shown below. The first 4 gravel blanks show elevated Au values which is believed to be due to contamination of the blank prior to submission and not due to laboratory contamination. With one exception, the blanks have returned values below 10 ppb. SGS - CRM Blank - Au (ppb) SGS - Gravel Blank - Au (ppb) ALS - Gravel Blank - Au (ppm) Verification of The verification of significant intersections by El Guayabo: sampling and **CEL Drilling:** either independent or alternative company assaying Samples from significant intersections have not been checked by a second laboratory. No holes have been personnel. twinned. The use of twinned holes. Documentation of primary data, data entry Data from logging and assaying is compiled into a database at the Project and is backed up in a secure location. procedures, data verification, data storage CEL GIS personnel and company geologists check and verify the data. No adjustments are made to any of the (physical and electronic) protocols. assay data. **Historic:** Discuss any adjustment to assay data. All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screen type fire analysis based on a pulverised sample with a mass of about 5 kg. Additionally, Odin re-assayed the many of the higher-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data was sourced from scanned copies of original drill logs and in some cases original paper copies of assay sheets are available. This data is currently stored in a drop box data base with the originals held on site. No adjustments to assay data were made. CEL assay data has not been independently verified or audited. Data is stored electronically in MS Excel and PDF format from the Laboratory and entered into a Project database for analysis. There has been no adjustment of the data. Colorado V:

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		 There is no information available on the verification of sample and assay results. No assay data is provided in this report. Soil replicate samples and second split assay results have been provided but not fully analysed at this stage. Of the 4,495 soil samples in the GK database, 166 are replicate samples and 140 are second split re-analyses. 37 samples have no coordinates in the database. The remaining 4,152 have analyses for all 19 elements indicated above. Significant intersections have been internally checked against the assay data received. The data received has been archived electronically and a database of all drill information is being developed. There is no adjustment of the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	El Guayabo: CEL Drilling: Drill hole collars are surveyed after the drilling using a DGPS. The co-ordinate system used is PSAD 1956, UTM zone 17S. Down-hole surveys are performed at regular intervals down hole (nominally 50 metres or as required by the geologist) during the drilling of the hole to ensure the hole is on track to intersect planned targets. Down hole surveys are done using a magnetic compass and inclinometer tool fixed to the end of the wire line. Down hole surveys are recorded by the drillers and sent to the geologist and GIS team for checking and entry into the drill hole database.
		 Newmont undertook survey to located drill holes in accordance with best practice at the time. No formal check surveying has been undertaken to verify drill collar locations at this stage Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 Quality of topographic control appears to be+ - 1 meter which is sufficient for the exploration activities undertaken. Rock chip samples have been located using topographic maps with the assistance of hand-held GPS. Colorado V: Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 No information is available on the collar and down-hole survey techniques used on the Colorado V concession. Rock chip sample locations are determined by using a handheld GPS unit which is appropriate for the scale of the mapping program being undertaken.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. 	 Drilling is exploration based and a grid was not considered appropriate at that time. A JORC compliant Mineral Resource has not been estimated

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Sample compositing was not used
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 A sampling bias is not evident. Drill pads are located in the best possible location to ensure there is no bias introduced, subject to the topography and existing infrastructure. The steep terrain and thick vegetation often dictates where is it possible to place a drill collar.
Sample security	- The measures taken to ensure sample security.	El Guayabo: CEL Samples: All CEL samples are held in a secure compound from the time they are revied from the drillers to the time they are loaded onto a courier truck to be taken to the laboratory. The logging and sampling is done in a fenced and gated compound that has day and night security. Samples are sealed in bags and then packed in secure polyweave bags for transport
		 Newmont sent all its field samples to the Bondar Clegg sample preparation facility in Quito for preparation. From there, approximately 100 grams of pulp for each sample was air freighted to the Bondar Clegg laboratory (now absorbed by ALS-Chemex) in Vancouver, for analysis. There is no record of any special steps to monitor the security of the samples during transport either between the field and Quito, or between Quito and Vancouver. However, Newmont did insert its own standards at 25 sample intervals as a control on analytical quality. CEL samples are kept in a secure location and prepared samples are transported with appropriate paperwork, securely by registered couriers. Details of the sample security and chain of custody are kept at the Project office for future audits.
		 Colorado V: GK analysed samples in an on-site laboratory. It is understood that the samples have remained on site at all times. CEL have collected samples at the core shed at El Guayabo and secured the samples in polyweave sacks for

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		transport by courier to SGS Laboratories in Quito for preparation. SGS in Quito courier the prepared sample pulps to SGS in Peru for analysis. Photographs and documentation are retained to demonstrate the chain of custody of the samples at all stages.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	El Guayabo: CEL drilling: There has been no audit or review of the sampling techniques and data Historic: The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. There have been no audits of reviews of CEL data for the El Guayabo. Colorado V: No audits or reviews of sampling techniques and data is known. Goldking did twin two earlier holes with results still being compiled.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORG Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The El Guayabo (Code. 225) mining concession is located within El Oro Province. The concession is held by Torata Mining Resources S.A (TMR S.A) and was granted in compliance with the Mining Act ("MA") in on April 27, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness or national park issues. The mining title grants the owner an exclusive right to perform mining activities, including, exploration, exploitation and processing of minerals over the area covered by the prior title for a period of 25 years, renewable for a further 25 years. Under its option agreement, the owner has been granted a negative pledge (which is broadly equivalent to a fixed and floating charge) over the concession. In addition, a duly notarized Irrevocable Promise to Transfer executed by TMR S.A in favor of AEP has been lodged with the Ecuador Mines Department. The Colorado V mining concession (Code No. 3363.1) located in Bellamaria, Santa Rosa, El Oro, Ecuador was granted in compliance with the Mining Act ("MA") in on July 17, 2001. It is adjacent to El Guayabo concession to the north. The concession is held by Goldking Mining Company S.A. There are no overriding royalties on the project other than

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Criteria	JORC Code explanation	Commentary
		normal Ecuadorian government royalties. - The concession has no historical sites, wilderness or national park issues.
		 The El Guayabo 2 (Code. 300964) mining concession is located Torata parish, Santa Rosa canton, El Oro province, Ecuador. The concession is held by T Mr. Segundo Ángel Marín Gómez and Mrs. Hermida Adelina Freire Jaramillo and was granted in compliance with the Mining Act ("MA") on 29April 29, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness, or national park issues.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	 El Guayabo: Previous exploration on the project has been undertaken by Newmont and Odin from 1994 to 1997. This included surface pit and rock chip geochemistry, followed by the drilling of 33 drill holes for a total of 7605.52 meters) to evaluate the larger geochemical anomalies. The collection of all exploration data by Newmont and Odin was of a high standard and had appropriate sampling techniques and intervals, adequate QA/QC and custody procedures, and appropriate duplicates and blanks used for determining assay precision and accuracy. The geological interpretation of this data, including core logging and follow up geology was designed and directed by in-country inexperienced geologists. It appears to have been focused almost exclusively for gold targeting surface gold anomalies or the depth extensions of higher-grade gold zones being exploited by the artisanal miners. The geologic logs for all drill holes did not record details that would have been typical, industry standards for porphyry copper exploration at that time. Several holes which ended in economic mineralisation have never been followed up. In short, important details which would have allowed the type of target to be better explored were missed which in turn presents an opportunity to the current owner. Colorado V: All exploration known has been completed by GK. Drilling has been done from 2016 to 2019. 56 drill holes, totaling 21,471.83m have been completed by GK. El Guayabo 2:
		small number of samples for gold, silver, copper, lead and zinc. The report is only available in Spanish and assays were conducted in a local laboratory in Ecuador with the majority of this work undertaken in 2017.
Geology	 Deposit type, geological setting and style of mineralisation. 	 It is believed that the El Guayabo, El Guayabo 2, and Colorado V concessions contain a "Low Sulfide" porphyry gold copper system and intrusive-related gold. The host rocks for the intrusive complex is metamorphic basement and Oligocene – Mid-Miocene volcanic rocks. This suggests the intrusions are of a similar age to the host volcanic sequence, which also suggests an evolving basement magmatic system. Intrusions are described in the core logs as quartz diorite and dacite. Mineralisation has been recognized in: Steeply plunging breccia bodies and in the metamorphic host rock adjacent to the breccia (up to 200 m in diameter)

