

ASX RELEASE 17 OCTOBER 2022 ASX:NES

ENCOURAGING RESULTS FROM RESAMPLING OF AIRCORE DRILLING AT THE WOODLINE PROJECT

Nelson Resources Limited (the "Company") is pleased to announce the results from re-sampling of drilling spoil from an aircore drilling program completed between July and September at the Woodline project.

Highlights:

- The original results of 4m composite sampling were reported in October, including numerous anomalous intercepts.
- The most significant intersections from those 4m composites have been re-sampled at 1m intervals the same granularity as the drilling.
- These re-sampled intervals have returned results that confirm the original results and identified extensions to the existing zones of interest.
- Results from the re-sampling include:

	amping include.
WDA017	2m @ 0.16g/t from 34m in WDA017.
WDA017	5m @ 0.36g/t from 49m in WDA017.
WDA044	2m @ 0.39g/t from 12m in WDA044.
WDA178	2m @ 0.42g/t from 42m in WDA178, including 1m @ 0.68g/t.
WDA184	4m @ 0.55g/t from 34m in WDA184, including 1m @ 1.1g/t.
WDA174	1m @ 0.32g/t from 35m in WDA174.
WDA169	1m @ 0.34g/t from 38m in WDA169.
WDA162	1m @ 1.31g/t from 36m in WDA162.
WDA164	1m @ 0.28g/t from 28m in WDA164.
WDA158	3m @ 0.28g/t from 27m in WDA158, including 1m @ 0.43g/t.
WDA171	2m @ 0.37g/t from 27m in WDA171, including 1m @ 0.58g/t.
WDA190	4m @ 0.12g/t from 34m in WDA190.

CAPITAL STRUCTURE

ORDINARY SHARES Issued 294,297,164

OPTIONS

Listed options 79,198,858 Unlisted options 10,152,539

BOARD

Non-Executive Chairman – Jonathan Shellabear Non-Executive Director – Dan Smith Non-Executive Director - Stephen Brockhurst Company Secretary - Stephen Brockhurst

Nelson Resources Limited (ASX: **NES**) (**Nelson** or **the Company**) is pleased to provide an exploration update, following the receipt of all of the assay results from re-sampling of recent aircore drilling, for its 100% owned Woodline project in the Albany-Fraser region, Western Australia (Figure 5).

Woodline Project

From July to August, Nelson completed aircore drilling at Woodline. This drilling program was designed to generate targets for RC drilling. The location of the drilling, in relation to previous drilling and regional geology (GSWA, 2019), is shown below in Figure 1.

Figure 1: Location of completed aircore drilling over the Woodline Project.

Results of the analysis of the original 4m composites were reported during October, including a description of the objectives of the drilling program, the drilling method, sampling approach and geology. The anomalous results, detailed in that report, have since been re-sampled on a 1m basis. The sampling interval is therefore the same as the drilled intervals.

The re-sampling was completed for several reasons:

- To identify the location and tenor of the gold distribution within the original 4m composite.
- To better define the target for follow-up work.
- To confirm the veracity of the original work.

Given the variability of the sampling method and the different sample sizes between the 4mcomposites and the 1m re-samples, the results of the re-sampling have achieved all of those objectives, as shown on Figure 2.

