ASX Announcement

31 October 2022

Assays Confirm Continuous High-Grade Lithium Mineralisation Along Strike

Highlights

- Assay results confirm continued high-grade lithium mineralisation along the Main Zone at Mavis

 Lake, with a confirmed strike length of 750m
- Assays from Drill Hole MF22-95 confirm:
 - o 9.65m @ 1.15% Li2O, from 131.6m
 - o including 7.2m @ 1.5% Li2O from 132.95m
- Assays from Drill Hole MF22-96 confirm:
 - o 14.75m @ 0.87% Li2O from 152.25m
 - including 7.9m @ 1.49% Li2O from 155.25m
 - including 1m @ 3.57% from 161.3m
- Assays from Drill Hole MF22-107 confirm
 - o 2.6m @ 1.72% Li2O from 44.55m
 - o including 0.75m @ 4.37% Li2O from 46.05m
 - Assays from Drill Hole MF22-111 confirm 6.3m @ 1.76% Li2O from 103.7m

Critical Resources Limited (ASX:CRR) ("Critical Resources" or "the Company") is pleased to announce further positive assay results from the current diamond core drilling campaign at the Company's 100% owned Mavis Lake Lithium Project. The latest set of assay results have confirmed continuity of high-grade lithium mineralisation, with a current strike length of 750m within the Main Zone at Mavis Lake. Key assay data can be seen in Table 1, full details can be seen in Appendix 1.

Critical Resources' Managing Director Mr. Alex Cheeseman said:

"The deliberate and structured drilling program at our Mavis Lake Lithium Project is consistently delivering results. Importantly our most recent results have confirmed continued high-grade lithium mineralisation within the Main Zone, along a large 750-metre strike length.

Critical Resources Ltd

Beyond the Main Zone, Mavis Lake consists of additional drill ready targets centered on mapped spodumene-bearing pegmatites, outcropping at surface. Multiple drill targets are planned and under permitting, the Company is only in the early stages of testing the true potential of Mavis Lake.

As the downstream industry continues to announce further multi-billion dollar investments into electrification of the automotive industry, and legislated change as highlighted by the European Union's latest decision to effectively ban the sale of internal combustion engines from 2035, the industry is set for significant long-term growth and we believe Mavis Lake puts us in an outstanding postion to capitalize on this growth".

Drilling and Sampling Overview

All assays released to date have confirmed lithium mineralisation over a 750m strike length, with an approximate 50m drill hole spacing within the Main Zone. This structured and deliberate approach to drill planning and execution will underpin the maiden Mineral Resource Estimate (MRE) work, which in underway and expected to be released in Q1 2023.

Table 1 - Significant Assay Results from Drill Holes MF22-95, MF22-96, MF22-106, MF22-107, MF22-111

Hole ID	From (m)	To (m)	Down Hole Interval (m)	Li2O (%)	True Width (m)
MF22-95	131.6	141.25	9.65	1.15	8.2
Including	132.95	140.15	7.2	1.5	6.1
including	135.65	139.05	3.4	2.22	2.9
including	135.65	136.3	0.65	3.68	0.6
MF22-96	152.25	167	14.75	0.87	13.3
including	155.25	163.15	7.9	1.49	7.1
including	161.3	162.3	1	3.57	0.9
MF22-106	106.35	112.3	5.95	1.26	5.5
MF22-107	44.65	47.25	2.6	1.72	2.4
including	46.05	46.8	0.75	4.37	0.7
MF22-111	103.7	110	6.3	1.76	5.4
including	104.2	107.9	3.7	2.16	3.1

Note - No significant assays from MF22-90 to 94, MF22-97 to 105, MF22-108 to 110 and MF22-112

All of the Company's assay sampling is conducted based on core logging, with all drill hole core logged by a qualified geologist, experienced with lithium mineralisation, who determines the assay sampling intervals. Country rock hosting the pegmatite is typically not sampled as lithium mineralisation is localised to spodumene-bearing pegmatite dykes or their alteration halos

containing holmquistite (lithium-bearing mineral). All pegmatite intersections are sampled regardless of the visual presence of lithium minerals/spodumene.

The high-grade lithium confirmed by assay results, correlates with visual assessments released immediately after drilling (refer to ASX Announcements of 22 June 2022, 7 July 2022, 14 July 2022, 21 July 2022 and 2 August 2022).