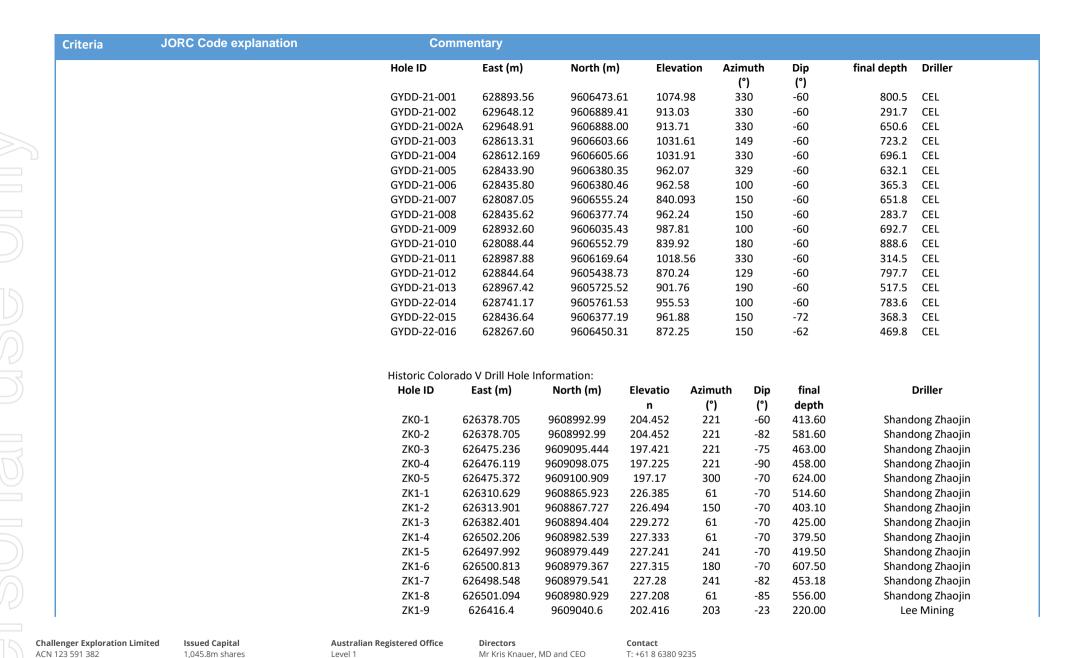
1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria Drill hole Information

JORC Code explanation Commentary

- Quartz veins and veinlets
 - Disseminated pyrite and pyrrhotite in the intrusions and in the metamorphic host rock near the intrusions.

- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
 - o easting and northing of the drill hole collar
 - elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
 - o dip and azimuth of the hole
 - o down hole length and interception depth
 - o hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.


El Guayabo Historic drill hole information is provided below.

DRILLHOLE	EAST	NORTH	ELEVATION	AZIMUTH	DIP	FINAL	DRILLED
CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEPTHP	BY
DDHGY 01	628928.09	9605517.20	839.01	360	-90.0	249.20	Odin
DDHGY 02	629171.15	9606025.55	983.16	360.0	-90.0	272.90	Odin
DDHGY 03	629041.84	9606312.81	1063.37	305.0	-60.0	295.94	Odin
DDHGY 04	629171.68	9606025.18	983.2	125.0	-60.0	172.21	Odin
DDHGY 05	628509.21	9606405.29	989.87	145.0	-60.0	258.27	Odin
DDHGY 06	629170.56	9606025.97	983.11	305.0	-60.0	101.94	Odin
DDHGY 07	629170.81	9606025.80	983.16	305.0	-75.0	127.00	Odin
DDHGY 08	628508.95	9606405.74	989.86	145.0	-75.0	312.32	Odin
DDHGY 09	629171.22	9606025.88	983.22	45.0	-75.0	166.25	Odin
DDHGY 10	629170.77	9606025.24	983.12	225.0	-75.0	194.47	Odin
DDHGY11	628507.97	9606405.33	989.83	160.0	-60.0	241.57	Odin
DDHGY 12	629087.18	9606035.53	996.98	125.0	-60.0	255.7	Odin
DDHGY 13	629242.46	9605975.42	997.292	320.0	-65.0	340.86	Odin
DDHGY14	629242.27	9605975.64	997.285	320.0	-75.0	309.14	Odin
DDHGY 15	629194.67	9605912.35	977.001	320.0	-60.0	251.07	Odin
DDHGY 16	629285.92	9606044.44	1036.920	320.0	-60.0	195.73	Odin
DDHGY 17	629122.31	9606058.64	1021.053	125.0	-82.0	280.04	Odin
DDHGY 18	628993.10	9606035.45	977.215	140.0	-60.0	160.35	Odin
DDHGY 19	629087.23	9606034.98	997.332	45.0	-53.0	175.41	Odin

	0.0000000000000000000000000000000000000	23067.23	3034.30	45.0	-55.0	175.41	Odili
DRILLHOLE	EAST	NORTH	ELEVATION	AZIMUTH	DIP	FINAL	DRILLED
CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEPTHP	BY
JDH01	627185.78	9606463.27	933.47	280.0	-60.0	236.89	Newmont
JDH02	627260.37	9606353.12	921.56	280.0	-45.0	257.62	Newmont
JDH03	627191.61	9606200.35	952.82	280.0	-45.0	260.97	Newmont
JDH04	627429.81	9606324.00	933.80	280.0	-45.0	219.00	Newmont
JDH05	627755.97	9606248.70	1066.24	280.0	-45.0	210.37	Newmont
JDH06	628356.37	9606416.13	911.58	150.0	-45.0	302.74	Newmont
JDH07	628356.37	9606416.13	911.58	150.0	-75.0	105.79	Newmont
JDH08	628356.37	9606416.13	911.58	150.0	-60.0	352.74	Newmont
JDH09	628507.01	9606408.43	990.18	150.0	-45.0	256.70	Newmont
JDH10	628897.96	9606813.62	985.60	270.0	-45.0	221.64	Newmont
JDH11	628878.64	9606674.39	1081.96	270.0	-45.0	217.99	Newmont
JDH12	629684.61	9606765.31	993.45	150.0	-60.0	124.08	Newmont
JDH13	629122.61	9606058.49	1020.98	125.0	-60.0	239.33	Newmont
JDH14	628897.15	9605562.77	852.59	90.0	-45.0	239.32	Newmont

CEL El Guayabo Drill Hole Information:

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

www.challengerex.com

10.0m options

16m perf rights

120m perf shares

1205 Hay Street

West Perth WA 6005

ASX: CEL

Criteria	JORC Code explanation	Cor	nmentary						
		ZK2-1	626329.859	9609005.863	213.226	221	-90	395.50	Shandong Zhaojin
		ZK3-1	628295.833	9608947.769	309.987	279	-38	372.48	
		ZK3-1-A	626416.4	9609040.6	202.416	179	-29	295.52	Lee Mining
		ZK3-2	628295.833	9608947.769	309.987	205	-30	364.80	
		ZK3-4	628295.833	9608947.769	309.987	170	-30	322.96	
		ZK4-1	626281.066	9609038.75	224.176	221	-90	434.00	Shandong Zhaojin
		ZK4-2	626281.066	9609038.75	224.176	221	-70	390.50	Shandong Zhaojin
		ZK4-3	626386.498	9609186.951	225.517	221	-70	650.66	Shandong Zhaojin
		ZK4-4	626287.7817	9609031.298	215	215	-05	285.00	
		ZK5-1	626377.846	9608790.388	273.43	221	-78	321.90	Shandong Zhaojin
		ZK5-2	626377.539	9608793.769	273.542	41	-78	319.00	Shandong Zhaojin
		ZK5-3	626383.556	9608800.999	273.622	330	-70	446.50	Shandong Zhaojin
		ZK5-4	626383.556	9608800.999	273.622	330	-78	508.00	Shandong Zhaojin
		ZK5-5	626432.795	9608847.735	242.572	61	-70	532.00	Shandong Zhaojin
		ZK6-1	626230.28	9609020.202	260.652	221	-70	552.60	Shandong Zhaojin
		ZK6-2	626165.623	9608991.594	271.928	221	-70	531.00	Shandong Zhaojin
		ZK10-1	626700.8538	9609675.002	126.617	221	-53	454.00	Lee Mining
		ZK10-2	626744.7	9609711	110.817	310	-30	318.82	
		ZK10-3	626744.7	9609711	110.817	310	-60	331.52	
		ZK11-1	626446.263	9608705.238	290.028	221	-78	237.50	Shandong Zhaojin
		ZK12-1	626088.326	9609034.197	314.552	221	-70	531.50	Shandong Zhaojin
		ZK12-2	626019.538	9608961.409	294.649	221	-70	510.60	Shandong Zhaojin
		ZK13-1	627763.877	9609906.484	197.899	180	-70	394.00	Shandong Zhaojin
		ZK13-2	627757.925	9609713.788	234.34	0	-70	194.00	Shandong Zhaojin
		ZK16-1	626432.95	9609539.705	207.288	153	-45	330.00	
		ZK16-2	626432.95	9609539.705	207.288	183	-45	394.00	
		ZK18-1	627123.327	9609846.268	142.465	180	-70	410.50	Shandong Zhaojin
		ZK19-1	626753.271	9608802.634	386.627	221	-70	548.60	Shandong Zhaojin
		ZK100-1	626170.882	9608923.778	251.177	131	-70	415.00	Shandong Zhaojin
		ZK103-1	628203.1453	9607944.85	535.324	215	-53	524.21	Lee Mining
		ZK105-1	628172.5923	9607826.055	541.244	183	-54	404.57	Lee Mining
		ZK205-1	626257.123	9608795.904	243.297	160	-70	347.00	Shandong Zhaojin
		SAZKO-1A	627477.062	9609865.618	217.992	180	-70	569.10	Shandong Zhaojin
		SAZK0-2A	627468.807	9609805.054	213.63	180	-70	407.50	Shandong Zhaojin
		SAZK2-1	627330.0126	9609556.466	201.145	76	-05	430.89	Lee Mining
		SAZK2-2	627330.0126	9609556.466	201.145	62	-05	354.47	Lee Mining
		CK2-1	626328.573	9609000.856	216.798	221	-45	121.64	Shandong Zhaojin
		CK2-2	626328.573	9609000.856	216.798	251	-45	171.85	Shandong Zhaojin

