

Scoping Study Commences

Highlights

- Mining Plus appointed as managers for the Hualilan Gold Project Scoping Study¹
- Study includes a senior team that has worked on the majority of Argentina's significant mines
- Study will be based on an updated Mineral Resource Estimate (MRE) expected in Q1 next year
- Study will include the option of a staged start-up based on the existing high-grade core of mineralisation at Hualilan of 1.1 million ounces AuEq at 5.6 g/t AuEq^{2, 3}
- Study will evaluate the use of renewable power options as well as local grid power

² See Table 1 ³ Pending a Q1 23 MRE update

Challenger Exploration (ASX: CEL) ("CEL" the **"Company"**) is pleased to announce the commencement of a Scoping Study ("the Study") at its flagship Hualilan Gold Project, San Juan Argentina.

Mining Plus has been appointed as managers of the Scoping Study. Mining Plus is a leading international mining consultancy group with a global team of 150+ mining professionals servicing projects across continents including Australia, North and South America, Europe, Africa and Asia. The Scoping Study will utilise consultants from the Mining Plus South American office based in Lima Peru. The two key principals overseeing the Scoping Study are Australians with over 15 years combined experience living and working in Latin America.

In addition to Mining Plus, the Scoping Study work will be augmented by a team of leading Senior Consultants based in San Juan, Argentina appointed by the Company. This team includes local Infrastructure and Power specialists, Environmental and Hydrological Engineers, Mining Geologists and Open Pit and Underground Mining Engineers. The local San Juan team has collectively worked on the majority of Argentina's significant mines including, Velerado (Barrick Gold), Cerro Nego (Newmont), Alumbrera, Casposo, and Lundin Mining's Jose Maria project which currently undergoing a Feasibility Study.

The scoping Study will include an evaluation of a staged start-up option focussing on the existing highgrade core of 1.1 million ounces AuEq at 5.6 g/t AuEq^{2,3} at Hualilan. Additionally, the Study will evaluate the use of renewable power options in addition to local grid power.

The final Scoping Study will be based on a planned update to the current 2.1 million ounce AuEq² Mineral Resource Estimate ("**MRE**")² which will be completed in the first quarter 2023. It is anticipated the Scoping Study will be completed during Q2 2023.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Work Streams

Significant progress has been made towards defining the scope of study with preliminary pit optimisation work and a preliminary high-level economic evaluation completed. This work will be updated when the new MRE is available in Q1.

Stage 1 Metallurgical testing has been completed at SGS's Lakefield office, Canada, which has defined the flow sheet. Stage 2 metallurgical testing, also being undertaken by SGS in their Lakefield office, has commenced, which will include variability open circuit flotation testwork, comminution testing, solid liquid separation and concentrate and tailings thickening, filtering and dewatering testing, and viscosity testing of tailings for pumping design.

An Archaeological Study has been completed with environmental baseline monitoring underway. Social and Community Streams are ongoing, are well organised and in progress as part of the Company's normal day to day operations.

The open pit geotechnical evaluation is to commence shortly. Initial hydrology is underway with the drilling of the first water well completed and pump out testing expected to start in January. Geotechnical logging of this first well is encouraging. At least one more water well will be drilled and pump out testing completed as part of the Study.

Benchmarking from comparable mining operations in South America and Argentina is largely completed. The Study will include deriving costs calculated from first principles based on material take offs, preliminary budgets and factorised costs, to allow a seamless transition into a Pre-Feasibility Study.

Ends

This ASX release was approved by the CEL Board

¹ A Scoping Study is an order of magnitude technical and economic study of the potential viability of Mineral Resources. It includes appropriate assessments of realistically assumed Modifying Factors together with any other relevant operational factors that are necessary to demonstrate at the time of reporting that progress to a Pre-Feasibility Study can be reasonably justified.

For further information contact:

Kris Knauer Managing Director +61 411 885 979 kris.knauer@challengerex.com

Scott Funston Chief Financial Officer +61 413 867 600 scott.funston@challengerex.com Media Enquiries Jane Morgan + 61 405 555 618 jm@janemorganmanagement.com.au

Previous announcements referred to in this release include:

1 June 2022 - 2.1M Ounce AuEq Maiden Resource at Hualilan Gold Project

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Mineralisation Style	Mt (0.25 g/t AuEq cut-off)	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	Au Eq (g/t)
Skarn (limestone hosted)	6.3	4.4	19.4	2.0	0.2	5.6
intrusion/sediment hosted	41.4	0.6	4.0	0.2	0.04	0.8
Mineralisation Style	Contained Metal	Au (Moz)	Ag (Moz)	Zn (kt)	Pb (kt)	Au Eq (kOz
Skarn (limestone hosted)		0.9	3.9	123	11	1.13
intrusion/sediment hosted		0.8	5.3	95	19	1.00
Total Contained metal		1.7	9.2	218	29	2.13

Table 1 Interim MRE reported as Skarn and Intrusion/sediment hosted components of mineralisation

Domain	Category	Mt	Au g/t	Ag g/t	Zn %	Pb %	AuEq g/t	AuEq (Mozs)
US\$1800 optimised shell	Indicated	18.7	1.1	5.4	0.41	0.07	1.3	0.80
> 0.25ppm AuEq	Inferred	25.0	1.0	5.6	0.39	0.06	1.2	1.00
Below US\$1800 shell								
>1.0ppm AuEq	Inferred	4.0	1.9	11.5	1.04	0.07	2.6	0.33
Total Indicated and Inf	erred	47.7	1.1	6.0	0.45	0.06	1.4	2.13

Note: Some rounding errors may be present

Table 1 Total Interim MRE (Combined skarn and Intrusion hosted domains)

¹ Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1900 Oz, Ag US\$24 Oz, Zn US\$4,000/t, Pb US\$2000/t
- Metallurgical recoveries are estimated to be Au (95%), Ag (91%), Zn (67%) Pb (58%) across all ore types (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x 0.012106] + [Zn (%) x 0.46204] + [Pb (%) x 0.19961]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND MINERAL RESOURCES

The information that relates to sampling techniques and data, exploration results, geological interpretation and Mineral Resource Estimate has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results and Mineral Resources. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

The Mineral Resource Estimate for the Hualilan Gold Project was first announced to the ASX on 1 June 2022. The Company confirms it is not aware of any information or assumptions that materially impacts the information included in that announcement and that the material assumptions and technical parameters underpinning the Mineral Resource Estimate continue to apply and have not materially changed.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America with a maiden **2.1 million ounce gold Resource Estimate** recently announced for the Hualilan Gold Project in San Juan, Argentina. Three rigs are currently drilling at Hualilan with 2-rigs operating at the Company's El Guayabo project in Ecuador.

The Company strategy is for the 100% owned Hualilan Gold Project to provide a high-grade low capex operation in the near term while it prepares for much larger bulk gold operations at both Hualilan and El Guaybo in Ecuador.

- 1. Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive drilling with over 150 historical and 700 CEL drill-holes and the Company has released an Interim JORC 2012 Compliant resource of 2,133,065 ounces which remains open in most directions. This resource contains a Skarn component 6.3 Mt at 5.6 g/t AuEq for 1.1 Moz AuEq and an intrusion/sediment-hosted component of 41.5Mt at 0.8 g/t AuEq for 1.0 Moz AuEq. The resource was based on 126,000 metres of CEL's 254,000 metre drill program. The project was locked up in a dispute for the 15 years prior to the Company's involvement and as a consequence had seen no modern exploration until CEL acquired the project in 2019. In the past 2 years CEL has completed over 700 drill holes for more than 200,000 metres of drilling. Results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 67.7m @ 7.3 g/t Au, 5.7 g/t Ag, 0.6% Zn, and 63.3m @ 8.5 g/t Au, 7.6 g/t Ag, 2.8% Zn. This drilling intersected high-grade gold over 3.5 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 209.0m at 1.0 g/t Au, 1.4 g/t Ag, 0.1% Zn and 110.5m at 2.5 g/t Au, 7.4 g/t Au, 0.90% Zn in intrusives. CEL's current program which is fully funded will include an additional 60,000 metres of drilling, an updated JORC Compliant Mineral Resource Estimate, and Scoping Study leading into a PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and is located 5 kilometres along strike from the 22-million ounce Cangrejos Gold Project¹. Prior to CEL the project was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t Ag which have never been followed up. CEL's maiden drilling program confirmed the discovery of a major Au-Cu-Ag-Mo gold system spanning several zones of significant scale. Results from CEL's maiden drill program included 257.8m at 1.4 g/t AuEq including 53.7m at 5.3 g/t AuEq and 309.8m at 0.7 g/t AuEq including 397.1m at 0.6 g/t AuEq, and 528.7m at 0.5 g/t AuEq from surface to the end of the hole including 397.1m at 0.6 g/t AuEq from surface. The Company has drilled five of fifteen regionally significant Au-soil anomalies with over 500 metres of mineralisation intersected at all anomalies, confirming the potential for a major bulk gold system at El Guayabo. The Company has two rigs on site completing an additional 25,000 metres of diamond core drilling designed to allow the reporting of a maiden JORC 2012 Compliant resource for the main GY-A discovery zone.

¹ Source: Lumina Gold (TSX: LUM) July 2020 43-101 Technical Report

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
ampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard 	Diamond core (HQ3 and NQ3) was cut longitudinally on site using a diamond saw or split using a hand operated hydrauli core sampling splitter. Samples lengths are generally from 0.5m to 2.0m in length (average 1.74m). Sample lengths are selected according to lithology, alteration, and mineralization contacts.
	measurement tools appropriate to the minerals under investigation,	For reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled were collected from a face sample recovery cyclone mounted on the drill machine.
	such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of	Channel samples are cut into underground or surface outcrop using a hand-held diamond edged cutting tool. Parallel sa cuts 3-5cm apart are cut 2-4cm deep into the rock which allows for the extraction of a representative sample using a hammer and chisel. The sample is collected onto a plastic mat and collected into a sample bag.
	sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any	Core, RC, and channel samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was take and pulverized to 85% passing 75 μ m. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.
	 measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' 	A 10g charge was analysed for at least 48 elements by 4-acid digest and ICP-MS determination. Elements determined include Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb S Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. For Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10%, overlimit analysis was done by the same method using a different calibration.
	work has been done this would be relatively simple (eg 'reverse	Unused pulps are returned from the laboratory to the Project and stored in a secure location, so they are available for a further analyses. Remaining drill core is stored undercover for future use if required.
	circulation drilling was used to obtain 1 m samples from which 3 kg	Visible gold observed has been observed in only 1 drill core sample only. Coarse gold is not likely to result in sample bia
	was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed	Historic Data: There is little information provided by previous explorers to detail sampling techniques. Selected drill core was cut with diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaign Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.
	information.	

10m options 120m perf shares 16m perf rights

1,044.9m shares

Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

T: +61 8 6380 9235 E: admin@challengerex.com

Challe ACN 123 591 382

ASX: CEL

Criteria

JORC Code explanation

Drilling techniques

Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, facesampling bit, or other type, whether core is oriented and if so, by what method, etc).

Commentary

CEL drilling of HQ3 core (triple tube) was done using various truck and track mounted drill machines that are operated by various drilling contractors based in Mendoza and San Juan. The core has not been oriented as the rock is commonly too broken to allow accurate core orientation.

CEL drilling of reverse circulation (RC) drill holes was done using a track mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling was done using a 5.25 inch hammer bit.

Collar details for DD drill holes not included in the 01 June 2022 Resource Estimate are shown below in WGS84, zone 19s projection. Collar locations for drill holes are surveyed using DGPS following drilling. For drill collar and channel sample details for holes that are included in the 01 June 2022 Resource Estimate, see CEL ASX release of 01 June 2022.

Hole_id	East (m)	North (m)	Elevation (m)	Dip (°)	Azimuth (°)	Depth (m)
GNDD316 EXT	504121.0	6599927.0	1804.4	-60	115	217.40
GNDD359 EXT	504408.4	6601161.1	1827.6	-60	115	118.00
GNDD483	504127.1	6599924.1	1804.4	-50	115	380.00
GNDD487	504284.6	6601262.1	1844.7	-60	115	602.00
GNDD495	504339.7	6599517.9	1787.6	-60	115	167.00
GNDD497	504339.7	6599517.9	1787.6	-60	060	293.00
GNDD501	504467.0	6599500.0	1797.0	-60	060	290.00
GNDD505	503976.2	6599818.0	1802.9	-60	112	635.00
GNDD506	504635.7	6600966.9	1817.2	-60	115	515.00
GNDD508	504276.1	6600340.1	1818.3	-60	112	560.00
GNDD509	504491.3	6599599.8	1794.7	-60	115	232.00
GNDD510	504517.3	6600933.8	1827.7	-60	115	500.00
GNDD511	504526.0	6600059.0	1833.3	-10	110	175.00
GNDD516	504723.4	6600793.6	1821.3	-60	115	188.00
GNDD518	504468.5	6600287.0	1818.4	-60	170	332.00
GNDD519	504491.2	6599622.0	1794.8	-50	115	101.00
GNDD521	504907.6	6600928.4	1814.5	-60	295	392.00
GNDD525	504331.6	6600372.6	1819.5	-60	170	437.00
GNDD526	504529.0	6599963.0	1840.1	-15	115	190.00
GNDD528	505056.2	6600903.2	1813.2	-60	295	489.00
GNDD529	504539.1	6600347.5	1817.5	-60	170	452.00
GNDD530	504038.0	6600143.0	1815.0	-60	115	557.00
GNDD531	504431.9	6600929.5	1833.0	-60	115	461.00

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Challenger Exploration Limited ACN 123 591 382 **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

www.challengerex.com

ASX: CEL

riteria	JORC Code explanation	Commentary						
		GNDD533	504561.3	6601575.3	1844.1	-65	112	512.00
		GNDD534	504304.5	6600294.6	1817.0	-60	170	359.00
		GNDD535	505067.1	6600942.2	1814.8	-60	295	446.00
		GNDD536	504388.7	6601126.1	1835.1	-60	115	599.00
		GNDD537	504491.3	6601034.2	1831.5	-60	112	650.00
		GNDD538	504073.6	6600169.7	1814.0	-60	115	482.00
		GNDD539	505056.6	6600991.3	1812.8	-60	295	449.00
		GNDD541	504303.5	6601563.3	1852.0	-60	115	488.00
		GNDD542	504528.0	6600035.0	1835.0	-18	120	151.00
		GNDD543	504631.4	6600880.6	1821.9	-60	115	371.00
		GNDD544	504082.4	6600209.8	1818.0	-60	112	515.00
		GNDD546	504507.0	6601071.0	1834.2	-60	112	521.00
		GNDD548	504197.8	6601303.5	1850.6	-60	112	512.00
		GNDD550	504358.9	6600787.0	1831.3	-60	115	476.00
		GNDD551	503957.6	6600356.2	1824.5	-60	115	74.90
		GNDD551A	503956.0	6600356.2	1824.5	-60	115	407.00
		GNDD552	504932.0	6601437.2	1852.9	-25	120	130.20
		GNDD553	504399.5	6600768.0	1830.3	-60	115	407.00
		GNDD554	504574.1	6601657.6	1844.7	-60	115	401.00
		GNDD555	504127.5	6599879.8	1806.1	-60	112	590.00
		GNDD556	504718.8	6601501.9	1837.7	-60	115	168.00
		GNDD557	504109.7	6600380.7	1820.0	-60	112	551.00
		GNDD558	504438.6	6600970.5	1835.5	-60	112	551.00
		GNDD559	504983.0	6601474.0	1861.0	-50	115	90.50
		GNDD560	504293.0	6601347.4	1848.5	-60	112	536.00
		GNDD561	504983.0	6601474.0	1861.0	-20	115	100.00
		GNDD562	505005.0	6601497.0	1859.8	-15	110	138.00
		GNDD563	504739.0	6601713.0	1846.0	-60	115	258.00
		GNDD564	504146.1	6600487.0	1820.0	-60	115	551.00
		GNDD565	504599.4	6601822.4	1848.7	-60	115	455.00
		GNDD566	504346.9	6600925.0	1836.3	-62	112	650.00
		GNDD567	504382.9	6599694.5	1795.8	-60	115	158.00
		GNDD568	505005.0	6601497.0	1859.8	-60	110	90.50

ation Limited Issued Capital 1,044.9m shares 10m options

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

riteria	JORC Code explanation	Commentary						
		GNDD569	505005.0	6601497.0	1859.8	-50	350	90.00
		GNDD570	504808.9	6601635.9	1840.7	-60	115	155.50
		GNDD571	504406.5	6601206.1	1840.1	-60	115	410.00
		GNDD572	504162.2	6599598.7	1792.6	-60	115	422.00
		GNDD573	505005.0	6601497.0	1859.8	-65	350	80.50
		GNDD574	504282.2	6599484.6	1787.0	-60	060	425.00
		GNDD575	505091.0	6601545.0	1875.0	-70	350	155.50
		GNDD576	504055.2	6600528.0	1820.0	-60	115	602.00
		GNDD577	504447.8	6601142.7	1837.8	-60	115	605.00
		GNDD578	504458.2	6600784.8	1827.9	-60	115	374.00
		GNDD579	504184.4	6599676.8	1797.8	-60	115	467.00
		GNDD580	505106.0	6601553.0	1880.2	-65	080	169.00
		GNDD581	504534.5	6601897.0	1852.0	-60	115	251.00
		GNDD582	504400.0	6600856.1	1832.6	-60	115	536.00
		GNDD583	504215.9	6599446.4	1788.0	-60	060	551.00
		GNDD584	505106.0	6601553.0	1880.2	-60	040	140.50
		GNDD585	504433.8	6601900.0	1856.0	-60	115	350.00
		GNDD586	504235.0	6600228.9	1815.7	-60	170	356.00
		GNDD587	504740.5	6601623.6	1840.2	-60	115	216.00
		GNDD588	504514.3	6600846.9	1828.8	-60	115	401.00
		GNDD589	504361.2	6600654.4	1826.0	-60	115	491.00
		GNDD590	504181.2	6599810.6	1804.1	-58	115	497.00
		GNDD591	504478.3	6601349.2	1842.5	-60	115	461.00
		GNDD592	504962.0	6601485.0	1849.0	-60	115	80.50
		GNDD593	504712.7	6600931.0	1824.4	-60	115	269.00
		GNDD594	504698.2	6601643.3	1841.4	-60	115	237.00
		GNDD595	504267.6	6600274.5	1817.1	-60	170	392.00
		GNDD596	504962.0	6601485.0	1849.0	-50	295	53.50
		GNDD597	504805.1	6600976.1	1822.8	-60	295	185.00
		GNDD598	504524.7	6600798.0	1827.0	-60	115	335.00
		GNDD599	504766.0	6601745.0	1845.0	-60	115	205.00
		GNDD600	504345.7	6599689.8	1795.6	-60	115	272.00
		GNDD601	505297.8	6601495.5	1827.1	-20	350	166.00

loration Limited Issued Capital 2 1,044.9m share 10m options

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

riteria	JORC Code explanation	Commentary						
		GNDD602	504556.8	6601003.7	1832.1	-60	113	422.00
		GNDD603	504323.6	6600163.5	1812.5	-60	115	212.00
		GNDD604	504463.1	6601312.2	1840.9	-60	115	482.00
		GNDD605	504820.8	6601327.1	1830.1	-60	115	110.00
		GNDD606	504628.9	6600793.5	1825.9	-60	115	137.00
		GNDD607	504299.3	6600638.2	1827.6	-60	115	410.00
		GNDD608	504408.1	6599704.8	1796.4	-60	115	251.00
		GNDD609	504617.4	6600843.0	1825.9	-60	115	389.00
		GNDD610	504309.7	6600214.1	1813.5	-60	115	101.00
		GNDD611	504713.0	6600831.0	1820.0	-60	115	251.00
		GNDD612	504767.9	6601655.0	1841.1	-60	115	200.50
		GNDD613	504679.8	6601299.4	1832.4	-60	115	200.50
		GNDD614	505297.8	6601495.5	1827.1	-20	330	170.50
		GNDD615	504260.1	6600315.0	1816.0	-60	170	440.00
		GNDD616	504334.9	6599738.9	1797.9	-60	115	344.00
		GNDD617	504598.1	6600410.7	1816.2	-60	115	201.00
		GNDD618	504502.0	6600543.8	1821.0	-60	115	266.00
		GNDD619	504377.7	6600954.6	1835.3	-62	113	482.00
		GNDD620	505297.8	6601495.5	1827.1	-15	310	220.00
		GNDD621	504482.4	6600376.3	1816.6	-60	115	326.00
		GNDD622	504438.0	6599492.0	1792.9	-55	075	302.00
		GNDD623	504634.1	6601365.0	1836.9	-60	115	302.00
		GNDD624	504493.2	6600503.7	1820.4	-60	115	251.00
		GNDD625	504218.3	6599131.3	1779.9	-60	115	248.00
		GNDD626	504560.5	6600428.2	1815.8	-60	115	228.00
		GNDD627	504229.2	6600450.7	1819.4	-62	113	476.00
		GNDD628	504043.9	6599742.3	1801.4	-62	112	371.00
		GNDD628A	504043.9	6599742.3	1801.4	-62	112	451.10
		GNDD629	504522.5	6600578.3	1822.1	-60	115	290.00
		GNDD630	504539.1	6600347.5	1817.5	-60	168	461.00
		GNDD631	505297.8	6601495.5	1827.1	-40	290	181.00
		GNDD632	504409.4	6600719.3	1827.0	-60	113	461.00
		GNDD633	504431.5	6601106.2	1835.7	-62	113	462.00

