

HIGH GRADE LITHIUM ASSAYS RETURNED FROM McCOMBE AND

DRILLING RESUMED AT SEYMOUR AND ROOT

HIGHLIGHTS

- Assays received for a further 11 diamond holes at McCombe, Root including:
 - o RL-22-0041: **15.9m @ 1.12% Li₂0** from 98.1m (incl. **6.0m @ 1.91% Li₂0** from 99.0)
 - o RL-22-0027: **12.3m @ 1.34% Li₂0** from 3.4m (incl. **11.4m @ 1.41% Li₂0** from 4.2m)
 - o RL-22-0035: **12.7m @ 1.28% Li₂0** from 66.5m
 - o RL-22-0038: 8.4m @ 1.18% Li₂O from 81.5m (incl. 5.0m @ 1.91% Li₂O from 81.5m)
- Phase 2 McCombe extensional drilling continuing to explore the lithium bearing pegmatites along strike and down dip
- All weather camps operational with full complement of staff
- All weather roads connecting camps to airports and Thunder Bay
- 6 diamond drill holes completed, and logging and assaying commenced at Morrison, Root
- Maiden Root Mineral Resource Estimate, on track for Q12023

Green Technology Metals Limited (**ASX: GT1**)(**GT1** or the **Company**), a Canadian-focused multi-asset lithium business, is pleased to announce further high-grade lithium assay results from its 100%-owned **Root Project**, located approximately 200km west of its flagship Seymour Project in Ontario, Canada. Drilling at Root was initially focussed on the **McCombe** LCT pegmatite system, targeting rapid delineation of a maiden Mineral Resource Estimate, but has now expanded to the **Morrison** prospect, situated 1 km east of McCombe. Drilling is actively underway in 2023 with 2 drill rigs working day + night shift at Root.

"The high-grade assay results received from Phase 2 extensional drilling at McCombe demonstrate continuation of the lithium bearing pegmatites along strike and down dip. Several additional lithium bearing pegmatites have been intersected to the north-east and drilling will continue to delineate their extent".

"The second drill rig mobilised to the Morrison prospect just before Christmas and completed 6 diamond holes, all intersecting pegmatite. Logging and assaying are now underway with the rig continuing in a north & west direction towards McCombe"

GT1 Chief Executive Officer, Luke Cox

94 Rokeby Road, Subiaco, Western Australia 6008 +61 8 6557 6825 www.greentm.com.au info@greentm.com.au ABN 99 648 657 649

McCombe Deposit (Root Project)

The McCombe LCT (Lithium-Caesium-Tantalum) pegmatite is currently the most advanced prospect at the Root Project. Historical drilling completed by previous owners from 1950 to 2016 intersected numerous pegmatites, generally dipping to the south and striking east-west. Phase 1 and Phase 2 drilling by GT1 has now demonstrated McCombe to be a simpler mineralised system consisting of:

- one major pegmatite averaging 10m true thickness (ranging 2m to 19m), striking east-west with shallow dip approximately 30 degrees to the south, open along strike and down dip
- four pegmatites striking north-east with shallow to moderate dip to the south located in the northeast quadrant, all open along strike and down dip

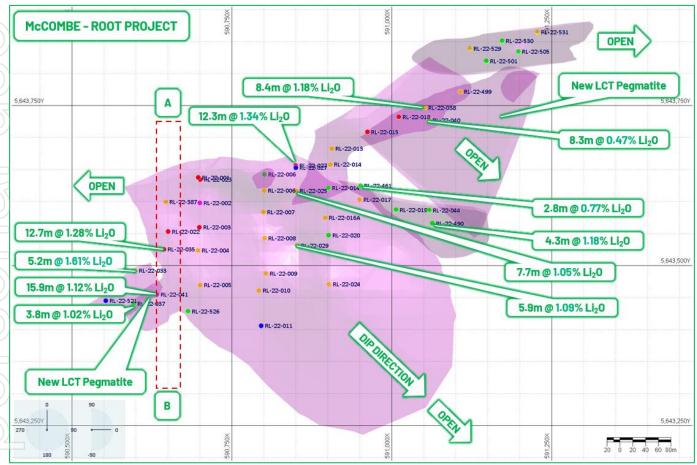


Figure 1: Plan view of McCombe interpreted pegmatite, thickness, and recent assays (cross section A-B)

Phase 1 drilling at McCombe is now complete, comprising of twenty-two (22) resource definition diamond holes. Assays have been returned for all twenty-two (22) holes and have intersected thick and continuous high grade spodumene pegmatites from surface in all 22 holes. The Phase 1 drilling has delineated, extended, and simplified the historical mineralised pegmatites in all directions, Phase 2 drilling will continue to explore the pegmatites along strike and down dip in the coming weeks for incorporation into the maiden Mineral Resource Estimate.