	Original 4m composites						1m re-samples										
Hole	mFrom	mTo	Au_ppm	Intercept	Hole	mFrom	mTo	Intercept Text	Including	Prospect							
WDA169	36	40	0.197	4m @ 0.2 g/t from 36m in WDA169	WDA169	38.00	39.00	1m @ 0.34g/t from 38m in WDA169		Redmill							
WDA174	32	36	0.124	4m @ 0.12 g/t from 32m in WDA174	WDA174	35.00	36.00	1m @ 0.32g/t from 35m in WDA174		Redmill							
WDA184	36	44	0.141	8m @ 0.33 g/t from 32m in WDA184	WDA184	34.00	38.00	4m @ 0.55g/t from 34m in WDA184	including 1m @ 1.1g/t	Redmill							
WDA178	40	44	0.251	4m @ 0.25 g/t from 40m in WDA178	WDA178	42.00	44.00	2m @ 0.42g/t from 42m in WDA178	including 1m @ 0.68g/t	Redmill							
WDA162	36	40	0.109	4m @ 0.11 g/t from 36m in WDA162	WDA162	36.00	37.00	1m @ 1.31g/t from 36m in WDA162		Redmill							
WDA164	28	32	0.107	4m @ 0.11 g/t from 28m in WDA164	WDA164	28.00	29.00	1m @ 0.28g/t from 28m in WDA164		Redmill							
WDA171	28	32	0.171	4m @ 0.17 g/t from 28m in WDA171	WDA171	27.00	29.00	2m @ 0.37g/t from 27m in WDA171	including 1m @ 0.58g/t	Grindall							
					WDA171	32.00	33.00	1m @ 0.11g/t from 32m in WDA171									
WDA190	36	38	0.148	2m @ 0.15 g/t from 36m in WDA190	WDA190	34.00	38.00	4m @ 0.12g/t from 34m in WDA190		Grindall							
WDA158	28	32	0.229	4m @ 0.23 g/t from 28m in WDA158	WDA158	27.00	30.00	3m @ 0.28g/t from 27m in WDA158	including 1m @ 0.43g/t	Grindall							
					WDA017	34.00	36.00	2m @ 0.16g/t from 34m in WDA017		Socrates							
WDA017	52	56	0.365	6m @ 0.25 g/t from 52m in WDA017	WDA017	49.00	54.00	5m @ 0.36g/t from 49m in WDA017		Socrates							
WDA044	12	16	0.239	4m @ 0.24 g/t from 12m in WDA044	WDA044	12.00	14.00	2m @ 0.39g/t from 12m in WDA044		Socrates							
					WDA044	16.00	17.00	1m @ 0.15g/t from 16m in WDA044		Socrates							
WDA052	0	4	0.11	4m @ 0.11 g/t from 0m in WDA052	WDA052	0.00	1.00	1m @ 0.09g/t from surface in WDA052		Socrates							

Figure 2: Comparison of original 4m composite sampling against 1m re-sampling.

The results of the re-sampling confirm the original results and present a compelling target for follow-up work in five separate locations across three prospects at Woodline. All of the results reported here are in weathered basement rocks.

At Socrates, two additional targets have been identified for follow-up (Figure 3).

Figure 3: Intersections from re-sampling of aircore drilling at Socrates and earlier RC drilling intersections (on Hoistem).

At Grindall and Redmill, several targets require follow-up drilling (Figure 4).

Figure 4: Intersections at Grindall and Redmill on local geology (Sipa Resources. 2010).

As previously stated, the drilling, at Socrates, Redmill and Grindall, sought to extend the anomalous zones as well as confirm continuity between wider-spaced historical drilling.

This objective has been achieved by the drilling program and the re-sampling confirms the original results.

Nelson will now complete planning for follow-up drilling.

This announcement is approved for release by the Board of Directors.

For further information please contact: Derek Shaw Exploration Manager info@nelsonresources.com.au

Nelson Resources is an exploration company with a significant and highly prospective 1488km² tenure holding (Granted and Pending). The key focus for the Company is its 1220km² Woodline Project (Granted and Pending).

Figure 5: Project Locations.

The Woodline Project lies on the boundary of the Albany Fraser Orogen and the Norseman - Wiluna Greenstone belt in Western Australia.

The Woodline Project contains:

65km of the Cundeelee Shear Zone which already consists of a known +20km Gold Geochemical and bedrock anomaly, hosted in the same geological structural setting 2 as the 7.7 million ounce Tropicana Gold mine ¹.

30km of significantly unexplored greenstones along the Norseman-Wiluna greenstone belt.

A significant and unique holding within the confluence of the Keith-Kilkenny Fault / the Claypan Shear Zone and the Cundeelee Shear Zone. These three Shears have hosted many of the largest gold projects in Western Australia.

Historical exploration of \$16 million by the Company, Sipa Resources, Newmont and MRG.

The 7.7 million ounce Tropicana Gold Mine which is operated by AngloGold Ashanti was discovered in 2005 by IGO Group Limited via a gold-in-soil anomaly that led to further exploration and is one of the most important gold discoveries in Australia for decades. Tropicana currently produces approximately 450,000 ounces per annum².