Future Works

Ongoing extension drilling and pending assay results will all support the maiden MRE. A site visit is being planned by the MRE consultants and likely to be completed in the next one to two weeks.

Drilling of Pegmatite 17, a large spodumene bearing outcrop, is planned to commence in early November. The area around Pegmetite 17 has not previoulsy been drill tested by Ciritical Resources.

This announcement has been approved for release by the Board of Directors

-ends-

For further information please contact

Alex Cheeseman

Managing Director

Einfo@criticalresources.com.au

P: +61 (8) 9389 4499

COMPETENT PERSONS STATEMENT

The information in this ASX Announcement that relates to Exploration Results is based on information compiled by Mr. Troy Gallik (P. Geo), a Competent Person who is a Member of the Association of Professional Geoscientists of Ontario. Troy Gallik is a full-time employee of Critical Resources. Mr. Gallik has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Gallik consents to the inclusion in this Announcement of the matters based on his information in the form and context in which it appears.

ABOUT CRITICAL RESOURCES LIMITED

Critical Resources is advancing and developing critical metals projects for a decarbonised future.

The Company's primary objective is the rapid development of its flagship Mavis Lake Lithium Project, located in Ontario, Canada. Mavis Lake is an advanced exploration project with near-term development potential. Importantly, Critical has an exciting opportunity for further regional growth through exploration at its Graphic Lake, Plaid and Whiteloon prospects, along with expanding its Canadian portfolio through potential increased land holdings and merger and acquisitions. The Company's other projects include the Halls Peak Project in NSW, Australia, a high-quality base metals project with significant scale potential and the Block 4 and Block 5 copper project, located in Oman.

Appendix 1 – Exploration Results

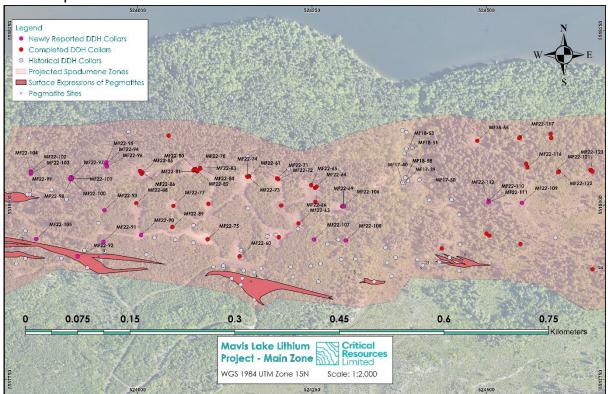


Figure 1 – Zoomed up plan view of the Main Zone at surface. Assayed high-grade lithium mineralisation spans a 750m strike length from MF22-104 to MF22-121

Table 2 - Drill Hole Summary

	Figure 1 – Zoomed up plan view of the Main Zone at surface. Assayed high-grade lithium mineralisation spans a 750m strike length from MF22-104 to MF22-121 Table 2 – Drill Hole Summary									
C PH	Hole ID Date Drilled UTM Zone 15N (NAD83) Collar Metres Drilled									
		Start Date	End Date	Easting	Northing	Elevation	Az	Dip	Casing Depth	End Depth
U DMI	F22-90	18-Jun-22	19-Jun-22	524005	5517957	440	190	-70	3	68
М	IF22-91	19-Jun-22	19-Jun-22	523951	5517947	440	190	-70	3	62
M	F22-92	19-Jun-22	20-Jun-22	523914	5517926	430	310	-50	3	62
М	F22-93	20-Jun-22	21-Jun-22	523953	5517992	442	190	-70	3	100
М	F22-94	22-Jun-22	24-Jun-22	523955	5518059	430	190.1	-70	3	148
MI	F22-95	24-Jun-22	25-Jun-22	523955	5518061	429	109.8	-82	3	173
М	F22-96	26-Jun-22	28-Jun-22	523956	5518055	430	344.8	-80	3	191
М	F22-97	28-Jun-22	29-Jun-22	523904	5518040	434	344.9	-80	3	182
М	F22-98	30-Jun-22	01-Jul-22	523907	5518039	434	109.7	-82	3	164
М	F22-99	02-Jul-22	03-Jul-22	523904	5518037	429	179.9	-50	3	149
MF	F22-100	04-Jul-22	04-Jul-22	523903	5518037	425	189.8	-70	3	140
М	F22-101	05-Jul-22	06-Jul-22	523905	5518037	425	149.7	-50	3	131
MF	F22-102	06-Jul-22	07-Jul-22	523847	5518048	421	189.6	-70	3	158
MF	F22-103	08-Jul-22	09-Jul-22	523847	5518045	421	345.5	-80	3	212

