LATIN RESOURCES LIMITED ACN: 131 405 144 Unit 3, 32 Harrogate Street, West Leederville, WA 6007 P +61 8 6117 4798 E info@latinresources.com.au W www.latinresources.com.au 17 January 2023 ## MINERAL RESOURCE EXPANSION DRILLING COMMENCED ## 65,000m diamond drilling program at Colina & Colina West #### **HIGHLIGHTS** - Six small footprint diamond drilling rigs have arrived on site and commenced drilling at the Company's flagship Salinas Lithium Project in Brazil. - Two additional larger, track mounted diamond drilling rigs are scheduled to arrive on site in February. - 65,000m mineral resource infill and expansion program will focus on fast-tracking the growth of the Colina Indicated and Inferred Mineral Resource, and mineral resource definition for the Colina West Prospect. - Upgrade and expansion of the Company's core logging, processing, and storage facility nearing completion. - Targeted large diameter PQ diamond core drilling for detailed metallurgical DMS pilot plant and other testwork will commence in February. **Latin Resources Limited (ASX: LRS) ("Latin"** or "the **Company")** is pleased to announce that field teams and drilling rigs have arrived on site for the scheduled commencement of the 2023 drilling program at the Company's 100% owned Salinas Lithium Project ("**Salinas"**) (*Appendix 1*). A total of six, small environmental footprint, man portable/ modular diamond drilling rigs capable of drilling to depth of circa 400-450m below surface have arrived on site and have commenced drilling (*Figure 1*). The Company has a 65,000m diamond drilling program planned for 2023, and is committed to minimising the environmental impact of this work by using these innovative and low-impact rigs. Figure 1: Man portable/ modular diamond drilling rig on site at the Colina Deposit Brazil, capable of drilling to over 400m depth, with minimal environmental impact A further two, larger track mounted, drilling rigs capable of drilling to far greater depths, and producing larger diameter PQ drill core are scheduled to arrive on site in February, bringing the total drilling fleet to eights rigs for the season. #### **2023 Drilling Program** The planned 65,000m program focuses on the rapid expansion of the Company's maiden Indicated and Inferred JORC Mineral Resource Estimate ("MRE") of 13.3Mt @ 1.2% Li₂O¹ at the Colina Deposit (*Figure 2*); as well as providing sufficient drill coverage over the Colina West Prospect to enable the expansion of the existing MRE into this emerging high priority area (*Figure 2*). Figure 2: Colina Deposit MRE¹ block model (>0.5% Li blocks only projected to surface), Drill Collar Plan showing completed drill holes (results reported and pending) and the initial 2023 drilling program drill collar locations Previous drilling at Colina West, including SADD033, has shown the presence of multiple spodumene bearing pegmatites including some thick high-grade intersections (*Figure 3*), which currently fall outside the limits of the MRE. Additional drilling completed in late 2022 has intersected these same pegmatites in multiple drillholes, confirming the continuity both up and down dip from SADD033 (assay results pending). Figure 3: Colina West drill hole SADD033 – pegmatite intersection 319.40m – 341.94m (18.71m @ 1.32% Li₂O²) Infill and extension drilling at the Colina Deposit itself will focus on the down dip extensions of the high-grade mineralisation in the north (*Figure 4*), where the current MRE block model shows thick high-grade mineralisation open at depth. Figure 4: 3D image showing Colina Deposit Block model¹, indicating where additional drilling will test the potential expansion of the Colina MRE ## Latin Resources' Geology Manager, Tony Greenaway, commented: "2022 was a standout year for our exploration team, culminating in the delivery of the Company's Maiden JORC Mineral Resource Estimate for the Colina Lithium Deposit in just ten months from starting our first drillhole. "We are all excited to have drilling started again in 2023, where we will be looking at rapidly expanding our mineral resource base through infill and extension drilling at Colina, and systematically drilling out the new Colina West Prospect. The initial results from hole SADD033 drilled into Colina West last year was a watershed moment for the team, and our understanding of the larger mineralised system at Colina. While we are still waiting to receive all the assay results from the additional holes completed in Colina West toward the end of last year, we are confident that with continued drilling, we will be in a position to upgrade and expand our mineral resource base in the 2023 March quarter." ## Ongoing other works at the Salinas Project Other work currently underway on site includes: - The expansion of the Company's core processing and storage facility on site at Salinas (*Figure 5*), to facilitate the planned significant increase in drilling activity in 2023. This work is expected to be completed in early February 2023. - Targeted large diameter PQ diamond core drilling to collect sufficient representative pegmatite samples for the planned large scale DMS and flotation pilot plant testwork scheduled to commence in the 2023 March quarter. - Detailed drone magnetic and other geophysical surveys to assist