	Hole	Easting	Northing	RL	Dip	Azi	Depth	From	То	Interval	Vis Est.%	Li2O
	RL-22-001	590,698	5,643,629	397	-59	358	60	11.8	24.2	12.4		1.77
	RL-22-002	590,700	5,643,575	394	-62	0	72	42.2	57.5	15.3		1.20
	RL-22-003	590,699	5,643,517	394	-58	358	102	72.0	83.5	11.5		2.03
_	RL-22-004	590,698	5,643,482	397	-61	357	144	80.5	87.4	7.0		1.41
	RL-22-005	590,699	5,643,421	396	-60	359	147	90.8	100.7	9.9		0.25
_	RL-22-006		5,643,604	399	-59	360	120	21.7	31.2	9.5		1.54
	RL-22-007	590,799	5,643,549	393	-61	359	117	64.9	74.7	9.8		1.51
	RL-22-008		5,643,505	392	-61	359	162	71.5	80.3	8.8		1.81
	RL-22-009	- <i>'</i>	5,643,441	395	-61	2	186	91.7	99.4	7.7		0.54
	RL-22-010		5.643.405	395	-61	358	150	107.8	114.7	6.9		0.80
	RL-22-013	<u> </u>	5,643,649	397	-60	360	132	64.0	72.0	8.0		1.72
	RL-22-014	- <i>'</i>	5,643,602	397	-60	360	129	102.0	110.4	8.4		1.32
	RL-22-015	· · ·	5,643,691	392	-60	360	93	28.9	42.3	13.4		1.24
	RL-22-016A		5,643,540	394	-61	3	156	67.3	73.6	6.3		1.44
	RL-22-016A	- <i>'</i>	5,643,540	394	-61	3	156	126.0	130.1	4.2		0.32
	RL-22-010/1		5,643,575	396	-60	360	120	53.8	60.0	6.2		1.29
	RL-22-017		5,643,702	390	-61	1	90	51.8	64.4	12.6		1.18
	RL-22-018 RL-22-019		5,643,574	397	-60	2	120	23.1	26.7	3.5		1.08
	RL-22-019 RL-22-020		5,643,508	389	-60	360	150	78.0	82.8	4.8		1.18
_	RL-22-020 RL-22-021			397	-60	360	130	111.3	118.7	7.4		0.95
			5,643,481	397	-59	0	152	47.4	61.4	14.0		1.35
	RL-22-022		5,643,525		-59 -61		189		25.5			1.35
	RL-22-023		5,643,625	397		2		12.4		13.1		
_	RL-22-024		5,643,425	388	-60	2	150	85.6	93.0	7.4		1.04
	RL-22-025		5,643,600	396	-60	360	141	30.1	37.8	7.7		1.05
_	RL-22-027		5,643,651	397	-59	358	108	3.4	15.6	12.3		1.34
2-	RL-22-029	,	5,643,475	392	-60	360	227	106.4	112.3	5.9		1.09
)	RL-22-033		5,643,489	395	-58	4	162	2.8	8.0	5.2		1.61
<u> </u>	RL-22-035		5,643,487	397	-59	0	162	66.5	79.2	12.7		1.28
_	RL-22-037	· · · ·	5,643,419	392	-60	-	180	40.1	43.8	3.8		1.02
_	RL-22-038		5,643,706	390	-60	-	141	81.5	90.0	8.4		1.18
_	RL-22-040	,	5,643,675	389	-60	360	120	99.5	107.8	8.3		0.47
	RL-22-041	,	5,643,399	397	-59	359	201	98.1	114.0	15.9		1.12
<u> </u>	RL-22-044	· · ·	5,643,575	391	- 60	-	180	18.9	22.5	3.6	<5	assay pending
)	RL-22-044	· ·	5,643,576	397	- 60	1	180	18.9	22.5	3.6	10	assay pending
/	RL-22-387	590,648	5,643,581	394	- 60	1	120	31.7	41.5	9.8	10	assay pending
	RL-22-461	590,951	5,643,621	395	-61	1	107	5.5	8.4	2.8		0.77
	RL-22-490	591,058	5,643,533	389	- 60	8	201	61.7	66.0	4.3		1.18
7	RL-22-499	591,106	5,643,727	389	-61	1	120	90.6	97.7	7.2	10	assay pending
	RL-22-501	591,146	5,643,740	388	- 60	1	201	53.7	62.1	8.4	10	assay pending
_	RL-22-501	591,146	5,643,740	388	- 60	1	201	150.4	154.9	4.5	10	assay pending
	RL-22-505	591,197	5,643,774	376	- 60	1	210	118.8	123.2	4.4	10	assay pending
	RL-22-526	590,680	5,643,365	407	- 60	1	180	120.4	122.5	2.1	5	assay pending
)	RL-22-529	591,146	5,643,809	387	- 60	321	150	73.9	80.4	6.6	5	assay pending
/	RL-22-530	591,193	5,643,824	398	- 59	322	150	64.4	67.7	3.3	5	assay pending
	RL-22-531	591,236	5,643,855	398	-61	321	150	22.6	28.8	6.2	10	assay pending
	RL-22-532	591,197	5,643,784	376	- 85	320	231	90.3	101.8	11.5	5	assay pending
4	RL-22-532		5,643,784	376	- 85	320	231	111.3	133.2	21.9	20	assay pending
		591,197		376	- 85	320	231	156.0	176.8	20.8	20	assay pending
	RL-22-533		5,643,755	379	-86	312	204	153.8			10	assay pending
	RL-22-534	1	5,643,801	404	-61	319	201	117.0				assay pending
		591,303		393	- 60	321	150	30.8	36.3			assay pending
	RL-22-536		5,643,808	391	- 60	319	180	90.8	96.1			assay pending
	RL-22-537		5,643,762	389	- 58	321	201	172.4	175.9			assay pending
)	RL-22-538		5,643,440	400	- 60	360	135	38.2	42.8			assay pending
/	RL-22-539		5,643,440	400	- 70	299	117	53.1	55.3	2.2	5	assay pending
	RL-22-539 RL-22-542		5,643,788	389	- 60	320	220	146.9	151.1	4.2	5	assay pending
	RL-22-542 RL-22-541			388	- 59	320	180	79.5	83.8			assay pending
	RL-22-541 RL-22-543		5,643,785	389	- 59 - 74	323	250	187.5	83.8 195.5			assay pending assay pending
_	RL-22-543 RL-22-549				- 74 - 59		250	187.5			5	
\vdash	RL-22-549 RL-22-550		5,643,801	388		319			128.6 101.7			assay pending
	KL-22-550	591,430	5,643,838	389	- 59	313	150	97.5	101./	4.2	1	assay pending

Table 1: McCombe drilling results - Phase 1 (grey highlight) and 2 (Vis Est. % = Visual estimate of Spodumene mineral abundance*)

* In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. The reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages).

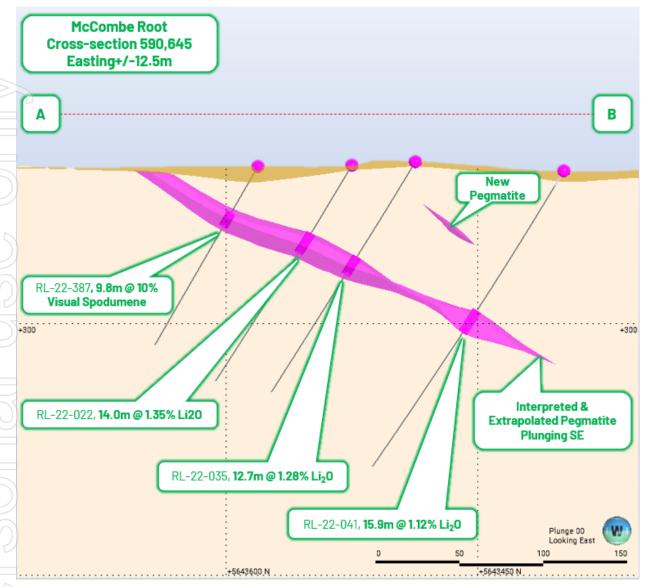


Figure 2: Cross section of the main McCombe pegmatite looking east and pegmatite plunging southeast (into the page)

Figure 3: RL-22-041 – Whole NQ diamond core showing high density spodumene crystal laths, 15.9m @ 1.12% Li₂0 from 98.1m (incl. 6.0m @ 1.91% Li₂0 from 99.0m)

Morrison Deposit (Root Project)

The Morrison LCT spodumene pegmatites, located approximately 1km east of McCombe, were explored in the mid to late 1950's. The pegmatites strike east west and dip about 30 degrees towards the south. Outcrop of the pegmatite is approximately 200m long and tested by trenching, but historical drilling has also proven the strike of the pegmatite to be at least 1.6km to the west with additional occurrences to the north.

Initial drilling at Morrison comprising of twenty (20) holes for 2,500m is targeted to confirm historical drilling and sampling. The second phase of drilling is then planned to test for extensions of the mineralised pegmatites in all directions, infill key sections and rapidly facilitate delineation of a Mineral Resource estimate.

Six (6) diamond holes were completed at the end of December and logging and assaying has now commenced.

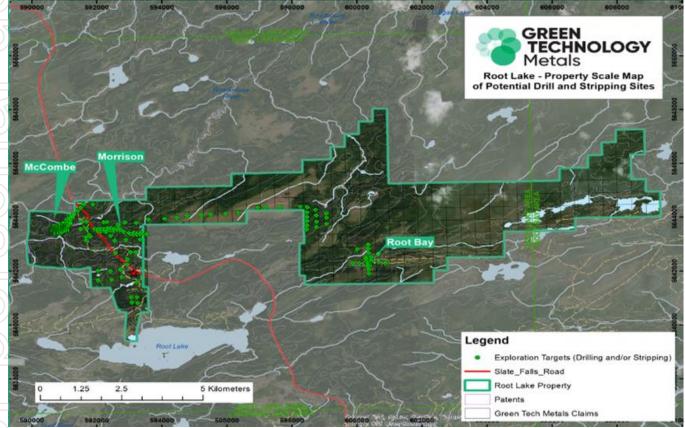


Figure 4: Root Project location map, McCombe, Morrison and Root Bay prospects

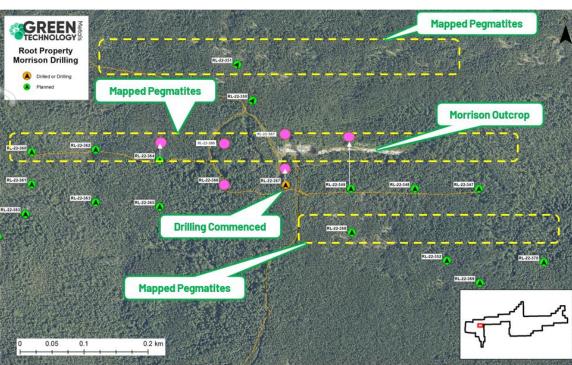
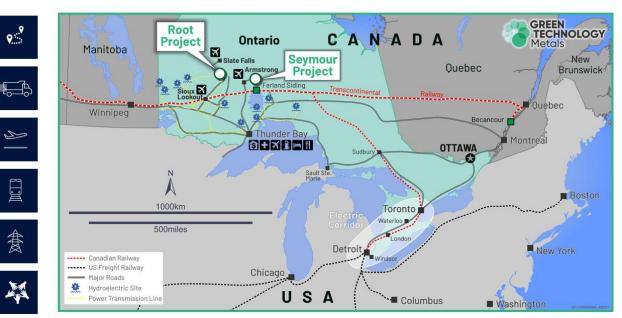



Figure 5: Morrison outcrop, mapped pegmatites, planned holes (green) and drilled holes (pink)

Root Project Infrastructure

The Root Project is readily accessible via all-weather roads and airports with emergency response capability in Slate Falls and Sioux Lookout. The Transcontinental railway connects Root and Seymour projects with a direct line and sidings managed by CN Rail. Hydro power lines run through the eastern side of the Root Project electrifying the region with green energy.