ĺ	MF22-104	10-Jul-22	11-Jul-22	523848	5518046	413	110.4	-82	3	158
	MF22-105	12-Jul-22	12-Jul-22	523855	5517951	424	192.11	-70	3	62
	MF22-106	13-Jul-22	14-Jul-22	524295	5517998	444	89.8	-69	3	140
	MF22-107	14-Jul-22	14-Jul-22	524253	5517951	447	190	-70	3	77
	MF22-108	16-Jul-22	16-Jul-22	524299	5517949	445	190	-70	3	86
	MF22-109	17-Jul-22	18-Jul-22	524551	5518003	439	190	-70	3	107
	MF22-110	18-Jul-22	19-Jul-22	524503	5518006	435	190	-70	3	104
	MF22-111	20-Jul-22	21-Jul-22	524503	5518004	433	290	-80	3	134
	MF22-112	22-Jul-22	22-Jul-22	524503	5518004	434	190	-70	3	140
))									
			MF2 of 1 inclu	22-95: 9.65m .15% Li2O uding 3.4m of	MF72.93			MF22-9 of 0.879 includin 3.57% L	g 1m of	

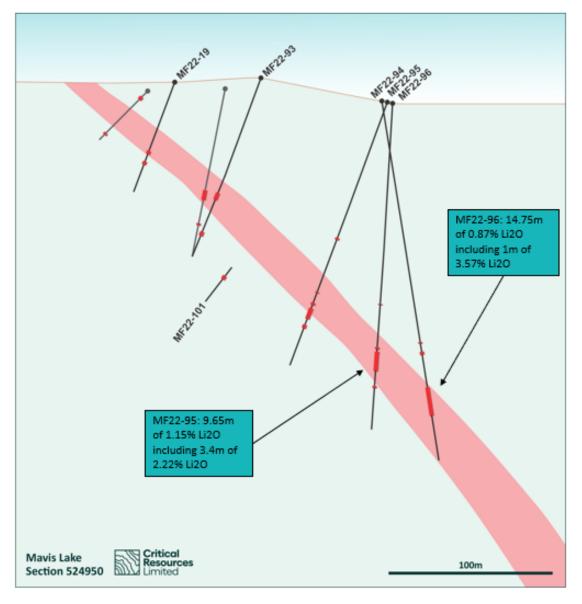


Figure 2 - Vertical cross section 523950E, looking west, of projected and intersected spodumene-bearing pegmatites including released holes MF22-91, MF22-93, MF22-94, MF22-95, MF22-96 and partial of MF22-101

Table 3 - MF22-90 to MF22-112 Assay Results

Hole	From	То	Sample	Li ppm	Li2O (%)
MF22-90	29	30.95	741315	446	0.096
MF22-90	30.95	31.4	741316	847	0.182
MF22-90	31.4	32.6	741317	27	0.006
MF22-90	32.6	33.05	741318	966	0.208
MF22-90	33.05	35	741319	801	0.172
MF22-90	43.4	45.3	741320	1170	0.252
MF22-90	45.3	45.75	741322	1580	0.340
MF22-90	45.75	46.1	741323	287	0.062
MF22-90	46.1	48.7	741324	4680	1.007
MF22-90	48.7	49.05	741325	62	0.013
MF22-90	49.05	49.55	741326	3100	0.667
MF22-90	49.55	51.5	741327	1920	0.413
MF22-90	56	57.9	741328	241	0.052
MF22-90	57.9	58.35	741329	458	0.099
MF22-90	58.35	59.5	741330	45	0.010
MF22-90	59.5	60	741332	732	0.158
MF22-90	60	62	741333	492	0.106
MF22-91	36.25	38.2	741334	869	0.187
MF22-91	38.2	38.65	741335	1450	0.312
MF22-91	38.65	40.1	741336	39	0.008
MF22-91	40.1	40.55	741337	840	0.181
MF22-91	40.55	42.3	741338	2330	0.502
MF22-91	42.3	43.9	741339	2620	0.564
MF22-91	43.9	44.4	741340	2160	0.465
MF22-91	44.4	45.15	741342	68	0.015
MF22-91	45.15	45.75	741343	1170	0.252
MF22-91	45.75	46.3	741344	70	0.015
MF22-91	46.3	46.8	741345	692	0.149
MF22-91	46.8	48.75	741346	1030	0.222
MF22-92	13.07	15.97	741347	2640	0.568
MF22-92	15.97	16.45	741348	2960	0.637
MF22-92	16.45	19.2	741349	2690	0.579
MF22-92	19.2	19.55	741350	955	0.206
MF22-92	19.55	22.2	741352	730	0.157