1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Com	mentary							
		CK2-3	626328.573	9609000.856	216.798	191	-45	116.40	Sł	nandong Zhaojin
		CK2-4	626328.573	9609000.856	216.798	221	-70	146.12	Sł	nandong Zhaojin
		CK2-5	626254.4315	9608931.693	190.593	342	-05	357.56		Lee Mining
		CK2-6	626298.1066	9608961.819	203.231	332	-18	392.56		Lee Mining
		CK3-1	626359.641	9608859.373	205.96			185.09		nandong Zhaojin
		CK3-2	626359.641	9608859.373	205.96		00	21.75	Sł	nandong Zhaojin
		CK3-3	626359.641	9608859.373	205.96			138.02	Sł	nandong Zhaojin
		CK5-1	626460.1233	9608906.592	202.124			273.56		Lee Mining
		CK5-2	626457.0999	96089.8.4999	202.126			273.11		Lee Mining
		CK13-1	626610.0642	9608838.445	202.556			227.10		Lee Mining
		CK13-2	626610.0642	9608838.445	202.556			231.16		Lee Mining
		CK13-3	626605.2307	9608833.471	202.556			197.06		Lee Mining
		CK13-4	626604.0848	9608836.544	203.013			176.57		Lee Mining
		CK13-5	626607.5245	9608832.296	203.013			184.70		Lee Mining
		CK21-1	626693.536	9608691.062	204.927	41	00	143.47		Lee Mining
		CEL Colorado		Hole Information:						
		Hole ID	East (m)	North (m)	Elevation	Azimuth (°)	Di _l (°)		inal depth	Driller
		CVDD-22-001	626891.522	9609246.373	199.393	300	-60		533.20	CEL
		CVDD-22-002	627198.352	9609719.449	198.970	120	-60		575.00	CEL
		CVDD-22-003	626894.633	9609244.452	199.514	120	-60)	512.40	CEL
		CVDD-22-004	627209.772	9609873.677	203.018	120	-60)	658.95	CEL
		CVDD-22-005	626893.119	9609246.715	199.383	030	-65	5	607.15	CEL
		CVDD-22-006	627698.461	9609900.275	180.879	300	-60		600.70	CEL
		CVDD-22-007		9609344.874	264.563	120	-60)	808.00	CEL
		CVDD-22-008	627444.177	9610249.652	191.069	120	-60		535.70	CEL
		CVDD-22-009		9609635.445	179.594	120	-60		890.80	CEL
		CVDD-22-010			244.110	120	-60		890.20	CEL
		CVDD-22-011			156.815	300	-60)	672.50	CEL
		CVDD-22-012			524.050	315	-60)	756.70	CEL
		CVDD-22-013		9609603.539	174.956	120	-60		752.45	CEL
		CVDD-22-014		9607344.459	518.531	115	-60		863.40	CEL
		CVDD-22-015		9605232.572	428.500	280	-60		758.35	CEL
		CVDD-22-016			377.253	140	-60		558.45	CEL
		CVDD-22-017	625582.100	9605073.535	384.291	150	-60)	746.05	CEL

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No grade cutting has been used to derive the weighted average grades reported. Minimum cut of grade of 0.2 g/t Au Equivalent (AuEq) was used for determining intercepts. Aggregate intercepts have been reported with higher grade inclusions to demonstrate the impact of aggregation. A bottom cut of 0.5 g/t Au Equivalent has been used to determine the higher-grade inclusions. Given the generally consistent nature of the mineralisation the impact of the aggregation of high-grade results and longer lengths of low-grade results does not have a large impact. For example, in the intercept of 156m @ 2.6 g.t Au in hole GGY-02: over half of the intercept comprises gold grades in excess of 1 g/t Au only 20% of the intercept includes grades between 0.2 and 0.5 g/t Au over one third includes gold grades in excess of 2 g/t Au. Au Eq assumes a gold price of USD 1,780/oz, a silver price of USD 22 /oz, a copper price of USD 9,650 /t, and a Molybdenum price of US\$40,500 Metallurgical recovery factors for gold, silver, copper, and Molybdenum are assumed to be equal. No metallurgical factors have been applied in calculating the AuEq at this early stage of the Project, hence the formula for calculating the Au Eq is: Au (g/t) + (Ag (g/t) x 22/1780) + (1.68604 x Cu (%) + (7.07612 x Mo (%)). CEL confirms that it is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold Significant historic intersections from El Guayabo drilling are shown below:

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Comn	nenta	ry									
		Drillhole		Minerali	sed Inte	Total	Gold		Ag Cu	Au Equiv	Azimuth	Incl	TD
		(#)		From	To	(m)	(g/t)		g/t) (%)	(g/t)	(deg)	(deg)	(m)
		JDH-001	from	183	190.6	7.6 m @	0.3 g/t Au	1 +	not assayed	n/a	280	-60	236.9
		JDH-002	from	7.6	152.9	145.3 m @	0.4 g/t Au	ı +	not assayed	n/a	280	-45	257.5
			and	199	243		0.4 g/t Au		not assayed	n/a			
		JDH-003	from	35.95	71.6	35.7 m @	0.5 q/t Au	1 +	not assayed	n/a	280	-45	261
			and	120.4	254.6	134.2 m @	0.4 g/t Au	1 +	not assayed	n/a			
			inc	146.81	224.08		0.5 g/t Au		not assayed	n/a			
		JDH-004	from	3.96	21.95	18.0 m @	0.4 g/t Au	1 +	not assayed	n/a	280	-45	219
			and	79.74	120.42	40.7 m @	0.4 g/t Au	1 +	not assayed	n/a			
			and	150.9	203.7	52.8 m @	0.7 g/t Au	1 +	not assayed	n/a			
		JDH-005	from	5.2	81.4	76.2 m @	0.4 g/t Au	1 +	not assayed	n/a	280	-45	210.4
			and	169.7	208.5	38.8 m @	0.2 g/t Au	1 +	not assayed	n/a			
		JDH-006	from	17.99	89.6	71.6 m @	0.2 g/t Au	1 +	2.0 g/t Ag + 0.10 % Cu	0.42	150	-45	302.7
			and	164.8	281		-		8.9 g/t Ag + 0.40 % Cu				
			inc	227.8	281.09	53.3 m @	1.2 g/t Au	ı + 1	13.2 g/t Ag + 0.62 % Cu	2.39			
		JDH-007	from	39.7	84.45	44.8 m @	0.3 g/t Au	1 +	1.4 g/t Ag + 0.04 % Cu	0.38	150	-75	105.8
		JDH-008	from	104.7	136.7	32.0 m @	0.1 g/t Au	1 +	3.6 g/t Ag + 0.13 % Cu	0.41	150	-60	352.7
			and	249.08	316.15	67.1 m @	0.2 g/t Au	1 +	5.7 g/t Ag + 0.21 % Cu	0.62			
			and	291.76	316.15	24.4 m @	0.5 g/t Au	1 +	9.2 g/t Ag + 0.34 % Cu	1.13			
		JDH-009	from	10.3	122.03	111.7 m @	0.7 g/t Au	ı + 1	14.6 g/t Ag + 0.58 % Cu	1.85	150	-45	256.7
			inc	34.6	91.54	56.9 m @	0.2 g/t Au	ı + 1	19.1 g/t Ag + 0.82 % Cu	1.80			
			and	201.4	205.4	4.0 m @	11.4 g/t Au	1 +	9.7 g/t Ag + 0.01 % Cu	11.54			
			and	255.1	eoh	1.5 m @	0.7 g/t Au	1 +	1.5 g/t Ag + 0.02 % Cu	0.75			
		JDH-10	from	1.5	50.9		-		2.5 g/t Ag + 0.09 % Cu		270	-45	221.6
			and	90.54	119		_		3.0 g/t Ag + 0.10 % Cu				
			and	140	203	81.6 m @	0.4 g/t Au	1 +	1.3 g/t Ag + 0.07 % Cu	0.53			
		JDH-011	from	100.7	218	117.3 m @	0.4 g/t Au	1 +	4.6 g/t Ag + 0.10 % Cu	0.62	270	-45	218.0
		JDH-012	from	12.2	53.96	41.8 m @	0.6 g/t Au	1 +	6.5 g/t Ag + 0.02 % Cu	0.67	150	-60	124.1
		JDH-013	from	53.35	69.6	16.3 m @	0.5 g/t Au	1 +	1.2 g/t Ag + 0.01 % Cu	0.48	150	-60	239.3
			and	89.9	154.9		_		2.8 g/t Ag + 0.06 % Cu				
			inc	114.32	142.76	28.4 m @	2.8 g/t Au	1 +	4.9 g/t Ag + 0.10 % Cu	3.03			
		JDH-014	from	26.96	75.69	48.7 m @	0.4 g/t Au	1 +	5.2 g/t Ag + 0.10 % Cu	0.63	90	-60	239.4
			and	85.84	116.32	30.5 m @	0.2 g/t Au	1 +	4.2 g/t Ag + 0.1 % Cu	0.42			
			and	128.52	175.3	46.8 m @	0.5 g/t Au	1 +	3.3 g/t Ag + 0.08 % Cu	0.63			
			and	179.35	217.98	38.6 m @	0.1 g/t Au	1 +	2.5 g/t Ag + 0.08 % Cu	0.26			