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD634	504702.1	6601377.3	1834.1	-60	115	236.00
		GNDD635	504487.0	6600462.4	1819.7	-60	115	350.00
		GNDD636	505297.8	6601495.5	1827.1	-20	290	150.50
		GNDD637	504059.6	6599205.3	1781.6	-60	115	305.00
		GNDD638	504277.6	6600780.2	1832.0	-62	112	650.00
		GNDD639	504901.7	6601465.4	1834.8	-50	115	166.00
		GNDD640	504571.2	6601173.5	1834.3	-60	114	332.00
		GNDD641	504428.9	6600280.5	1813.4	-65	170	293.00
		GNDD642	504639.1	6600284.4	1805.5	-62	166	535.60
		GNDD643	504473.2	6601175.0	1836.9	-62	113	434.50
		GNDD644	504761.9	6601393.5	1833.4	-60	115	197.00
		GNDD645	504462.0	6600321.5	1816.7	-62	113	371.00
		GNDD646	504618.0	6601195.8	1832.0	-60	115	266.00
		GNDD647	504284.8	6599850.6	1802.5	-75	113	461.00
		GNDD648	504707.0	6600411.0	1829.5	-60	115	70.00
		GNDD649	504477.9	6600687.4	1825.7	-60	115	341.00
		GNDD650	504700.0	6600365.0	1844.5	-60	115	92.50
		GNDD651	504617.8	6601240.0	1833.4	-60	115	260.00
		GNDD652	503840.1	6600322.8	1824.5	-60	113	461.00
		GNDD653	504353.7	6601186.6	1842.2	-62	113	450.00
		GNDD654	504614.7	6601506.3	1839.6	-60	113	434.00
		GNDD655	504588.2	6600547.7	1818.6	-25	115	121.00
		GNDD656	504705.0	6600848.4	1821.9	-60	115	152.00
		GNDD657	504783.6	6601692.3	1842.1	-60	115	200.00
		GNDD658	504036.5	6599875.1	1807.2	-60	113	635.00
		GNDD659	504471.0	6601975.5	1855.5	-60	115	356.00
		GNDD660	504776.2	6601607.7	1839.1	-60	115	212.00
		GNDD661	504639.1	6600284.4	1805.5	-62	128	599.60
		GNDD662	504196.8	6600112.3	1811.0	-60	115	290.00
		GNDD663	504513.1	6601244.7	1838.0	-60	114	342.00
		GNDD664	504543.5	6600137.5	1830.7	-55	135	80.00
		GNDD665	504775.4	6601784.4	1842.6	-60	115	218.00
		GNDD666	504362.9	6601976.7	1860.3	-60	113	407.00

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235

E: admin@challengerex.com

riteria	JORC Code explanation	Commentary						
		GNDD667	504798.1	6601509.2	1835.3	-65	115	131.00
		GNDD668	504237.4	6600093.4	1809.4	-60	115	255.80
		GNDD669	503877.3	6599290.3	1791.7	-60	115	446.00
		GNDD670	504478.0	6599646.0	1794.5	-10	130	125.00
		GNDD671	504473.6	6601528.4	1848.0	-62	113	461.00
		GNDD672	504539.4	6601541.4	1841.4	-60	112	500.00
		GNDD673	504638.0	6600392.0	1821.4	-58	145	620.00
		GNDD674	504711.0	6600272.0	1837.0	-65	115	74.00
		GNDD675	504126.9	6599880.5	1803.9	-65	113	536.00
		GNDD676	504719.0	6600247.0	1842.3	-65	115	61.00
		GNDD677	504732.8	6601539.7	1839.2	-60	115	185.00
		GNDD678	504417.3	6601863.6	1855.3	-65	115	350.00
		GNDD679	504662.8	6600270.1	1825.5	-40	115	116.00
		GNDD680	504690.2	6601692.0	1842.5	-60	115	251.00
		GNDD681	504269.8	6599901.7	1804.3	-67	115	226.00
		GNDD682	504402.0	6599064.0	1826.4	-15	125	194.50
		GNDD683	504471.8	6601794.0	1851.5	-62	113	464.00
		GNDD684	504486.7	6601212.9	1837.6	-60	113	420.00
		GNDD685	504638.0	6600392.0	1821.4	-60	165	671.00
		GNDD686	504702.2	6601730.3	1843.7	-60	115	242.00
		GNDD687	504289.0	6599892.8	1802.5	-60	115	195.40
		GNDD688	504392.5	6601389.2	1845.2	-62	113	476.00
		GNDD689	504371.3	6599854.4	1800.5	-60	115	140.00
		GNDD690	504700.3	6601245.7	1831.5	-60	115	177.00
		GNDD691	504664.3	6601659.7	1842.5	-60	114	304.00
		GNDD692	504407.3	6599749.3	1797.1	-57	115	143.00
		GNDD693	504523.7	6601460.4	1843.0	-60	113	415.00
		GNDD694	504402.0	6599064.0	1826.4	-55	125	114.50
		GNDD695	504371.6	6599810.1	1798.4	-60	115	161.00
		GNDD696	504543.7	6601362.8	1840.3	-60	114	339.00
		GNDD697	504826.9	6601672.1	1839.5	-60	115	176.00
		GNDD698	504402.0	6599064.0	1826.4	-55	030	161.00
		GNDD699	504414.2	6599834.4	1799.1	-60	115	116.00

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD700	504607.0	6601730.5	1846.4	-60	113	350.00
		GNDD701	504386.0	6599895.0	1801.2	-60	115	150.00
		GNDD702	504549.9	6600830.3	1826.3	-60	115	341.00
		GNDD703	504669.2	6600332.9	1809.1	-58	160	620.00
		GNDD704	504612.2	6601419.2	1839.4	-60	114	315.00
		GNDD705	504260.5	6599685.4	1797.6	-60	112	431.00
		GNDD706	504612.7	6601772.0	1848.7	-60	114	308.00
		GNDD707	504699.0	6600628.4	1821.3	-60	115	242.00
		GNDD708	504348.7	6599776.6	1797.6	-60	115	149.00
		GNDD709	504304.2	6600431.2	1817.7	-60	113	452.00
		GNDD710	504399.8	6601606.5	1850.8	-60	112	561.00
		GNDD711	504527.0	6601723.7	1847.2	-60	112	461.00
		GNDD712	504386.3	6600291.9	1815.0	-60	170	335.00
		GNDD713	504691.1	6601823.7	1847.4	-60	115	281.00
		GNDD714	504283.3	6600027.3	1806.3	-60	115	221.00
		GNDD715	504146.1	6600003.5	1808.8	-60	113	440.00
		GNDD716	504671.0	6599748.0	1906.7	-50	115	302.00
		GNDD717	504175.5	6599945.7	1809.7	-53	115	302.00
		GNDD718	504679.9	6601872.2	1850.5	-60	115	261.00
		GNDD719	504671.0	6599748.0	1906.7	-62	010	602.00
		GNDD720	504327.9	6600095.3	1809.3	-60	115	180.00
		GNDD721	504371.0	6600075.2	1808.1	-60	115	147.00
		GNDD722	504294.5	6599978.4	1805.9	-60	115	212.00
		GNDD723	504414.1	6600055.1	1807.4	-60	115	141.00
		GNDD724	504669.0	6599930.0	1907.2	-50	115	341.00
		GNDD725	504303.1	6601210.1	1841.1	-62	113	516.00
		GNDD726	504275.0	6599825.0	1802.4	-64	115	461.00
		GNDD727	504674.2	6600467.0	1825.8	-58	140	640.00
		GNDD728	504669.0	6599930.0	1907.2	-73	113	431.00
		GNDD729	504276.8	6599942.6	1807.2	-68	115	215.00
		GNDD730	504300.0	6599930.0	1804.1	-62	115	200.00
		GNDD731	504669.0	6599930.0	1907.2	-62	005	542.00
		GNDD732	504161.9	6599422.4	1787.8	-60	114	302.00

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 or E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD733	503981.8	6599506.4	1791.9	-60	113	410.00
		GNDD734	504669.0	6599930.0	1907.2	-60	345	311.00
		GNDD735	504339.7	6601149.0	1840.5	-60	113	501.00
		GNDD736	504211.1	6599576.0	1792.4	-62	115	206.00
		GNDD737	504671.0	6599748.0	1903.0	-50	035	302.00
		GNDD738	503877.8	6599378.3	1794.6	-60	112	467.00
		GNDD739	504671.0	6599748.0	1906.7	-60	345	524.00
		GNDD740	503877.3	6599202.0	1787.2	-60	112	452.00
		GNDD741	504396.1	6601255.1	1840.7	-60	113	423.00
		GNDD742	503960.0	6598987.0	1775.1	-60	114	305.00
		GNDD743	504663.2	6600046.2	1871.0	-60	115	332.00
		GNDD744	503783.0	6599069.0	1785.4	-60	113	401.00
		GNDD745	504530.0	6601325.1	1837.7	-60	113	381.00
		GNDD746	504688.0	6600039.0	1872.5	-50	115	302.00
		GNDD747	503938.5	6598643.9	1765.8	-60	114	332.00
		GNDD748	504844.6	6601708.0	1837.2	-60	115	165.00
		GNDD749	504860.9	6601744.6	1837.6	-60	115	180.00
		GNDD750	504839.9	6601798.5	1838.9	-60	115	201.00
		GNDD751	504542.8	6601054.2	1830.8	-60	113	422.00
		GNDD752	504688.0	6600039.0	1872.5	-50	295	122.00
		GNDD753	504663.2	6600046.2	1871.0	-73	115	413.00
		GNDD754	504869.0	6601652.5	1835.9	-60	115	150.00
		GNDD755	504532.3	6601677.1	1845.9	-60	113	420.00
		GNDD756	504444.7	6601055.9	1834.1	-60	113	509.00
		GNDD757	504657.0	6600103.0	1850.3	-50	115	341.00
		GNDD758	504571.3	6601703.0	1844.2	-60	113	366.00
		GNDD759	504657.0	6600103.0	1850.3	-65	115	290.00
		GNDD760	504907.1	6600840.3	1815.8	-62	292	479.00
		GNDD761	504657.0	6600103.0	1850.3	-50	90	341.00
		GNDD762	504500.7	6601647.7	1845.5	-60	113	480.00
		GNDD763	504376.4	6600558.2	1821.9	-60	115	422.00
		GNDD764	504985.9	6600891.8	1814.3	-62	292	470.00
		GNDD765	504136.1	6599699.2	1797.8	-60	114	270.00

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD766	505037.0	6601091.5	1813.7	-50	295	272.00
		GNDD767	504081.7	6599680.5	1798.0	-60	113	326.00
		GNDD768	504966.4	6601074.3	1816.8	-52	295	227.00
		GNDD769	504090.0	6599720.7	1799.3	-60	113	326.00
		GNDD770	504863.5	6601140.5	1822.0	-68	295	149.00
		GNDD771	504519.0	6601506.8	1842.0	-60	113	438.00
		GNDD772	504804.8	6601726.6	1838.5	-60	115	161.00
		GNDD773	504851.1	6602058.1	1843.4	-60	115	203.00
		GNDD774	503949.6	6599786.2	1803.4	-60	112	537.40
		GNDD775	504875.8	6601693.5	1836.3	-50	115	122.00
		GNDD776	504690.0	6602133.2	1849.1	-60	114	333.00
		GNDD777	504842.0	6602585.0	1810.0	-60	80	97.70
		GNDD777A	504842.0	6602585.0	1810.0	-60	80	182.00
		GNDD778	504034.9	6599878.9	1805.3	-60	112	600.30
		GNDD779	504005.8	6599671.7	1797.0	-60	113	402.00
		GNDD780	504785.1	6600721.8	1817.0	-60	165	92.00
		GNDD781	504858.4	6600751.9	1813.6	-60	165	119.00
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	resource estimation Drill core is placed run. These depthe drilling has been b	on is the CEL ASX re l into wooden boxe s are reconciled by	elease date 01 June es by the drillers and	2022 d depth marks n measuring c	are indicate	ed on wood	on for exploration a en blocks at the end sing core loss. Triple
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists 	collected for each splitter to split ou consistency in san	metre of RC drilling t a 2-4 kg sub-samp	g. Duplicate sample	es are taken at	the rate of	l every 25-	one. A 2-4 kg sub-sa 30 samples using a ri sample recovery and
	between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Channel samples I	saw-cut channels				-	eights. The channel no correlation betwe
		•	ve resulted lower re	eported values. His	storic core reco	overy data i	s incomplet	u Ag or Zn values wh e. Core recovery is in

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentar	У								
		The fracturi	ng is genera	ally post m	nineral and	not directly	associated w	vith the mine	eralisation.		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	mineralizatie metallurgica geological m logging is do cloud-based No specialis Detailed log	on, and stru I test work nodelling re one into MS database v t geotechni s are availa toric drillin	ucture to a . RC drill o source est Excel in a which holo cal logging ble for mo g have be	a level that chips are log timation an format tha ds all drill ho g has been ost of the hi	is suitable for gged for geo d metallurg it can readil- ble logging s undertaken storical drill	or geological blogy, alterat ical test worl y be cross-ch ample and a ing. Some lo	modelling, N ion and mine k. Where po lecked and is ssay data. ogs have not	Aineral Resou eralisation to ssible logging back-up trar been recover	g, lithology, a urce Estimatic a level that is g is quantitati nsferred to a s red. No core neglect. No	on, and s suitable fo ve. Geolog secure, offs photograp
Sub-sampling	- If core whether cut or sawn and									endoza and t	
techniques and	whether quarter half or all core					on. The sam	ple preparat	ion techniqu	e is consider	ed appropriat	te for the s
sample preparation	taken.	of mineraliz	ation prese	nt in the F	roject.						
	 If non-core whether riffled tube sampled rotary split etc and whether 	Sample sizes	s are appro	priate for	the minera	lisation style	e and grain si	ze of the dep	oosit.		
	 sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. 	of the core a mineralised retained in t	are selected interval in the core tra	d. Sample 1 drill hole ys for futu	length aver e only and f ure reference	rages 1.74m or some me ce.	. Second-ha tallurgical sa	If core or ¼ c mples. The s	core samples second half o	Representativ have been su f the core sau	ibmitted fo mples has b
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 		or a manua	al core spl	it press. Th	-				ter core is sp v cut or split i	-
	 Measures taken to ensure that the sampling is representative of the in- situ material collected including for 		073 and lat	er holes, d	, duplicate co		consisting of	f two ¼ core	samples over	the same int	terval have
	instance results for field	Duplicate co	ore sample	results and	d correlatio	n plots (log	scale for Au,	Ag and Zn) a	are shown be	low:	
	duplicate/second-half sampling.		count	RSQ	me	ean	med	dian	varia	ance	
	 Whether sample sizes are appropriate to the grain size of the 				original	duplicate	original	duplicate	original	duplicate	
	material being sampled.	Au (ppm)	3,149	0.960	0.080	0.081	0.007	0.007	0.709	0.905	
		Ag (ppm)	3,149	0.691	0.54	0.49	0.17	0.16	8.64	3.69	
		Cd (ppm)	3,149	0.979	1.42	1.32	0.09	0.08	177.98	159.95	
		Cu (ppm)	3,149	0.435	14.74	13.70	3.30	3.20	4.6E+03	2.6E+03	
		Fe (%)	3,149	0.988	1.957	1.955	1.700	1.700	3.23	3.22	

Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

Challe

www.challengerex.com

120m perf shares

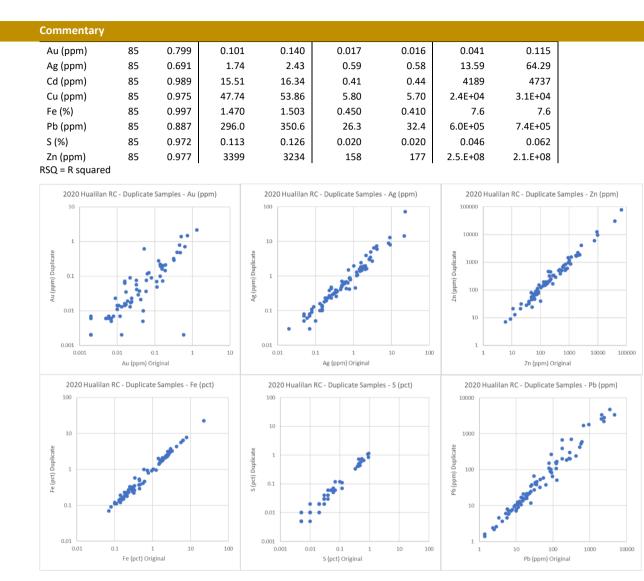
16m perf rights

West Perth WA 6005

17

Criteria	JORC Code explanation	Commentary							
				64.3	14.0	13.7	2.1E+05	3.0E+05	
				.338 0.336	0.150	0.150	0.367	0.352	
			0.976	263 251	72	72	4.2.E+06	3.9.E+06	
		RSQ = R squared							
		Hualilan DD - Duplicate Sample	es - Au (ppm)	Hualilan DD	- Duplicate Samples - A	g (ppm)	Hualilan	DD - Duplicate Sar	nples - Zn (ppm
			•	1000			10000		
		10	-1	100			10000		•
		ate		e 10	الجنين ا		ate	•	
				Duplic		•	000 Ouplics		18
		lidha (uudd) ny		0 1 (mdd) ¹ ¹ ¹ ¹	·		10 (mqq) n2		
		y nu l	•	₩ 0.1			2n(
		0.01		0.01			10		
				••	•• •				
		0.001 0.01 0.1	1 10 1	0.001 0.001 0.001		100 1000	1•	10 100	1000 10000
		Au (ppm) Origina	1		Ag (ppm) Original			Zn (ppm) Ori	ginal
		Hualilan DD - Duplicate Sample	es - Pb (ppm)		DD - Duplicate Samples	- Fe (pct)		lilan DD - Duplicate	Samples - S (pc
		10000	•	100			100		
		1000	e 18.				10		
				10)			
				plicate			1 licate		
		10 (mdd) 10		Le (bct) Du			s (pct) Dupl		đ –
		4 10 9	•	Fe (p			0.1 s		
				0.1	•		0.01		• •
				•••	-			• • • •	
		0.1 1 10 10	00 1000 100	0.01	0.1 1	10 100	0.001	0.01 0.1	1 10
		0.1 1 10 10 Pb (ppm) Origina		00 0.01	0.1 1 Fe (pct) Original	10 100	0.001	0.01 0.1 S (pct) Origin	
							المعمد محاد -	ا- ۵ من النسام	unlingto Di
		RC sub-samples over 1m ir sample is collected for eve			rill site from a c	ycione mo	untea on the	ariii rig. A d	uplicate R
			-						
		The duplicate RC sample re	esults and co	orrelation plots (lo	og scale for Au,	Ag and Zn)	are shown b	elow:	
		count R	RSQ	mean	mediar	n	varia	nce	
			orig	nal duplicate	original d	uplicate	original	duplicate	
er Exploration Limited		Registered Office Directors		Contact					
591 382	1,044.9m sharesLevel 110m options1205 Hay St	reet Mr Kris Knauer, MD Mr Scott Funston, F		T: +61 8 6380 923 E: admin@challer					
	120m perf shares West Perth			2. aa. mie endlief	0				

Mr Sergio Rotondo, Exec. Director


www.challengerex.com

16m perf rights

 $\overline{\Box}$

	Challen ACN 123 ASX: CEL	ger Exploration Li 3 591 382 -	mited	Issued Capital 1,044.9m shares 10m options 120m perf share 16m perf rights
R				
T				
	D			

Criteria

39 duplicate channel sample assays have been collected from the underground sampling program. These data show more scatter due to mobilisation of Au, Ag and Zn due to surface weathering.

es

JORC Code explanation

Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

JORC Code explanation Commentary Hualilan Channel - Duplicate Samples - Au (ppm) Hualilan Channel - Duplicate Samples - Ag (ppm) Hualilan Channel - Duplicate Samples - Zn (ppm) 1000 100000 100 10 100 10000 . 1000 0.1 (pp 100 3 0.01 0.1

0.1

Au (ppm) Original

10

100

0.001

0.001

0.01

Quality of assay data and laboratory tests

Criteria

appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

The nature quality and

- For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc.
- Nature of quality control procedures adopted (e.g., standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.

The MSA laboratory used for sample preparation in San Juan was inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (CEL Director) prior to any samples being submitted. The laboratory has been visited and revied most recently by Stuart Munroe (Exploration Manager) in May 2022. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The SGS laboratory in San Juan and the ALS laboratory in Mendoza has not yet been inspected by CEL representatives due to COVID-19 restrictions. Each laboratory presents internal laboratory standards for each job to gauge precision and accuracy of assays reported.

1

Ag (ppm) Original

10

100

10

100

Zn (ppm) Original

1000

0.1

100000

10000

0.01

0.01

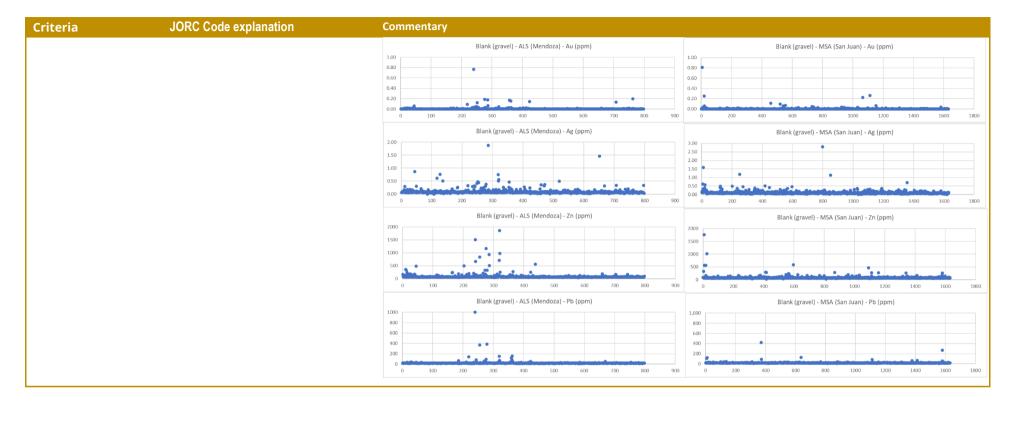
CEL have used two different blank samples, submitted with drill core, and subjected to the same preparation and assay as the core samples, RC sub-samples and channel samples. The blank samples are sourced from surface gravels in the Las Flores area of San Juan and from a commercial dolomite quarry near San Juan. In both cases the blank material is commonly for construction. Commonly, the blank samples are strategically placed in the sample sequence immediately after samples that were suspected of containing higher grade Au, Ag, S, or base metals to test the lab preparation and contamination procedures. The values received from the blank samples suggest only rare cross contamination of samples during sample preparation.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005


Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Directors

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

0

Challenger Exploration Limited ACN 123 591 382

Issued Capital 1,044.9m shares 10m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

	1 0.8 0.6 0.4 0.2		De													
	0.6		Du	lomite - ALS (M	lendoza) - Au (p	om)					Dolomite	- MSA (San	Juan) - Au (pp	m)		
	0.6							1.00								
	0.4							0.80								
								0.60								
								0.20								
	• •				30	40	50 60	0.00	-	00 40	0 600	800	1000	1200	1400	
				lomite - ALS (M	1endoza) - Ag (p			0	z	40			Juan) - Ag (pp		1400	
	2							3.00								
	1.5							2.50								
	1							1.50								
	0.5							1.00 0.50		•						
	0				30	40	50 60	0.00		00 40	0 600	800	1000	1200	1400	
				olomite - ALS (M		om)		. 0	2				Juan) - Zn (pp		1400	
	2000							2,000						,		
	1500							1,500								
	1000							1,000								
	500							500	•	•						
	0							0				8				
	0)	10	20	30	40	50 60) ())	200 4	00 600	80	1000	1200	1400	
			Do	olomite - ALS (M	1endoza) - Pb (p	om)					Domomite	- MSA (San	Juan) - Pb (pp	m)		
	1000 800							1,000								
	600							600								
	400							400								
	200							200		•						
	0				30	40	50 60	0	2	00 40	0 600	800	1000	1200	1400	
									-				2000	1200	2.000	

Directors

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

1,044.9m shares 10m options 120m perf shares 16m perf rights

Issued Capital

Australian Registered Office

Level 1

1205 Hay Street

West Perth WA 6005

Criteria

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1.044.9m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

Directors

West Perth WA 6005

1.00

2.00

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

CRM 4 - ALS Laboratory

Contact T: +61 8 6380 9235 E: admin@challengerex.com

2.00

2.00

Au_FA_ppm Ag 4acid pp

To 4acid pp Cu 4acid ppr

Pb_4acid_ppr

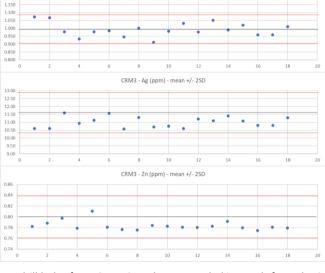
Fe_4acid_pct

S 4acid pct

For drill holes from GNDD011 plus unsampled intervals from the 2019 drilling, 17 different multi-element Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn. 7 different CRM's with known values for Au only have been submitted with samples of drill core, RC chips and channel samples to test the precision and accuracy of the analytic procedures of the MSA, ALS and SGS laboratories used. In the results received to date there has been no systematic bias is observed. The standards demonstrate suitable precision and accuracy of the analytic process. A summary of the standard deviations from the expected values for CRM's used is summarised below. Generally, an average of standard deviations close to zero indicates a high degree of accuracy and a low range of standard deviations with a low fail count indicates a high degree of precision.

CRM 4 - MSA Laboratory

Au_FA_ppm


Ag_4acid_pp Zn 4acid ppn

Cu_4acid_ppr

Pb_4acid_ppr

Fe_4acid_pct

S_4acid_pct

CRM3 - Au (ppm) - mean +/- 2SD

www.challengerex.com

JORC Code explanation

Commentary

1.200

ONE - 54 abore ONE - 55 abore	Criteria	JORC Code explanation	Commentary		
			CRM 5 - ALS Laboratory	CRM 5 - MSA Laboratory	
			2.00 T Au_FA_ppm 2.00	0 Au_FA_ppm	
			100 T T T Ag_4acid_ppm 10	Ag_4acid_ppm	
			Zn_4acid_ppm	Zn_4acid_ppm	
				0 Fe_4acid_pct	
CM 6 - A5Liberatory 0 - A5Lib				0 S_4acid_pct	
CM 6 - A5Liberatory 0 - A5Lib			300 300		
				CDAA C. AACA Laboratory	
			200		
CMP - ALS Laboratory CMP - ALS Laboratory CMM - ALS Laboratory CM -					
CM3 - Al5 Laboratory CM3 - Al5 Laboratory					
CM 7 - At S Laboratory CM 8 - At S Laboratory CM 9 -					
CM 7 - AS Laboratory CM 7 - AS Laboratory CM 8 - AS Laboratory CM 9 - MS Laboratory					
CM 8 - AIS Laboratory CM 8 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Laboratory CM 9 - AIS Labo					
			T		
			Au_tA_ppm	T T	
CRM 9 - ALS Laboratory CRM 9			1.00 Ag_4acid_ppm 1.0		
CM 9- AS Laboratory CM 9- AS Laborator					
CRM 8 - ALS Laboratory CRM 8 - ALS Laboratory CRM 8 - ALS Laboratory CRM 9			Pb_4acid_ppm	Pb_4acid_ppm	
CRM 9 - MSA Laboratory CRM 9 - ALS Laboratory CRM 9 - ALS Laboratory CRM 9 - MSA Laboratory CRM 9			re_tectu_ptt		
CRM 8 - ALS Laboratory CRM 9			-2.00 5_4acid_pot -2.0	0 \$_4acid_pct	
CRM 9-ALS Laboratory CRM 9-ALS Laboratory			-3.00 -3.0	0	
CRM 9 - ALS Laboratory CRM 9			CRM 8 - ALS Laboratory	CRM 8 - MSA Laboratory	
A Last up to the second				0	
100 1			2.00 T Au FA ppm 2.0	0 Au FA pom	
Image: Strate				T T T A finit non	
P2-4xid, prn P2-4xid, prn P2			Zn_4acid_opm	Zn_4acid_ppm	
1.00 Fe 4-skid prt 2.00 Fe 4-skid prt 3.00 Fe 4-skid prt					
200 300 CRM 9-ALS Laboratory 100 100 100 100 100 100 100 10					
CRM 9-ALS Laboratory CRM 9-ALS Laboratory					
CRM 9-ALS Laboratory CRM 9-ALS Laboratory			-3.00		
300 300 300 300 300 300 100 AL (A, S, M) 100 100 100 100 100 C, 4, 4, 4, 4, 5, 4, 500 100 100 100 100 C, 4, 4, 4, 4, 5, 4, 500 100 100 100 100 C, 4, 4, 4, 4, 5, 4, 500 100 100 100 100 C, 4, 4, 4, 4, 50 100 100 100 100 C, 4, 4, 4, 4, 50 100 100 100 100 C, 4, 4, 4, 4, 50 100 100 100 100 C, 4, 4, 4, 4, 50 100 100 100 100 C, 4, 4, 4, 4, 40 100 100 100 100 C, 4, 4, 4, 40 100 100 100 100 C, 4, 4, 4, 40 100 100 100 100 C, 4, 4, 40 100 100 100 <td></td> <td></td> <td></td> <td></td> <td>CRM 9 - SGS Laboratory</td>					CRM 9 - SGS Laboratory
100 100 <td></td> <td></td> <td></td> <td></td> <td></td>					
100 100 <td></td> <td></td> <td>2.00 T</td> <td></td> <td>2,00</td>			2.00 T		2,00
1.00 20,4xid,ppn 1.00 20,4xid,ppn 1.00 20,4xid,ppn 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0					
0.00 0.00			1.00	0 Degradac_pprin	
-1.00 -1.00 -1.00 -1.00 -1.00 -2.00 -1.00 -1.00 -1.00 -1.00 -2.00 -1.00 -1.00 -1.00 -1.00			0.00 Cu_4ucid_ppm 0.0		0.00 Cu_
			-1.00		-1.00
					1
				1	
			-3.0		-3.00 -

Ch ACN 123 591 382 ASX: CEL

1,044.9m shares 10m options 120m perf shares 16m perf rights

Level 1

Mr Kris Knauer, MD and CEO 1205 Hay Street Mr Scott Funston, Finance Director West Perth WA 6005 Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary						
		CRM 10 - ALS Laboratory			CRM 10 - MSA Laboratory			
		3		3.00				
		2	Au_FA_ppm	2.00		Au_FA_ppm		
		1	Ag_4acid_ppm	1.00	T	Ag_4acid_ppm		
		0	Cu_4acid_ppm	0.00		Zn_4acid_ppm		
			Pb_4acid_ppm	-1.00		Pb_4acid_ppm		
			Fe_4acid_pct		T ×	Fe_4acid_pct		
		2	5_4800_pct	-2.00	×	S_4acid_pct		
		-3		-3.00			_	
		CRM 11 - ALS Laboratory		3.00	CRM 11 - MSA Laboratory			
		, I		2.00				
			Au_FA_ppm			Au_FA_ppm		
			Zn_4acid_ppm	1.00		Zn_4acid_ppm		
		0	Cu_4acid_ppm	0.00		Cu_4acid_ppm		
			Pb_4acid_ppm Fe_4acid_pct	-1.00		Pb_4acid_ppm Fe_4acid_pct		
		2	S_4acid_pct	-2.00		S_4acid_pct		
		3		-3.00	1			
		CRM 12 - ALS Laboratory		3.00	CRM 12 - MSA Laboratory			
		3						
		2	Au_FA_ppm	2.00		Au_FA_ppm		
		1	Ag_4acid_ppm	1.00	Ţ	Ag_4acid_ppm		
		0 <u></u>	Cu_4acid_ppm	0.00	<u>-</u>	Cu_4acid_ppm		
		4	Pb_4acid_ppm Fe_4acid_pct	-1.00		Pb_4acid_ppm		
		-2	S_4acid_pct	-2.00	-	5_4acid_pct		
		3		-3.00	Ţ			
		CRM 13 - ALS Laboratory			CRM 13 - MSA Laboratory		CRM 13 - SGS Laboratory	
		3.00		3.00				
		2.00	Au_FA_ppm	2.00	- T - T	Au_FA_ppm	2.00	Au,
			Ag_4acid_ppm	1.00		Ag_4acid_ppm	1.00	Ag. ■ Zn.
		0.00	Cu_4acid_ppm	0.00		Cu_4acid_ppm	0.00	Cu
		-1.00	Pb_4acid_ppm Fe_4acid_pct	-1.00		Pb_4acid_ppm Fe_4acid_pct	-1.00	Pb
		-2.00	S_4acid_pct	-2.00		S_4acid_pct	-2.00	S_4
		300		-3.00	1 1		-3.00	
		CRM 14 - ALS Laboratory			CRM 14 - MSA Laboratory		CRM 14 - SGS Laboratory	
		3.00		3.00	_		3.00	
		2.00 T -	Au_FA_ppm	2.00		Au_FA_ppm	2.00	- Au
		1.00	Ag_4acid_ppm	1.00		Ag_4acid_ppm	1.00	Ag.
			Zn_4acid_ppm			Zn_4acid_ppm		= Zn
						Pb_4acid_ppm		Pb_
			Pb_4acid_ppm			Fe_4acid_pct	-1.00	
			Fe_1acid_pct	-1.00				Fe_
				-1.00		S_4acid_pct	-2.00	Ft

ACN 123 591 382 ASX: CEL

1,044.9m shares 10m options 120m perf shares 16m perf rights

Level 1

1205 Hay Street

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director West Perth WA 6005 Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

T: +61 8 6380 9235 E: admin@challengerex.com

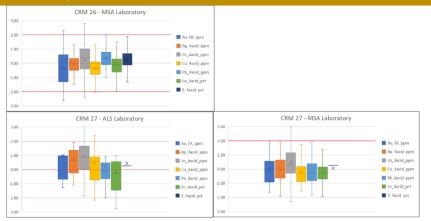
Criteria	JORC Code explan	ation Commer	itary			
			CRM 15 - MSA Laboratory			
		3.00				
		2.00	Au_FA_ppm			
		1.00	Ag_4acid_ppm			
		0.00	Zn_4acid_ppm			
		-1.00	Pb_4acid_ppm			
			Fe_4acid_pct			
		-2.00				
		-3.00				
		3.00	CRM 16 to 22 - ALS Laboratory (gold only)		CRM 16 to 22 - MSA Laboratory (gold or	nly)
				3.00		
		2.00	Au_FA_ppm CRM_16	2.00		Au_FA_ppm CRM_16
		1.00	Au_FA_ppm CRM_17 Au_FA_ppm CRM_18 Au_FA_ppm CRM_18	1.00		Au_FA_ppm CRM_17
		0.00	X T Au_FA_ppm CRM_18	0.00	×	Au_FA_ppm CRM_18
		-1.00		-1.00	▀▃▖▖▖▖	Au_FA_ppm CRM_20
			Au_FA_ppm CRM_21			Au_FA_ppm CRM_21
		-2.00	AU HA IPPIT CRM 22	-2.00	T T	Au_FA_ppm CRM_22
		-3.00		-3.00		
			CRM 23 - ALS Laboratory		CRM 23 - MSA Laboratory	
		3.00		3.00	T T	
		2.00	Au_FA_ppm	2.00	тТ	Au_FA_ppm
		1.00	Ag_4zcid_ppm	1.00		Ag_4acid_ppm
		0.00	Cu_4acid_ppm	0.00		Cu_4acid_ppm
		-1.00	Pb_4acid_ppm	-1.00		Pb_4acid_ppm
			Fe_4acid_pct			Fe_4acid_pct
		-2.00		-2.00	1	5_4400_pct
		-3.00		-3.00		
			CRM 24 - ALS Laboratory		CRM 24 - MSA Laboratory	
		3.00		3.00	T	
		2.00	Au_FA_ppm	2.00	T	Au_FA_ppm
		1.00	Ag_4acid_ppm	1.00		Ag_4acid_ppm
		0.00	Cu_4acid_ppm	0.00		Cu_4acid_ppm
		1.00	Pb_4acid_ppm	-1.00		Pb_4acid_ppm
		2.00	Fe_tacid_pct	-2.00		Fe_4acid_pct
		-3.00	I	-3.00	1	
		3.00	CRM 25 - ALS Laboratory	3.00	CRM 25 - MSA Laboratory	
			T -		Т	
		2.00	Au_FA_ppm	2.00	T	Au_FA_ppm
		1.00	Ag_4acid_ppm Zn_4acid_ppm	1.00		Ag_4acid_ppm
		0.00	Cu_4acid_ppm	0.00		Cu_4acid_ppm
		-1.00	Pb_4acid_ppm	-1.00		Pb_4acid_ppm
			Fe_dacid_pct			Fe_4acid_pct
		-2.00	1	-2.00	1	5 min pit
		-3.00		-3.00		
ger Exploration Limited	Issued Capital	Australian Registered Office	Directors	Contac	t	
3 591 382	1,044.9m shares	Level 1			3 6380 9235	
L	10m options	1205 Hay Street			n@challengerex.com	
	120m parf shares	West Parth WA COOF	Mr Eletcher Quinn, Chairman			

Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

www.challengerex.com

120m perf shares


16m perf rights

West Perth WA 6005

0

JORC Code explanation Criteria

Commentary

The verification of significant Verification of sampling and intersections by either independent assaying

- or alternative company personnel. The use of twinned holes.
- Documentation of primary data entry procedures data verification data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

Final sample assay analyses are received by digital file in PDF and CSV format. There is no adjustment made to any of the assay values received. The original files are backed-up and the data copied into a cloud-based drill hole database, stored offsite from the project. The data is remotely accessible for geological modelling and resource estimation.