MF22-93 61.15 64.02 741353 1050 0.226 MF22-93 64.02 64.5 741354 1400 0.301 MF22-93 64.5 66.2 741355 794 0.171 MF22-93 68.2 68 741356 410 0.088 MF22-93 68.37 71.2 741358 767 0.165 MF22-93 83.15 86 741359 539 0.116 MF22-93 86.3 86.3 741360 1260 0.271 MF22-93 86.3 88.35 741362 127 0.027 MF22-93 88.35 88.75 741363 872 0.188 MF22-93 88.75 91.6 741364 724 0.156 MF22-94 73.5 76.13 741365 261 0.056 MF22-94 76.13 76.45 741367 15 0.003 MF22-94 77.8 80.15 741369 435 0.094 <		0.15				
MF22-93 64.5 66.2 741355 794 0.171 MF22-93 66.2 68 741356 410 0.088 MF22-93 68 68.37 741357 1860 0.400 MF22-93 68.37 71.2 741358 767 0.165 MF22-93 83.15 86 741359 539 0.116 MF22-93 86.3 88.35 741360 1260 0.271 MF22-93 86.3 88.35 741362 127 0.027 MF22-93 88.35 88.75 741363 872 0.188 MF22-94 73.5 76.13 741364 724 0.156 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.8 80.15 741368 461 0.099 MF22-94 10.9.8 112.65 741370 1220 0.263						
MF22-93 66.2 68 741356 410 0.088 MF22-93 68 68.37 741357 1860 0.400 MF22-93 68.37 71.2 741358 767 0.165 MF22-93 83.15 86 741359 539 0.116 MF22-93 86.3 86.3 741360 1260 0.271 MF22-93 86.3 88.35 741362 127 0.027 MF22-93 88.35 88.75 741363 872 0.188 MF22-94 73.5 76.13 741365 261 0.056 MF22-94 76.13 76.45 741366 383 0.082 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.35 77.8 741368 461 0.099 MF22-94 10.9.8 112.65 741370 1220 0.263 MF22-94 113 113.7 741373 217 0.047	MF22-93	64.02	64.5	741354	1400	0.301
MF22-93 68 68.37 741357 1860 0.400 MF22-93 68.37 71.2 741358 767 0.165 MF22-93 83.15 86 741359 539 0.116 MF22-93 86 86.3 741360 1260 0.271 MF22-93 86.3 88.35 741362 127 0.027 MF22-93 88.35 88.75 741363 872 0.188 MF22-94 73.5 76.13 741364 724 0.156 MF22-94 76.13 76.45 741366 383 0.082 MF22-94 76.13 76.45 741366 383 0.082 MF22-94 77.35 77.8 741368 461 0.099 MF22-94 77.8 80.15 741369 435 0.094 MF22-94 10.9.8 112.65 741370 1220 0.263 MF22-94 113 113.7 741373 217 0.047	MF22-93	64.5	66.2	741355	794	0.171
MF22-93 68.37 71.2 741358 767 0.165 MF22-93 83.15 86 741359 539 0.116 MF22-93 86 86.3 741360 1260 0.271 MF22-93 86.3 88.35 741362 127 0.027 MF22-93 88.35 88.75 741363 872 0.188 MF22-94 73.5 76.13 741364 724 0.156 MF22-94 73.5 76.13 741365 261 0.056 MF22-94 76.13 76.45 741366 383 0.082 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.8 80.15 741368 461 0.099 MF22-94 112.65 113 741370 1220 0.263 MF22-94 113.7 114.15 741373 217 0.047 MF22-94 113.7 114.15 741373 217 0.047	MF22-93	66.2	68	741356	410	0.088
MF22-93 83.15 86 741359 539 0.116 MF22-93 86 86.3 741360 1260 0.271 MF22-93 86.3 88.35 741362 127 0.027 MF22-93 88.35 88.75 741363 872 0.188 MF22-94 78.15 76.13 741364 724 0.156 MF22-94 76.13 76.45 741365 261 0.056 MF22-94 76.13 76.45 741366 383 0.082 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.8 80.15 741368 461 0.099 MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 113.3 113.7 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 115.8 116.65 741375 2210 0.476	MF22-93	68	68.37	741357	1860	0.400
MF22-93 86 86.3 741360 1260 0.271 MF22-93 86.3 88.35 741362 127 0.027 MF22-93 88.35 88.75 741363 872 0.188 MF22-94 78.5 91.6 741364 724 0.156 MF22-94 73.5 76.13 741365 261 0.056 MF22-94 76.13 76.45 741366 383 0.082 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.35 77.8 741368 461 0.099 MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 113 113.7 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 115.35 115.8 741375 2210 0.476 <	MF22-93	68.37	71.2	741358	767	0.165
MF22-93 86.3 88.35 741362 127 0.027 MF22-93 88.35 88.75 741363 872 0.188 MF22-93 88.75 91.6 741364 724 0.156 MF22-94 73.5 76.13 741365 261 0.056 MF22-94 76.13 76.45 741366 383 0.082 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.35 77.8 741368 461 0.099 MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 112.65 113 741372 581 0.125 MF22-94 113.7 114.15 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 115.35 115.8 741375 2210 0.476 MF22-94 115.8 116.65 741377 86 0.019	MF22-93	83.15	86	741359	539	0.116