with targeting of step-out regional exploration drilling along strike from the Colina/ Colina West areas. This survey is scheduled for late January 2023. Figure 5: Site construction work underway in early January 2023, to expand the existing core processing and storage facility on site at the Salinas Project in Brazil ### This Announcement has been authorised for release to ASX by the Board of Latin Resources. For further information please contact: Chris Gale Managing Director Latin Resources Limited +61 8 6117 4798 <u>info@latinresources.com.au</u> www.latinresources.com.au Fiona Marshall Senior Communications Advisor White Noise Communications +61 400 512 109 #### **About Latin Resources** Latin Resources Limited (ASX: LRS) is an Australian-based mineral exploration company, with projects in South America and Australia, that is developing mineral projects in commodities that progress global efforts towards Net Zero emissions. The Company is focused on its flagship Salinas Lithium Project in the pro-mining district of Minas Gerais Brazil, where the Company has its maiden resource drilling definition campaign underway. Latin has appointed leading mining consultant SGS Geological Services to undertake feasibility and metallurgical studies at the Salinas Lithium Project. Latin also holds the Catamarca Lithium Project in Argentina and through developing these assets, aims to become one of the key lithium players to feed the world's insatiable appetite for battery metals. The Australian projects include the Cloud Nine Halloysite-Kaolin Deposit. Cloud Nine Halloysite is being tested by CRC CARE aimed at identifying and refining halloysite usage in emissions reduction, specifically for the reduction in methane emissions from cattle. #### **Forward-Looking Statement** This ASX announcement may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on Latin Resources Ltd.'s current expectations, estimates and assumptions about the industry in which Latin Resources Ltd operates, and beliefs and assumptions regarding Latin Resources Ltd.'s future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forward-looking statements are only predictions and are not guaranteed, and they are subject to known and unknown risks, uncertainties and assumptions, some of which are outside the control of Latin Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Actual values, results or events may be materially different to those expressed or implied in this ASX announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, Latin Resources Ltd does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions or circumstances on which any such forward looking statement is based. #### **Competent Person Statement** The information in this report that relates to Geological Data and Exploration Results is based on information compiled by Mr Anthony Greenaway, who is an employee of Latin resources and a Member of the Australian Institute of Mining and Metallurgy. Mr Greenaway sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Greenaway consents to the inclusion in this report of the matters based on his information, and information presented to him, in the form and context in which it appears. The information in this report that relates the Mineral Resource Estimate and exploration targets are based on the information compiled by Mr Marc-Antoine Laporte M.Sc., P.Geo, who is an employee of SGS Canada Ltd and a member of the L'Ordre des Géologues du Québec. He is a Senior Geologist for the SGS Geological Services Group and as more than 15 years of experience in industrial mineral, base and precious metals exploration as well as Mineral Resource evaluation
and reporting. Mr Laporte sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to quality as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. #### **APPENDIX 1** # FIGURE 6 SALINAS LITHIUM PROJECT REGIONAL GEOLOGY AND TENURE FIGURE 7 COLINA DEPOSIT LOCATION - SALINAS LITHIUM PROJECT BRAZIL ### **APPENDIX 2** ## **JORC CODE, 2012 EDITION – TABLE 1** ### **SECTION 1 SAMPLING TECHNIQUES AND DATA** (CRITERIA IN THIS SECTION APPLY TO ALL SUCCEEDING SECTIONS) | Criteria | JORC Code explanation | Commentary | |------------------------|--|---| | Sampling techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | The July 2021 stream sediment sampling program was completed by Latin Resources. Latin Resources stream sediment sampling: Stream sediment samples were taken in the field by Latin's geologists during field campaign using preselections and procedures. All surface organic matter and soil were removed from the sampling point, then the active stream sediment was collected from five holes spaced 2.5 musing a post digger. Five subsamples were collected along 25 cm depth homogenised in a plastic tarp and split into four parts. The chosen part (1/4) was screened using a 2 mmustainless steel sieve. A composite sample weighting 350-400g of the manufraction was poured in a labelled zip lock bag for assaying. Oversize material retained in the sieve was analyze with hand lens and discarded. The other three quartiles were discarded, samply holes were filled back, and sieve and canvas were thoroughly cleaned. Photographs of the sampling location were taken for all the samples. Sample book were filled in with sample information and coordinates. Stream sediment sample locations were collected in the field using a hand-held GPS with +/-5m accurace using Datum SIRGAS 2000, Zone 23 South) coordinates system. No duplicate samples were taken at this stage. No certified reference standards samples were submitted at this stage. Latin Resources Diamond Drilling: Diamond core has been sampled in intervals of ~ 1 (up to 1.18 m) where possible, otherwise intervalless than 1 m have been selected based on geological boundaries. Geological boundaries have not been crossed by sample intervals. ½ core samples have been collected and submitted for QA/QC analysis. < | | Drilling
techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Latin Resources drilling is completed using industr standard practices. Diamond drilling is completed using HQ size coring equipment. Drilling techniques used at Salinas Project comprise: NTW Diamond Core (64.2mm diameter), standard tube to a depth of ~200- 250 m. BTW diamond core utilized for hole SADD031 from depth of 309.10 m. Diamond core holes drilled directly from surface. Down hole survey was carried out by Reflex EZ-TRAtool. Core orientation was provided by an ACT Reflex (AC III) tool. | | Criteria | JORC Code explanation | Commentary | |--|--|--| | | | All drill collars are surveyed using handheld GPS. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Latin Resources core is depth marked and orientated to check against the driller's blocks, ensuring that all core loss is taken into account. Diamond core recovery is logged and captured into the database. Zones of significant core loss
may have resulted in grade dilution due to the loss of fine material. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | All drill cores have been geologically logged. Sampling is by sawing core in half and then sampling core on nominal 1m intervals. All core sample intervals have been photographed before and after sawing. Latin's geological logging is completed for all holes, and it is representative. The lithology, alteration, and structural characteristics of drill samples are logged following standard procedures and using standardised geological codes. Logging is both qualitative and quantitative depending on field being logged. All drill-holes are logged in full. | | | | Geological structures are collected using Reflex IQ Logger | | | | All cores are digitally photographed and stored. | | Sub-sampling techniques and sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | For the 2021 stream sediment sampling program: All samples collected from field were dry due to dry season. To maximise representativeness, samples were taken from five holes weighting around 3 Kg each for a total of 15 Kg to be reduced to 350-400 g. Samples were dried, crushed and pulverized 250g to 95% at 150#. Any samples requiring splitting were split using a Jones splitter. For the 2022 diamond drilling program: Samples were crushed in a hammer mill to 75% passing -3mm followed by splitting off 250g using a Jones splitter and pulverizing to better than 95% passing 75 microns. Duplicate sampling is carried out routinely throughout the drilling campaign. The laboratory will carry out routine internal repeat assays on crushed samples. The selected sample mass is considered appropriate for the grain size of the material being sampled. | | Quality of assay
data and
laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) | For the 2021 stream sediment sampling program: The stream sediment samples were assayed via ICM90A (fusion by sodium peroxide and finish with ICP-MS/ICP-OES) for a 56-element suite at the SGS Geosol Laboratorios located at Vespasiano/Minas Gerais, Brazil. No control samples have been used at this stage. The internal laboratory controls (blanks, duplicates and standards) are considered suitable. For the 2022 diamond drilling program: Core samples are assayed via ICM90A (fusion by sodium peroxide and finish with ICP-MS/ICP-OES) for | | Criteria | JORC Code explanation | Commentary | |--|--|---| | | and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | a 56-element suite at the SGS Geosol Laboratorios located at Vespasiano/Minas Gerais, Brazil. If lithium results are above 15,000ppm, the Lab analyze the pulp samples just for lithium through ICP90Q (fusion by sodium peroxide and finish with ICP/OES). | | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Selected sample results which are considered to be significant will be subjected to resampling by the Company. This can be achieved by either reassaying of sample pulps, resplitting of coarse reject samples, or resplitting of core and reassaying. All Latin Resources data is verified by the Competent person. All data is stored in an electronic Access Database. Assay data and results is reported, unadjusted. Li₂O results used in the market are converted from Li results multiplying it by the industry factor 2.153. | | Location of data