INFRASTRUCTURE CORRIDOR

This ASX release has been approved for release by the Board. **KEY CONTACTS**

Investors Luke Cox Chief Executive Officer info@greentm.com.au +61 8 6557 6825


Media Jacinta Martino Investor Relations and Media ir@greentm.com.au +61 430 147 046

Green Technology Metals (ASX:GT1)

GT1 is a North American focussed lithium exploration and development business. The Company's 100% owned Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of 9.9 Mt @ 1.04% Li₂O (comprised of 5.2 Mt at 1.29% Li₂O Indicated and 4.7 Mt at 0.76% Li₂O Inferred).¹ Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

¹ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, *Interim Seymour Mineral Resource Doubles to 9.9Mt*. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

Information in this report relating to Exploration Results is based on information reviewed by Mr Luke Cox (Fellow AusIMM). Mr Cox has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Cox consents to the inclusion of the data in the form and context in which it appears in this release. Mr Cox is the Chief Executive Officer of the Company and holds securities in the Company.

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 23 June 2022. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

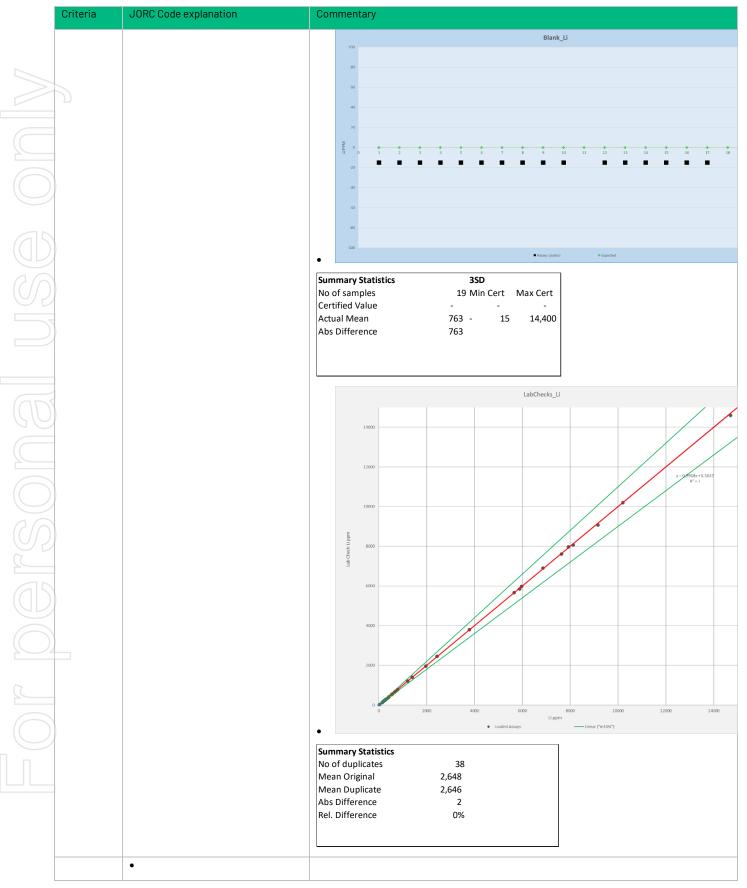
Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GTI's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GT1's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GT1's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

APPENDIX B: JORC CODE, 2012 EDITION - Table 1 Report

Section 1 Sampling Techniques and Data

C	Criteria	JORC Code explanation	Commentary
S	Sampling echniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The McCombe deposit at the Root project is a new discovery and, as such, has not been historically sampled. An excavator has exposed and enlarged the outcrop area to make it amenable to mapping and sampling. GT1 commenced a diamond drilling on September 3, 2022 at the McCombe prospect with 51 holes completed to date and more planned. Diamond Drilling Diamond drilling was used to obtain nominally 1m downhole samples of core. N0 core samples were ½ cored using a diamond saw with ½ the core placed in numbered sample bags for assaying and the other half retained in sequence in the core tray. ½ core samples were approximately 3.0kg in weight with a minimum weight of 500grams. Core was cut down the apex of the core and the same downhole side of the core selected for assaying to reduce potential sampling bias. Channel Samples Preparation prior to obtaining the channel samples including grid and georeferences and marking of the pegmatite structures. Samples were cut across the pegmatite with a diamond saw perpendicular to strike. Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance with QAOC procedures. Samples were ther transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag. Grab Samples Preparation prior to obtaining the grab sample including logging location with D/GPS, geological setting and rock identification and mineralogy Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag. <
	Drilling echniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 One tag from a triple tag book was inserted in the sample bag. Tri-cone drilling was undertaken through the thin overburden prior to NQ2 diamond drilling through the primary rock using a standard tube.



Criteria	JORC Code explanation	Commentary			
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No core was recovered through the overburden tri-coned section of the hole (top 5m of the hole) Core recovery through the primary rock and mineralised pegmatite zones was 98%. Country rock, mainly meta basalts showed high, 96% recoveries. The core has not been assayed yet so no correlation between grade and recovery can be made at this time. Recovery was determined by measuring the recovered metres in the core trays against the drillers core block depths for each run. 			
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling will be undertaken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock. 			
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Each ½ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples will be inserted in each batch submitted to the laboratory at a rate of approximately 1:20. The sample preparation process is considered representative of the whole core sample. 			
 Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters 	 Actlabs inserted internal standards, blanks and pulp duplicates within each sample batch as part of their own internal monitoring of quality control. GT1 inserted certified lithium standards and blanks into each batch submitted to Actlabs to monitor precision and bias performance at a rate of 1:20. The major element oxides and trace elements including Rb, Cs, Nb, Ta and Be were analysed by FUS-ICP and FUS-MS (4Litho-Pegmatite Special) analytical codes which uses a lithium metaborate tetraborate fusion with analysis by ICP and ICPMS. 			

Criteria	JORC Code explanation	Commentary
Criteria	 JORC Code explanation used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 QAQC results to date do not indicate any significant issues with the assays however the results for 3 recent batches are being investigated with the laborate to confirm QAQC anomalies.
		Summary Statistics3SDNo of samples3 Min CertMax CertCertified Value4,6754,1655,185Actual Mean4,6874,6004,730Abs Difference111111Rel. Difference0%60%11Records Outside 2SD00%Fail RateRecords Outside 3SD00%Fail Rate
		0res_753_li 1100
		Summary Statistics3SDNo of samples19 Min CertMax CertCertified Value10,1799,48910,869Actual Mean9,317-1510,400Abs Difference8618618%

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Most of the holes in the McCombe program to date are drilled close to existing historic drilling from the 1950's. Whilst the historic drilling suggests some spatial issues with the holes collar locations, the current drilling largely supports the existence of significant pegmatite and Li₂O intersections at McCombe. Historic drilling data could not be verified and QAQC was likely not included in the testing regime at the time. The laboratory assay results have been sourced directly from the laboratory and the laboratory file directly imported directly into GTI's SQL database. All north seeking gyroscope surveys are uploaded directly from the survey tool output file and visually validated. Geological logs and supporting data are uploaded directly to the database using custom built importers to ensure no chance of typographical errors. No adjustment to laboratory assay data was made other than conversion of Li ppm to Li₂O using a factor of 2.153
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A GPS reading was taken for each sample location using UTM NAD83 Zone15 (for Seymour); waypoint averaging or dGPS was performed when possible. GT1 undertook a Lidar survey of the Root area in 2022 (+/- 0.15m) which underpins the local topographic surface. GT1 has used continuous measurement north seeking gyroscope tools with readings retained every 5m downhole.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 NA – insufficient drilling has been undertaken to estimate the degree of geological and grade continuity to support a Mineral Resource or Ore Reserve.