MF22-93 88.35 88.75 741363 872 0.188 MF22-93 88.75 91.6 741364 724 0.156 MF22-94 73.5 76.13 741365 261 0.056 MF22-94 76.13 76.45 741366 383 0.082 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.35 77.8 741368 461 0.099 MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 112.65 113 741372 581 0.125 MF22-94 113.7 114.15 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 115.35 115.8 741375 2210 0.476 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 <td>MF22-93</td> <td>86</td> <td>86.3</td> <td>741360</td> <td>1260</td> <td>0.271</td>	MF22-93	86	86.3	741360	1260	0.271
MF22-93 88.75 91.6 741364 724 0.156 MF22-94 73.5 76.13 741365 261 0.056 MF22-94 76.13 76.45 741366 383 0.082 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.35 77.8 741368 461 0.099 MF22-94 77.8 80.15 741369 435 0.094 MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 112.65 113 741372 581 0.125 MF22-94 113.7 114.15 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 115.35 115.8 741375 2210 0.476 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 118.7 121.6 721379 427 0.092	MF22-93	86.3	88.35	741362	127	0.027
MF22-94 73.5 76.13 741365 261 0.056 MF22-94 76.13 76.45 741366 383 0.082 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.35 77.8 741368 461 0.099 MF22-94 77.8 80.15 741369 435 0.094 MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 112.65 113 741372 581 0.125 MF22-94 113.7 114.15 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 115.35 115.8 741375 2210 0.476 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 12.6 122 741380 361 0.078	MF22-93	88.35	88.75	741363	872	0.188
MF22-94 76.13 76.45 741366 383 0.082 MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.35 77.8 741368 461 0.099 MF22-94 77.8 80.15 741369 435 0.094 MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 112.65 113 741372 581 0.125 MF22-94 113.7 114.15 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 115.35 115.8 741375 2210 0.476 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 126.6 122 741380 361 0.078 MF22-94 121.6 122 741380 361 0.078	MF22-93	88.75	91.6	741364	724	0.156
MF22-94 76.45 77.35 741367 15 0.003 MF22-94 77.35 77.8 741368 461 0.099 MF22-94 77.8 80.15 741369 435 0.094 MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 112.65 113 741372 581 0.125 MF22-94 113 113.7 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 115.35 115.8 741375 2210 0.476 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 118.7 121.6 741379 427 0.092 MF22-94 121.6 122 741380 361 0.078 MF22-94 122.8 124.8 741382 625 0.135	MF22-94	73.5	76.13	741365	261	0.056
MF22-94 77.35 77.8 741368 461 0.099 MF22-94 77.8 80.15 741369 435 0.094 MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 112.65 113 741372 581 0.125 MF22-94 113.7 114.15 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 114.15 115.35 741375 2210 0.476 MF22-94 115.8 116.65 741375 2210 0.476 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 125.35 126.85 741383 958 0.206<	MF22-94	76.13	76.45	741366	383	0.082
MF22-94 77.8 80.15 741369 435 0.094 MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 112.65 113 741372 581 0.125 MF22-94 113 113.7 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 115.35 115.8 741375 2210 0.476 MF22-94 115.35 115.8 741376 873 0.188 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 118.7 121.6 741379 427 0.092 MF22-94 122 124.8 741380 361 0.078 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 125.35 126.85 741384 52 0.011 <td>MF22-94</td> <td>76.45</td> <td>77.35</td> <td>741367</td> <td>15</td> <td>0.003</td>	MF22-94	76.45	77.35	741367	15	0.003
MF22-94 109.8 112.65 741370 1220 0.263 MF22-94 112.65 113 741372 581 0.125 MF22-94 113 113.7 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 114.15 115.35 741375 2210 0.476 MF22-94 115.35 115.8 741376 873 0.188 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 118.7 121.6 741379 427 0.092 MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 126.85 127.35 741385 1580 0.340<	MF22-94	77.35	77.8	741368	461	0.099