points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Stream sediment sample locations and drill collars are captured using a handheld GPS. Drill collars are located using a handheld GPS. All GPS data points were later visualized using ESRI ArcGIS Software to ensure they were recorded in the correct position. The grid system used was UTM SIRGAS 2000 zone 23 South. | | Data spacing and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Stream sediment samples were taken every 200m between sampling points along the drainages which is considered appropriate for a first stage, regional work. Every sampling spot had a composite sample made of five subsamples spaced 2.5 m each other along a channel for a 10 m length zone or a cross pattern with the same spacing of 2.5 m for the open valleys and braided channels. Due to the preliminary nature of the initial drilling campaign, drill holes are designed to test specific targets, with not set drill spacing. | | Orientation of
data in relation
to geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Sampling is preferentially across the strike or trend of mineralised outcrops. Drilling has been designed to intersect the mapped stratigraphy as close to normal as possible. | | Sample security | The measures taken to ensure sample security. | At all times samples were in the custody and control of the
Company's representatives until delivery to the laboratory
where samples were held in a secure enclosure pending
processing. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | The Competent Person for Exploration Results reported here has reviewed the field procedures used for sampling program at field and has compiled results from the original sampling and laboratory data. No External audit has been undertaken at this stage. | # SECTION 2 REPORTING OF EXPLORATION RESULTS (CRITERIA LISTED IN THE PRECEDING SECTION ALSO APPLY TO THIS SECTION.) | Criteria | JORC Code explanation | Commentary | |---
--|--| | Mineral tenement
and land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Exploration Licences 830.578/2019, 830.579/2019, 830.580/2019, 30.581/2019, 830.582/2019, 830.691/2017 and 832.515/2021 are 100% fully owned by Latin Resources Limited. Latin has entered in separate exclusive option agreement to acquire 100% interest in the areas: 830.080/2022, 831.118/2008, 831.219/2017, 831.799/2005 (northern part). The Company is not aware of any impediments to obtaining a licence to operate, subject to carrying out appropriate environmental and clearance surveys. | | Exploration done by other parties | Acknowledgment and appraisal of
exploration by other parties. | Historic exploration was carried out on the area
830.080/2022 (Monte Alto) with extraction of gems
(tourmaline and lepidolite), amblygonite, columbite and
feldspar. | | Geology | Deposit type, geological setting and style
of mineralisation. | Salinas Lithium Project geology comprises
Neoproterozoic age sedimentary rocks of Araçuaí Orogen
intruded by fertile Li-bearing pegmatites originated by
fractionation of magmatic fluids from the peraluminous
S-type post-tectonic granitoids of Araçuaí Orogen.
Lithium mineralisation is related to discordant swarms of
spodumene-bearing tabular pegmatites hosted by
biotite-quartz schists. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | All drill hole summary location data is provided in Appendix 1 to this report and is accurately represented in appropriate location maps and drill sections where required. | | Data aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Sample length weighted averaging techniques have been applied to the sample assay results. Where duplicate core samples have been collected in the field, results for duplicate pairs have been averaged. A nominal minimum Li₂O grade of 0.4% Li₂O has been used to define a 'significant intersection'. No grade top cuts have been applied. | | Criteria | JORC Code explanation | Commentary | |--|---|---| | Relationship
between
mineralisation
widths and intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | Drilling is carried out at right angles to targeted structures and mineralised zones where possible. Drill core orientation is of a high quality, with clear contact of pegmatite bodies, enabling the calculation of true width intersections. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | The Company has released various maps and figures
showing the sample results in the geological context. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high-grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. | All analytical results for lithium have been reported. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | All information that is considered material has been reported, including stream sediment sampling results, Drilling results geological context, etc. Sighter metallurgical test work was undertaken on approximately 44kg of drill core sourced from drill hole SADD023 (26.99m: 94.00-120.88m) and submitted to independent laboratories SGS GEOSOL Laboratories in Belo Horizonte Brazil. Test work included crushing, size fraction analysis and HLS separation to ascertain the amenability of the Colina Project spodumene pegmatite material to DMS treatment routes. | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Latin plans to undertake additional reconnaissance mapping, infill stream sediment and soil sampling at Salinas South Prospect. Follow-up infill and step-out drilling will be undertaken based on results. Additional metallurgical processing test work on drill core form the Colina Prospect. | # SECTION 3 ESTIMATION AND REPORTING OF MINERAL RESOURCES (CRITERIA LISTED IN THE PRECEDING SECTION ALSO APPLY TO THIS SECTION.) | Criteria | JORC Code explanation | Commentary | |------------------------------|--