Criteria	JORC Code explanation	Commentary
	 Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The current drilling program is drilled to achieve as close to a representative intersection of the pegmatites as possible which dip moderately to the south. Holes are orientated approximately north and 60 degrees inclination. Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite.
Sample security	• The measures taken to ensure sample security.	 All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivered to AGAT in Thunder Bay for cutting, preparation and analysis.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• NA

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Green Technology Metals (ASX:GT1) holds a 100% interest in the Ontario Lithium Projects (Seymour, Root and Wisa). Root Lithium Asset consist of 249 single and boundary cell claims (Exploration Licences), 33 patent claims and 3 mining licence of occupation claims (total 285 claims) with a total claim area of approximately 5,376ha. All Cell Claims are in good standing An Active Exploration Permit for 3 years exist over the Root Lithium Assets, including the McCombe Deposit, Morrison Prospect and Root Bay Prospect. There is an Early Exploration Agreement with Slate Falls Nation and Lac Seul First Nation, who are supportive of GT1 exploration activities.

(Criteria	JORC Code explanation	Commentary
C	Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Regional exploration for lithium deposits commenced in the 1950's. In 1955-1950 Capital Lithium Mines Ltd. geologically mapped and sampled Miles near the McCombe Deposit with the highest recorded channel sample of 1.52m at 3.06% Lto. 7 drill holes (1.04.2.26m total) within the McCombe Deposit and Root Lake Prospect yielding low lithium assays. According to Mulligan (1965), Capital Lithium Mines Ltd. reported to Mulligan that they drilled at least 55 holes totalling 10469.86m in 1956. They delineated 4 pagmatite zones and announced a non-compliant NI 41-101 reserve calculation of 2.297 million tons at 1.3% Ltp. O However, none of that information is available on the government database. In 1956, Three Brothers Mining Exploration southwest of the McCombe Deposit that did not intersect pegmatite In 1957, Geo-Technical Development Company Limited on behalf of Continental Mining Exploration conducted a magnetometer survey and an electromagnetic check survey on the eastern claims of the Root Lithium Project to locate pyrhotite mineralization In 1977, Northwest Geophysics Limited on behalf of Noranda Exploration Company Ltd. conducted a megnetometer survey for sulphide conductors on a small package of claims east of the Morrison Prospect. Noranda also conducted a mapping and sampling program over the same area. mapped a new pegmatite dike and sampled a graphitic schist assaying 0.03%. Cu and 0.15% Zh. In 1998, Harold A. Watts prospected, trenched and sampled spodumene-bearing pegmatites with the Morrison Prospect Land Inc. created a reconnissance survey, mapping and sampling project mostly within the McCombe Deposit, but also in the Morrison and Root Lake Prospects. Highest assaying up to 5.9% Ltp.0. In 2002 stripped and blasted Z more spodumene-bearing pegmatites were discovered with assays up to 4.0g/rt Au aron A (Root Bay Bodi Prospect), 3.3% dat over 0.5m in Trench 9.0.19% Cu-2n over 8 mad up to 0.1% X Lio 0.08 hole XL do nobedi of Rober
	Geology	 Deposit type, geological setting and style of mineralisation. 	Regional Geology: The Root Lithium Asset is located within the Uchi Domain, predominately metavolcanic units interwoven with granitoid batholiths and English River Terrane, a highly metamorphosed to migmatized, clastic and chemical metasedimentary rock with abundant granitoid batholiths. They are part of the Superior craton, interpreted to be the amalgamation of Archean aged microcontinents and accretionary events. The boundary between the Uchi Domain

Criteria	JORC Code	Commentary
	explanation	
		 and the English River Terrane is defined by the Sydney Lake - Lake St. Joseph fault, an east west trending, steeply dipping brittle ductile shear zone over 450km along strike and 1 - 3m wide. Several S-Type, peraluminous granitic plutons host rare-element mineralization near the Uchi Domain and English River subprovince boundary. These pegmatites include the Root Lake Pegmatite Group, Jubilee Lake Pegmatite Group, Sandy Creek Pegmatite and East Pashkokogan Lake Lithium Pegmatite. Local Geology: The Root Lithium Asset contains most of the pegmatites within the Root Lake Pegmatite Group including the McCombe Pegmatite, Morrison Prospect, Root Lake Prospect and Root Bay Prospect. The McCombe Pegmatite and Morrison Prospect are hosted in predominately mafic metavolcanic rock of the Uchi Domain. The Root Lake and Root Bay Prospects are hosted in predominately metasedimentary rocks of the English River Terrane. On the eastern end of the Root Lithium Asset there is a gold showing (Root Bay Gold Prospect) hosted in or proximal to silicate, carbonate, sulphide, and oxide iron formations of the English River Terrane. Ore Geology: The McCombe Pegmatite is internally zoned. These zones are classified by the tourmaline-bearing, equigranular to porphyritic potassium feldspar sodic apalite zone, tourmaline-bearing, equigranular to porphyritic potassium feldspar solic apalite zone, tourmaline-being, porphyritic potassium feldspar spodumene pegmatite zone and lepidolite-rich pods and seams (Breaks et al., 2003). Both the McCombe and Morrison pegmatites have been classified as complex-type, spodumene-subtype (Černý 1991a classification) based on the abundance of spodumene, highly evolved potassium feldspar chemistry and presence of petalite, mircolite, lepidolite and lithium-calcium liddicoatite (Breaks et al., 2003).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 McCombe lies within the western edge of the Root project and hosts a non-JORC compliant Mineral Resource based on 1950's drilling. The deposit is being re-drilled to modern industry standards sampling NQ diamond core. Collar locations are noted below and all coordinates are in North American Datum 1983 (NAD83) Zone 15: McCombe downhole pegmatites are summarised below. The downhole intervals of the McCombe pegmatites are approximate to true widths.