The Tempest and Fortnum projects present significant gold exploration opportunities for the Company. The Fortnum project is located in a poorly explored section of greenstone belt and based on historical exploration the project should deliver an effective return at a low cost to the Company.

Nelson Resources confirms that it is not aware of any new information or data that materially affects the exploration results included in this announcement.

Previous ASX Announcements and report references

1 http://www.tropicanajv.com.au/irm/content/reserves-resource-statement1.aspx?RID=284 2 http://www.tropicanajv.com.au/irm/content/fact-sheet.aspx?RID=3

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Derek Shaw, a geologist employed by Nelson Resources Limited. Mr Shaw is a Member Australian Institute of Geoscientists and has sufficient experience that is relevant to this style of mineralisation and type of deposit under consideration and to the activity that is being reported on to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Shaw consents to the inclusion in the report of the matters in the form and context in which it appears.

Dataset	Hole				Dip Azimuth	Dataset	Hole	Depth East	North	DEM_RL			Dataset	Hole	Depth East N	North		
Woodline	WDA001	39 483478	6516559	320	-90 0	Woodline	WDA034	16 484172	6515162		-90		Woodline	WDA068	27 482995 65	513558	328	-90
Voodline	WDA002	29 483322	6516438	322	-90 0	Woodline	WDA035	18 484098	6515102	325	-90	0	Woodline	WDA069	37 482912 65	513501	330	-90
Woodline	WDA003	44 483145	6516307	322	-90 0	Woodline	WDA036	27 483659	6514731	309	-90	0	Woodline	WDA070	35 482827 65	513443	330	-90
Voodline	WDA004	55 482991	6516177	317	-90 0	Woodline	WDA037	27 483582	6514669	307		0	Woodline	WDA071	10 484657 65	514525	316	
Voodline	WDA005	28 482830	6516065	315	-90 0	Woodline	WDA038	31 483507	6514601	306	-90	0	Woodline	WDA072	30 484578 65	514463	316	-90
Noodline	WDA006	32 482678	6515942	314	-90 0	Woodline	WDA039	16 482952	6514456	319		0	Woodline	WDA073	54 484504 65	514413	315	-90
Noodline	WDA007	36 483788	6516074	324	-90 0	Woodline	WDA040	19 482860	6514430	322		0	Woodline	WDA074	24 484343 65	514301	311	
Voodline	WDA008	31 483630	6515948	325	-90 0	Woodline	WDA041	11 482780	6514402	322	-90	0	Woodline	WDA075	29 484262 65	514232	309	-90
Woodline	WDA009	30 483469	6515834	322	-90 0	Woodline	WDA042	15 482681	6514368	320		0	Woodline	WDA076	33 484180 65	514168	306	-90
Noodline	WDA010	36 483390	6515774	320	-90 0	Woodline	WDA043	19 484438	6515107	319	-90	0	Woodline	WDA077	29 484097 65	514115	304	-90
Woodline	WDA011	32 483312	6515712	319	-90 0	Woodline	WDA044	19 484365	6515036	323	-90	0	Woodline	WDA078	56 484018 65	514055	302	-90
Woodline	WDA012	31 483231	6515651	316	-90 0	Woodline	WDA045	19 484288	6514975	324	-90	0	Woodline	WDA079	17 483866 65	513936	302	-90
Woodline	WDA013	30 483114	6515564	313	-90 0	Woodline	WDA046	22 484215	6514903	324	-90	0	Woodline	WDA080	60 483786 65	513866	304	-90
Noodline	WDA014	37 482992	6515469	310	-90 0	Woodline	WDA047	21 484616	6514983	316	-90	0	Woodline	WDA081	25 483706 65	513813	306	-90
Woodline	WDA015	54 482914	6515414	310	-90 0	Woodline	WDA048	19 484550	6514929	317	-90	0	Woodline	WDA082	26 483141 65	513383	324	-90
Woodline	WDA016	57 482838	6515351	310	-90 0	Woodline	WDA049	19 484464	6514875	321	-90	0	Woodline	WDA083	58 483067 65	513321	327	-90
Woodline	WDA017	54 482758	6515290	310	-90 0	Woodline	WDA050	19 484387	6514814	324	-90	0	Woodline	WDA084	65 482982 65	513261	328	-90
Woodline	WDA018	42 484204	6515632	326	-90 0	Woodline	WDA051	15 484309	6514758	322	-90	0	Woodline	WDA085	34 482899 65	513209	325	-90
Woodline	WDA019	22 484043	6515514	327	-90 0	Woodline	WDA052	24 483855	6514454	308	-90	0	Woodline	WDA086	4 484951 65	514472	308	-90
Woodline	WDA020	25 483873	6515401	325	-90 0	Woodline	WDA053	41 483771	6514410	306	-90	0	Woodline	WDA087	4 484869 65	514412	314	-90
Woodline		16 483790		323	-90 0		WDA054	60 483685	6514362	304		0	Woodline	WDA088	16 484801 65	514347	314	
Woodline	WDA021A	33 483785	6515336	323	-90 0	Woodline	WDA055	56 483578	6514289	304	-90	0	Woodline	WDA089	9 484684 65	514283	315	-90
Woodline	WDA022	39 483714		319	-90 0	Woodline	WDA056	83 483471		306		0	Woodline	WDA090	3 485020 65	514212	308	-90
Woodline		39 483627		315			WDA057	13 483095		319		0	Woodline	WDA091	5 484942 65		309	
		31 483468		310			WDA058	18 483010		324		0	Woodline	WDA092	15 484865 65		310	
Woodline		35 483286		308		1	WDA059	77 482929		327		0	Woodline	WDA093	36 484783 65		311	
1		43 483193		308	-90 0		WDA060	16 482839			-90	0	Woodline	WDA094	42 484633 65		304	
Woodline	WDA027	66 483107	6514861	309	-90 0		WDA061	14 482760	6513773	327		0	Woodline	WDA095	30 484555 65	513838	301	-90
Woodline	WDA028	12 482982	6514785	312	-90 0	Woodline	WDA062	39 484835	6514894	310		0	Woodline	WDA096	14 484474 65	513775	299	-90
Woodline		20 482894		314	-90 0		WDA063	38 484765		314		0	Woodline	WDA107	48 489602 65		290	
Woodline		26 482811		316			WDA064	17 484688		318		0	Woodline	WDA108	47 489695 65		289	
Woodline		18 482729		317			WDA065	15 484601		318		0	Woodline	WDA142	38 487544 64		296	
Woodline		36 484326		318		1	WDA066	19 484527			-90		Woodline	WDA143	45 487670 64		296	
Woodline		20 484254		321			WDA067	16 483055			-90		Woodline	WDA144	48 487304 64		302	