--| | Database integrity | Measures taken to ensure that data has
not been corrupted by, for example,
transcription or keying errors, between
its initial collection and its use for
Mineral Resource estimation purposes. Data validation procedures used. | The Colina database is stored in MS Excel and DataShed software. A dedicated database manager has been assigned by the project who checks the data entry against the laboratory report and survey data. Geological data is entered by a geologist to ensure no confusion over terminology, while laboratory assay data is | | | - Bata vanaation procedures asca. | entered by the data entry staff. A variety of manual and data checks are in place to check against human error of data entry. All original geological logs, survey data and laboratory results sheets are retained in a secure location on site. All data requested were made available to SGS by Latin Resources. Relevant data were imported to Genesis and Leapfrog software and further validation processes completed. At this stage, any errors found were corrected. The validation procedures used included checking of data as compared to the original data sheets, validation of position of drillholes in 3D models and reviewing areas appearing anomalous following statistical analysis: Drillhole depths for the geology, survey and assay logs do not exceed the recorded drilled depth. Dates are in the correct format and are correct o Set limits (e.g. for northing, easting, assay values) are not exceeded o Valid geology codes (e.g. lithology, | | | | alteration etc.) have been used. Sampling intervals are checked for gaps and overlaps. SGS reviewed the provided database as part of the resource model generation process, where all data was checked for errors, missing data, misspelling, interval validation, negative values, and management of zero versus absent data: Visual checks that collar locations are correct and compared with existing information. All drilling and sampling/assaying databases are considered suitable for the Mineral Resource Estimate. No adjustments were made to the assay data prior to import into Genesis software. | | Site Visits | Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. | Competent Person Marc-Antoine Laporte M.Sc., P. Geo visit the site between 3-6 of October 2022. During the visit, CP reviewed the drilling, sampling, chain of custody, facilities, and data management process. All requested information requested by SGS was provided by Latin Resource employees. | | Geological
interpretation | Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. | SGS Considers the geological interpretation to be robust. The confidence in the geological interpretation is reflected by the assigned Mineral Resource classification. The geology has guided the resource estimation, particularly the lithological and structural control. Grade and geological continuity are conceptual at the moment and will be confirmed with infilled drilling. Lithium mineralisation is mostly composed of spodumene and no significant other lithium bearing minerals are visually present in the deposit. A geological and mineralisation interpretation of the deposit was made using Leapfrog software. | | Criteria | JORC Code explanation | Commentary | |-------------------------------------|---|--| | Dimensions | The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. | The footprint of the whole mineralisation zone is about 1400 metres N-S by 400 metres E-W, with about 400 m overall thickness. The average surface elevation around Colinas 700 m RL. The maximum local RL of the mineralisation is 800.2 m and the minimum local RL is 563.2 m. | | Estimation and modelling techniques | The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining
units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. | The geological and mineralisation interpretation of the deposit as well as the block modelling and resource estimation were made using Genesis and Leapfrog software. Latin Resources provided SGS with a list of simplified codes for use in creating the 3D geological model. The major lithological units are as follows: PEGMATITE: SPODUMENE PEGMATITE: TUFF: QUARTZ VEINS SCHIST The most volumetrically significant mineralised units are the spodumene bearing pegmatites. They were generated automatically following grouping of similar mineralisation trends. A maximum extrapolation of mineralisation of 50 m was used. 14 mineralised models were generated for the estimation process equivalent of the individual pegmatite. Of the 14, 4 are unmineralised and are considered as waste. All pegmatites are surrounding by schistID2 interpolation was used for the grade estimation of the individual pegmatites. Only Li₂O was estimated. A block model was created using the mineralised models as hard boundaries. A block size of 5 m x 5 m x 5 m was selected considering the shape and spatial orientation of the mineralised models. Block fraction was applied to the block model. 3 estimation passes with its respective search ellipsoid of the block model. 3 estimation passes with its respective search ellipsoid An average search orientation was applied to each block according to its local dip direction and plunge. Pass 1 consisted of a minimum 5, a maximum of 15 and a maximum of 3 composites per drill hole (minimum of 2 drill holes to consider) within a search ellipsoid of 100 m x 100 m x 30 m. Pass 3 consisted of a minimum 5, a maximum of 15 and a maximum of 3 consisted of a minimum 5, a maximum of 15 and a maximum of 3 consisted of a minimum 5, a maximum of 15 and a maximum of 15 and no maximum composites per drill hole within a search ellipsoid of 400 m x 200 m x 60 m. Pass 3 consisted of a minimum 5, a | | Moisture | Whether the tonnages are estimated on