	Criteria	JORC Code	Commentary	
		explanation		
		information is not	Hole Easting Northing RL Dip Azi Depth From To Interval Vis Est.% Lii	20
		Material and this	RL-22-001 590,698 5,643,629 397 -59 358 60 11.8 24.2 12.4	1.77
		exclusion does	RL-22-002 590,700 5,643,575 394 -62 0 72 42.2 57.5 15.3	1.20
>		not detract from	RL-22-003 590,699 5,643,517 394 -58 358 102 72.0 83.5 11.5 RL-22-004 590,698 5,643,482 397 -61 357 144 80.5 87.4 7.0	2.03
			RL-22-005 590,699 5,643,421 396 -60 359 147 90.8 100.7 9.9	0.25
		the	RL-22-006 590,800 5,643,604 399 -59 360 120 21.7 31.2 9.5	1.54
		understanding of	RL-22-007 590,799 5,643,549 393 -61 359 117 64.9 74.7 9.8 RL-22-008 590,801 5,643,505 392 -61 359 162 71.5 80.3 8.8	1.51 1.81
		the report, the	RL-22-009 590,799 5,643,441 395 -61 2 186 91.7 99.4 7.7	0.54
		Competent	RL-22-010 590,792 5,643,405 395 -61 358 150 107.8 114.7 6.9	0.80
		Person should	RL-22-013 590,906 5,643,649 397 -60 360 132 64.0 72.0 8.0 RL-22-014 590,900 5,643,602 397 -60 360 129 102.0 110.4 8.4	1.72
		clearly explain	RL-22-015 590,962 5,643,691 392 -60 360 93 28.9 42.3 13.4	1.24
		why this is the	RL-22-016A 590,894 5,643,540 394 -61 3 156 67.3 73.6 6.3 RL-22-016A 590,894 5,643,540 394 -61 3 156 126.0 130.1 4.2	0.32
		case.	RL-22-017 590,957 5,643,575 396 -60 360 120 53.8 60.0 6.2	1.29
			RL-22-018 591,011 5,643,702 390 -61 1 90 51.8 64.4 12.6	1.18
			RL-22-019 591,006 5,643,574 397 -60 2 120 23.1 26.7 3.5 RL-22-020 590,901 5,643,508 389 -60 360 150 78.0 82.8 4.8	1.08
			RL-22-021 590,999 5,643,481 397 -60 360 181 111.3 118.7 7.4	0.95
			RL-22-022 590,650 5,643,525 394 -59 0 152 47.4 61.4 14.0 RL-22-023 590,700 5,643,625 397 -61 2 189 12.4 25.5 13.1	1.35
			RL-22-023 590,700 5,643,625 397 -61 2 189 12.4 25.5 13.1 RL-22-024 590,900 5,643,425 388 -60 2 150 85.6 93.0 7.4	1.39
			RL-22-025 590,850 5,643,600 396 -60 360 141 30.1 37.8 7.7	1.05
			RL-22-027 590,850 5,643,651 397 -59 358 108 3.4 15.6 12.3 RL-22-029 590,850 5,643,475 392 -60 360 227 106.4 112.3 5.9	1.34
			RL-22-025 550,550 5,043,489 395 -58 4 162 2.8 8.0 5.2	1.61
			RL-22-035 590,643 5,643,487 397 -59 0 162 66.5 79.2 12.7	1.28
			RL-22-037 590,596 5,643,419 392 -60 - 180 40.1 43.8 3.8 RL-22-038 591,045 5,643,706 390 -60 - 141 81.5 90.0 8.4	1.02
			RL-22-040 591,058 5,643,675 389 -60 360 120 99.5 107.8 8.3	0.47
			RL-22-041 590,633 5,643,399 397 -59 359 201 98.1 114.0 15.9	1.12
				pending pending
				pending
			RL-22-461 590,951 5,643,621 395 -61 1 107 5.5 8.4 2.8	0.77
			RL-22-490 591,058 5,643,533 389 -60 8 201 61.7 66.0 4.3 RL-22-499 591,106 5,643,727 389 -61 1 120 90.6 97.7 7.2 10 assay	1.18 pending
			RL-22-501 591,146 5,643,740 388 -60 1 201 53.7 62.1 8.4 10 assay	pending
				pending pending
				pending
				pending
				pending pending
			RL-22-532 591,197 5,643,784 376 -85 320 231 90.3 101.8 11.5 5 assay	pending
				pending pending
				pending
				pending
				pending pending
			RL-22-541 591,350 5,643,830 388 -59 322 180 79.5 83.8 4.3 1 assay	pending
				pending pending
				pending
	Data	In reporting	• Length weighted Li ₂ Oaverages are used across the downhole length of intersect	ed pegmatites
	aggregation	Exploration	Grade cut-offs have not been incorporated.	
	methods	Results,	No metal equivalent values are quoted.	
		weighting		
		averaging		
		techniques,		
		maximum and/or		
		minimum grade		
		truncations (eg		
		cutting of high		
		grades) and cut-		
		off grades are		
		usually Material		

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Holes drilled by GT1 attempt to pierce the mineralised pegmatite approximately perpendicular to strike, and therefore, the downhole intercepts reported are approximately equivalent to the true width of the mineralisation. Trenches are representative widths of the exposed pegmatite outcrop. Some exposure may not be a complete representation of the total pegmatite width due to recent glacial deposit cover limiting the available material to be sampled.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of 	The appropriate maps are included in the announcement.

Criteria	JORC Code explanation	Commentary
	any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Pegmatite downhole interval summary with associated assay results are listed in Appendix C
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating	 GT1 completed a high resolution Heliborne Magnetic geophysical survey over the property in July 2022. The survey was undertaken by Propsectair using their Robinson R-44 and EC120B helicopters. Survey details, 1,201 line-km, 50m line spacing, direction 179 degrees to crosscut pegmatite strike, 50m altitude. Control lines were flown perpendicular to these lines at 500m spacing. Images have been received Total Magnetics.
Further work	 substances. The nature and scale of planned further work (eg tests for lateral 	• Further extensional drilling is currently being carried out at McCombe testing strike extents over 500m in length and downdip extensions up to 300m from the current outcrop.

References

Breaks, F.W., Selway, J.B. and Tindle, A.G., (2003) Fertile peraluminous granites and related rare element mineralization in pegmatites, Superior province, northwest and northeast Ontario: Operation Treasure Hunt. Ontario Geological Survey, Open File Report 6099, 179 p.

Černý, P. (1991a) Rare-element granitic pegmatites, part I. Anatomy and internal evolution of pegmatite deposits; Geoscience Canada, v.18, p.49-67.

Appendix C Downhole Interval Summary

HOLEID	From	То	Interval	Lithology	Li2Oppm	Ta2O5ppm
RL-22-001	-	2.3	2.3	Overburden	-	-
RL-22-001	2.3	11.8	9.6	Sediment	811	1
RL-22-001	11.8	24.2	12.4	Pegmatite	17,687	71
RL-22-001	24.2	60.0	35.8	Sediment	106	0
RL-22-002	-	11.3	11.3	Overburden	-	-
RL-22-002	11.3	42.2	30.9	Sediment	111	0
RL-22-002	42.2	57.5	15.3	Pegmatite	12,022	104
RL-22-002	57.5	72.0	14.5	Sediment	62	1
RL-22-003	-	5.7	5.7	Overburden	-	-
RL-22-003	5.7	72.0	66.3	Sediment	41	0
RL-22-003	72.0	83.5	11.5	Pegmatite	20,350	113
RL-22-003	83.5	102.0	18.5	Sediment	27	4
RL-22-004	-	3.0	3.0	Overburden	-	-
RL-22-004	3.0	12.3	9.3	Sediment	-	-
RL-22-004	12.3	17.8	5.5	Mafic	-	-
RL-22-004	17.8	80.3	62.5	Sediment	44	0
RL-22-004	80.3	80.5	0.2	Mafic	3,444	1
RL-22-004	80.5	87.4	7.0	Pegmatite	14,139	79
RL-22-004	87.4	144.0	56.6	Sediment	21	0
RL-22-005	-	3.5	3.5	Overburden	-	-
RL-22-005	3.5	90.8	87.3	Sediment	58	0
RL-22-005	90.8	100.7	9.9	Pegmatite	2,462	130
RL-22-005	100.7	106.5	5.7	Sediment	91	0
RL-22-005	106.5	135.8	29.4	Mafic	8	0
RL-22-005	135.8	136.7	0.9	Pegmatite	279	46
RL-22-005	136.7	147.0	10.3	Mafic	16	1
RL-22-006	-	5.0	5.0	Overburden	-	-
RL-22-006	5.0	21.7	16.7	Sediment	504	1
RL-22-006	21.7	31.2	9.5	Pegmatite	15,360	107
RL-22-006	31.2	72.8	41.6	Sediment	261	0
RL-22-006	72.8	75.5	2.7	Pegmatite	1,545	106
RL-22-006	75.5	120.0	44.5	Sediment	94	0
RL-22-007	-	5.0	5.0	Overburden	-	-
RL-22-007	5.0	64.9	59.9	Sediment	61	0
RL-22-007	64.9	74.7	9.8	Pegmatite	15,122	87
RL-22-007	74.7	117.0	42.3	Sediment	72	2
RL-22-008	-	15.8	15.8	Overburden	-	-
RL-22-008	15.8	71.5	55.7	Sediment	108	1
RL-22-008	71.5	80.3	8.8	Pegmatite	18,050	109
RL-22-008	80.3	87.3	7.0	Sediment	306	1
RL-22-008	87.3	87.3	0.0	Pegmatite	-	-