Assay results summarised in the context of this report have been rounded appropriately to 2 significant figures. No assay data have been otherwise adjusted. Replicate assay of 186 coarse reject samples from 2019 drilling has been done to verify assay precision. Original core samples were from the 2019 DD drilling which were analysed by MSA (San Juan preparation and Vancouver analysis). Coarse reject samples were analysed by ALS (Mendoza preparation and Vancouver analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing high confidence in precision of results between MSA and ALS. A summary of the results for the 186 sample pairs for key elements is provided below:

	Mean		Median		Std Devia	ation	
Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903
Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1.044.9m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954
		Cd values >1000 are set at 1000							

Cd values >1000 are set at 1000.

REE is the sum off Ce, La, Sc, Y. CE > 500 is set at 500. Below detection is set at zero

Replicate assay of 192 coarse reject samples from 2021 drilling has been done to verify assay precision. Original core samples were from the 2021 DD drilling which were analysed by SGS Laboratories (San Juan preparation and Lima analysis). Coarse reject samples were prepared and analysed by ALS (Mendoza preparation and Lima analysis). The repeat analysis technique was identical to the original. Except for Mo (molybdenum), the repeat analyses correlate closely with the original analyses providing confidence in precision of results between SGS and ALS. A summary of the results for the 192 sample pairs for key elements is provided below:

		Mean		Medi	an	Std Devia	ation	
								Correlation
Element	count	SGS	ALS	SGS	ALS	SGS	ALS	coefficient
Au (FA and GFA ppm)	192	1.754	1.680	0.432	0.441	20.8	21.5	0.9837
Ag (ICP and ICF ppm)	192	12.14	11.57	0.93	1.03	7085	5925	0.9995
Zn (ICP and ICF ppm)	192	6829	7052	709	685	4.54E+08	5.34E+08	0.9942
Cu (ICP and ICF ppm)	192	203.4	202.9	25.7	24.5	3.30E+05	3.35E+05	0.9967
Pb (ICP and ICF ppm)	192	1768	1719	94.7	91.6	5.04E+07	4.39E+07	0.9959
S (ICP and ICF %)	192	2.23	2.10	0.94	0.87	16.51	15.56	0.9953
Cd (ICP ppm)	192	43.9	42.4	4.1	4.0	19594	18511	0.9956
As (ICP ppm))	192	45.4	45.2	16.0	16.9	10823	9893	0.9947
Fe (ICP %)	189	3.07	3.30	2.38	2.31	4.80	9.28	0.9781
REE (ICP ppm)	192	63.5	72.8	39.4	44.3	3414	4647	0.9096
Mo (ICP and ICF ppm)	192	7.69	1.68	6.74	0.97	85.83	10.33	0.3026

Values below detection were set to half the detection limit

Limit of detection for Fe was exceeded for 3 samples submitted to SGS with no overlimit analysis

REE is the sum off Ce, La, Sc, Y. Values below detection were set at zero

CEL have sought to twin and triplicate some of the historic and recent drill holes to check the results of previous

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights

Level 1 1205 Hay Street West Perth WA 6005

Australian Registered Office Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		exploration. A preliminary analysis of the twin holes indicates similar widths and grades for key elements assayed. The twin holes are: GNDD003 – DDH34 and 04HD08 GNRC110 – DDH53 GNDD144 – GNDD021 – 05HD39 GNRC107 – GNDD008/008A GNDD206 – DDH54 GNDD421 – GNDD424
Location of data points	 Accuracy and quality of surveys use to locate drill holes (collar and down-hole surveys) trenches mine 	d Following completion of drilling, collars are marked and surveyed using a differential GPS (DGPS) relative to a nearby Argentinian SGM survey point. The collars have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.
	workings and other locations used i Mineral Resource estimation. - Specification of the grid system	ⁿ Following completion of the channel sampling, the location of the channel samples is surveyed from a survey mark at the entrance to the underground workings, located using differential GPS. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.
	used. - Quality and adequacy of	The drill machine is set-up on the drill pad using hand-held survey equipment according to the proposed hole design.
	topographic control.	Diamond core drill holes up to GNDD390 are surveyed down-hole at 30-40m intervals down hole using a down-hole compass and inclinometer tool. RC drill holes and diamond core holes from GNDD391 were continuously surveyed down hole using a gyroscope to avoid magnetic influence from the drill string and rocks. The gyroscope down-hole survey data recorded in the drill hole database at 10m intervals.
		Ten diamond drill holes have no down hole survey data due to drill hole collapse or blockage of the hole due to loss of drilling equipment. These are GNDD036, 197, 212, 283, 376, 423, 425, 439, 445 and 465. For these holes, a survey of the collar has been used with no assumed deviation to the end of the hole.
		All current and previous drill collar sites, Minas corner pegs and strategic surface points have been surveyed using DGPS t provide topographic control for the Project. In addition, AWD3D DTM model with a nominal 2.5 metre precision has beer acquired for the project and greater surrounding areas. Drone-based topographic survey data with 0.1 meter precision is being acquired over the project to provide more detail where required.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the 	
	Mineral Resource and Ore Reserve estimation procedure(s) and	Samples have not been composited for reporting.
ger Exploration Limited 3 591 382 -	Issued Capital Australian Regist 1,044.9m shares Level 1 10m options 1205 Hay Street 120m perf shares West Perth WA 60 16m perf rights 100	Mr Kris Knauer, MD and CEO T: +61 8 6380 9235 Mr Scott Funston, Finance Director E: admin@challengerex.com

www.challengerex.com

0

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 classifications applied. Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	As far as is currently understood and where practicable, the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Some exploration holes have drilled at a low angle to mineralisation and have been followed up with drill holes in the opposite direction to define mineralised domains. For underground channel sampling, the orientation of the sample is determined by the orientation of the workings. Where the sampling is parallel with the strike of the mineralisation, plans showing the location of the sampling relative to the orientation of the mineralisation, weighted average grades and estimates of true thickness are provided to provide a balanced report of the mineralisation that has been sampled. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	- The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior technical personnel, and courier contractors prior to delivery to the preparation laboratories in San Juan and Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

 $\overline{(7)}$

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary							
Mineral tenement and land tenure status	- Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings.	The Hualilan Project comprises fifteen Minas (equivalent of mining leases) and five Demasias (mining extensions) held under an farmin agreement with Golden Mining SRL (Cerro Sur) and CIA GPL SRL (Ce Fourteen additional Minas and eight exploration licences (Cateos) have been transferred to CEL unde farmin agreement. Six Cateos and eight requested mining leases are directly held. This covers all of the defined mineralization and surrounding prospective ground. There are no royalties held over the tenements. <i>Granted mining leases (Minas Otorgadas) at the Hualilan Project</i>							
	- The security of the tenure held at the	Name Number Current Owner		Status	Grant Date	Area (ha)			
	time of reporting along with any known	Cerro Sur						-	
	impediments to obtaining a licence to	Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6		
	operate in the area.	Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	_	
		Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6		
		Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6		
		Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6		
		Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6		
		Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6		
		Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6		
		Cerro Norte							
		La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6		
		La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6		
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6		
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6		
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6		
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6		
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6		
		Mining Lease extens	sions (Demasias) (at the Hualilan Project					
		Name	Number	Current Owner	Status	Grant d	late Are	a (ha)	
		Cerro Sur							

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors

North of "Pizarro"

Cerro Norte

Mine

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

195-152-C-1981

Contact T: +61 8 6380 9235 E: admin@challengerex.com 29/12/1981

2.42

Granted

Golden Mining

S.R.L.

JORC Code explanation

Commentary					
South of "Andacollo" Mine	545.208-B-94	CIA GPL S.R.L.	Pending Reconsideration	14/02/1994	1.83
South of "Sanchez" Mine	545.209-B-94	CIA GPL S.R.L.	Application	14/02/1994	3.50
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	29/12/1981	2.42
South of "Pizarro" Mine	545.207-B-94	Golden Mining S.R.L.	Application	14/02/1994	2.09

Requested Mining Leases (Minas Solicitados)

Name	Number	Status	Area (ha)
Elena	1124.328-G-2021	Application	2,799.24
Juan Cruz	1124.329-G-2021	Application	933.69
Paula (over "Lo Que Vendra")	1124.454-G-2021	Application	1,460.06
Argelia	1124.486-G-2021	Application	3,660.50
Ana Maria (over Ak2)	1124.287-G-2021	Application	5,572.80
Erica (Over "El Peñón")	1124.541-G-2021	Application	6.00
Silvia Beatriz (over "AK3")	1124.572-G-2021	Application	2,290.75
Soldado Poltronieri (over 1124188-20,	1124.108-2022	Application	777.56
545867-R-94 and 545880-O-94)			

Mining Lease Farmin Agreements

Name	Number	Transfrred to CEL	Status	Area (ha)	
Marta Alicia	2260-S-58	Yes	Current	23.54	
Marta	339.154-R-92	Yes	Current	478.50	
Marta 1	339.153-R-92	Yes	Current	163.42	
AK4	1124.299-R-18	Yes	Current	1,498.39	
Solitario 1-5	545.604-C-94	Yes	Current	685.00	
Solitario 1-4	545.605-C-94	Yes	Current	310.83	
Solitario 1-1	545.608-C-94	Yes	Subject to Approval	TBA	
Solitario 6-1	545.788-C-94	Yes	Subject to Approval	TBA	
AGU 3	11240114-2014	Yes	Registered	1,500.00	
AGU 5	1124.0343-2014	Yes	Registered	1,443.58	
AGU 6	1124.0623-2017	Yes	Registered	1,500.00	
AGU 7	1124.0622-S-17	Yes	Registered	1,500.00	
Guillermina	1124.045-S-2019	Yes	Registered	2,921.05	

Challenger Exploration Limited ACN 123 591 382

Criteria

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Directors

Criteria	JORC Code explanation	Commenta	ary									
		El Petiso		1124.2478-71	Yes	Registe	ered	18.00				
		Exploration	n Licence	(Cateo) Farmin Agre	eements							
		Nar	me	Number	Transfrred to CEL	Status	5	Area (ha)				
				295.122-R-1989	Yes	Current		1,882.56				
				228.441-R-1993	Yes	Subject to Ap	oproval	2,800.00				
				545.880-0-1994	Yes	Current		149.99				
		Exploration	n Licence	(Cateo) Held (Direct	t Award)							
		Name		Number	Transfrred to C	EL Status	Grant Date	Area (ha)]			
		Ayen	1124.4	495-1-20	Yes	Current	Dute	2,059.60	_			
				248G-20	Yes	Current		933.20				
			1124-	188-G-20 (2 zones)	Yes	Current		327.16				
			1124.3	313-2021	Yes	Current		986.41				
			1124.5		Yes	Current		1,521.12				
			1124.6	632-G-2022	Yes	Current		4,287.38				
by other parties	exploration by other partie	resource e	geological maps, reports, trenching data, underground surveys, drill hole results, geophysical surveys, non-JOR resource estimates plus property examinations and detailed studies by multiple geologists. Prior to exploratio by CEL, no work has been completed on the Project since 2006.									
		workings a have been Historic ge Historic dr	re likely t compiled ophysical illing on c	to be incomplete. Co d and digitised as ha l surveys exist but h or near the Hualilan	vorkings that pass thre ommonly incomplete s sample data geologi ave been superseded Project (Cerro Sur and	records of the u ical mapping ad by surveys com d Cerro Norte co	undergroun lit exposure opleted by (d geology and si is and drill hole i CEL.	, ampli result			
		- 19 - 19 - 19 - 19 - 19 - 19	 holes. The key historical exploration drilling and sampling programs are: 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totalling 2,040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1,500 RC chip samples 1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground ma channel sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 diamond core holes (DDH-20 to 79) plus RC program 									
nger Exploration Limited 23 591 382		ustralian Registered Office	Directo Mr Kris	o rs Knauer, MD and CEO	Contact T: +61 8 6380 9235							

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

10m options

120m perf shares

16m perf rights

1205 Hay Street

West Perth WA 6005

ASX: CEL

Criteria	JORC Code explanation		Commentar	у					
Coology			 2003 – 2005 – La Mancha (TSE Listed) undertook 7,447m of DDH core drilling (HD-01 to HD-48) Detailed resource estimation studies were undertaken by EPROM Ltd. (EPROM) in 1996 and CMEC (19 revised 2000) both of which are well documented and La Mancha 2003 and 2006. The collection of all exploration data by the various operators was of a high standard and appropriate sampling techniques intervals and custody procedures were used. Not all the historic data has been archiv and so there are gaps in the availability of the historic data. Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occur 						
Geology	 Deposit type geological style of mineralisation. 	setting and	in fault zone The minerali mesotherma retrograde s system. Pre	es and in fracture networks wit isation is Zn-(Pb-Cu-Ag) distal s al to epithermal Au-Ag mineral skarn, and a later quartz-rich m	hin dacitic intrusions. skarn (or manto-style skarn) overprinted with vein-hosted isation. It has been divided into three phases – prograde skarn, nineralisation consistent with the evolution of a large hydrothermal hydrothermal evolution is the subject of on-going work which is being				
				on commonly contains pyrite, o	th sulphide (predominantly pyrite) and in pyroxene. The chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite				
			Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matrix within fracture dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 metres and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important localising the mineralisation.						
					e to weathering is thin. A partial oxidation / fracture oxidation layer n modelled from drill hole intersections.				
Drill hole Information	- A summary of all inform to the understanding of results including a tabu following information fo drill holes:	^f the exploration lation of the	June 2022 an used with up	re included in the CEL ASX rele o to 2m of internal diltion or a owed. No metallurcial or reco	bus explorers and used in the Hualilan Mineral Resource Estimate of 01 ase date 01 June 2022. A cut-off grade of 1 g/t Au equivalent has been cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltion very factors have been used in reporting historic drill hole				
Information - -	 easting and northing of collar elevation or RL (Reduce elevation above sea levation the drill hole collar 	d Level –	The significant intersections from CEL drill holes and channel samples that have been used in the Mineral Resource Estimate are reported in the CEL ASX release date 01 June 2022. Significant intersections are listed below for drill holes that are not included in the Resource Estimate. Significant intersections are reported to a cut-off of 1.0 g/t AuEq (gold equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.						
	- dip and azimuth of the l	hole	The followin	ng metals and metal prices have	e been used to report gold grade equivalent (AuEq): Au US\$ 1900 / oz				
lenger Exploration Limited 123 591 382 CEL	Issued Capital 1,044.9m shares 10m options 120m perf shares	Australian Register Level 1 1205 Hay Street West Perth WA 6005		Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman	Contact T: +61 8 6380 9235 E: admin@challengerex.com				

Criteria

JORC Code explanation

Commentary

- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report the Competent Person should clearly explain why this is the case.

Ag US\$24 /oz, Zn US\$ 4,000 /t and Pb US 2,000/t.

Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from the results of Stage 1 metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation combined metallurgical samples as detailed in the Criteria below.

For the AuEq calculation average metallurgical recovery is estimated as 94.9% for gold, 90.9% for silver, 67.0% for Zn and 57.8% for Pb.

Accordingly, the formula used for Au Equivalent is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x (0.909/0.949)] + [Zn (%) x (40.00*31.1/1900) x (0.670/0.949)] + (Pb (%) x 20.00*31.1/1900) x (0.578/.9490).