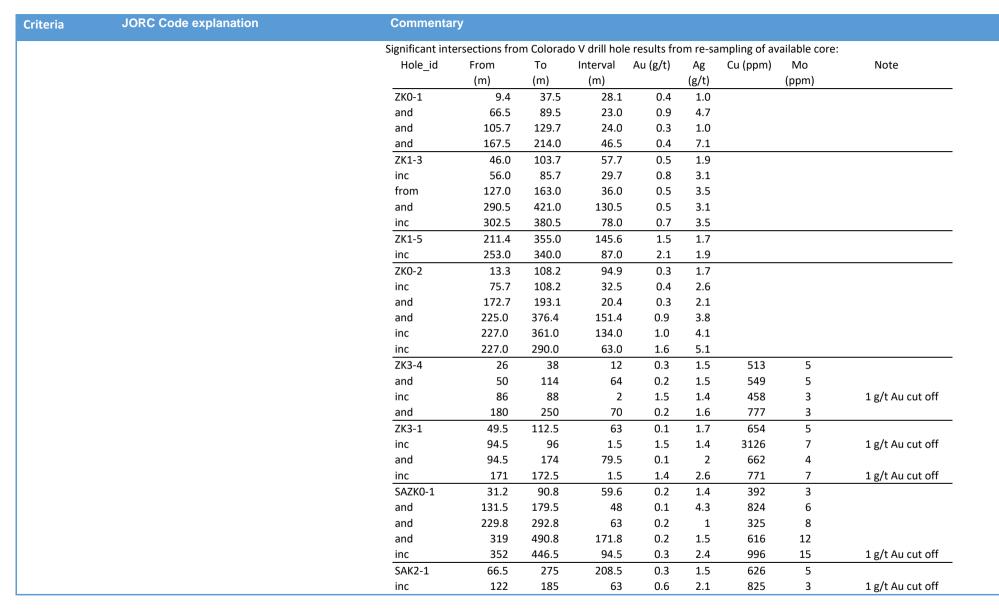
1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commenta	ary							
		Cignificant in	tersections from historic a	and ro occ	مريمط طعزاا	aara fram Fl	Cuavaba d	rill balası		
		Significant in	tersections from historic a	iliu re-ass	ayeu uriii	core from Er	Guayabo u	riii noies:		
		Drill hole				Total	Au	Ag	Cu	Au Eq
		(#)		From	То	(m)	(g/t)	(g/t)	(%)	(g/t)
		GGY-001	historical intercept	139	249.2	110.2m	0.4	1.1	0.06	0.5
			(re-assayed section)	141	177	36.0m	0.54	2.30	0.08	0.7
			(original assays)	′	,	36.0m	0.56	1.51	0.08	0.7
			(re-assayed section)	205	236	31.0m	0.19	0.89	0.03	0.3
			(original assays)	′	,	31.0m	0.21	0.13	0.03	0.3
		GGY-002	historical intercept	9.7	166	156.3m	2.6	9.7	0.16	3.0
			(re-assayed section)	40	102	62.0m	5.22	21.33	0.25	5.9
			(original assays)	,	′	62.0m	4.83	19.96	0.23	5.5
			historical intercept	114	166	52.0m	1.3	3.3	0.18	1.6
			(re-assayed section)	114	171	57.0m	1.20	3.44	0.18	1.5
			(original assays)	,	,	57.0m	1.24	3.53	0.17	1.6
		GGY-005	historical intercept	12	162	150.0m	0.4	11.0	0.30	1.0
			(re-assayed section)	10	60	50.0m	0.45	19.23	0.33	1.2
			(original assays)	′	′	50.0m	0.51	21.74	0.44	1.5
			(re-assayed section)	64	98	34.0m	0.10	5.25	0.16	0.4
			(original assays)	′	,	34.0m	0.84	6.22	0.16	1.2
			(re-assayed section)	132	162	30.0m	0.10	6.35	0.33	0.7
			(original assays)	′	′	30.0m	0.07	6.18	0.31	0.7
		GGY-011	historical intercept	14	229	215.0m	0.2	9.6	0.36	0.9
			(re-assayed section)	14	126	112.0m	0.17	10.89	0.30	0.8
			(original assays)	′	,	112.0m	0.18	11.73	0.36	0.9
			(re-assayed section)	166	206	40.0m	0.09	5.08	0.22	0.5
			(original assays)	•	,	40.0m	0.09	4.90	0.22	0.5
			(re-assayed section)	218	231	13.0m	0.22	8.52	0.41	1.0
			(original assays)	′	′	13.0m	0.34	19.48	0.96	2.2
		GGY-017	historical intercept	69	184	115.0m	0.5	2.1	0.03	0.5
			(re-assayed section)	94	129	35.0m	0.45	2.76	0.04	0.6
			(original assays)	•	′	35.0m	0.30	4.01	0.03	0.4
			(re-assayed section)	206	258	52.0m	0.37	2.00	0.06	0.5
			(original assays)	′	,	52.0m	0.26	1.42	0.06	0.4

1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005


Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commenta	ary							
		JDH-006	historical intercept	17.99	89.6	71.6m	0.2	2.0	0.10	0.4
			(re-assayed section)	10.3	81.3	71.0m	0.18	1.38	0.03	0.2
			(original assays)	•	•	71.0m	0.20	1.59	0.07	0.3
			historical intercept	164.8	281	116.2m	0.6	8.9	0.40	1.4
			(re-assayed section)	150.6	281.1	130.5m	0.26	7.21	0.26	0.8
			(original assays)	•	•	130.5m	0.42	8.02	0.36	1.3
		JDH-009	historical intercept	10.3	122	111.7m	0.7	14.6	0.58	1.
			(re-assayed section)	6.7	107.8	101.1m	0.21	13.80	0.36	1.
			(original assays)	•	•	101.1m	0.22	15.08	0.59	1.
		JDH-10	historical intercept	1.5	50.9	49.4m	0.5	2.5	0.09	0.
			(re-assayed section)	15.2	50.9	35.7m	0.44	2.88	0.10	0.
			(original assays)	•	•	35.7m	0.41	2.96	0.10	0
			historical intercept	140	203	81.6m	0.4	1.3	0.07	0
			(re-assayed section)	150.5	203.4	52.9m	0.36	1.34	0.07	0
			(original assays)	•	•	52.9m	0.39	1.24	0.06	0
		JDH-012	historical intercept	12.2	53.96	41.8m	0.6	6.5	0.02	0.
			(re-assayed section)	18.3	54	35.7m	0.68	7.62	0.02	0.
			(original assays)	′	•	35.7m	0.69	7.36	0.02	0
		JDH-013	historical intercept	89.9	154.9	65.0m	1.4	2.8	0.06	1
			(re-assayed section)	112.3	155	42.7m	2.11	2.84	0.05	2.
			(original assays)	′	•	42.7m	2.00	3.70	0.08	2
		JDH-014	historical intercept	26.96	75.69	48.7m	0.4	5.2	0.10	0
			(re-assayed section)	27	61.5	34.5m	0.64	5.99	0.13	0.
			(original assays)	′	′	34.5m	0.52	6.25	0.13	0.
			historical intercept	128.52	175.3	46.8m	0.46	3.3	0.08	0.
			(re-assayed section)	140.7	167.2	26.5m	0.26	2.24	0.07	0.
			(original assays)	•	•	26.5m	0.65	2.91	0.08	0.

Colorado V:

A cut-off grade of 0.1 g/t Au was used to report the assays of re-samples core and channel samples from underground development with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Issued Capital 1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentar	у							
		and	225.5	227	1.5	1.6	1.4	638	2	1 g/t Au cut off
		and	288.5	330.5	42	0.2	2	454	1	-
		inc	288.5	291.5	3	1.3	5.6	1136	1	1 g/t Au cut off
		SAZK0-2	0	80.7	80.7	0.4	1.9	478	3	
		inc	30.7	51.2	20.5	1	2.5	460	5	1 g/t Au cut off
		and	136	148	12	0.6	0.4	61	14	
		inc	137.5	140.5	3	1.4	0.3	10	4	1 g/t Au cut off
		and	200.5	403.8	203.3	0.3	1.3	588	15	Hole ends in mineralisation
		inc	293.5	399.3	105.8	0.5	1.3	635	16	
		inc	214	215.5	1.5	1.8	2.1	681	12	1 g/t Au cut off
		inc	344.5	399.3	54.8	0.7	1.5	767	12	
		inc	361.8	366.3	4.5	5.5	0.8	502	61	1 g/t Au cut off
		and	397.8	399.3	1.5	1.3	2.3	770	2	1 g/t Au cut off
		ZK1-13	46.2	73.2	27	0.1	0.8	306	1	
		and	140	141.5	1.5	1.9	0.7	236	1	1 g/t Au cut off
		and	161	196	35	0.1	1.4	391	2	
		ZK0-5	6.1	19.8	13.7	0.2	1.3	313	10	
			46.3	130.1	83.8	0.5	1.2	356	7	
		inc	67	118	51	0.7	1.4	409	5	0.5 g/t Au cut off
		inc	75.7	76.8	1.1	1.2	1.4	483	2	1 g/t Au cut off
		and	80.7	81.7	1	1.8	2.2	549	4	1 g/t Au cut off
		and	93.7	94.7	1	13.9	3.4	354	7	1 g/t Au cut off
		and	146.5	296.5	150	0.2	1	310	3	
		and	370	371.5	1.5	0.9	5.2	1812	3	
		and	414.3	415.8	1.5	1.2	0.3	127	1	
		and	560.5	562	1.5	2.3	0.6	189	2	
		and	596	598.2	2.2	1.7	2.1	391	4	
		and	607	608.5	1.5	2	0.8	190	2	
		ZK18-1	NSI							
		ZK0-4	3.70	458.00	454.30*	0.20	1.3	0.04	5.9	
		inc	42.60	154.25	111.65	0.39	1.9	0.05	7.6	0.5 g/t AuEq cut off
		inc	69.70	97.20	27.50	0.66	1.7	0.05	8.6	1.0 g/t AuEq cut off
		ZK10-1	25.02	151.00	125.98	0.16	1.1	0.06	17.9	0.1 g/t AuEq cut off
		and	309.00	326.00	17.00	0.16	0.91	0.07	6.1	0.1 g/t AuEq cut off