HOLEID	From	То	Interval	Lithology	Li2Oppm	Ta2O5ppm
RL-22-008	87.3	91.3	4.0	Sediment	389	4
RL-22-008	91.3	92.1	0.8	Pegmatite	2,504	82
RL-22-008	92.1	162.0	69.9	Sediment	9	0
RL-22-009	-	1.2	1.2	Overburden	-	-
RL-22-009	1.2	33.0	31.9	Sediment	-	-
RL-22-009	33.0	84.4	51.4	Mafic	-	-
RL-22-009	84.4	91.7	7.3	Sediment	1,175	3
RL-22-009	91.7	99.4	7.7	Pegmatite	5,346	170
RL-22-009	99.4	123.0	23.6	Sediment	200	0
RL-22-009	123.0	130.5	7.5	Mafic	-	-
RL-22-009	130.5	186.0	55.5	Sediment	-	-
RL-22-010	-	9.0	9.0	Overburden	-	-
RL-22-010	9.0	107.8	98.8	Mafic	33	0
RL-22-010	107.8	114.7	6.9	Pegmatite	7,947	119
RL-22-010	114.7	135.1	20.4	Mafic	171	0
RL-22-010	135.1	135.7	0.6	Pegmatite	254	199
RL-22-010	135.7	150.0	14.3	Mafic	41	0
RL-22-011	-	9.0	9.0	Overburden	-	-
RL-22-011	9.0	97.1	88.1	Mafic	-	-
RL-22-011	97.1	130.6	33.5	Sediment	47	0
RL-22-011	130.6	132.4	1.8	Pegmatite	417	161
RL-22-011	132.4	180.0	47.6	Sediment	27	0
RL-22-012	-	0.3	0.3	Overburden	-	-
RL-22-012	0.3	111.0	110.7	Mafic	-	-
RL-22-013	-	5.2	5.2	Overburden	-	-
RL-22-013	5.2	64.0	58.8	Sediment	58	0
RL-22-013	64.0	72.0	8.0	Pegmatite	17,213	131
RL-22-013	72.0	132.0	60.0	Sediment	43	0
RL-22-014	-	3.9	3.9	Overburden	-	-
RL-22-014	3.9	36.2	32.4	Sediment	143	0
RL-22-014	36.2	38.9	2.7	Pegmatite	11,297	89
RL-22-014	38.9	55.5	16.6	Sediment	309	0
RL-22-014	55.5	75.0	19.5	Mafic	-	-
RL-22-014	75.0	102.0	27.0	Sediment	150	0
RL-22-014	102.0	110.4	8.4	Pegmatite	13,181	112
RL-22-014	110.4	129.0	18.6	Sediment	322	0
RL-22-015	-	10.9	10.9	Overburden	-	-
RL-22-015	10.9	28.9	18.1	Sediment	283	0
RL-22-015	28.9	42.3	13.4	Pegmatite	12,233	109
RL-22-015	42.3	92.0	49.8	Sediment	62	1
RL-22-015	92.0	93.0	1.0		-	-
RL-22-016A	-	8.1	8.1	Overburden	-	-
RL-22-016A	8.1	67.3	59.2	Sediment	224	0

HOLEID	From	То	Interval	Lithology	Li2Oppm	Ta2O5ppm
RL-22-016A	67.3	73.6	6.3	Pegmatite	15,696	80
RL-22-016A	73.6	126.0	52.4	Sediment	104	0
RL-22-016A	126.0	130.2	4.2	Pegmatite	3,127	0
RL-22-016A	130.2	156.0	25.9	Mafic	2,309	14
RL-22-017	-	2.7	2.7	Overburden	-	-
RL-22-017	2.7	53.9	51.2	Mafic	253	0
RL-22-017	53.9	60.0	6.2	Pegmatite	12,856	89
RL-22-017	60.0	91.8	31.8	Mafic	215	-
RL-22-017	91.8	120.0	28.2	Sediment	-	-
RL-22-018	-	17.3	17.3	Overburden	-	-
RL-22-018	17.3	51.8	34.5	Mafic	144	0
RL-22-018	51.8	64.5	12.6	Pegmatite	11,320	116
RL-22-018	64.5	90.0	25.6	Sediment	127	1
RL-22-019	-	23.1	23.1	Mafic	264	0
RL-22-019	23.1	26.7	3.5	Pegmatite	10,749	83
RL-22-019	26.7	120.0	93.3	Sediment	82	0
RL-22-020	-	5.1	5.1	Overburden	-	-
RL-22-020	5.1	78.0	72.9	Sediment	69	-
RL-22-020	78.0	82.8	4.8	Pegmatite	11,786	101
RL-22-020	82.8	150.0	67.2	Sediment	35	-
RL-22-021	-	4.0	4.0	Overburden	-	-
RL-22-021	4.0	111.3	107.3	Mafic	30	0
RL-22-021	111.3	118.7	7.4	Pegmatite	9,528	165
RL-22-021	118.7	181.1	62.5		120	1
RL-22-022	-	3.5	3.5	Overburden	-	-
RL-22-022	3.5	47.4	43.9	Mafic	67	-
RL-22-022	47.4	61.4	14.0	Pegmatite	13,478	97
RL-22-022	61.4	150.0	88.6	Mafic	34	0
RL-22-022	150.0	152.3	2.3		-	-
RL-22-023	-	3.3	3.3	Overburden	-	-
RL-22-023	3.3	12.4	9.2	Sediment	648	0
RL-22-023	12.4	25.5	13.1	Pegmatite	13,873	93
RL-22-023	25.5	76.6	51.1	Sediment	142	0
RL-22-023	76.6	78.3	1.7	Felsic	-	-
RL-22-023	78.3	108.4	30.1	Sediment	-	-
RL-22-023	108.4	111.5	3.1	Felsic	-	-
RL-22-023	111.5	120.0	8.5	Sediment	-	-
RL-22-023	120.0	189.0	69.0		-	-
RL-22-024	-	6.7	6.7	Overburden	-	-
RL-22-024	6.7	62.0	55.3	Mafic	-	-
RL-22-024	62.0	73.0	11.0	Sediment	-	-
RL-22-024	73.0	85.6	12.6	Mafic	182	0
RL-22-024	85.6	93.0	7.4	Pegmatite	10,358	107