Hole_id	from (m)	to (m)	int (m)	Au	Ag	Pb (%)	Zn (%)	AuEq	Note
				(g/t)	(g/t)			(g/t)	
GNDD316 EXT	345.40	347.00	1.60	2.9	53.5	0.72	9.0	7.9	
and	441.00	491.00	50.00	2.4	16.8	0.02	1.8	3.4	2
inc	443.50	446.80	3.30	1.8	16.2	0.03	1.2	2.5	
inc	456.50	479.00	22.50	4.8	33.5	0.04	3.8	7.0	
inc	456.50	457.25	0.75	107	223	0.02	16.6	118	1
and	507.90	517.00	9.10	2.2	13.1	0.01	0.07	2.4	2
inc	507.90	509.65	1.75	10.8	62.3	0.04	0.27	11.7	_
GNDD375 EXT	490.70	491.20	0.50	1.1	13.0	0.00	0.64	1.6	
and	508.00	508.50	0.50	6.4	55.0	0.05	2.1	8.0	
and	521.35	524.70	3.35	1.5	15.7	0.02	0.58	1.9	
GNDD487	358.00	362.00	4.00	0.43	0.11	0.00	0.01	0.43	2
and	373.20	376.00	2.80	0.41	5.1	0.01	0.03	0.48	2
and	495.50	518.00	22.5	0.42	0.47	0.00	0.01	0.43	2
inc	497.00	497.50	0.50	4.0	5.8	0.00	0.01	4.1	
and	545.40	547.00	1.60	0.55	3.1	0.00	1.05	1.1	
GNDD495	NSI								-
GNDD497	NSI								
GNDD501	35.00	53.25	18.2	0.22	32.7	0.02	0.07	0.65	2
inc	39.00	41.00	2.00	1.15	78.7	0.03	0.05	2.1	
inc	52.50	53.25	0.75	0.93	276	0.18	0.88	4.7	
and	187.65	189.00	1.35	2.5	2.0	0.00	0.02	2.5	2
inc	187.65	188.35	0.70	4.4	2.5	0.00	0.03	4.4	
GNDD505	443.00	445.00	2.00	0.29	25.9	0.04	0.41	0.80	2
GNDD506	116.10	118.20	2.10	0.02	4.5	0.09	1.9	0.98	2
inc	117.00	118.20	1.20	0.03	5.2	0.07	2.2	1.1	
and	205.40	216.00	10.6	0.87	1.1	0.00	0.10	0.93	2
inc	205.40	214.00	8.60	0.90	1.3	0.00	0.09	1.0	
and	238.40	273.60	35.2	0.32	1.4	0.01	0.49	0.57	2

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Challenger Exploration Limited ACN 123 591 382

ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Directors

riteria	JORC Code explanation	on Commenta	iry								
		inc	238.40	239.60	1.20	0.24	4.1	0.02	2.2	1.3	
		inc	267.50	273.60	6.10	0.93	3.1	0.01	1.5	1.7	
		and	294.00	302.00	8.00	0.42	0.52	0.01	0.07	0.46	2
		and	318.00	323.50	5.50	0.34	0.71	0.01	0.09	0.39	2
		and	430.35	438.65	8.30	0.29	0.26	0.02	0.03	0.31	2
		GNDD508	89.75	91.10	1.35	0.85	2.01	0.10	0.32	1.0	
		and	125.00	128.40	3.40	0.24	8.6	0.00	0.19	0.43	2
		and	167.00	191.00	24.0	0.33	0.47	0.04	0.06	0.37	2
		and	331.00	333.00	2.00	1.1	7.0	0.02	0.09	1.2	
		and	388.35	389.00	0.65	1.0	40.0	0.03	1.6	2.2	
		and	498.80	499.30	0.50	2.6	30.6	0.01	3.1	4.4	
		GNDD509	17.00	19.00	2.00	0.72	8.0	0.01	0.04	0.83	2
		and	61.00	63.00	2.00	2.0	15.5	0.00	0.01	2.2	
		and	223.75	227.30	3.55	2.3	2.5	0.00	0.03	2.4	
		GNDD510	167.00	169.00	2.00	1.4	0.30	0.00	0.01	1.4	
		and	224.00	284.00	60.0	0.24	2.0	0.03	0.07	0.31	2
		inc	238.00	240.00	2.00	0.78	7.8	0.06	0.44	1.1	
		and	348.00	350.00	2.00	3.7	5.9	0.44	1.2	4.4	
		and	430.00	447.00	17.0	0.91	0.43	0.00	0.00	0.91	2
		inc	439.60	447.00	7.40	1.8	0.32	0.00	0.00	1.8	
		and	461.00	465.00	4.00	0.40	0.82	0.00	0.01	0.41	2
		GNDD511	68.00	70.00	2.00	0.54	2.9	0.06	0.07	0.62	2
		and	130.00	132.00	2.00	0.26	26.5	0.03	0.07	0.62	2
		GNDD513	148.00	172.00	24.0	0.24	1.2	0.00	0.02	0.26	2
		and	186.00	188.00	2.00	0.96	15.2	0.23	0.30	1.3	
		and	239.00	243.00	4.00	0.34	1.0	0.00	0.01	0.36	2
		and	484.00	486.00	2.00	2.1	4.8	0.01	0.01	2.20	
		and	508.00	512.00	4.00	0.46	0.23	0.00	0.00	0.47	2
		and	532.00	542.00	10.0	0.32	1.0	0.04	0.08	0.37	2
		and	644.10	653.00	8.90	0.13	3.2	0.01	0.53	0.42	2
		inc	644.10	644.70	0.60	0.40	12.4	0.00	5.4	3.0	
		GNDD514	294.00	295.40	1.40	0.60	268	0.63	1.45	4.6	
		and	307.80	315.85	8.05	1.0	12.7	0.07	1.0	1.6	
		and	324.10	326.45	2.35	8.5	59.1	0.14	5.2	11.6	
		and	349.30	351.15	1.85	0.69	11.0	0.06	2.6	2.0	
		and	401.50	406.05	4.55	0.53	5.3	0.03	1.3	1.2	2
		inc	402.60	404.45	1.85	0.94	8.7	0.02	2.4	2.1	
		and	418.10	419.00	0.90	1.5	2.9	0.00	0.21	1.7	
		and	548.95	549.50	0.55	0.76	11.7	0.00	1.4	1.5	
		GNDD516	NSI								
		GNDD518	172.00	175.00	3.0	0.39	1.3	0.00	0.00	0.40	2
		and	183.50	185.00	1.50	1.5	25.0	0.58	0.79	2.3	
		and	201.00	206.00	5.00	0.83	2.5	0.17	0.21	1.0	2
Exploration Limited		Australian Registered Office	Directors		Conta		_				
1 382	1,044.9m shares	Level 1	Mr Kris Knauer, MD	and CEO	T· +61	8 6380 9235	5				

Chall

ACN 123 591 382 ASX: CEL

1,044.9m shares 10m options 120m perf shares 16m perf rights

1205 Hay Street West Perth WA 6005 Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

E: admin@challengerex.com

Criteria	JORC Code explanati	on Commenta	iry								
		inc	203.00	204.25	1.25	2.2	0.87	0.05	0.14	2.2	
		GNDD519	NSI								
		GNDD521	82.00	86.00	4.00	0.26	0.20	0.00	0.0	0.26	2
		and	267.00	307.00	40.0	0.22	2.0	0.04	0.1	0.31	2
		inc	302.00	307.00	5.00	0.78	3.4	0.08	0.3	1.0	
		GNDD525	157.00	160.50	3.50	0.29	5.2	0.01	0.3	0.50	2
		and	268.00	274.00	6.00	0.62	1.6	0.10	0.2	0.73	2
		and	330.00	331.00	1.00	1.6	7.9	0.23	0.6	2.0	
		and	353.55	359.30	5.75	0.43	0.91	0.01	0.0	0.47	2
		inc	358.30	359.30	1.00	1.1	1.5	0.04	0.1	1.2	
		and	428.00	429.00	1.00	0.37	28.8	0.44	0.8	1.2	
		GNDD526	0.00	0.55	0.55	0.75	19.7	0.03	0.2	1.1	
		GNDD528	412.00	437.95	25.9	0.29	0.60	0.00	0.04	0.31	2
		inc	426.80	428.00	1.20	1.4	0.40	0.00	0.01	1.4	
		and	448.00	462.00	14.0	0.24	0.42	0.00	0.02	0.26	2
		GNDD529	144.00	150.00	6.00	0.42	1.0	0.06	0.07	0.48	2
		and	248.90	249.95	1.05	0.17	11.9	1.5	1.9	1.5	
		and	311.00	311.80	0.80	1.4	4.5	0.06	0.1	1.5	
		GNDD530	107.00	130.00	23.0	0.27	1.2	0.01	0.02	0.29	2
		and	159.00	213.00	54.0	0.30	2.0	0.01	0.06	0.35	2
		inc	196.00	198.90	2.90	1.8	12.2	0.05	0.51	2.2	
		and	357.50	386.00	28.5	5.0	23.9	0.02	0.03	5.3	
		inc	358.80	360.00	1.20	116	536	0.31	0.25	122	1
		GNDD531	283.00	295.00	12.0	0.20	2.3	0.01	0.03	0.25	2
		and	319.50	324.00	4.50	0.41	2.4	0.01	0.02	0.45	2
		inc	319.50	320.00	0.50	1.7	18.1	0.00	0.02	2.0	
		and	348.10	348.60	0.50	0.22	7.2	0.03	2.3	1.4	
		and	402.15	403.25	1.10 0.50	1.6	14.8	0.02	2.6	3.0	
		and GNDD533	416.20	416.70	12.6	2.6 0.26	11.4	0.00	0.16	2.8	2
			213.00	225.60			0.13	0.01	0.02		2
		inc and	224.50 254.00	225.60 267.00	1.10 13.0	1.1 0.21	0.59 0.26	0.08 0.00	0.05 0.02	1.1 0.23	2
		and	362.00	363.35	13.0	0.21 67.0	101	0.00	15.0	0.23 75.1	2 1
		and	378.15	378.80	0.65	16.6	5.7	0.04	0.74	17.0	1
		and	403.50	404.00	0.00	3.0	32.6	0.00	1.4	4.0	T
		and	473.00	494.00	21.0	0.43	0.89	0.00	0.01	0.44	2
		inc	481.00	483.00	2.00	1.2	0.33	0.00	0.01	1.2	-
		GNDD534	88.00	92.00	4.00	0.18	1.4	0.06	0.19	0.29	2
		and	219.00	236.00	17.0	0.58	7.6	0.01	0.08	0.71	2
		inc	228.00	234.00	6.00	1.3	15.1	0.03	0.07	1.5	-
		and	247.00	249.00	2.00	1.2	10.4	0.00	0.05	1.3	
		and	261.00	277.00	16.0	0.20	1.9	0.04	0.17	0.31	2
		and	312.00	321.35	9.35	0.22	1.8	0.04	0.08	0.29	2
nger Exploration Limited	Issued Capital	Australian Registered Office	Directors	and CEO	Contac		=				
23 591 382	1,044.9m shares	Level 1	Mr Kris Knauer, MD	anu CEU	1:+61	8 6380 923	0				

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

www.challengerex.com

10m options

120m perf shares

16m perf rights

1205 Hay Street

West Perth WA 6005

Criteria	JORC Code explanation	Commenta	ry								
		and	334.00	337.00	3.00	1.3	0.30	0.00	0.01	1.3	
		inc	334.00	335.00	1.00	3.5	0.63	0.01	0.02	3.5	
		GNDD535	88.00	90.00	2.00	0.69	0.13	0.00	0.01	0.69	2
		and	392.00	414.25	22.2	0.22	0.43	0.00	0.10	0.27	2
		inc	401.75	403.00	1.25	1.5	2.9	0.00	0.59	1.8	
		and	428.00	440.00	12.0	0.44	0.10	0.00	0.00	0.44	2
		GNDD536	188.85	213.00	24.1	0.74	1.7	0.02	0.23	0.87	2
		inc	201.20	203.00	1.80	2.9	13.4	0.01	2.2	4.1	
		inc	211.00	213.00	2.00	4.4	0.13	0.00	0.01	4.4	
		and	240.50	252.70	12.2	0.40	0.38	0.00	0.01	0.41	2
		and	508.30	512.00	3.70	1.0	1.7	0.03	0.40	1.2	
		inc	508.30	510.05	1.75	1.7	1.3	0.02	0.15	1.8	
		and	552.00	558.60	6.60	4.2	50.0	0.01	3.4	6.4	
		inc	556.80	558.60	1.80	14.2	183	0.04	12.5	22.1	1
		inc	556.80	558.10	1.30	19.2	252	0.06	17.1	30.2	1
		GNDD537	78.00	94.30	16.30	0.30	1.2	0.01	0.02	0.32	2
		and	144.00	150.00	6.00	0.24	0.64	0.03	0.03	0.27	2
		and	308.00	336.50	28.50	0.21	1.0	0.02	0.05	0.25	2
		GNDD538	115.50	122.00	6.50	0.18	3.4	0.05	0.08	0.27	2
		and	134.70	141.00	6.30	0.45	1.4	0.01	0.03	0.48	2
		and	176.00	186.00	10.00	1.02	0.7	0.00	0.01	1.0	2
		inc	182.00	184.00	2.00	3.11	0.7	0.00	0.01	3.1	
		and	198.50	200.00	1.50	1.60	1.7	0.00	0.06	1.6	
		and	331.00	410.00	79.00	0.21	1.3	0.03	0.05	0.26	2
		inc	404.00	405.00	1.00	4.0	11.2	0.60	1.1	4.7	
		GNDD539	315.00	321.00	6.00	0.22	0.11	0.00	0.01	0.22	2
		and	373.00	394.00	21.00	0.88	1.0	0.00	0.04	0.91	2
		inc	379.00	381.00	2.00	1.8	0.21	0.00	0.01	1.8	
		inc	388.00	392.00	4.00	1.7	2.4	0.00	0.01	1.7	
		and	410.00	426.00	16.00	0.30	0.14	0.00	0.01	0.31	2
		inc	424.00	426.00	2.00	1.07	0.53	0.00	0.01	1.1	
		GNDD540	134.00	186.50	52.5	0.29	5.1	0.00	0.06	0.38	2
		inc	136.60	137.40	0.80	0.77	49.5	0.03	0.14	1.5	
		inc	150.00	152.00	2.00	1.2	19.4	0.00	0.08	1.5	
		and	224.00	254.20	30.2	0.40	4.5	0.06	0.26	0.57	2
		inc	234.00	236.00	2.00	3.8	41.8	0.17	2.4	5.4	
		and	309.15	311.65	2.50	4.0	67.5	0.45	7.5	8.1	2
		GNDD541	398.00	399.60	1.60	0.72	0.01	0.00	0.00	0.72	2
		and	436.00	441.00	5.00	0.07	62.3	0.06	0.10	0.88	2
		inc	439.90	441.00	1.10	0.24	222	0.18	0.35	3.1	
		and	464.20	464.70	0.50	1.4	48.7	0.00	3.7	3.7	
		GNDD542	NSI	100.00	45 7	0.40	4 7	0.01	0.1	0.24	2
		GNDD543	90.30	106.00	15.7	0.18	1.7	0.01	0.1	0.24	2
ger Exploration Limit 3 591 382	ted Issued Capital 1,044.9m shares 10m options	Australian Registered Office Level 1 1205 Hay Street	Directors Mr Kris Knauer, MD Mr Scott Funston, F			8 6380 923	5 gerex.com				

Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

120m perf shares

16m perf rights

West Perth WA 6005

riteria	JORC Code explanation	Commentary									
		and	179.60	181.00	1.40	0.87	1.2	0.16	0.4	1.1	
		GNDD544	48.00	58.60	10.6	0.10	3.6	0.23	1.0	0.65	2
		inc	57.00	58.60	1.60	0.12	11.0	0.91	3.5	2.1	
		and	152.00	160.00	8.00	0.22	1.4	0.00	0.0	0.25	2
		and	299.00	318.00	19.0	0.25	1.0	0.00	0.0	0.27	2
		and	333.45	338.00	4.55	0.31	1.8	0.00	0.0	0.34	2
		and	409.00	410.40	1.40	1.1	12.0	0.13	0.6	1.5	
		and	422.00	426.00	4.00	0.43	2.9	0.07	0.0	0.49	2
		GNDD546	55.00	59.00	4.00	1.2	0.34	0.00	0.0	1.2	
		and	134.00	138.00	4.00	0.48	0.40	0.00	0.0	0.48	2
		and	316.00	330.00	14.00	0.56	1.8	0.03	0.2	0.66	2
		inc	326.00	328.00	2.00	1.8	2.9	0.01	0.1	1.9	
		and	437.00	439.35	2.35	2.2	8.1	0.00	0.1	2.3	2
		inc	438.30	438.80	0.50	9.7	35.7	0.01	0.0	10.2	1
		GNDD548	NSI								
		GNDD549	2.00	17.50	15.5	0.31	5.9	0.01	0.05	0.41	2
		and	28.10	39.00	10.9	4.0	71.5	0.51	0.81	5.3	
		inc	29.20	31.75	2.55	15.4	245	1.7	2.1	19.4	1
		inc	29.80	30.85	1.05	31.1	381	2.8	3.2	37.4	1
		inc	37.00	39.00	2.00	1.6	44.3	0.60	0.32	2.3	
		GNDD550	373.30	377.70	4.40	1.0	16.0	0.03	4.5	3.3	
		inc	374.00	377.70	3.70	1.1	18.7	0.03	5.4	3.8	
		and	425.00	427.10	2.10	3.7	27.0	0.01	1.7	4.8	
		and	437.50	443.00	5.50	0.49	15.3	0.02	3.3	2.2	
		GNDD551A	353.0	361.0	8.0	0.3	0.1	0.0	0.0	0.3	2
		GNDD552	2.20	36.00	33.8	0.75	12.1	0.10	0.15	1.0	2
		inc	9.00	12.35	3.35	6.0	82.4	0.80	0.58	7.4	
		inc	11.40	12.35	0.95	15.6	254	1.1	0.07	18.9	1
		GNDD553	300.00	306.00	6.00	0.21	1.1	0.10	0.18	0.33	2
		and	323.50	325.35	1.85	2.2	11.2	0.02	1.0	2.9	
		and	343.00	343.50	0.50	0.19	5.8	0.07	2.1	1.2	
		GNDD554	232.90	240.00	7.10	0.26	0.62	0.08	0.18	0.37	2
		and	259.90	306.00	46.10	0.79	0.86	0.02	0.12	0.86	2
		inc	259.90	261.00	1.10	0.89	2.2	0.21	0.45	1.2	
		inc	272.50	279.00	6.50	3.7	2.6	0.01	0.31	3.9	
		inc	286.20	287.30	1.10	1.3	0.51	0.01	0.12	1.3	
		inc	295.40	296.65	1.25	1.1	2.0	0.06	0.13	1.2	
		and	318.80	323.00	4.20	0.43	0.16	0.00	0.01	0.43	2
		and	338.00	362.00	24.00	0.88	0.80	0.00	0.05	0.91	2
		inc	344.70	350.20	5.50	2.8	1.9	0.00	0.21	2.9	
		GNDD555	68.55	69.10	0.55	0.03	79.0	0.09	0.12	1.1	
		and	284.00	288.00	4.00	0.37	4.4	0.13	0.51	0.69	
		and	314.00	327.70	13.7	0.29	8.0	0.25	0.76	0.79	

Challe ACN 123 591 382 ASX: CEL

1,044.9m shares 10m options 120m perf shares 16m perf rights

Level 1

1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanatio	n Commenta	ry								
		inc	314.00	316.00	2.00	0.32	34.9	0.23	0.72	1.1	
		inc	326.85	327.70	0.85	1.0	32.5	3.3	10.1	6.7	
		and	468.70	470.00	1.30	1.0	19.5	0.01	2.7	2.4	
		and	481.10	482.55	1.45	0.59	11.5	0.04	2.2	1.7	
		and	489.75	490.25	0.50	0.23	6.0	0.05	1.7	1.1	
		and	495.00	498.70	3.70	0.90	11.3	0.01	1.2	1.6	
		inc	496.35	498.70	2.35	1.1	15.6	0.01	1.6	2.0	
		and	520.85	522.50	1.65	1.3	16.5	0.00	0.20	1.6	2
		inc	521.80	522.50	0.70	2.3	26.7	0.00	0.42	2.8	
		and	531.80	532.40	0.60	9.4	19.8	0.02	1.6	10.4	1
		and	538.80	539.55	0.75	1.7	20.0	0.00	0.92	2.4	
		GNDD556	83.20	97.00	13.8	0.35	1.3	0.09	0.14	0.45	2
		inc	86.00	87.50	1.5	1.0	1.1	0.09	0.17	1.1	
		inc	94.60	95.80	1.2	1.0	2.2	0.11	0.17	1.1	
		and	115.00	124.00	9.00	0.25	0.35	0.03	0.10	0.30	2
		GNDD557	271.3	333.0	61.7	0.3	1.2	0.0	0.0	0.3	2
		inc	286.0	286.8	0.9	1.9	9.0	0.0	0.0	2.0	
		inc	330.3	331.6	1.3	2.4	6.7	0.0	0.0	2.5	
		and	460.0	485.6	25.6	0.4	5.1	0.1	0.0	0.5	2
		GNDD558	310.00	314.00	4.00	0.25	0.62	0.05	0.11	0.32	2
		and	348.00	353.00	5.00	0.25	1.1	0.10	0.14	0.35	2
		and	380.00	382.50	2.50	0.29	0.88	0.04	0.29	0.45	2
		GNDD559	14.00	18.00	4.00	0.23	0.45	0.01	0.10	0.28	2
		GNDD560	407.00	409.00	2.00	0.55	0.74	0.00	0.00	0.56	2
		and	483.40	486.00	2.60	0.15	4.9	0.05	0.05	0.25	2
		GNDD561	NSI	100100	2.00	0.120		0.00	0.00	0.20	-
		GNDD563	59.00	93.40	34.4	0.46	2.0	0.23	0.48	0.75	2
		inc	76.00	82.30	6.30	1.1	7.7	1.1	2.2	2.4	2
		inc	90.00	92.00	2.00	3.0	0.39	0.04	0.05	3.1	
		and	125.00	128.10	3.10	0.43	0.57	0.04	0.05	0.48	2
		and	148.00	154.00	6.00	0.43	2.0	0.02	0.25	0.46	2
		and	148.00	202.00	20.0	0.11	2.0 1.7	0.07	0.23	0.20	2
		inc	182.00	184.50	0.50	5.1	16.8	1.2	2.1	6.5	4
		GNDD564	40.0	47.0	7.0	0.2	11.6	0.2	0.2	0.4	2
		and	453.0	457.0	4.0	0.2	2.0	0.2	0.2	0.4	2
		and	484.0	486.0	2.0	0.2	3.7	2.3	0.0	1.3	4
		GNDD565	NSI	100.0	2.0	0.2	5.7	2.5	0.0	1.5	
		GNDD566	434.05	452.25	18.20	0.05	0.65	0.00	0.3	0.19	2
		and	608.15	452.25 608.65	0.50	6.4	79.8	0.00	0.3	7.7	2
		GNDD567	008.13	008.03	0.50	0.4	15.0	0.00	0.01	1.1	
				70 00	22.20	0.60	2 7	0.26	0 4 2	0.01	2
		GNDD570	55.80	78.00	22.20		3.7	0.36	0.43	0.91	Z
		inc	55.80	57.00	1.20	0.60	2.8	0.41	0.80	1.1	
		inc	63.00	70.30	7.30	1.4	9.0	0.82	0.41	1.8	
Fundamentary 11, 11	d lowed Constant	Average Designed Off	Divertere		6	-+					
Exploration Limited 1 382	d Issued Capital 1,044.9m shares	Australian Registered Office Level 1	Directors Mr Kris Knauer, MI	and CEO	Conta T: +61	ct 8 6380 923!	5				
1 302	1,044.9111 Stildres	1205 Llaw Street	Mr Coott Function			o osou 92s: in@challon					