1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	iry								
		and	354.02	451.00	96.98*	0.17	1.2	0.06	15.8		
		inc	435.02	451.00	15.98*	0.32	1.8	0.07	2.6		
		ZK16-2	19.00	267.31	248.31	0.33	2.7	0.07	2.6	0.1 g/t AuEq	cut off
		inc	140.00	254.00	114.00	0.53	2.9	0.09	3.3	0.5 g/t AuEq	
		inc	224.00	254.00	30.00	0.85	3.6	0.12	3.4	1.0 g/t AuEq	
		* Mineralisat	ion to end of	hole							
		Significant in	ersections fr	om Colorado	V channel s	ample resu	ılts from	undergro	und expo	osure:	
		Channel_id	From		AuEq	Au	Ag	Cu	Мо	Comment	
			(m)		(g/t)	(g/t)	(g/t)	(%)	(ppm)		
		Main Adit	0.0		0.42	0.30	2.1	0.05	9.4	0.1 g/t AuEq cut	
		inc	0.0		0.60	0.46	2.4	0.07	9.8	0.5 g/t AuEq cut	
		inc	0.0	112.0	0.71	0.55	2.7	0.08	9.3	1 g/t AuEq cut of	
		and	276.0	32.0	0.29	0.21	1.4	0.04	5.1	0.1 g/t AuEq cut	
		Main Adit	20.0	39.1	0.30	0.28	2.3	0.03	4.5	0.1 g/t AuEq cut	off
		(west drive)									
		and	74.0	56.0	0.69	0.64	1.8	0.01	2.8	0.5 g/t AuEq cut	
		inc	84.0	46.0	0.81	0.76	2.1	0.01	3.0	1.0 g/t AuEq cut	off
		Significant ir Drill Hole	tersections f	rom El Guaya To Inter		_	mpleted	d by CEL:	AuEq	Comments	Total intercept
		(#)		m) (m			(%)	(ppm)	(g/t)		(gram metres)
		GYDD-		•	,	,		,		0.1 g/t cut-off	,
		21-001	-	00.5 784.		1.6	0.1	12.0	0.4		282.4
		inc		48.0 380.		2.0	0.1	18.4	0.5	1.0 g/t cut-off	178.8
		inc		48.0 188. 31.0 28.0		2.4 6.9	0.1 0.2	29.5 104.4	0.6 1.0	1.0 g/t cut-off	115.0 26.6
		inc inc		31.0 28.0 24.0 21.0		3.0	0.2	104.4	1.0 1.1	1.0 g/t cut-off 1.0 g/t cut-off	26.6 22.9
		and		98.5 30. 0		2.6	0.2	24.8	1.1	1.0 g/t cut-off	31.8
		GYDD- 21-002		31.5 46.5		3.99	0.04	5.72	0.4	0.1 g/t cut-off	20.0
		21-002 incl.	112 1	14.3 2.3	1.33	33.17	0.12	5.1	2.0	1.0 g/t cut-off	4.5
		incl.		31.5 1.75		7.36	0.12	1.29	2.2	1.0 g/t cut-off	3.8
		and		06.5 27.0		0.82	0.02	2.21	1.5	0.1 g/t cut-off	41.4
		incl.	305 3	06.5 1.5	19.16		0.03	3.21	19.2	10.0 g/t cut-	28.8

1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commen	tary									
		and	378.5	392	13.5	0.44	0.21	0.01	1.45	0.5	0.1 g/t cut-off	6.2
		and	447.9	448.8	0.9	0.74	4.85	0.06	1.92	0.9	0.1 g/t cut-off	0.8
		and	499.8	557.8	58	0.14	0.3	0.01	1.53	0.2	0.1 g/t cut-off	9.3
		incl.	547.8	554.8	7	0.39	0.21	0.01	1.74	0.4	0.5 g/t cut-off	2.9
		incl.	554.1	554.8	0.7	1.06	0.2	0.01	1.08	1.1	1.0 g/t cut-off	0.8
		GYDD-									0.1 = /4 = = + = + +	
		21-003	71.85	191.06	119.2	0.4	0.8	0.0	2.2	0.5	0.1 g/t cut-off	53.9
		inc	76.35	153.56	77.2	0.5	0.5	0.0	1.1	0.6	1.0 g/t cut-off	45.6
		inc	76.35	102.56	26.2	1.1	0.9	0.0	1.7	1.1	1.0 g/t cut-off	29.3
		inc	101.80	102.56	0.8	20.6	4.9	0.0	0.6	20.7	10.0 g/t cut	15.7
		and	356.50	371.50	15.0	0.3	0.4	0.0	5.0	0.4	0.1 g/t cut-off	5.3
		inc	361.00	362.50	1.5	1.0	0.5	0.0	3.9	1.1	1.0 g/t cut-off	1.6
		and	575.80	597.20	21.4	0.1	2.6	0.1	57.7	0.3	0.1 g/t cut-off	6.7
		and	662.20	723.15	61.0	0.1	0.9	0.0	24.5	0.2	0.1 g/t cut-off	12.3
		GYDD-									0.1 a/b aut off	
		21-004	37.10	375.75	338.7	0.2	1.0	0.0	6.5	0.3	0.1 g/t cut-off	84.7
		inc	223.46	375.75	152.3	0.2	1.3	0.0	7.3	0.3	0.1 g/t cut-off	50.0
		inc	348.75	375.75	27.0	0.5	1.8	0.0	7.3	0.6	1.0 g/t cut-off	16.9
		and	613.50	646.50	33.0	0.2	0.6	0.1	18.7	0.3	0.1 g/t cut-off	8.6
		inc	639.00	646.50	7.5	0.5	0.5	0.0	10.7	0.5	1.0 g/t cut-off	4.1
		GYDD-									0.1 g/t cut-off	
		21-005	16.10	597.75	581.7	0.3	0.9	0.0	2.5	0.3	0.1 g/t cut-on	194.3
		inc	389.80	478.15	88.4	0.6	1.8	0.1	1.5	0.8	1.0 g/t cut-off	66.7
		inc	476.50	478.15	1.7	25.1	1.8	0.0	4.0	25.2	10.0 g/t cut	41.5
		and	567.34	597.75	30.4	1.4	0.9	0.0	5.1	1.5	1.0 g/t cut-off	45.6
		inc	592.59	597.75	5.2	7.1	2.0	0.0	3.9	7.2	1.0 g/t cut-off	36.9
		inc	596.15	597.15	1.0	22.0	3.9	0.0	10.9	22.2	10 g/t cut-off	22.2
		GYDD-									0.4 /	
		21-006	3.30	313.10	309.8	0.2	6.3	0.2	3.0	0.7	0.1 g/t cut-off	207.1
		inc	17.40	276.50	259.1	0.2	7.3	0.2	3.3	0.8	0.1 g/t cut-off	195.9
											based on	
		inc	74.40	276.50	202.1	0.3	6.5	0.3	3.6	0.8	lithology	165.7
		inc	74.40	107.40	33.0	0.3	15.5	0.5	3.7	1.3	1.0 g/t cut-off	43.4
		and	231.90	285.50	53.6	0.7	8.8	0.4	1.1	1.5	1.0 g/t cut-off	81.7
		GYDD-		94.00	8.7		3.6	0.1	4.6	0.6		5.5
		21-007	85.30	94.00	ŏ./	0.4	3.6	0.1	4.6	0.6	1.0 g/t cut-off	5.5
		and	149.50	509.60	360.1	0.1	0.9	0.1	9.6	0.3	0.2 g/t cut off	95.1
		inc	253.50	265.50	12.0	0.4	2.0	0.1	10.3	0.5	1.0 g/t cut-off	6.1
		and	309.50	316.70	7.2	0.4	2.6	0.2	16.6	0.8	0.5 g/t cut-off	5.7
		and	450.20	493.20	43.0	0.4	1.0	0.1	21.3	0.6	0.5 g/t cut-off	24.1