Dataset	Hole	Depth			DEM_RL		Azimuth	Dataset	Hole	Depth East				Dataset					DEM_RL	
Noodline	WDA145			6490616		-90	0	Woodline	WDA180	29 481840			-90 0	Woodline	WDA215			6482211		
Voodline	WDA146	62	487494	6490601	303	-90	0	Woodline	WDA181	40 481950	6488274	318	-90 0	Tempest	TSA002	153	593501	6523745	193	-90
Voodline	WDA147	41	487596	6490614	303	-90	0	Woodline	WDA182	34 482047	6488279	318	-90 0	Tempest	TSA004	153	594299	6523755	194	-90
Noodline	WDA148	36	487194	6490348	304	-90	0	Woodline	WDA183	50 482615	6488272	315	-90 0	Tempest	TSA006	131	595102	6523747	191	-90
Woodline Y	WDA149	29	487296	6490352	304	-90	0	Woodline	WDA184	46 482721	6488281	314	-90 0	Tempest	TSA008	111	595894	6523749	190	-90
Woodline	WDA150	31	487399	6490354	303	-90	0	Woodline	WDA185	45 482812	6488288	314		Tempest	TSA010	97	596703	6523752	197	-90
Woodline	WDA151			6489995		-90	0	Woodline	WDA186	42 484801		318		Tempest	TSA015			6522257		-90
Woodline	WDA152			6490003	303	-90	0	Woodline	WDA187	37 484902	6487997	318		Tempest	TSA017	147	592898	6522262	185	-90
Woodline		-		6489999		-90	0	Woodline	WDA188	49 485001		320		Tempest	TSA019			6522252		
Woodline				6490001		-90	0	Woodline	WDA189	42 485100		320		Tempest	TSA021			6522248		-90
Woodline				6489661		-90	0	Woodline	WDA190	38 485202		320		Tempest	TSA023			6522247		-90
Woodline V		-		6489656		-90	0	Woodline	WDA191	40 485401		321		Tempest	TSA025	-		6519509		
Woodline				6489665		-90	0	Woodline	WDA192	35 485599		321		Tempest	TSA026			6519499		
Woodline				6489655		-90	0	Woodline	WDA192	45 482045		314		Tempest	TSA020			6519492		
Woodline				6489646		-90	0	Woodline	WDA193 WDA194	38 482150		314		Tempest	TSA027			6519492		
Woodline V				6489655	305		0	Woodline	WDA194 WDA195	41 482245		318		rempest	134020	33	101050	0519499	193	-90
//							0													
Woodline				6489715	312		0	Woodline	WDA196	46 482526		321 321								
Noodline				6489713		-90		Woodline	WDA197	42 482624										
Woodline				6489705		-90	0	Woodline	WDA198	40 482725		321								
Noodline				6489709		-90	0	Woodline	WDA199	20 476060		322								
Noodline				6489091		-90	0	Woodline	WDA200	20 476115		321								
Noodline		-		6489085		-90	0	Woodline	WDA201	22 476159		321								
Woodline	WDA167	46	483394	6489083	314	-90	0	Woodline	WDA202	21 476250	6483829	322								
Woodline	WDA168			6488896		-90	0	Woodline	WDA203	18 476346	6483642	322								
Woodline	WDA169	46	482442	6488896		-90	0	Woodline	WDA204	20 476441		321								
Woodline	WDA170			6488696	311	-90	0	Woodline	WDA205	28 476535	6483299	320	-90 0							
Woodline	WDA171	41	486589	6488694	310	-90	0	Woodline	WDA206	32 476627	6483118	318								
Woodline	WDA172	42	486679	6488697	310	-90	0	Woodline	WDA207	27 476675	6483037	318	-90 0							
Woodline	WDA173	36	486796	6488694	308	-90	0	Woodline	WDA208	34 476715	6482946	318	-90 0							
Woodline	WDA174	48	482146	6488684	316	-90	0	Woodline	WDA209	37 476764	6482854	319	-90 0							
Woodline	WDA175	48	482249	6488680	316	-90	0	Woodline	WDA210	32 475362	6483108	326	-90 0							
Woodline	WDA176	38	482354	6488681	316	-90	0	Woodline	WDA211	35 475454	6482932	326	-90 0							
Woodline	WDA177			6488584	314	-90	0	Woodline	WDA212	34 475544	6482750	326								
	WDA178	1		6488589		-90	0	Woodline	WDA213	39 475628		325								
Maadline	WDA179	39	481745	6488282	316	-90	0	Woodline	WDA214	35 475722	6/82380	324	-90 0							