Chall ACN 123 591 382

ASX: CEL

www.challengerex.com

120m perf shares 16m perf rights

10m options

Level 1

1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanati	on Commentai	ſY								
		and	95.00	105.00	10.00	0.33	1.4	0.02	0.15	0.43	2
		inc	103.00	105.00	2.00	0.94	2.6	0.08	0.32	1.1	
		GNDD571	213.00	260.00	47.00	0.34	1.1	0.00	0.08	0.39	2
		and	280.00	312.00	32.00	0.19	0.71	0.00	0.02	0.21	2
		and	328.00	338.00	10.00	0.59	0.49	0.00	0.01	0.61	2
		inc	334.00	336.00	2.00	1.6	1.4	0.00	0.01	1.6	
		and	356.00	367.00	11.00	9.0	5.7	0.00	0.05	9.1	2
		inc	356.00	363.80	7.80	12.5	7.9	0.00	0.06	12.6	
		inc	357.90	359.40	1.50	15.7	9.7	0.00	0.01	15.8	1
		inc	362.50	363.80	1.30	46.7	31.4	0.00	0.34	47.2	1
		GNDD572	166.00	178.00	12.00	0.61	14.9	0.04	0.17	0.87	2
		inc	176.00	178.00	2.00	2.7	66.3	0.18	0.8	3.9	
		GNDD574	122.00	122.80	0.80	12.2	275	0.47	6.9	18.82	
		and	204.00	206.00	2.00	2.27	3.0	0.08	0.1	2.37	2
		and	399.80	408.00	8.20	0.22	2.3	0.02	0.14	0.32	
		inc	403.50	404.50	1.00	0.57	13.0	0.12	1.0	1.2	
		GNDD576	182.0	192.0	10.0	0.4	20.6	0.0	0.0	0.6	2
		inc	188.0	190.0	2.0	0.8	44.1	0.1	0.0	1.4	
		and	551.7	552.3	0.6	0.4	7.0	0.5	0.1	0.8	2
		GNDD577	104.00	114.40	10.40	0.21	0.92	0.03	0.05	0.25	2
		and	126.00	143.00	17.00	1.6	1.2	0.07	0.08	1.6	2
		inc	136.00	138.00	2.00	10.8	1.8	0.02	0.02	10.8	1
		and	161.00	169.00	8.00	0.25	0.78	0.00	0.01	0.26	2
		and	185.00	190.00	5.00	1.1	6.2	0.34	0.61	1.5	
		and	266.00	275.50	9.50	0.22	0.44	0.02	0.07	0.26	2
		and	288.00	294.00	6.00	0.34	0.17	0.00	0.01	0.35	2
		and	532.70	533.25	0.55	22.8	88.9	0.04	17.64	32.0	1
		GNDD578	349.00	354.25	5.25	0.26	1.3	0.00	0.14	0.34	2
		inc	353.65	354.25	0.60	1.0	6.3	0.02	1.2	1.6	
		GNDD579	71.00	80.00	9.00	0.35	4.7	0.00	0.01	0.41	2
		and	95.00	99.00	4.00	0.32	4.0	0.00	0.01	0.37	2
		and	111.00	145.40	34.40	0.24	3.6	0.00	0.01	0.28	2
		inc	129.00	131.00	2.00	1.0	17.1	0.00	0.01	1.2	
		and	173.00	202.00	29.00	0.27	3.8	0.02	0.05	0.35	2
		inc	188.65	189.80	1.15	1.1	9.2	0.00	0.04	1.2	
		inc	196.05	198.10	2.05	1.5	18.7	0.21	0.38	2.0	_
		and	407.00	410.75	3.75	0.54	1.7	0.00	0.10	0.61	2
		inc	407.00	408.40	1.40	1.0	1.9	0.00	0.09	1.1	
		and	454.25	455.15	0.90	0.7	10.7	0.03	1.6	1.6	-
		GNDD581	173.00	175.00	2.00	1.1	7.7	0.02	0.02	1.2	2
		inc	173.65	175.00	1.35	1.5	4.4	0.01	0.01	1.5	
		and	191.00	198.00	7.00	0.22	28.1	0.07	0.19	0.67	2
		inc	192.60	193.20	0.60	0.35	288	0.71	1.8	4.8	
er Exploration Limited		Australian Registered Office	Directors		Conta						
591 382	1,044.9m shares	Level 1	Mr Kris Knauer, MD	and CEO	T: +61	8 6380 9235	5				

16m perf rights

10m options

120m perf shares

Level 1 1205 Hay Street West Perth WA 6005 Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commenta	ry								
		GNDD582	305.35	310.00	4.65	0.22	1.1	0.01	0.14	0.30	2
		and	417.80	418.60	0.80	1.0	11.0	0.06	2.4	2.3	
		GNDD585	244.0	247.0	3.0	1.6	3.4	0.3	0.1	1.8	2
		inc	246.0	247.0	1.0	4.2	8.8	0.8	0.2	4.7	
		GNDD586	30.00	34.00	4.00	0.12	11.7	1.5	2.1	1.5	2
		inc	30.00	32.00	2.00	0.20	16.1	2.2	3.2	2.3	
		and	199.00	203.00	4.00	0.40	7.2	0.01	0.03	0.50	2
		and	263.00	320.65	57.65	0.32	2.6	0.01	0.20	0.45	2
		inc	272.00	273.00	1.00	0.54	3.7	0.00	1.06	1.1	
		inc	294.00	302.00	8.00	1.3	10.0	0.01	0.90	1.8	
		inc	318.00	319.05	1.05	0.64	4.3	0.01	0.7	1.0	
		GNDD587	85.00	120.00	35.00	0.23	0.55	0.07	0.11	0.30	2
		inc	116.45	118.00	1.55	1.1	2.3	0.36	0.68	1.5	
		and	138.00	142.00	4.00	0.38	0.79	0.01	0.23	0.50	2
		and	154.00	158.80	4.80	0.38	0.70	0.01	0.22	0.49	2
		and	182.00	213.00	31.00	0.66	1.9	0.01	0.29	0.82	2
		inc	182.90	188.65	5.75	2.3	7.3	0.05	1.4	3.0	
		inc	211.80	213.00	1.20	2.6	7.5	0.01	0.40	2.9	
		GNDD588	182.00	201.00	19.00	0.30	0.71	0.01	0.04	0.33	2
		inc	182.00	183.00	1.00	1.2	1.3	0.01	0.01	1.2	
		inc	187.80	189.00	1.20	1.7	1.9	0.02	0.04	1.8	
		and	213.00	220.30	7.30	0.57	0.58	0.00	0.01	0.58	2
		and	242.00	254.00	12.00	0.22	1.3	0.14	0.17	0.34	2
		and	281.40	299.50	18.10	2.3	2.8	0.23	0.46	2.6	2
		inc	281.40	282.65	1.25	4.6	13.3	1.51	3.4	6.6	
		inc	289.70	290.70	1.00	32.6	18.1	1.57	1.9	34.0	1
		inc	298.85	299.50	0.65	2.1	4.4	0.33	1.9	3.1	
		and	314.00	401.00	87.00	0.67	1.4	0.00	0.01	0.69	2
		inc	315.00	323.00	8.00	2.9	3.4	0.01	0.01	3.0	
		inc	331.00	341.00	10.00	1.2	1.6	0.00	0.05	1.3	
		inc	379.00	381.00	2.00	2.2	0.4	0.00	0.00	2.3	
			399.00	401.00	2.00	1.0	0.30	0.00	0.00	1.0	
		GNDD589	394.00	395.00	1.00	4.2	8.5	1.0	0.83	4.9	2
		and	266.00	269.25	3.25	0.59	6.3	0.09	0.24	0.79	2
		and	273.80	274.40	0.60	0.93	9.6	0.03	0.14	1.1	n
		GNDD590 inc	205.20	233.00 225.00	27.80 2.00	0.23 0.85	4.8 36.6	0.01 0.00	0.03 0.04	0.30 1.3	2
		and	223.00 264.60	225.00	2.00 3.05	0.85 3.3	36.6 51.7	0.00	0.04 4.8		
										6.2	2
		GNDD591	224.00	238.00	14.00	1.2	0.91	0.02	0.0	1.2	2
		inc	229.25 236.00	232.00 238.00	2.75 2.00	4.4	3.5	0.05 0.02	0.1	4.5 1.3	
		inc and		238.00 254.00		1.3 1.7	0.48 3.7	0.02	0.0 0.4	1.3 2.0	2
		inc	250.00 253.30	254.00 254.00	4.00 0.70	1.7 8.80	3.7 17.7	0.07	0.4 2.2	2.0 10.1	2
		IIIC	255.30	234.00	0.70	0.00	1/./	0.55	2.2	10.1	
ger Exploration Limite	d Issued Capital	Australian Registered Office	Directors		Conta	ct					
3 591 382	1,044.9m shares	Level 1	Mr Kris Knauer, MD			8 6380 923					
L	10m options	1205 Hay Street	Mr Scott Funston, F	inance Director	E: adm	in@challen	gerex.com				

Mr Sergio Rotondo, Exec. Director

Mr Fletcher Quinn, Chairman

www.challengerex.com

120m perf shares

16m perf rights

Criteria	JORC Code explana	tion Commenta	ry								
		and	382.70	386.00	3.30	4.6	12.4	0.02	1.3	5.4	2
		inc	382.70	383.40	0.70	20.5	55.7	0.01	5.6	23.8	1
		and	425.00	429.60	4.60	0.53	0.63	0.00	0.01	0.5	2
		inc	429.00	429.60	0.60	3.1	0.56	0.00	0.02	3.1	
		and	436.40	437.00	0.60	1.4	13.1	0.00	2.3	2.6	
		GNDD593	105.50	124.00	18.50	0.16	2.2	0.00	0.08	0.23	2
		and	139.00	141.00	2.00	0.68	0.92	0.00	0.10	0.74	2
		and	153.00	164.00	11.00	0.83	1.7	0.02	0.10	0.90	2
		inc	153.00	157.00	4.00	1.7	4.0	0.05	0.20	1.8	
		GNDD594	104.00	116.00	12.00	0.72	1.8	0.21	0.51	1.0	2
		inc	108.00	110.00	2.00	3.1	6.5	0.48	1.5	3.9	
		and	162.00	163.40	1.40	2.1	0.30	0.00	0.01	2.1	
		and	198.00	204.00	6.00	0.63	3.3	0.02	0.13	0.73	2
		inc	198.00	198.50	0.50	1.7	3.3	0.12	0.32	2.0	
		GNDD595	198.35	212.10	13.75	0.32	2.5	0.00	0.02	0.36	2
		and	226.00	247.20	21.20	0.58	4.0	0.06	0.14	0.71	2
		inc	230.00	231.30	1.30	1.2	3.6	0.10	0.40	1.5	
		inc	240.45	242.00	1.55	3.2	20.3	0.28	0.86	3.9	
		and	266.00	305.80	39.80	0.26	2.9	0.08	0.30	0.45	2
		inc	266.00	268.00	2.00	1.6	8.5	0.01	0.04	1.7	
		inc	304.45	305.80	1.35	1.2	28.5	2.1	8.0	5.7	
		and	375.20	382.10	6.90	0.28	3.8	0.08	0.31	0.48	2
		inc	381.35	382.10	0.75	2.3	30.8	0.17	2.3	3.8	
		GNDD597	NSI								
		GNDD598	114.85	120.35	5.50	0.41	1.6	0.06	0.06	0.47	2
		inc	114.85	115.65	0.80	1.0	3.0	0.17	0.16	1.1	
		and	168.00	240.00	72.00	0.24	1.0	0.01	0.10	0.30	2
		inc	204.00	206.00	2.00	1.4	0.86	0.00	0.00	1.4	
		and	253.00	271.00	18.00	0.34	0.62	0.00	0.01	0.35	2
		and	283.00	295.00	12.00	0.40	1.5	0.00	0.01	0.42	2
		GNDD599	NSI								
		GNDD600	95.40	105.00	9.60	0.48	24.8	0.51	0.44	1.1	2
		inc	98.00	103.70	5.70	0.55	31.8	0.83	0.70	1.4	
		and	147.00	149.30	2.30	1.5	113	0.01	0.02	2.9	
		GNDD602	351.0	355.0	4.0	0.2	0.9	0.1	0.0	0.3	2
		GNDD603	61.00	85.90	24.90	0.20	7.7	0.00	0.0	0.31	2
		inc	81.00	83.00	2.00	0.88	17.4	0.00	0.1	1.1	
		and	124.00	132.00	8.00	0.22	2.3	0.03	0.1	0.29	2
		GNDD604	163.45	166.70	3.25	2.0	15.7	1.3	2.5	3.6	
		and	236.00	260.65	24.65	2.3	6.4	0.04	1.0	2.8	2
		inc	236.00	238.00	2.00	1.0	10.8	0.05	0.52	1.4	
		inc	247.50	249.00	1.50	5.0	3.4	0.18	0.26	5.2	
		inc	259.45	260.65	1.20	36.2	92.1	0.09	17.3	45.3	1
ger Exploration Limite		Australian Registered Office	Directors		Conta						
591 382	1,044.9m shares	Level 1	Mr Kris Knauer, MD			8 6380 923	5				

Mr Sergio Rotondo, Exec. Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

www.challengerex.com

10m options

16m perf rights

120m perf shares

1205 Hay Street

		and	375.00	375.90	0.90	24.9	15.3	0.01	3.5	26.7	1
		and	417.60	419.85	2.25	3.3	30.1	0.01	8.2	7.5	
		and	426.40	428.20	1.80	1.4	0.14	0.00	0.01	1.4	
		GNDD605	15.00	19.00	4.00	0.12	1.8	0.16	0.32	0.32	2
		and	46.00	70.00	24.00	0.13	2.6	0.01	0.54	0.41	2
		GNDD606	42.00	62.00	20.00	0.40	1.6	0.01	0.16	0.50	2
		inc	48.00	50.00	2.00	2.3	2.6	0.01	0.17	2.4	
		GNDD607	215.6	226.0	10.4	0.3	3.4	0.2	0.1	0.4	2
		inc	215.6	216.3	0.7	0.6	15.3	2.2	0.8	2.0	
		and	348.5	350.0	1.5	2.6	21.1	0.8	0.1	3.2	2
		inc	348.5	349.4	0.9	4.2	33.5	1.3	0.2	5.2	
		and	368.0	370.0	2.0	0.1	97.8	0.1	0.0	1.3	
		GNDD608	49.00	68.00	19.00	0.56	12.8	0.11	0.07	0.77	2
		inc	53.90	54.85	0.95	0.79	57.5	0.33	0.04	1.6	
		inc	66.00	68.00	2.00	4.2	36.8	0.06	0.04	4.7	
		GNDD609	76.0	90.0	14.0	0.2	0.6	0.0	0.0	0.3	2
		and	123.5	127.0	3.5	0.3	0.4	0.1	0.0	0.3	2
		and	151.0	171.0	20.0	0.4	0.2	0.0	0.0	0.4	2
		inc	165.0	171.0	6.0	0.9	0.4	0.1	0.0	1.0	
		and	359.2	359.7	0.5	0.8	13.2	1.2	0.0	1.5	
		GNDD610	93.00	99.00	6.00	0.19	4.8	0.01	0.05	0.27	2
		GNDD611	68.0	72.0	4.0	0.3	1.7	0.3	0.1	0.5	2
		and	213.3	215.4	2.0	0.5	6.9	0.4	0.1	0.7	2
		inc	214.2	215.4	1.2	0.8	2.6	0.4	0.1	1.0	
		GNDD612	64.90	100.15	35.25	0.93	2.7	0.30	0.49	1.2	2
		inc	76.00	84.00	8.00	3.4	8.4	0.91	1.7	4.5	
		inc	99.00	100.15	1.15	0.76	3.8	0.70	0.82	1.3	
		and	117.00	131.00	14.00	1.0	1.1	0.01	0.22	1.1	2
		inc	117.00	121.00	4.00	3.0	3.1	0.02	0.61	3.3	
		and	148.00	162.50	14.50	0.93	6.3	0.04	0.10	1.1	2
		inc	154.00	158.00	4.00	2.4	4.7	0.05	0.11	2.5	
		and	176.20	180.00	3.80	0.28	0.52	0.00	0.03	0.30	2
		GNDD613	122.0	153.3	31.3	0.5	1.5	0.2	0.1	0.6	2
		inc	144.0	153.3	9.3	1.3	3.3	0.6	0.2	1.6	
		GNDD615	142.0	146.0	4.0	0.2	1.9	0.0	0.0	0.2	2
		and	176.0	189.2	13.2	0.2	5.1	0.0	0.0	0.2	2
		and	231.0	272.4	41.4	0.2	0.6	0.0	0.0	0.2	2
		and	288.0	290.9	2.9	0.2	1.5	0.5	0.0	0.5	2
		and	321.0	344.0	23.0	0.4	3.3	0.1	0.0	0.5	2
		inc	321.0	323.0	2.0	1.4	16.7	0.0	0.0	1.6	
		inc	339.0	340.1	1.1	2.3	4.5	0.7	0.4	2.8	
		and	360.0	376.0	16.0	0.2	1.9	0.1	0.0	0.3	2
		GNDD616	58.00	60.00	2.00	0.45	12.6	0.07	0.03	0.63	2
ger Exploration Limited	Issued Capital	Australian Registered Office	Directors		Conta	-t					
591 382	1,044.9m shares	Level 1	Mr Kris Knauer, MD	and CEO		8 6380 923	5				