1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commen	tary									
		and	628.77	651.80	23.0	0.1	0.7	0.4	5.5	0.2	0.2 g/t cut-off	4.6
		inc	649.25	651.80	2.6	0.6	2.4	0.1	2.1	0.8	EOH	1.9
		GYDD- 21-008	5.30	263.10	257.8	0.8	7.9	0.3	1.5	1.4	0.1 g/t cut-off	361.0
		inc	184.10	263.10	79.0	2.4	17.5	0.7	1.6	3.8	1.0 g/t cut-off	298.6
		inc	209.40	263.10	53.7	3.5	23.9	0.9	1.7	5.3	5.0 g/t cut-off	285.7
		inc	248.80	255.60	6.8	16.9	50.1	1.9	1.6	20.6	10 g/t cut-off	104.2
		GYDD- 21-009	0.00	692.70	692.7	0.2	2.0	0.1	7.7	0.3	ЕОН	191.9
		inc	220.50	441.00	220.5	0.3	4.3	0.1	8.7	0.6	0.5 g/t cut-off	128.3
		inc	282.80	303.50	20.7	0.3	16.5	0.3	5.5	1.0	0.5 g/t cut-off	20.5
		inc	359.00	439.50	80.5	0.5	1.3	0.2	5.8	0.9	1.0 g/t cut-off	68.8
		inc	359.00	371.00	12.0	1.4	3.1	0.2	6.3	1.7	1.0 g/t cut-off	20.1
		and	398.00	439.50	41.5	0.5	7.2	0.2	5.7	1.0	1.0 g/t cut-off	41.0
		inc	421.20	439.50	18.3	0.9	14.4	0.5	5.3	1.8	1.0 g/t cut-off	33.4
		GYDD- 21-010	70.20	880.10	809.9	0.2	1.1	0.1	11.9	0.3	0.2 g/t cut-off	227.6
		inc	124.10	536.30	412.1	0.2	1.2	0.1	14.0	0.4	0.2 g/t cut-off	153.7
		inc	318.70	536.30	217.6	0.3	1.6	0.1	19.9	0.5	0.5 g/t cut-off	102.9
		inc	319.70	358.40	38.7	0.5	1.8	0.1	8.4	0.7	1.0 g/t cut-off	28.6
		and	468.10	536.30	68.2	0.4	2.2	0.1	31.8	0.7	1.0 g/t cut-off	45.4
		and	581.60	880.10	298.5	0.1	1.0	0.0	10.3	0.2	0.2 g/t cut-off	61.8
		inc	650.00	660.50	10.5	0.5	3.3	0.1	16.9	0.7	1.0 g/t cut-off	6.9
		GYDD- 21-011	3.00	310.90	307.9	0.5	2.4	0.0	13.6	0.6	0.2 g/t cut-off	191.5
		inc	13.00	21.00	8.0	0.7	12.4	0.1	2.0	0.9	0.5 g/t cut-off	7.3
		and	156.05	258.90	102.9	1.1	2.7	0.0	19.1	1.2	0.5 g/t cut-off	122.7
		inc	156.05	213.05	57.0	1.7	3.6	0.0	9.0	1.8	1.0 g/t cut-off	104.3
		GYDD- 21-012	2.00	226.84	224.8	0.3	2.4	0.0	2.7	0.4	0.2 g/t cut-off	83.6
		inc	2.00	44.50	42.5	0.6	2.3	0.0	1.9	0.7	1.0 g/t cut-off	31.1
		inc	2.00	6.50	4.5	1.8	0.8	0.0	1.8	1.9	1.0 g/t cut-off	8.4
		and	31.00	38.50	7.5	0.9	6.5	0.0	1.8	1.1	1.0 g/t cut-off	8.1
		and	339.94	365.60	25.7	0.1	2.2	0.0	2.3	0.2	0.2 g/t cut-off	4.6
		and	464.20	491.90	27.7	0.1	2.6	0.0	2.6	0.2	0.2 g/t cut-off	6.4
		and	669.60	741.60	72.0	0.3	0.8	0.0	3.2	0.3	0.2 g/t cut-off	23.1
		inc	677.10	732.60	55.5	0.3	0.7	0.0	3.6	0.4	1.0 g/t cut-off	20.4
		GYDD- 21-013	33.60	164.50	130.9	0.2	4.2	0.1	5.7	0.4	0.2 g/t cut-off	51.4

1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Comment	ary									
		inc	33.60	95.75	62.2	0.3	5.2	0.1	8.5	0.5	1.0 g/t cut-off	32.4
		inc	61.25	74.75	13.5	0.8	8.3	0.1	6.0	1.0	1.0 g/t cut-off	13.8
		and	189.15	517.45	328.3	0.2	2.2	0.1	23.3	0.4	EOH	114.9
		inc	341.04	432.00	91.0	0.4	1.7	0.1	32.3	0.6	0.5 g/t cut-off	55.3
		inc	341.04	350.00	9.0	0.9	1.7	0.0	7.9	1.0	1.0 g/t cut-off	8.9
		and	412.14	430.14	18.0	0.7	2.2	0.1	35.7	0.9	1.0 g/t cut-off	17.0
		GYDD-										
		22-014	15.30	609.80	594.50	0.16	2.22	0.05	7.34	0.28	0.1 g/t cut off	164.7
		inc	538.50	609.80	71.30	0.50	2.67	0.07	14.28	0.66	1.0 g/t cut off	46.9
		inc	556.50	584.30	27.80	1.14	4.43	0.12	27.61	1.43	1.0 g/t cut off	39.6
		GYDD-										
		22-015	3.00	308.70	305.70	0.15	4.65	0.15	1.54	0.46	0.1 g/t cut off	141.7
		incl.	87.10	146.90	59.80	0.19	7.06	0.25	1.48	0.69	1.0 g/t cut off	41.2
		and	257.65	304.90	47.25	0.38	6.74	0.25	1.30	0.89	1.0 g/t cut off	42.1
		inc	257.65	275.65	18.00	0.40	9.81	0.35	1.37	1.11	1.0 g/t cut off	20.0
		and	289.90	304.90	15.00	0.57	7.73	0.31	1.20	1.19	1.0 g/t cut off	17.8
		GYDD-										
		22-016	68.00	333.42	265.42	0.29	2.90	0.08	2.93	0.47	0.1 g/t cut off	123.5
		inc	225.80	333.42	107.62	0.51	5.65	0.16	2.09	0.86	1.0 g/t cut off	92.0
		inc	294.30	333.42	39.12	0.61	8.45	0.25	1.86	1.13	1.0 g/t cut off	33.9
		and	225.80	256.80	31.00	0.73	6.10	0.17	2.05	1.09	1.0 g/t cut off	44.1
		Significant i	intorcostio	ns from Co	olorado V D	hasa #1 d	rilling con	anlatad h	w CEL:			
		Drill	intersectio	iis iroiii Co	JIOI AUO V P	iiase #1 u	rilling con	ipieteu L	Jy CEL.			
		Hole	From	То	Intorval	Cold	۸۵	Cu	Мо	۸۰۰۲۵	Commonts	Total intercent
		(#)	From (m)	To (m)	Interval (m)	Gold (g/t)	Ag (g/t)	Cu (%)	(ppm)	AuEq (g/t)	Comments	Total intercept (gram metres)
		CVDD-	(111)	(111)	(111)	(g/t)	(g/t)	(/0)	(ppiii)	(g/t)		(grain metres)
		22-001	4.50	533.20	528.70	0.30	2.30	0.09	13.22	0.49	1.0 g/t cut off	260.8
		incl.	4.50	401.60	397.10	0.34	2.76	0.03	14.31	0.49	1.0 g/t cut off	222.4
		incl.	6.00	114.00	108.00	0.42	2.83	0.11	15.75	0.68	1.0 g/t cut off	73.8
		and	166.60	296.80	130.20	0.42	3.33	0.13	15.55	0.67	1.0 g/t cut off	87.8
		incl.	273.50	284.30	10.80	2.51	14.93	0.35	9.16	3.29	1.0 g/t cut off	35.6
		CVDD-	3.00								0,	
		22-002	5.00	575.00	570.00	0.21	1.99	0.08	11.43	0.38	0.1 g/t cut off	218.6
		incl.	14.00	320.70	306.70	0.22	2.27	0.12	13.59	0.45	0.5 g/t cut off	138.2
				0_0.70	555.76	J	,	U.12	_0.00	0.15	1.0 g/t AuEq	255.2
		incl.	174.65	199.50	24.85	0.40	4.54	0.25	53.36	0.91	cut off	22.7
											1.0 g/t AuEq	
		incl.	309.30	319.20	9.90	0.97	6.14	0.26	15.83	1.50	cut off	14.8
			223.00	5 = 5 . E C								