	ole	mFrom	mTo	Au_ppm	Hole	mFrom	mTo	Au_ppm	Hole	mFrom	mTo	Au_ppn
Λ	/DA017	32	33	0.038	WDA178	40	41	0.025	WDA162	36	37	1.3
M	/DA017	33	34	0.064	WDA178	41	42	0.057	WDA162	37	38	0.05
W	/DA017	34	35	0.109	WDA178	42	43	0.158	WDA164	28	29	0.27
W	/DA017	35	36	0.22	WDA178	43	44	0.682	WDA158	27	28	0.42
V	/DA017	36	37	0.025	WDA178	44	45	0.051	WDA158	28	29	0.28
Ŵ	/DA017	38	39	0.03	WDA184	30	31	0.042	WDA158	29	30	0.1
W	/DA017	39	40	0.043	WDA184	32	33	0.03	WDA158	30	31	0.02
N	/DA017	40	41	0.057	WDA184	33	34	0.059	WDA171	25	26	0.0
V	/DA017	41	42	0.093	WDA184	34	35	1.1	WDA171	26	27	0.02
W	/DA017	42	43	0.06	WDA184	35	36	0.689	WDA171	27	28	0.16
Ŵ	/DA017	43	44	0.042	WDA184	36	37	0.178	WDA171	28	29	0.57
W	/DA017	49	50	0.203	WDA184	37	38	0.227	WDA171	29	30	0.0
W	/DA017	50	51	0.117	WDA184	38	39	0.03	WDA171	30	31	0.02
W	/DA017	51	52	0.612	WDA184	39	40	0.02	WDA171	31	32	0.05
W	/DA017	52	53	0.603	WDA184	40	41	0.071	WDA171	32	33	0.10
M	/DA017	53	54	0.241	WDA184	41	42	0.049	WDA171	33	34	0.09
V	/DA044	12	13	0.455	WDA184	42	43	0.03	WDA171	34	35	0.04
W	DA044	13	14	0.321	WDA184	43	44	0.035	WDA190	33	34	0.0
W	/DA044	14	15	0.029	WDA184	44	45	0.067	WDA190	34	35	0.1
M	/DA044	15	16	0.029	WDA174	35	36	0.316	WDA190	35	36	0.0
Ŵ	/DA044	16	17	0.146	WDA169	38	39	0.337	WDA190	36	37	0.10
V	/DA044	17	18	0.024	WDA169	39	40	0.028	WDA190	37	38	0.14
	/DA052	0	1	0.087	WDA169	42	43	0.049				