ASX: CEL

1,044.9m shares 10m options 120m perf shares 16m perf rights

1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director E: admin@challengerex.com Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanati	on Commentai	ry								
		and	72.00	74.00	2.00	0.56	4.9	0.27	0.01	0.68	2
		and	274.00	276.00	2.00	0.66	3.4	0.09	0.22	0.82	2
		and	300.85	303.00	2.15	3.2	16.1	0.08	2.6	4.6	2
		inc	300.85	301.50	0.65	9.9	52.0	0.27	8.6	14.6	1
		GNDD617	49.0	53.0	4.0	0.8	2.1	0.2	0.1	0.9	2
		inc	51.0	53.0	2.0	1.1	2.7	0.2	0.2	1.3	
		and	65.0	72.0	7.0	0.6	0.4	0.0	0.0	0.6	2
		inc	67.0	69.0	2.0	1.0	0.4	0.0	0.0	1.1	
		and	82.0	89.1	7.1	0.3	4.3	0.1	0.0	0.4	2
		GNDD618	90.50	99.00	8.50	1.1	4.9	0.13	0.51	1.4	2
		inc	90.50	96.00	5.50	1.5	6.4	0.16	0.68	1.9	
		and	147.00	191.00	44.00	0.28	0.66	0.00	0.03	0.31	2
		inc	169.00	171.00	2.00	1.0	1.2	0.00	0.04	1.0	
		and	206.50	260.00	53.50	0.20	1.2	0.03	0.10	0.27	2
		inc	211.00	211.50	0.50	1.6	13.0	0.00	4.3	3.8	
		GNDD619	149.5	157.0	7.5	0.4	0.8	0.1	0.1	0.4	2
		inc	149.5	151.0	1.5	1.0	0.5	0.1	0.1	1.0	
		GNDD621	94.0	97.0	3.0	0.3	6.9	0.0	0.0	0.4	2
		and	205.0	207.0	2.0	0.8	0.3	0.1	0.0	0.8	2
		and	296.4	299.5	3.1	0.2	2.5	0.2	0.1	0.3	2
		GNDD623	157.0	161.0	4.0	0.2	2.3	0.2	0.1	0.4	2
		and	195.0	213.0	18.0	0.3	0.7	0.2	0.1	0.4	2
		inc	206.0	208.0	2.0	0.5	2.6	0.9	0.5	1.0	
		inc	212.0	213.0	1.0	1.5	1.9	0.6	0.3	1.9	
		GNDD624	79.0	143.0	64.0	0.4	4.2	0.2	0.0	0.5	2
		inc	81.0	91.0	10.0	1.2	9.7	0.2	0.1	1.4	
		inc	107.0	111.3	4.3	0.9	17.2	1.4	0.3	1.8	
		GNDD626	6.00	40.00	34.00	0.20	6.0	0.02	0.20	0.37	2
		inc	14.00	17.10	3.10	0.73	30.7	0.09	0.40	1.3	
		and	135.70	168.00	32.30	0.65	1.4	0.06	0.18	0.76	2
		inc	155.00	157.00	2.00	0.95	1.5	0.10	0.11	1.0	
		inc	166.45	168.00	1.55	8.3	13.2	0.81	2.6	9.8	
		and	202.00	209.20	7.20	0.45	1.1	0.03	0.14	0.54	2
		inc	205.00	206.80	1.80	1.1	2.6	0.09	0.48	1.4	
		GNDD628A	56.00	65.00	9.00	0.36	9.5	0.02	0.63	0.77	2
		inc	59.00	60.75	1.75	0.56	17.5	0.08	1.2	1.4	
		inc	63.00	65.00	2.00	0.23	20.6	0.01	1.7	1.3	
		and	274.00	278.00	4.00	0.20	2.9	0.01	0.03	0.25	2
		and	301.00	337.00	36.00	0.87	4.5	0.04	0.19	1.0	2
		inc	319.00	321.00	2.00	1.4	7.8	0.00	0.00	1.5	
		inc	330.50	337.00	6.50	3.3	13.8	0.22	1.0	4.0	
		GNDD629	117.00	215.00	98.00	0.36	1.6	0.01	0.10	0.43	2
		inc	129.00	131.00	2.00	1.9	2.3	0.00	0.13	2.0	
						-	-			-	
er Exploration Limite	d Issued Capital	Australian Registered Office	Directors		Conta	ct					
591 382	1,044.9m shares	Level 1	Mr Kris Knauer, MD	and CEO		8 6380 923	5				
5 551 502	10m options	120E Hay Street	Mr Scott Euroston			in@challon					

Chall ACN 123 591 382 ASX: CEL

1,044.9m shares 10m options 120m perf shares 16m perf rights

Level 1 1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

E: admin@challengerex.com

riteria	JORC Code explanation	Commentary									
		inc	164.00	166.00	2.00	1.0	0.62	0.00	0.05	1.0	
		inc	191.75	194.65	2.90	3.1	19.1	0.26	1.4	4.1	
		and	262.55	266.50	3.95	0.26	2.0	0.03	0.14	0.36	2
		and	278.00	284.00	6.00	0.39	0.21	0.00	0.00	0.40	2
		GNDD632	NSI								
		GNDD633	115.50	128.55	13.05	0.56	0.76	0.02	0.04	0.59	2
		inc	118.60	120.20	1.60	1.2	2.3	0.11	0.21	1.3	
		inc	126.00	128.55	2.55	1.5	0.89	0.00	0.02	1.5	
		and	147.00	218.00	71.00	0.34	0.56	0.01	0.04	0.37	2
		inc	148.65	153.00	4.35	1.3	1.4	0.00	0.17	1.4	
		inc	189.00	191.00	2.00	1.6	1.5	0.02	0.04	1.6	
		and	246.00	276.00	30.00	0.77	1.7	0.01	0.08	0.83	2
		inc	252.00	252.70	0.70	23.4	46.4	0.32	2.7	25.3	1
		and	367.00	413.00	46.00	1.2	4.4	0.01	0.87	1.7	2
		inc	380.30	384.20	3.90	7.3	18.7	0.00	0.75	7.9	
		inc	400.80	405.90	5.10	3.7	19.7	0.02	5.9	6.6	
		inc	411.20	411.75	0.55	4.0	21.0	0.03	10.5	9.2	
		GNDD634	94.6	106.5	11.9	0.3	2.5	0.1	0.0	0.3	2
		and	116.6	120.7	4.1	1.3	3.7	0.6	0.2	1.6	2
		inc	118.0	120.7	2.7	1.8	5.3	0.9	0.3	2.4	
		and	142.0	152.0	10.0	1.1	0.7	0.1	0.0	1.1	2
		inc	142.0	145.1	3.1	2.8	1.1	0.2	0.1	2.9	
		GNDD635	97.00	100.00	3.00	0.33	0.73	0.01	0.01	0.35	2
		and	283.10	287.40	4.30	0.32	10.7	0.09	0.82	0.85	2
		inc	285.00	287.40	2.40	0.53	15.0	0.14	1.3	1.3	
		and	296.70	297.40	0.70	0.86	27.7	0.03	11.9	6.7	
		and	344.00	346.00	2.00	0.60	1.6	0.00	0.11	0.67	2
		GNDD638	317.0	321.0	4.0	0.7	3.1	0.3	0.1	0.9	2
		inc	319.0	321.0	2.0	1.3	3.6	0.4	0.1	1.5	
		GNDD642	18.00	82.00	64.00	0.45	0.80	0.03	0.05	0.49	2
		inc	18.00	20.00	2.00	1.54	1.0	0.02	0.09	1.6	
		inc	40.00	42.00	2.00	1.23	0.76	0.01	0.03	1.3	
		inc	62.00	64.00	2.00	2.17	1.4	0.28	0.10	2.3	
		inc	72.00	74.00	2.00	1.49	0.79	0.11	0.17	1.6	
		and	306.00	313.00	7.00	0.20	1.4	0.04	0.11	0.28	2
		and	344.40	347.80	3.40	8.9	42.5	0.12	4.5	11.5	1
		and	355.80	363.20	7.40	7.4	36.8	0.08	6.3	10.8	1
		combined	344.40	363.20	18.80	4.5	22.3	0.06	3.3	6.3	3
		and	430.00	436.00	6.00	0.23	2.2	0.04	0.51	0.51	2
		inc	433.70	434.20	0.50	1.2	16.3	0.03	4.3	3.4	
		and	480.90	481.45	0.55	0.21	19.7	0.03	10.3	5.2	
		GNDD644	42.0	85.0	43.0	0.8	1.6	0.1	0.1	0.9	2
		inc	49.0	51.0	2.0	7.1	2.9	0.1	0.7	7.3	

www.challengerex.com

1,044.9m shares 10m options 120m perf shares 16m perf rights

Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

T: +61 8 6380 9235

Criteria	JORC Code explana	tion Commenta	ry								
		inc	65.0	73.0	8.0	1.4	2.7	0.1	0.3	1.5	
		and	101.0	113.5	12.5	0.9	3.6	1.1	0.0	1.5	2
		inc	101.0	112.4	11.4	1.0	3.8	1.1	0.0	1.6	
		GNDD647	149.00	155.00	6.00	0.11	2.3	0.12	0.40	0.34	2
		and	278.00	278.60	0.60	1.6	14.5	1.3	3.3	3.5	
		GNDD648	2.0	30.0	28.0	0.9	1.9	0.1	0.0	1.0	2
		inc	10.0	14.0	4.0	2.6	3.0	0.1	0.0	2.7	
		inc	26.0	30.0	4.0	2.7	2.3	0.0	0.0	2.8	
		GNDD652	NSI								
		GNDD655	19.9	29.7	9.8	0.4	4.6	0.9	0.2	0.9	2
		inc	21.7	26.5	4.9	0.6	6.2	1.0	0.4	1.3	
		and	46.0	54.6	8.6	0.3	0.6	0.0	0.0	0.3	2
		and	69.5	72.0	2.5	0.4	0.8	0.1	0.0	0.5	2
		and	96.9	104.7	7.8	0.9	4.3	0.6	0.1	1.2	2
		inc	96.9	101.8	4.9	1.2	6.4	0.8	0.1	1.7	
		GNDD656	70.0	86.0	16.0	0.1	0.9	0.1	0.0	0.2	2
		GNDD661	17.0	111.0	94.0	0.6	1.2	0.1	0.0	0.7	2
		inc	17.0	24.5	7.5	2.2	2.2	0.2	0.1	2.3	
		inc	44.0	46.0	2.0	1.0	0.3	0.1	0.0	1.0	
		inc	64.0	66.0	2.0	2.8	0.2	0.0	0.0	2.8	
		inc	74.0	76.0	2.0	8.8	0.2	0.1	0.0	8.8	
		inc	109.0	111.0	2.0	1.0	3.5	0.2	0.1	1.2	
		and	135.0	139.0	4.0	2.9	1.3	0.2	0.0	3.0	2
		and	163.0	208.0	45.0	0.5	6.3	0.2	0.0	0.6	2
		inc	183.0	185.0	2.0	1.1	4.5	0.0	0.0	1.2	
		inc	191.0	192.4	1.4	5.4	50.1	0.7	0.3	6.4	
		inc	197.6	202.0	4.4	2.0	10.5	1.0	0.1	2.6	
		GNDD664	37.5	38.3	0.8	2.8	47.2	0.3	0.1	3.5	
		and	57.8	62.0	4.2	0.1	4.2	0.8	0.1	0.5	2
		inc	57.8	58.2	0.4	0.1	4.4	3.2	0.0	1.7	
		GNDD670	23.00	26.00	3.00	0.31	3.2	0.00	0.0	0.36	2
		and	53.00	69.50	16.50	4.1	18.9	0.02	3.4	5.9	2
		inc	59.05	69.50	10.45	6.5	29.6	0.04	5.3	9.3	
		inc	59.90	64.00	4.10	13.8	58.3	0.07	9.4	18.9	1
		and	108.00	111.00	3.00	0.45	0.78	0.00	0.0	0.47	2
		GNDD675	280.00	284.50	4.50	0.26	1.5	0.00	0.16	0.35	2
		and	342.75	345.90	3.15	0.30	3.5	0.09	0.45	0.57	2
		inc	345.15	345.90	0.75	0.74	8.5	0.22	1.5	1.6	2
		and	371.00	372.70	1.70	1.7	7.4	0.64	0.92	2.4	2
		inc	372.15	372.70	0.55	5.0	21.9	1.9	2.7	6.9	2
		and	409.20	430.35	21.15	2.1	18.3	0.10	0.74	2.7	2
		inc	409.20	413.00	3.80	4.0	68.9	0.44	3.5	6.5	
		inc	421.40	424.05	2.65	3.9	28.1	0.01	0.31	4.4	
enger Exploration Limited		Australian Registered Office	Directors		Conta		-				
23 591 382	1,044.9m shares	Level 1	Mr Kris Knauer, MD			8 6380 923					

Mr Sergio Rotondo, Exec. Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

www.challengerex.com

10m options

16m perf rights

120m perf shares

1205 Hay Street

West Perth WA 6005

0

Criteria	JORC Code explanation	ו <u>Con</u>	nmentary									
		ind	с	428.45	430.35	1.90	8.3	10.3	0.04	0.27	8.5	
		an	nd	506.55	524.20	17.65	0.19	1.2	0.00	0.02	0.21	2
		ind	с	506.55	508.00	1.45	1.0	3.0	0.00	0.08	1.1	
		GI	NDD684	115.0	142.0	27.0	0.3	0.7	0.0	0.0	0.3	2
		ind	с	125.0	127.0	2.0	1.1	6.8	0.3	0.2	1.4	
		an	nd	209.0	274.3	65.3	2.3	1.7	0.2	0.1	2.4	2
		ind	с	256.0	257.3	1.3	1.1	0.8	0.0	0.0	1.1	
		ind	с	265.6	267.5	1.9	71.6	41.1	3.8	3.5	74.5	10
		an	nd	324.9	337.0	12.2	10.1	11.7	1.5	0.1	11.0	2
		ind	с	324.9	333.1	8.3	14.8	17.1	2.2	0.1	16.0	10
		an	nd	354.5	362.0	7.6	1.1	0.7	0.1	0.0	1.2	2
		ind	с	359.8	362.0	2.2	3.2	0.9	0.0	0.0	3.2	
		an	nd	408.0	418.0	10.0	0.6	0.7	0.0	0.0	0.6	2
		ind	с	408.0	412.0	4.0	1.4	1.8	0.0	0.0	1.4	
		GN	NDD685	3.0	57.0	54.0	0.2	2.8	0.1	0.1	0.3	2
		an	nd	91.0	104.6	13.6	0.1	8.7	0.1	0.0	0.3	2
		an		362.4	370.8	8.4	4.5	5.3	2.0	0.0	5.5	2
		ind	с	362.4	365.0	2.6	14.3	16.1	6.3	0.0	17.4	
		ind	с	362.4	363.7	1.3	26.5	29.5	12.3	0.0	32.5	10
		an	nd	409.0	429.0	20.0	1.0	0.9	0.2	0.0	1.1	2
		ind	с	413.0	418.5	5.5	2.4	1.1	0.4	0.0	2.6	
		ind	с	425.0	427.0	2.0	1.5	1.4	0.1	0.0	1.6	
		an	nd	548.0	549.7	1.7	0.4	8.1	2.1	0.0	1.5	2
		an		624.6	627.0	2.4	0.2	0.6	1.2	0.0	0.8	2
		an	nd	651.2	653.0	1.9	20.0	8.3	6.8	0.0	23.3	2
		GN	NDD697	41.0	106.3	65.3	0.5	2.0	0.2	0.4	0.7	2
		inc	с	52.5	57.0	4.5	2.4	6.6	0.8	1.4	3.3	
		inc	с	65.0	68.6	3.6	2.9	14.0	2.0	3.3	5.0	
			(1) cut off 10	g/t Au equi	valent							
			(2) cut off 0.2 g	•								
			(3) combined zo			off (grades	include ir	nternal dilut	ion from he	tween zone	20	
			(4)combined zo		0.						,	
			. ,		0.	on (grades	include ii	iternal ullat		tween zone	:5)	
			NSI: no significa									•
Data aggregation	 In reporting Exploration 		Weighted av					-				
methods	averaging techniques	s maximum and/or	reported to c	cut-off grad	de of a 1.0 g	g/t Au equ	uivalent a	and 10 g/t	Au equival	ent allowi	ng for up t	o 2m of
	minimum grade trun	cations (e.g., cutting of	internal dilut	ion betwe	en samples	above th	e cut-off	grade and	0.2 g/t Au	equivaler	nt allowing	up to 10r
	hiah arades) and cut-	off grades are usually	internal dilut	ion betwe	en samples	above th	e cut-off	grade. The	e following	metals ar	nd metal p	rices have
	Material and should		been used to	report go	ld grade eq	uivalent (AuEq): A	u US\$ 178	0 / oz Ag U	S\$24 /oz a	and Zn USS	5 2800 /t.
									.,	- , ,		,-
	- Where aggregate int		No top cuts h	nave been	applied to t	he report	ted grade	es.				
	short lengths of high-	grade results and										
	longer lengths of low	-grade results the										
and a fundamentary time in	logued Conital	Australia: Desister 100	ilian Dia i			C +						
enger Exploration Limited	Issued Capital 1,044.9m shares	Australian Registered Of Level 1		ors s Knauer, MD	and CEO	Contac	: t 8 6380 9235	5				
EL	10m options	1205 Hay Street			nance Director		in@challen					
	120m perf shares	West Perth WA 6005		tcher Quinn,				-				
	16m perf rights											

Criteria	JORC Code explanation	Commentary
	procedure used for such aggregation shou be stated and some typical examples of s aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	uch
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (e.g., 'down hole length true width not known'). 	The mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is insufficient information to confidently establish the true width of the mineralized intersections at this stage of the exploration program. Apparent widths may be thicker in the case where the dip of the mineralisation changes and/or bedding-parameteralisation intersects NW or ENE-striking cross faults and veins. Representative cross section interpretations have been provided periodically with releases of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of reports released to the ASX.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All available final data have been reported where possible and plans of all drilling with results.
Other substantive exploration data	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method 	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. Specific gravity measurements have been taken from the drill core recovered during the drilling program. The data are used to estimate densities in Resource Estimates. Eight Induced Polarisation (IP) lines have been completed in the northern areas of the Project. Stage 1 survey was done on 1 kilometre length lines oriented 115° azimuth, spaced 100m apart with a 50m dipole. The initial

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

E: admin@challengerex.com

ASX: CEL

120m perf shares

10m options

16m perf rights

1205 Hay Street

Criteria	JORC Code explanation	Commentary
	of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances.	results indicate possible extension of the mineralisation with depth. Stage 2 surveying was done across the entire field on 1 – 3 kilometre length lines oriented 090°, spaced 400m apart with a 50m dipole. On-going data interpretation is being done as drilling proceeds. Two ground magnetic surveys and a drone magnetic survey have been completed. The results of these data and subsequent geological interpretations are being used to guide future exploration.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	 CEL Plans to undertake the following over the next 12 months Additional resource extension, infill, and exploration drilling; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Further metallurgical and comminution test work. A preliminary economic assessment / scoping study for a mining project.