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Comment	ary									
		and	387.10	396.20	9.10	0.75	6.91	0.14	8.93	1.08	1.0 g/t AuEq cut off	9.8
		ana	307.10	330.20	3.10	0.75	0.51	0.11	0.55	1.00	1.0 g/t AuEq	3.0
		incl.	490.20	504.20	14.00	0.77	1.29	0.03	24.72	0.85	cut off	11.9
		CVDD- 22-003	2.5	eoh	509.90	0.24	1.41	0.07	31.30	0.4	0.1 g/t AuEq cut off	203.96
		incl.	2.5	246.5	244.00	0.36	1.76	0.09	44.80	0.6	0.5 g/t AuEq cut off	146.4
		incl.	2.5	159.4	156.90	0.44	1.76	0.10	54.70	0.7	1.0 g/t AuEq cut off	109.83
		incl.	2.5	75.8	73.30	0.55	1.81	0.11	59.10	8.0	1.0 g/t AuEq cut off	58.64
		incl.	66.3	75.8	9.50	0.85	1.40	0.13	146.00	1.2	1.0 g/t AuEq cut off	11.4
		CVDD- 22-004	203	eoh	456.20	0.13	0.91	0.05	10.90	0.25	0.1 g/t AuEq cut off	114.05
		incl.	443.9	649.3	205.40	0.19	1.00	0.06	11.10	0.3	0.5 g/t AuEq cut off	61.62
		incl.	448.4	504.5	56.10	0.23	1.13	0.07	8.30	0.4	1.0 g/t AuEq cut off	22.44
		incl.	593	602	9.00	0.58	0.87	0.04	6.70	0.7	1.0 g/t AuEq cut off	6.3
		CVDD- 22-005	8.1	572.2	564.10	0.21	2.30	0.09	44.10	0.4	0.1 g/t AuEq cut off	225.64
		incl.	8.1	286.1	278.00	0.30	3.21	0.11	68.20	0.6	0.5 g/t AuEq cut off	166.8
		incl.	25.8	154.5	128.70	0.39	3.36	0.11	112.10	0.7	1.0 g/t AuEq cut off	90.09
		CVDD-									0.1 g/t AuEq	
		22-006	96.4	600.7	504.3	0.31	1.43	0.07	1.8	0.3	cut off 1.0 g/t AuEq	151.29
		incl.	97.9	374.0	276.1	0.25	1.54	0.07	1.9	0.4	cut-off 1.0 g/t AuEq	110.44
		incl.	200.2	209.1	8.9	0.63	1.24	0.07	1.1	0.8	cut-off 1.0 g/t AuEq	7.12
		and	257.9	374.0	116.1	0.39	2.56	0.14	2.0	0.5	cut-off 1.0 g/t AuEq	58.05
		incl.	257.9	288.9	31.0	0.32	3.99	0.16	1.4	0.6	cut-off 1.0 g/t AuEq	18.60
		and	365.0	374.0	9.0	1.51	1.98	0.22	1.7	1.9	cut-off	17.10

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Comment	ат у									
CVDD-									0.1 g/t AuEq	
22-007	73.9	806.1	732.2	0.20	1.16	0.04	8.1	0.3	cut off	219.66
									1.0 g/t AuEq	
incl.	251.0	589.3	338.3	0.30	1.49	0.06	6.8	0.4	cut-off	135.32
inal	251.0	498.2	247.2	0.37	1.72	0.06	5.8	0.5	1.0 g/t AuEq	122.6
incl.	251.0	498.2	247.2	0.37	1.72	0.06	5.8	0.5	cut-off 1.0 g/t AuEq	123.6
incl.	251.0	301.7	50.7	0.78	1.79	0.06	5.1	0.9	cut-off	45.63
		002		0.70	2.75	0.00	0.2	0.0	1.0 g/t AuEq	
and	422.5	438.3	15.8	0.62	1.59	0.06	4.0	0.7	cut-off	11.06
CVDD-									0.1 g/t AuEq	
22-008	129.8	179.2	49.5	0.20	0.66	0.02	1.3	0.25	cut off	12.37
									0.1 g/t AuEq	
and	431.1	448.8	17.7	0.15	1.18	0.05	4.0	0.25	cut off	4.42
CVDD-									0.1 g/t AuEq	
22-009	1.0	195.4	194.4	0.12	1.22	0.04	11.1	0.2	cut off	38.88
and	259.3	397.8	136.5	0.08	1.15	0.06	12.4	0.2	0.1 g/t AuEq cut off	27.30
anu	239.3	397.0	130.3	0.08	1.15	0.00	12.4	0.2	0.1 g/t AuEq	27.30
and	812.5	886.5	74.3	0.10	0.56	0.04	13.0	0.2	cut off	14.86
CVDD-									0.1 g/t AuEq	
22-010	114.5	888.4	773.9	0.27	1.30	0.06	11.8	0.4	cut off	309.5
									1.0 g/t AuEq	
incl.	182.3	585.1	402.8	0.40	1.65	0.08	10.9	0.6	cut off	241.6
									1.0 g/t AuEq	
incl.	182.3	482.1	299.8	0.50	1.83	0.09	11.7	0.7		209.8
incl	102.2	262.2	190 0	0.72	2.42	0.11	0.5	1.0		180.9
inci.	102.3	303.2	100.3	0.73	2.43	0.11	5.5	1.0		100.5
incl.	182.3	244.7	62.4	1.53	2.70	0.12	7.0	1.8	· .	112.3
	incl.	incl. 182.3 incl. 182.3	incl. 182.3 482.1 incl. 182.3 363.2	incl. 182.3 482.1 299.8 incl. 182.3 363.2 180.9	incl. 182.3 482.1 299.8 0.50 incl. 182.3 363.2 180.9 0.73	incl. 182.3 482.1 299.8 0.50 1.83 incl. 182.3 363.2 180.9 0.73 2.43	incl. 182.3 482.1 299.8 0.50 1.83 0.09 incl. 182.3 363.2 180.9 0.73 2.43 0.11	incl. 182.3 482.1 299.8 0.50 1.83 0.09 11.7 incl. 182.3 363.2 180.9 0.73 2.43 0.11 9.5	incl. 182.3 482.1 299.8 0.50 1.83 0.09 11.7 0.7 incl. 182.3 363.2 180.9 0.73 2.43 0.11 9.5 1.0	1.0 g/t AuEq incl. 182.3 482.1 299.8 0.50 1.83 0.09 11.7 0.7 cut off 1.0 g/t AuEq incl. 182.3 363.2 180.9 0.73 2.43 0.11 9.5 1.0 cut off 1.0 g/t AuEq

Guayabo and Colorado V Camp 1, Phase #1 Drilling Intercepts:

A cut-off grade of 0.1 g/t Au was used to report the assays of core samples with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated (e.g. 0.2g/t Au Eq, 0.5g/t AuEq, 1.0g/t AuEq, 10.0g/t AuEq, 10.0g/t AuEq).

Relationship between mineralisation widths and

- These relationships are particularly important in the reporting of Exploration Results.
- The geometry of the breccia hosted mineralisation appears to be predominantly vertical pipes while the geometry of the intrusive hosted mineralisation is sub-vertical..
- The preliminary interpretation is that the breccia hosted mineralisation occurs in near vertical breccia pipes. Thus, intersections in steeply inclined holes may not be representative of the true width of this breccia hosted mineralisation. The relationship between the drilling

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,045.8m shares 10.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

JORC Code explanation Commentary Criteria *If the geometry of the* orientation and some of the key mineralised structures and possible reporting bias in terms of true width is illustrated in the figure below. intercept lengths mineralisation with Interbedded metasediments and HYDROTHERMAL BRECCIA QUARTZ DIORITE hydrothermal breccias Disseminated Sulphides (Cpy, some Py, Po)
116 m @ 0.6 g/t Au + 8.9 g/t Ag + 0.4% Cu
112 m @ 0.7 g/t Au + 4.6 g/t Ag + 0.6% Cu respect to the drill hole Silicification and Chlorite / Sericite alteration 116 m @ 0.3 g/t Au (Au assays only 221 m @ 0.2 g/t Au + 3 g/t Ag + 0.1% Cu Note: combined intercept angle is known, its Metasediments 112 m @ 0.4 g/t Au (Au assays only) nature should be Altered GREY, QUARTZITIC BRECCIA and DACITE intrusive Note: combined intercept reported. Mod to strong alteration (quartz, sericite, carbonate, Po - Cpy - Sph - Aspy, If it is not known and hydrothermal fracturing) Andalusite rich metasediments 69.0 m @ 1.6 g/t Au+2.3 g/t Ag+ 0.03% Cu 156.0 m @ 2.6 g/t Au+9.7 g/t Ag+ 0.2% Cu 145 m @ 0.4 g/t Au (Cpy- Au assays only) only the down hole and 44 m @ 0.4 g/t Au (Cpy- Au assays only) lengths are reported, there should be a clear 900m statement to this effect (eg 'down hole length, 800 true width not known'). QUARTZ - DIORITE (Sulphide Po - Py - Aspy - Sph on fractures and as specks) 134 m @ 0.4 g/t Au (no other assays done) 600 200 400 600m Legend Breccias Pophyritic Qtz Diorite Quartz Diorite Intrusive Metamorphic Undifferentiated Intrusive Drill Hole Appropriate maps and sections (with scales) See section above and sections accompanying this release **Diagrams** and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

1,045.8m shares 10.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The reporting is fair and representative of what is currently understood to be the geology and controls on mineralisation at the project.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	El Guayabo: Quantec Geophysical services conducted a SPARTAN Broadband Magnetotelluric and TITAN IP/EMAP surveys completed February 3rd to April 1st, 2019 over the El Guayabo property by Quantec Geoscience Ltd. on behalf of AAR Resources. The survey covered 16 square kilometersa with data collected on 300m 3D spacing on a gride oriented at 10 degerees and 100 degerees. The grid was moved 10 degrees so the survey could be orineted perpendicu;lar to the main geological srtuctures. The survey involved a total of 205 Magnetotelluric (MT) sites and 2 test TITAN IP/EMAP profiles were surveyed The final survey results to which will be delivered will consist of: Inversion 2D products DC resistivity model; P chargeability model using the DC resistivity model as a reference; P chargeability model using a half-space resistivity model as a reference; MT(EMAP) resistivity model; Joint MT+DC resistivity model; IP chargeability model using the MT+DC resistivity model; Inversion 3D products MD MT model; Cross-sections and Elevation Plan maps of the 3D MT models;
		Figures showing Survey Locations and Results are included in the boidy of this release
		DCIP INVERSION PROCEDURES DCIP is an electrical method that uses the injection of current and the measurement of voltage difference along with its rate of decay to determine subsurface resistivity and chargeability respectively. Depth of investigation is mainly controlled by the array geometry but may also be limited by the received signal (dependent on transmitted current) and ground resistivity. Chargeability is particularly susceptible to data with a low signal-to-noise ratio. The differences in penetration depth between DC resistivity and chargeability are a function of relative property contrasts and relative signal-to-noise levels between the two measurements. A detailed introduction to DCIP is given in Telford, et al. (1976). The primary tool for evaluating data is through the inversion of the data in two or three dimensions. An inversion model depends not only on the data collected, but also on the associated data errors in the reading and the "model norm". Inversion models are not unique and may contain "artefacts" from the inversion process. The inversion model may not accurately reflect all the information apparent in the