JORC 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representatively and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 This announcement relates to the re-sampling of previously reporte 4m-composite samples, now re-sampled on a 1m basis. Samples from the aircore drilling were drilled at 1m intervals an placed on the ground by the drillers, in the order that the sample were drilled. Sampling of this material was completed using a plastic scoo according to a procedure designed to eliminate errors (sample mix ups, etc.). Sampling was completed by the geologist and a field assistant. Samples were collected from each 1m interval and placed into pre- numbered calico sample bags. The sampling procedure attempted to ensure that all samples were of the same size and collected the same amount of material from eac drilled interval. Sample size was selected to eliminate the need for sample splitting i the laboratory. All sampling intervals were recorded digitally.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Aircore drilling was completed using a standard 85mm blade bit and where hammering was used, a face-sampling hammer. Aircore drilling is a reverse circulation method that minimises contamination and produces a representative sample.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 Drill holes were visually logged in their entirety for geology, veining and alteration by Nelson's geologists and all holes were chip-trayed in 2n composite intervals. Visual logging is effectively qualitative.

Criteria	JORC Code Explanation	Commentary
	The total length and percentage of the relevant intersections logged.	
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 of a small volume cyclone. Drill crew placed the samples in rows of 10, in the order that they were drilled, on the ground, adjacent to the drill hole. A sampling procedure was followed whereby approximately 2 kg was collected in a representative manner from each sample pile that had been placed by the drillers. These sub-samples were between 0.1 and 2.6 kg with most samples around 1.5kg.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Samples were shipped by the laboratory from Kalgoorlie to Perth. Samples were reconciled in Perth. For each sample, the entire sample was pulverised in the laboratory (SGS Laboratories, Perth). Samples were analysed using a 50-gram charge, Fire Assay with the recutting prill disaphysed in Agua Darie and engloyed by ICP MS
Verification of sampling	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	

Criteria	JORC Code Explanation	Commentary
and assaying	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Twinned holes are not appropriate in this instance. Electronic data is stored on Nelson's secure server with the assay certificates. Assay that are returned below the detection limit for the relevant analytical method are stored in the database as half the detection limit (commonly 0.0005 g/t) to remove non-numeric characters from the data. Otherwise, no adjustments have been made to the data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes have been positioned to test the interpreted location of the potential mineralisation at variable spacings: typically, 50m to 100m intervals across the interpreted strike of the mineralisation. At Tempest holes are at 800m spacing. Infill drilling is required to determine orientation and continuity of anomalous zones of gold. Samples were collected off the drill rig via a small-volume cyclone, at one-meter intervals and submitted after compositing, as discussed above.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	With vertical holes, there is unlikely to be a sampling bias due to orientation of these drill lines.
Sample security	The measures taken to ensure sample security.	 Nelson's geologists are responsible for custody of the Company's samples. The samples reported in this announcement were delivered directly to the laboratory in individually numbered bags, contained in larger bags, by the Company staff. No samples were lost and all samples are reconciled to a drill hole position.