HOLEID	From	То	Interval	Lithology	Li2Oppm	Ta2O5ppm
RL-22-024	93.0	150.0	57.0	Mafic	71	0
RL-22-025	-	3.0	3.0	Overburden	-	-
RL-22-025	3.0	29.8	26.8	Mafic	44	-
RL-22-025	29.8	30.1	0.3	Amphibolite	4,779	12
RL-22-025	30.1	37.8	7.7	Pegmatite	10,533	123
RL-22-025	37.8	47.8	10.0	Mafic	2,569	5
RL-22-025	47.8	49.7	1.9	Pegmatite	4,787	85
RL-22-025	49.7	71.0	21.3	Mafic	243	0
RL-22-025	71.0	103.0	32.0	Sediment	-	-
RL-22-025	103.0	104.0	1.0	Felsic	-	-
RL-22-025	104.0	137.8	33.8	Mafic	-	-
RL-22-025	137.8	141.0	3.2	Felsic	-	-
RL-22-026	-	6.0	6.0	Overburden	-	-
RL-22-026	6.0	102.0	96.0	Sediment	-	-
RL-22-026	102.0	150.0	48.0		-	-
RL-22-027	-	3.4	3.4	Overburden	-	-
RL-22-027	3.4	4.2	0.8	Pegmatite	2,971	108
RL-22-027	4.2	4.7	0.5	Sediment	5,317	21
RL-22-027	4.7	15.6	10.9	Pegmatite	14,559	64
RL-22-027	15.6	26.0	10.4	Mafic	846	0
RL-22-027	26.0	27.0	1.0	Felsic	958	1
RL-22-027	27.0	64.5	37.5	Mafic	8	-
RL-22-027	64.5	66.0	1.5	Felsic	-	-
RL-22-027	66.0	78.4	12.4	Mafic	-	-
RL-22-027	78.4	80.2	1.8	Felsic	-	-
RL-22-027	80.2	88.2	8.0	Mafic	-	-
RL-22-027	88.2	89.0	0.8	Felsic	-	-
RL-22-027	89.0	90.9	1.9	Mafic	-	-
RL-22-027	90.9	93.6	2.7	Felsic	-	-
RL-22-027	93.6	108.0	14.4	Mafic	-	-
RL-22-028	-	7.0	7.0	Overburden	-	-
RL-22-028	7.0	57.5	50.5	Mafic	-	-
RL-22-028	57.5	59.1	1.5	Lost Core	-	-
RL-22-028	59.1	84.2	25.2	Mafic	-	-
RL-22-028	84.2	84.5	0.3	Felsic	-	-
RL-22-028	84.5	94.6	10.1	Mafic	-	-
RL-22-028	94.6	103.3	8.7	Felsic	-	-
RL-22-028	103.3	150.0	46.7	Mafic	-	-
RL-22-029	-	6.4	6.4	Overburden	-	-
RL-22-029	6.4	9.1	2.7	Mafic	-	-
RL-22-029	9.1	19.7	10.6	Felsic	-	-
RL-22-029	19.7	30.9	11.2	Mafic	-	-
RL-22-029	30.9	32.1	1.2	Felsic	-	-

HOLEID	From	То	Interval	Lithology	Li2Oppm	Ta2O5ppm
RL-22-029	32.1	75.0	42.9	Mafic	-	-
RL-22-029	75.0	80.1	5.1	Felsic	-	-
RL-22-029	80.1	91.6	11.5	Mafic	365	0
RL-22-029	91.6	92.9	1.3	Pegmatite	456	204
RL-22-029	92.9	94.4	1.5	Mafic	2,711	1
RL-22-029	94.4	95.6	1.1	Felsic	3,863	0
RL-22-029	95.6	106.4	10.9	Mafic	443	0
RL-22-029	106.4	112.3	5.9	Pegmatite	10,858	101
RL-22-029	112.3	141.5	29.2	Felsic	241	-
RL-22-029	141.5	151.8	10.3	Mafic	-	-
RL-22-029	151.8	156.1	4.3	Felsic	-	-
RL-22-029	156.1	210.0	53.9	Mafic	-	-
RL-22-029	210.0	226.7	16.7		-	-
RL-22-030	-	6.5	6.5	Overburden	-	-
RL-22-030	6.5	24.2	17.7	Mafic	-	-
RL-22-030	24.2	24.6	0.4	Felsic	-	-
RL-22-030	24.6	58.7	34.1	Mafic	-	-
RL-22-030	58.7	77.6	18.9	Felsic	-	-
RL-22-030	77.6	98.5	20.9	Mafic	0	-
RL-22-030	98.5	99.0	0.6	Felsic	50	-
RL-22-030	99.0	108.0	9.0	Mafic	70	-
RL-22-030	108.0	113.2	5.2	Felsic	30	-
RL-22-030	113.2	162.0	48.8	Amphibolite	2	-
RL-22-031	-	6.9	6.9	Overburden	-	-
RL-22-031	6.9	150.0	143.1	Mafic	-	-
RL-22-032	-	6.0	6.0	Overburden	-	-
RL-22-032	6.0	141.0	135.0	Mafic	-	-
RL-22-033	-	2.9	2.9	Overburden	-	-
RL-22-033	2.9	8.0	5.2	Pegmatite	14,689	52
RL-22-033	8.0	162.0	154.0	Mafic	7	-
RL-22-034	-	9.6	9.6	Overburden	-	-
RL-22-034	9.6	29.0	19.4	Sediment	-	-
RL-22-034	29.0	31.1	2.1	Felsic	-	-
RL-22-034	31.1	57.1	26.0	Sediment	-	-
RL-22-034	57.1	58.3	1.2	Felsic	-	-
RL-22-034	58.3	85.1	26.8	Sediment	-	-
RL-22-034	85.1	86.1	1.0	Felsic	-	-
RL-22-034	86.1	99.3	13.3	Sediment	-	-
RL-22-034	99.3	99.7	0.4	Felsic	-	-
RL-22-034	99.7	135.0	35.3	Sediment	-	-
RL-22-035	-	3.2	3.2	Overburden	-	-
RL-22-035	3.2	66.5	63.4	Mafic	32	0
RL-22-035	66.5	79.2	12.7	Pegmatite	12,758	78

HOLEID	From	То	Interval	Lithology	Li2Oppm	Ta2O5ppm
RL-22-035	79.2	162.0	82.8	Mafic	23	0
RL-22-036	-	16.0	16.0	Overburden	-	-
RL-22-036	16.0	34.6	18.6	Sediment	-	-
RL-22-036	34.6	36.0	1.5	Felsic	-	-
RL-22-036	36.0	52.5	16.5	Sediment	-	-
RL-22-036	52.5	56.2	3.7	Felsic	-	-
RL-22-036	56.2	59.7	3.6	Sediment	-	-
RL-22-036	59.7	71.0	11.3	Felsic	-	-
RL-22-036	71.0	94.3	23.3	Sediment	4	-
RL-22-036	94.3	97.3	3.0	Felsic	87	-
RL-22-036	97.3	103.8	6.6	Quartz	3	-
RL-22-036	103.8	106.4	2.6	Felsic	-	-
RL-22-036	106.4	124.2	17.8	Sediment	2	0
RL-22-036	124.2	128.1	3.9	Felsic	57	0
RL-22-036	128.1	141.0	12.9	Sediment	3	-
RL-22-037	-	2.0	2.0	Overburden	-	-
RL-22-037	2.0	40.1	38.1	Sediment	193	0
RL-22-037	40.1	43.9	3.8	Pegmatite	8,210	71
RL-22-037	43.9	97.8	54.0	Sediment	196	0
RL-22-037	97.8	138.0	40.2	Mafic	-	-
RL-22-037	138.0	153.4	15.4	Sediment	-	-
RL-22-037	153.4	180.0	26.6	Mafic	-	-
RL-22-038	-	15.0	15.0	Overburden	-	-
RL-22-038	15.0	69.9	54.9	Sediment	-	-
RL-22-038	69.9	73.4	3.4	Felsic	-	-
RL-22-038	73.4	81.5	8.2	Sediment	986	1
RL-22-038	81.5	90.0	8.4	Pegmatite	11,820	108
RL-22-038	90.0	141.0	51.0	Mafic	149	0
RL-22-039	-	6.0	6.0	Overburden	-	-
RL-22-039	6.0	16.1	10.1	Sediment	-	-
RL-22-039	16.1	34.8	18.8	Mafic	-	-
RL-22-039	34.8	60.6	25.7	Sediment	-	-
RL-22-039	60.6	71.2	10.6	Mafic	-	-
RL-22-039	71.2	80.2	9.0	Sediment	-	-
RL-22-039	80.2	111.6	31.5	Mafic	93	0
RL-22-039	111.6	112.8	1.1	Pegmatite	69	82
RL-22-039	112.8	127.0	14.3	Mafic	182	0
RL-22-039	127.0	136.5	9.5	Sediment	-	-
RL-22-039	136.5	137.8	1.2	Mafic	-	-
RL-22-039	137.8	200.0	62.2	Sediment	-	-
RL-22-039	200.0	201.0	1.0	Mafic	-	-
RL-22-040	-	15.0	15.0	Overburden	-	-
		99.5	84.5	Mafic	20	· · · ·