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

JORC Code explanation Criteria Commentary actual data. Inversion models must be reviewed in context with the observed data, model fit, and with an understanding of the model norm used. The DC and IP inversions use the same mesh. The horizontal mesh is set as 2 cells between electrodes. The vertical mesh is designed with a cell thickness starting from 20 m for the first hundred metres to accommodate the topographic variation along the profiles, and then increases logarithmically with depth. The inversions were generally run for a maximum of 50 iterations. The DC data is inverted using an unconstrained 2D inversion with a homogenous half-space of average input data as starting model. For IP inversions, the apparent chargeability \square is computed by carrying out two DC resistivity forward models with conductivity distributions $\sigma(xi,zj)$ and $(1-\eta)\sigma(xi,zj)$ (Oldenburg and Li, 1994), where (xi,zj) specifies the location in a 2D mesh. The conductivity distributions used in IP inversions can be the inverted DC model or a half space of uniform conductivity. Two IP inversions are then calculated from the same data set and parameters using different reference models. The first inversion of the IP data uses the previously calculated DC model as the reference model and is labelled the IP dcref model. The second IP inversion uses a homogeneous half-space resistivity model as the reference model and is labelled IP hsref model. This model is included to test the validity of chargeability anomalies, and to limit the possibility of inversion artefacts in the IP model due to the use of the DC model as a reference. The results of this second IP inversion are presented on the digital archived attached to this report. MAGNETOTELLURIC INVERSIONS The Magnetotelluric (MT) method is a natural source EM method that measures the variation of both the electric (E) and magnetic (H) field on the surface of the earth to determine the distribution at depth of the resistivity of the underlying rocks. A complete review of the method is presented in Vozoff (1972) and Orange (1989). The measured MT impedance Z, defined by the ratio between the E and H fields, is a tensor of complex numbers. This tensor is generally represented by an apparent resistivity (a parameter proportional to the modulus of Z) and a phase (argument of Z). The variation of those parameters with frequency relates the variations of the resistivity with depth, the high frequencies sampling the sub-surface and the low frequencies the deeper part of the earth. However, the apparent resistivity and the phase have an opposite behaviour. An increase of the phase indicates a more conductive zone than the host rocks and is associated with a decrease in apparent resistivity. The objective of the inversion of MT data is to compute a distribution of the resistivity of the surface that explains the variations of the MT parameters, i.e. the response of the model that fits the observed data. The solution however is not unique and different inversions must be performed (different programs, different conditions) to test and compare solutions for artefacts versus a target anomaly. An additional parameter acquired during MT survey is the Tipper. Tipper parameters Tzx and Tzy (complex numbers) represent the transfer function between the vertical magnetic field and the horizontal X (Tzx), and Y (Tzy) magnetic fields respectively (as the impedance Z represent the transfer function between the electric and magnetic fields). This tipper is a 'local' effect, mainly defined by the lateral contrast of the resistivity. Consequently, the tipper can be used to estimate the geological strike direction. Another important use of the tipper is to display its components as vectors, named induction vectors. The induction vectors (defined by the real components of Tzx and Tzy) plotted following the Parkinson-Real-Reverse-Angle convention will point to conductive zones. The tipper is then a good mapping tool to delineate more conductive zones.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary				
		The depth of investigation is determined primarily by to individual sounding may easily exceed 20 km. However the array is comparable to the depth of investigation. The inversion model is dependent on the data, but a	er, the data can	only be confidently	interpreted when the ap	erture of
		models are not unique, may contain artefacts of the information apparent in the actual data. Inversion mo The user must understand the model norm used and of For this project, 2D inversions were performed on the	e inversion prod dels need to be evaluate whethe	cess and may not the reviewed in context or the model is geolo	nerefore accurately refle with the observed data, r gically plausible.	ct all the model fit.
		direction is perpendicular to the profile for all sites: th field); no TE mode (crossline E-field) were used in the		nen defined by the i	nline E-field (and cross lin	e H-
		The 2D inversions were performed using the TM-mod assuming 10% and 5% error for the resistivity and pl component Z. No static shift of the data has been app	e resistivity and nase respectivel	y, which is equivale	• •	
		The 3D inversion was carried out using the CGG RLM-over an area of approximately 5km x 3.5km. All MT sit	3D inversion co es from this cur	de. The 3D inversior rent survey were us	ed for the 3D inversion.	
		The 3D inversion was completed using a sub sample o the measured data from 10 kHz to 0.01 Hz with a nom	inal 4 frequenci	es per decade. At ea	ch site, the complete MT	complex
		impedance tensors (Zxx, Zxy, Zyx, and Zyy) were used The measured tipper data (Tzx, Tzy) were also used as	•		·	
		homogenous half space with resistivity of 100 Ohm-n mesh with 75 m x 75 m cell size was used in horizonta	n was used as tl al directions in t	ne starting model fo he resistivity model	r this 3D MT inversion. A The vertical mesh was d	A uniform lefined to
		cover the first 4 km. Padding cells were added in each 3D inversion was run for a maximum of 50 iterations.	direction to acc	ommodate the inve	rsion for boundary condit	ions. The
		In addition a total of 129 samples distributed along 1 chargeability properties (Chargeability M and Suscep		•		
		Sample Core IP Tester, manufactured by Instrumental	tion GDD Inc. It	should be noted tha	t these measures should	be taken
		only as first order estimate, and not as "absolute" (true subject to some errors (i.e. wrong size of the core ento			were not repeated and po	otentially
		Colorado V:				
		Exploration Target: An Exploration Target for two mineralized zones on th	e Colorado V m	ining concession has	heen made using surface	e gold in
		soil anomalies, drill hole geological and assay information		-	-	s goiu iii
		Exploration Target Anomaly A	Unit	Low estimate	High Estimate	
		Surface area (100 ppb Au in soil envelope):	m ²	250000	250000	
		Depth Bulk Density	m kg/m³	400 2600	400 2750	

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Crit	teria JORC Code explanation	Commentary				
		Tonnage	Mt	260	275	
		Grade Au	g/t	0.4	0.7	
		Grade Ag	g/t	1.5	2.5	
		tonnage above cut-off	%	70%	90%	
		Contained Au	Moz	2.3	5.6	
		Contained Ag	Moz	8.8	19.9	
		Exploration Target Anomaly B	Unit	Low estimate	High Estimate	
		Surface area (100 ppb Au in soil envelope):	m ²	175000	175000	
		Depth	m	400	400	
		Bulk Density	kg/m³	2600	2750	
		Tonnage	Mt	182	193	
		Grade Au	g/t	0.4	0.7	
		Grade Ag	g/t	1.5	2.5	
		% Tonnage above cut-off	%	70%	90%	
		Contained Au	Moz	1.6	3.9	
		Contained Ag	Moz	6.1	13.9	
		Total of Target A & B	Unit	Low estimate	High Estimate	
		Tonnage	Mt	442	468	
		Contained Au	Moz	4.0	9.5	
		Contained Ag	Moz	14.9	33.8	
		The potential quantity and grade of the Colorado V Explorarexploration to estimate a Mineral Resource and that it is un Mineral Resource. The following is an explanation of the inputs used in formul	certain if f	urther exploration v		
		 Surface Area: The surface area of the target has been vertically to the surface. The surface projection of th gold-in-soil anomaly contour. This area has been use Depth: A depth of 400 metres from surface has been underground bulk tonnage mining project would be controlled by steeply plunging / dipping intrusions an 	e intersect d to estima used as an expected to	ions in the drill hole ate the horizontal e n estimate of the de o extend. The mine	es coincides with the 10 extent of the mineralizat epth that an open pit an ralization at Colorado V	00 ppb Au tion. nd ' is
		from surface. Bulk Density: The bulk density is based on geological bulk densities for these rock types are in the range us Gold and Silver grades: The gold and silver grade ran	observatio	ons of the rocks that	: host the mineralizatio	n. Typical

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		 sample grades and deviations from mean from drill core and underground panel sampling. Proportion of tonnage above cut-off grade: These values are estimates based on drill hole intersection grade continuity down-hole assuming that not all of the Target volume, if sampled would be above the economic cut-off grade.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Drill test priority targets identified through exploration reported previously on both the EL Guayabo and Colorado V targets, centered on surface soil and rock chip sampling, underground channel sampling and previously completed drilling which has been relogged and resampled. Interpretation of magnetic survey data following calibration with drilling. Undertake additional IP and/or EM surveys subject to a review of the appropriateness of the techniques and calibration with drill hole data.

1,045.8m shares 10.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director