a dry basis or with natural moisture, and
the method of determination of the | The tonnages are estimated on a dry basis. | | Criteria | JORC Code explanation | Commentary | |--|--|---| | Cut-off parameters | The basis of the adopted cut-off grade(s) or quality parameters applied. | A cut-off grade of 0.5% Li ₂ O was used for resource estimation statement. | | Mining factors or assumptions | Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made | Mineralisation at the Colina deposit extends to surface and is expected to be suitable for open cut mining. The open pit mining method was selected. Mineralisation is relatively at a shallow depth and the average plunge of mineralisation is also moderate. The Colina Salinas Lithium Project is located in a wellestablished mining region and in close proximity to existing transport, energy and camp infrastructure. No minimum mining width was selected. The block model includes block fraction of the mineralised pegmatite portion. It is assumed that an adequate mining selectivity will be applied during extraction. Internal mining dilution is limited to internal barren pegmatite and/or host rock intervals within the mineralised pegmatite intervals. No host rock material was included from the hanging wall or the footwall of the mineralised pegmatites models nor included into the block model. Based on these assumptions, it is considered that there are no mining factors which are likely to affect the assumption that the deposit has reasonable prospects for eventual economic extraction | | Metallurgical
factors or
assumptions | The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. | Metallurgical tests were not made available at this stage of project advancement. An assumed concentrate (DMS) recovery 60% has been applied in determining reasonable prospects of eventual economic extraction. | | Environmental factors or assumptions | Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. | There are no studies available on the environmental impacts of the mining and processing operation. SGS is not aware of any studies being started on the Project. | | Bulk density | Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that | • The specific gravity ("SG") of spodumene pegmatite samples surrounding the mineralisation ranged between 2.47 to 3.27 for an average of 2.67. The specific gravity of the schist material hosting the mineralisation ranged from 1.57 to 3.56 with an average of 2.76 although, only 1 sample was lower than 2.27 and only 4 samples were greater than 3.0. A SG of 2.7 was selected for the | | Criteria | JORC Code explanation | Commentary | |--|---
---| | D | adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. | mineralised pegmatite models. Average Sample size of pegmatite material is 0.16m. SG measurements were completed on core by the Weight in Air/Weight in Water method. The SG measurements provide sufficient data for a SG determination within the mineralised pegmatite models. | | Classification | The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. | There are no Measured resources. The drill hole data spatial distribution and continuity are not sufficient to permit any Measured at this stage. This may be updated following the addition of additional validated and relevant drill hole data. Automatic classification was used. Classification focused on composite spatial relation was used with a minimum of 7composites to consider (maximum of 3 composites per drill hole) for the indicated resources within a search ellipsoid of 100 m x 100 m x 30 m. A 55% ellipsoid filling factor was also applied. It is the competent's opinion that the current classification used is adequate and reliable for this type of mineralisation and resource estimate. | | Audits or reviews | The results of any audits or reviews of
Mineral Resource estimates | A peer review of the block modelling parameters and
resource estimation methods has been done by fellow
colleagues and competent persons. | | Discussion of relative accuracy/confidence | Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to nages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. | Available drilling data. Validation has proven that the block model fairly reflects the underlying data inputs. Variability over distance is relatively moderate to low for this deposit type therefore the maximum classification level is Indicated. The MRE reported is a global estimate with reasonable prospects of eventual economic extraction. An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration. There has been no production at the Salinas Colina Project. |