Criteria	JORC Code Explanation	Commentary
Audits or reviews	 The results of any audits or reviews of sampling techniques and data reviews. 	 The data has been reviewed by the Company's geologists, including the evaluation of standards, and a number of steps taken to check for unusual data distributions. Re-sampling and other such audits are yet to be completed for the new data reported in this announcement.

Section 2 Reporting of Exploration Results (*Criteria listed in the preceding section also apply to this section.*)

Criteria		JORC Code Explanation		Commentary
<i>Mineral tenement and land tenure status</i>	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	•	The Woodline Project is located approximately 160km southeast of Kalgoorlie and 110km northeast of Norseman in the Eastern Goldfields Region of Western Australia. The project includes the following granted Exploration Licences: E28/2633, E28/2769, E28/2873, E28/2679, E28/2768, E28/2873, E28/2874, E63/1971 and E28/2923. The tenements are held by 79 Exploration Pty Ltd, a wholly-owned
			•	subsidiary of Nelson Resources Ltd. All tenements lie within the Ngadju Native Title Claim All the tenements are in good standing with no known impediments.
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	•	Systematic exploration of the area was carried out for gold mineralisation by Newmont and Sipa Resources between 2006 and 2012. The work resulted in identification of a surficial gold-in-soil anomaly that extends over a strike length of more than 20 km in the Northern Foreland of the Albany-Fraser Orogen. Follow-up rotary air-blast drilling highlighted anomalous areas of bedrock gold, tellurium, bismuth, copper and molybdenum, with significant volume of these anomalous values below the base of oxidation extending over strike lengths of 12 km and 5 km for the Redmill-Harvey and Grindall trends. The work by Newmont and Sipa Resources also identified gold mineralisation at Socrates, with the prospectivity of the area confirmed by RC drilling.
Geology	•	Deposit type, geological setting and style of mineralisation.	•	The geology of the Redmill, Grindall and Harvey prospects is dominated by northeast striking metagranitic and metavolcanic rocks of the Northern Foreland of the Albany Fraser Orogen. The prospects lie on sub-parallel curvilinear structures that dip moderately to the southeast and are

Criteria	JORC Code Explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 interpreted to form in the hanging wall of the crustal-scale Cundeelee Faul which is the boundary between the Yilgarn Craton and the Albany Frase Orogen. Gold mineralisation is disseminated within biotite-pyrite altered shear zone and quartz veins within the host rocks. Location, orientation, depth and sample data were tabulated and an included in this announcement for all new drill hole information received a the date of the report. All aircore holes were drilled vertically. A total of 112 assays have been reported in this announcement of whice 109 are samples and 3 are standards. Of the 109 samples, only 68 samples returned grades above 0.02 g/t A (20ppb Au). All assays below this cut-off are not material to the announcement or to the Company. Therefore, the assays that are included in this announcement are those above a 0.02 g/t cut-off and those assay below the cut-off are excluded for the sake of brevity.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All reported assays intervals were 4m composites. Intervals that comprise more than one sample have been reported using length-weighted average (sum (assay * interval))/total interval). A cut-off grade of 0.1 g/t Au has been used for the reported intervals, with no assays below the cut-off grade included in the interval. Metal equivalents have not been used.

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 around the primary deposit. Down hole lengths are reported and it is unknown if these are true thicknesses. Given the holes are vertical and the sequence is steeply, dipping the intersections are unlikely to be true thickness.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	documentation.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	and results that have been received by the Company to date are included
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	auger samples, 3961 RAB/Aircore holes, 84 RC holes and 5 diamond holes completed by Sipa, Newmont and MRG as well as a regional aeromagnetic survey and gravity survey
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 define a target and RC drilling will test these and previous results. Further drilling is planned for the project as part of the Company's on-going