HOLEID	From	То	Interval	Lithology	Li2Oppm	Ta2O5ppm
RL-22-040	99.5	107.8	8.3	Pegmatite	4,706	96
RL-22-040	107.8	117.5	9.7	Sediment	1,329	0
RL-22-040	117.5	126.0	8.5	Mafic	-	-
RL-22-041	-	8.4	8.4	Overburden	-	-
RL-22-041	8.4	87.6	79.2	Sediment	-	-
RL-22-041	87.6	98.1	10.5	Mafic	1,077	1
RL-22-041	98.1	114.0	15.9	Pegmatite	10,714	121
RL-22-041	114.0	138.6	24.6	Sediment	145	0
RL-22-041	138.6	201.0	62.4	Mafic	-	-
RL-22-041	201.0	210.0	9.0		-	-
RL-22-042	-	7.9	7.9	Overburden	-	-
RL-22-042	7.9	41.5	33.6	Sediment	-	-
RL-22-042	41.5	156.0	114.5	Mafic	-	-
RL-22-043	-	2.4	2.4	Overburden	-	-
RL-22-043	2.4	141.0	138.6	Mafic	-	-
RL-22-044	-	0.6	0.6	Overburden	-	-
RL-22-044	0.6	18.9	18.3	Mafic	-	-
RL-22-044	18.9	22.5	3.6	Pegmatite	-	-
RL-22-044	22.5	180.0	157.5	Mafic	-	-
RL-22-045	-	3.0	3.0	Overburden	-	-
RL-22-045	3.0	5.5	2.5	Mafic	-	-
RL-22-045	5.5	31.6	26.1	Sediment	-	-
RL-22-045	31.6	162.0	130.4	Mafic	-	-
RL-22-047	-	5.9	5.9	Overburden	-	-
RL-22-047	5.9	148.4	142.5	Sediment	-	-
RL-22-047	148.4	178.5	30.1	Mafic	-	-
RL-22-047	178.5	204.0	25.6	Sediment	86	2
RL-22-348	-	3.7	3.7	Overburden	-	-
RL-22-348	3.7	200.0	196.3		-	-
RL-22-349	-	3.0	3.0	Overburden	-	-
RL-22-349	3.0	45.1	42.1	Sediment	-	-
RL-22-349	45.1	48.3	3.2	Felsic	-	-
RL-22-349	48.3	80.4	32.1	Sediment	-	-
RL-22-349	80.4	88.4	8.0	Felsic	-	-
RL-22-349	88.4	112.3	23.9	Sediment	-	-
RL-22-349	112.3	115.4	3.1	Pegmatite	-	-
RL-22-349	115.4	125.5	10.1	Sediment	-	-
RL-22-349	125.5	144.7	19.2	Mafic	-	-
RL-22-349	144.7	145.1	0.4	Pegmatite	-	-
RL-22-349	145.1	154.7	9.6	Mafic	-	-
RL-22-349	154.7	155.0	0.3	Pegmatite	-	-
RL-22-349	155.0	160.9	5.9	Mafic	-	-
RL-22-349	160.9	188.2	27.3	Sediment	-	-

HOLEID	From	То	Interval	Lithology	Li2Oppm	Ta2O5ppm
RL-22-349	188.2	189.0	0.8	Pegmatite	-	-
RL-22-349	189.0	205.1	16.2	Sediment	-	-
RL-22-349	205.1	207.7	2.6	Mafic	-	-
RL-22-349	207.7	225.0	17.3	Sediment	-	-
RL-22-364	-	3.7	3.7	Overburden	-	-
RL-22-364	3.7	47.5	43.9	Sediment	-	-
RL-22-364	47.5	50.0	2.5	Felsic	-	-
RL-22-364	50.0	54.0	4.1	Sediment	-	-
RL-22-364	54.0	64.6	10.6	Pegmatite	-	-
RL-22-364	64.6	103.6	39.0	Sediment	-	-
RL-22-364	103.6	106.4	2.8	Felsic	-	-
RL-22-364	106.4	127.8	21.4	Sediment	-	-
RL-22-364	127.8	129.3	1.5	Felsic	-	-
RL-22-364	129.3	201.0	71.7	Sediment	-	-
RL-22-366	-	0.8	0.8	Overburden	-	-
RL-22-366	0.8	28.7	27.9	Sediment	-	-
RL-22-366	28.7	30.0	1.3	Pegmatite	-	-
RL-22-366	30.0	92.5	62.5	Sediment	-	-
RL-22-366	92.5	93.3	0.8	Felsic	-	-
RL-22-366	93.3	94.3	1.0	Sediment	-	-
RL-22-366	94.3	101.9	7.6	Pegmatite	-	-
RL-22-366	101.9	127.6	25.7	Sediment	-	-
RL-22-366	127.6	128.6	1.0	Pegmatite	-	-
RL-22-366	128.6	201.0	72.4	Sediment	-	-
RL-22-367	-	3.0	3.0	Overburden	-	-
RL-22-367	3.0	5.0	2.0	Mafic	-	-
RL-22-367	5.0	8.1	3.1	Felsic	-	-
RL-22-367	8.1	28.8	20.7	Mafic	-	-
RL-22-367	28.8	56.8	28.0	Sediment	-	-
RL-22-367	56.8	58.9	2.1	Pegmatite	-	-
RL-22-367	58.9	70.0	11.0	Sediment	-	-
RL-22-367	70.0	90.2	20.2	Mafic	-	-
RL-22-367	90.2	91.2	1.0	Felsic	-	-
RL-22-367	91.2	107.8	16.6	Mafic	-	-
RL-22-367	107.8	114.3	6.5	Pegmatite	-	-
RL-22-367	114.3	127.8	13.6	Mafic	-	-
RL-22-367	127.8	222.0	94.2	Sediment	-	-
RL-22-387	-	11.4	11.4	Overburden	-	-
RL-22-387	11.4	31.8	20.4	Mafic	-	-
RL-22-387	31.8	41.5	9.8	Pegmatite	-	-
RL-22-387	41.5	123.0	81.5	Mafic	-	-
RL-22-461	-	4.8	4.8	Overburden	-	-
RL-22-461	4.8	5.5	0.7	Mafic	-	-

HOLEID	From	То	Interval	Lithology	Li2Oppm	Ta2O5ppm
RL-22-461	5.5	8.4	2.9	Pegmatite	7,725	102
RL-22-461	8.4	107.0	98.7	Mafic	81	0
RL-22-475	-	5.5	5.5	Overburden	-	-
RL-22-475	5.5	28.3	22.8	sediment	-	-
RL-22-475	28.3	43.0	14.7	mafic	-	-
RL-22-475	43.0	53.2	10.2	Sediment	-	-
RL-22-475	53.2	99.1	46.0	Mafic	-	-
RL-22-475	99.1	109.7	10.6	Sediment	-	-
RL-22-475	109.7	120.0	10.3	Mafic	-	-
RL-22-490	-	3.0	3.0	Overburden	-	-
RL-22-490	3.0	61.7	58.7	Mafic	105	-
RL-22-490	61.7	66.0	4.3	Pegmatite	11,799	132
RL-22-490	66.0	122.3	56.3	Mafic	123	0
RL-22-490	122.3	124.5	2.2	Felsic	-	-
RL-22-490	124.5	162.0	37.5	Mafic	-	-
RL-22-490	162.0	176.5	14.5	Shear	-	-
RL-22-490	176.5	191.2	14.7	Mafic	-	-
RL-22-490	191.2	195.0	3.8	Felsic	-	-
RL-22-490	195.0	198.5	3.5	Shear	-	-
RL-22-490	198.5	201.0	2.5	Felsic	-	-