Challenger Exploration Limited	Issued Capital
ACN 123 591 382	1,044.9m shares
ASX: CEL	10m options

120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into a series of excel spreadsheets. These data have been checked for errors. Checks have been made against the original logs and with follo up twin and close spaced drilling. Only some of the historic drill holes have been used in the Resource Estimate, includ the results presented in Section2. Some drill holes have been excluded where the geology indicates that the drill hole likely mis-located or where the drill hole has been superseded by CEL drilling. For CEL drilled holes, assay data is received in digital format. Backup copies are backed up into a cloud-based file stora system and the data is entered into a drill hole database which is also securely backed up off site.
		The drill hole data is backed up and is updated periodically by the CEL GIS and data management team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The Competent Person has undertaken site visits during exploration. Site visits were undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020 before COVID-19 closed international travel. Post COVID site viewere undertaken from 21 November – 4 December 2021 and 11 – 23 May 2022. The performance of the drilling progr collection of data, sampling procedures, sample submission and exploration program were initiated and reviewed duri these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The geological interpretation is considered appropriate given the drill core density of data that has been collected, acc to mineralisation at surface and underground exposures. Given the data, geological studies past and completed by CE the Competent Person has a high level of confidence in the geological model that has been used to constrain the mineralised domains. It is assumed that networks of fractures controlled by local geological factors have focussed hydrothermal fluids and been the site of mineralisation in both the prograde zinc skarn and retrograde mesothermal - epithermal stages of hydrothermal evolution. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data support the findings from the initial underground sampling activities. Mineralised domains have been built using explicit wireframe techniques from 0.2 – 0.5 g/t AuEq mineralised intersections, joined between holes by the instruction from geology and structure. Continuity of grade between drill holes is determined by the intensity of fracturing, the host re contacts (particularly dacite – limestone contacts) and by bedding parallel faults, particularly within limestone, at the limestone and overlying sedimentary rock contact and within the lower sequences of the sedimentary rocks within 40
		the contact. No alternative interpretations have been made form which a Mineral Resource Estimate has been made.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the 	30 separate domains were interpreted over a strike length of 2.2kms. The domains vary in width and orientation from up to 100m in width. The deepest interpreted domain extends from the surface down approximately 550m below the surface.
nger Exploration Limite 23 591 382 EL	Issued Capital Australian Regis 1,044.9m shares Level 1 10m options 1205 Hay Street 10m cap of chema Word Pack Web Web	Mr Kris Knauer, MD and CEO T: +61 8 6380 9235 Mr Scott Funston, Finance Director E: admin@challengerex.com

Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

www.challengerex.com

120m perf shares

16m perf rights

Criteria	JORC Code explanation	Commentary							
	Mineral Resource.								
Estimation and modelling techniques	imation and - The nature and appropriateness of the estimation technique(s) applied and key	Estimation was made for Au Ag, Zn and Pb being the elements of economic interest. Estimate was also made for Fe and being the elements that for pyrite which is of economic and metallurgical interest and is also used to estimate the densit for bocks in the Mineral Resource Estimate. No previous JORC Resource estimates or non-JORC Foreign Resource estimates were made with similar methods to compare to the current Resource estimate. No production records are available to provide comparisons. A 2m composite length was selected after reviewing the original sample lengths from the drilling which showed an avera length of 1.54m for samples taken within the mineralised domains. A statistical analysis was undertaken on the sample composites Top cuts were applied to the Au, Ag, Zn and Pb composit on a domain-by-domain basis. The domains were then grouped by host rock and mineralisation style and group domain top cuts were applied in order to reduce the influence of extreme values on the resource estimates without downgradin the high-grade composites too severely. The top-cut values were chosen by assessing the high-end distribution of the grade population within each group and selecting the value above which the distribution became erratic. The following table shows the top cuts applied to each group and domain for Au, Ag, Zn and Pb.							
			Group	Domain	Au (ppm)	Ag (ppm)	Zn (%)	Pb (%)	1
			Fault Zone hosted (Magnata and Sanchez) LUT (siltstone) hosted	101 102 103 104 201 111 114 212	80 14	300 70	20	2.5	
		,	DAC (intrusive) hosted	112 113 115 131 132 133 134 203 213	9	65	7	1.2	
lenger Exploration Limited 123 591 382 CEL	Issued CapitalAustralian Regis1,044.9m sharesLevel 110m options1205 Hay Street120m perf sharesWest Perth WA 616m perf rights16m perf rights	005	Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director	Contact T: +61 8 6380 92 E: admin@challe					

Criteria	JORC Code explanation	Commentary	
	data if available	301	
		302	
		303	
		303	
		305	
		202	
		211	
		CAL (limestone) hosted 221 80 300 20 2.	5
		222	
		223	
		224	
		Block modelling was undertaken in Surpac™ V6.6 software.	
		5.0m (N) x 2.5m (RL) to maintain the resolution of the mineralised domains. The 20m Y and vertical bloc chosen to reflect drill hole spacing and to provide definition for potential mine planning. The shorter 10 used to reflect the geometry and orientation of the majority of the domain wireframes. Variography was carried out using Leapfrog Edge software on the two metre composited data from eac domains for each variable.	m X dimensior
		All relevant variables; Au, Ag, Zn, Fe and S in each domain were estimated using Ordinary Kriging using within that domain. The orientation of the search ellipse and variogram model was controlled using sur reflect the local orientation of the mineralized structures.	
		An oriented "ellipsoid" search for each domain was used to select data for interpolation.	
		A 3 pass estimation search was conducted, with expanding search ellipsoid dimensions and decreasing	minimum num
		of samples with each successive pass. First passes were conducted with ellipsoid radii corresponding to	
		complete range of variogram structures for the variable being estimated. Pass 2 was conducted with 6	
		range of variogram structures for the variable being estimated. Pass 3 was conducted with dimensions	
		200% of the semi-variogram model ranges. Blocks within the model where Au was not estimated durin were assigned as unclassified. Blocks for Ag, Zn, Fe and S that were not estimated were assigned the av	
		per-domain basis.	

ASX: CEL www.challengerex.com

ACN 123 591 382

1,044.9m shares 10m options 120m perf shares 16m perf rights

Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria J	ORC Code explanation	Commentary
		Validation checks included statistical comparison between drill sample grades and Ordinary Kriging block estimate results for each domain. Visual validation of grade trends for each element along the drill sections was also completed in addition to swath plots comparing drill sample grades and model grades for northings, eastings, and elevation. These checks show good correlation between estimated block grades and drill sample grades.
Moisture -	Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content.	Tonnage is estimated on a dry basis.
Cut-off - parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The following metals and metal prices have been used to report gold grade equivalent (AuEq): Au US\$ 1900 / oz Ag US\$24 /oz, Zn US\$ 4,000 /t and Pb US 2,000/t.
		Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from the results of Stage 1 metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation combined metallurgical samples as detailed in the Criteria below.
		For the AuEq calculation average metallurgical recovery is estimated as 94.9% for gold, 90.9% for silver, 67.0% for Zn and 57.8% for Pb.
		Accordingly, the formula used for Au Equivalent is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x (0.909/0.949)] + [Zn (%) x (40.00*31.1/1900) x (0.670/0.949)] + (Pb (%) x 20.00*31.1/1900) x (0.578/.9490).
		Based on the break-even grade for an optimised pit shell for gold equivalent, a AuEq cut-off grade of 0.25 ppm is used to report the resource within an optimised pit shell run at a gold price of US\$1,800 per ounce and allowing for Ag, Zn and Pb credits. Under this scenario, blocks with a grade above the 0.25 g/t Au Eq cut off are considered to have reasonable prospects of mining by open pit methods.
		A AuEq cut-off grade of 1.0 ppm was used to report the resource beneath the optimised pit shell run as these blocks are considered to have reasonable prospects of future mining by underground methods.
Mining factors - or assumptions	Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of	The Resource estimate has assumed that near surface mineralisation would be amenable to open pit mining given that the mineralisation is exposed at surface and under relatively thin unconsolidated cover. A surface mine optimiser has been used to determine the proportion of the Resource estimate model that would be amenable to eventual economic extraction by open pit mining methods. The surface mine optimiser was bult using the following parameters with prices i USD:
	determining reasonable prospects for eventual economic extraction to consider	 Au price of \$1,800 per oz, Ag price of \$23.4 per oz, Zn price of \$3,825 per tonne and Pb price of \$1,980 per tonne Average metallurgical recoveries of 94.9% for Au, 90.9 % for Ag and 67 % for Zn and 57.8 % for Pb.
	potential mining methods but the assumptions made regarding mining	 Ore and waste mining cost of \$2.00 per tonne Unconsolidated cover removal cost of \$0.10 per tonne
	methods and parameters when estimating	- Processing cost of \$10.00 per tonne
	Mineral Resources may not always be rigorous. Where this is the case this should	 Transport and marketing of \$50 / oz of AuEq (road to Jan Juan then rail to Rosario Port) Royalty of \$60 per oz Au, 3% for Ag, Zn and Pb.
enger Exploration Limited 23 591 382 EL	Issued Capital Australian Registe 1,044.9m shares Level 1 10m options 1205 Hay Street 120m perf shares West Perth WA 600 16m perf rights 16m perf shares	ered Office Directors Contact Mr Kris Knauer, MD and CEO T: +61 8 6380 9235 Mr Scott Funston, Finance Director E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	be reported with an explanation of the basis of the mining assumptions made.	 Assumed concentrate payability of 94.1% for Au, 82.9% for Ag, 90 % for Zn and 95 % for Pb. 45° pit slopes on the western side of the pit and 55° on the eastern side of the pit Blocks above a 0.25 g/t AuEq within the optimised open pit shell are determined to have reasonable prospects of future economic extraction by open pit mining and are included in the Resource estimate on that basis. Blocks below the open pit shell that are above 1.0 g/t AuEq are determined to have reasonable prospects of future economic extraction by underground mining methods and are included in the Resource estimate on that basis.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 CEL has completed Stage 1 metallurgical test work on representative composite sample of mineralisation from: 1. Two separate composite samples of limestone-hosted massive sulphide (manto) Sample A has a weighted average grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn and 0.46 % Pb. Sample B has a weighted average grade of 9.7 g/t Au, 41.6 g/t Ag, 4.0% Zn and 0.48% Pb. 2. One dacite (intrusive) composite sample with a weighted average grade of 1.1 g/t Au, 8.1 g/t Ag and 0.10 % Zn an 0.04% Pb. 3. One sediment hosted (fine grained sandstone and siltstone) composite sample with a weighted average grade of 0.68 g/t Au, 7.5 g/t Ag, 0.34 % Zn and 0.06 % Pb. 4. One oxidised limestone (manto oxide) composite sample with a weighted average grade of 7.0 g/t Au, 45 g/t Ag, 3.7% Zn and 0.77% Pb. Gravity recovery and sequential flotation tests of the higher-grade limestone hosted mineralisation involved; 1. primary P80 = 51 micron primary grind, 2. gravity recovery, 3. Pb-Cu followed by Zn rougher flotation, 4. p80 = 29 micron regrind of the Zn rougher concentrate, 5. two re-cleaning Stages on the Zn rougher concentrate, and 7. additional gravity recovery stages added to the Zn Rougher concentrate This results in the following products that are likely to be saleable Au-Ag concentrate (51% Zn, 10 g/t Au, 286 g/t Ag) with low deleterious elements, relatively high Cd, but at a level that unlikely to a squard of 21 to 3 g/t Au, 10 g/t Au, 178 g/t Ag) with low deleterious elements, relatively high Cd, but at a level that unlikely to a gold doré bar. Gravity recovery and flotation tests of the intrusive-hosted mineralisation involved; 1. primary P80 = 120-80 micron primary grind, 2. gravity recovery at the spond to intensive cyanide leach with recoveries of 70-80% of any residual gold and silver to a gold doré bar.

Mr Sergio Rotondo, Exec. Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

www.challengerex.com

10m options

120m perf shares

16m perf rights

1205 Hay Street

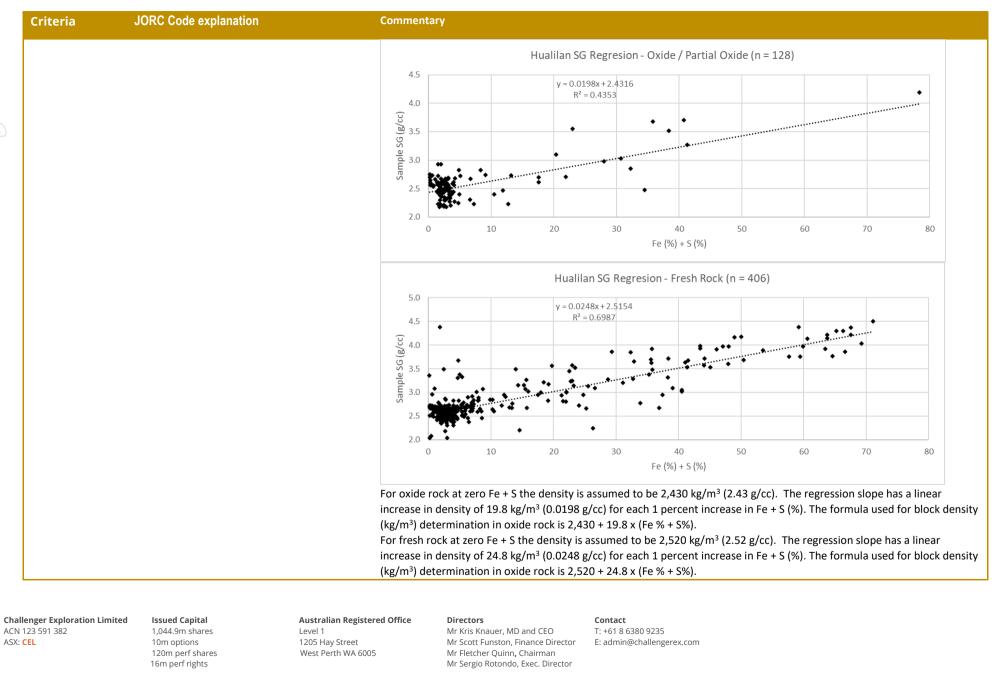
West Perth WA 6005

ASX: CEL

17

	Criteria	JORC Code explanation	Comr	nentary	
				3. single stage rougher sulphide flotat 4. P80 = 20-30 micron regrind of the r 5. one or two re-cleaning stages of th At primary grind of p80 = 76 micron a g/t Au and 284 g/t Ag with total recov	ougher concentrate (5-10% mass), e Au-Ag Rougher concentrate nd regrind of p80 = 51 micron an AuAg concentrate can be produced grading 54
)			t 8 5	esting done on the intrusive-hosted i g/t Ag at total recoveries of 85% (Au) studies. It is likely that the concentra	osite sample (5-10% of the mineralisation at the Project) was a repeat of the mineralisation. This produced an Au-Ag concentrate grading 23.6 g/t Au and 234 and 87% (Ag). Further test work is likely to be done as part of more detailed te produced from the sediment-hosted mineralisation will be combined with the e and intrusive-hosted mineralisation.
				where leaching is likely to be underta 95% (Au), 93% (Ag), 89% (Zn), 70% (96% (Au) and 88% (Ag) from the intr	old and silver to the various concentrate tailings components ken during production generates recoveries of: Pb) from the high-grade skarn (manto) component of the mineralisation; rusion-hosted component of the mineralisation; liment-hosted component of the mineralisation;
			(1	Au) and 64% (Ag) which is expected t	de (limestone and dacite hosted mineralisation has produced recoveries of 78% to be recovered into gold doré bar. While the oxide component of the percentage of the Hualilan mineralisation its lies in the top 30-40 metres and n open pit operation.
			-		e proportions of the various mineralisation types in the current geological rage recoveries for potentially saleable metals will be:
				Additional Stage 2 work involving con ongoing and planned.	nminution and variability testing, blended test work, and pilot plant testing is
	Environmental factors or assumptions	 Assumptions made regarding waste and process residue d It is always necessary as par of determining reasonable p 	g possible It is consistent It is consistent options. It is consistent from the process pre-feasible process process pre-feasible process pre-feasible process process pre-feasible process process process pre-feasible process proces process process process process process process pro	onsidered that there are no significan	It environmental factors which would prevent the eventual extraction of gold nd assessments have been completed in the past and will form a part of future
	enger Exploration Limited 123 591 382 CEL	Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights	Australian Registered Offic Level 1 1205 Hay Street West Perth WA 6005	e Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director	Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the	
D. 11. J	environmental assumptions made Whether assumed or determined. If	CEL has collected specific gravity measurements from drill core, which have been used to estimate block densities for the
Bulk density	 whether assumed of determined, if assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Resource estimate. Within the mineralised domains there are 534 specific gravity measurements made on drill core samples of $0.1 - 0.2$ metres length. Measurements we determined on a dry basis by measuring the difference in sample weight in water and weight in air. For porous samples, the weight in water was measured after wrapping the sample so that no water enters the void space during weighing. A regression model for block density determination in oxide / partial oxide / fracture oxide (oxide) rock and a separate regression model for fresh rock samples has been made by plotting assay interval Fe (%) + S (%) from the interval where the SG measurement was made against the SG measurement. Fe and S are the two elements that form pyrite which is the mineral that is commonly associated with gold and base metal mineralisation at Hualilan. SG plotted against (Fe+S) follow a linear trend within the mineralised domains for oxide and fresh rock as shown in the graphs below.


Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
lassification ludits or eviews	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e., relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. The results of any audits or reviews of Mineral Resource estimates. 	The Mineral Resource has been classified based on the guidelines specified in the JORC Code. The classification level is based upon semi-qualitative assessment of the geological understanding of the deposit, geological and mineralisation continuity, drill hole spacing, QC results, search, and interpolation parameters and an analysis of available density information. The estimation search strategy was undertaken in three separate passes with different search distances, and the minim number of samples used to estimate a block which were then used as a guide for the classification of the resource into Indicated, Inferred and Unclassified. The classification was then further modified to restrict the Indicated Resource to the domains with closer spaced drilling. The potential open pit resource was constrained within an optimised pit shell run using a gold price of \$1,800 per ounce Resources reported inside the pit shell were reported above a AuEq cut-off grade of 0.25 ppm and Resources outside the pit shell were reported above a AuEq cut-off grade of 0.25 ppm and Resources outside the pit shell were reported above a AuEq cut-off grade of 1.0 ppm. Resource reported outside the pit shell above a 1.0 g/t AuEq cut-off is considered 100% Inferred. The Competent Person has reviewed the result and determined that these classifications are appropriate given the confidence in the data and results from drilling.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. 	 There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach and procedure is deemed appropriate given the confiden limits. The main factors which could affect relative accuracy are: domain boundary assumptions orientation grade continuity top cut. Grade continuity is variable in nature in this style of deposit and has not been demonstrated to date and closer spaced drilling is required to improve the understanding of the grade continuity in both strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha are encouraging in terms of grade repeatability. The deposit contains very high grades and there is need for the use of top cuts. No production data is available for comparison.
nger Exploration Limited 23 591 382 EL	Issued CapitalAustralian Regist1,044.9m sharesLevel 110m options1205 Hay Street10m exclosureWhet Berth WA CO	Mr Kris Knauer, MD and CEO T: +61 8 6380 9235 Mr Scott Funston, Finance Director E: admin@challengerex.com

Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, Exec. Director

120m perf shares

16m perf rights

Criteria	JORC Code explanation	Commentary
	- These statements of relative accuracy and	1
	confidence of the estimate should be	
	compared with production data where	
	available.	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

 $\overline{(7)}$