MF22-94 112.65 113 741372 581 0.125 MF22-94 113 113.7 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 114.15 115.35 741375 2210 0.476 MF22-94 115.35 115.8 741376 873 0.188 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 118.7 121.6 741379 427 0.092 MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 126.85 127.35 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 </td <td>MF22-94</td> <td>77.8</td> <td>80.15</td> <td>741369</td> <td>435</td> <td>0.094</td>	MF22-94	77.8	80.15	741369	435	0.094
MF22-94 113 113.7 741373 217 0.047 MF22-94 113.7 114.15 741374 864 0.186 MF22-94 114.15 115.35 741375 2210 0.476 MF22-94 115.35 115.8 741376 873 0.188 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 118.7 121.6 741379 427 0.092 MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 126.85 127.35 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-95 102.45 105.35 741387 301 0.06	MF22-94	109.8	112.65	741370	1220	0.263
MF22-94 113.7 114.15 741374 864 0.186 MF22-94 114.15 115.35 741375 2210 0.476 MF22-94 115.35 115.8 741376 873 0.188 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 118.7 121.6 741379 427 0.092 MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 125.35 126.85 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 105.45 105.35 741387 301 0	MF22-94	112.65	113	741372	581	0.125
MF22-94 114.15 115.35 741375 2210 0.476 MF22-94 115.35 115.8 741376 873 0.188 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 118.7 121.6 741379 427 0.092 MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 125.35 126.85 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.0	MF22-94	113	113.7	741373	217	0.047
MF22-94 115.35 115.8 741376 873 0.188 MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 118.7 121.6 741379 427 0.092 MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 125.35 126.85 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 106.2 106.6 741390 459 0.09	MF22-94	113.7	114.15	741374	864	0.186
MF22-94 115.8 116.65 741377 86 0.019 MF22-94 116.65 118.7 741378 209 0.045 MF22-94 118.7 121.6 741379 427 0.092 MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 125.35 126.85 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099	MF22-94	114.15	115.35	741375	2210	0.476
MF22-94 116.65 118.7 741378 209 0.045 MF22-94 118.7 121.6 741379 427 0.092 MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 125.35 126.85 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.05	MF22-94	115.35	115.8	741376	873	0.188
MF22-94 118.7 121.6 741379 427 0.092 MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 125.35 126.85 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055	MF22-94	115.8	116.65	741377	86	0.019
MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 125.35 126.85 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055	MF22-94	116.65	118.7	741378	209	0.045
MF22-94 121.6 122 741380 361 0.078 MF22-94 122 124.8 741382 625 0.135 MF22-94 124.8 125.35 741383 958 0.206 MF22-94 125.35 126.85 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055	MF22-94	118.7	121.6	741379	427	0.092
MF22-94 124.8 125.35 741383 958 0.206 MF22-94 125.35 126.85 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055	MF22-94	121.6	122	741380	361	0.078
MF22-94 125.35 126.85 741384 52 0.011 MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055	MF22-94	122	124.8	741382	625	0.135
MF22-94 126.85 127.35 741385 1580 0.340 MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055	MF22-94	124.8	125.35	741383	958	0.206
MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055	MF22-94	125.35	126.85	741384	52	0.011
MF22-94 127.35 130.2 741386 291 0.063 MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055	MF22-94	126.85	127.35	741385	1580	0.340
MF22-95 102.45 105.35 741387 301 0.065 MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055						
MF22-95 105.35 105.7 741388 771 0.166 MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055						
MF22-95 105.7 106.2 741389 116 0.025 MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055						
MF22-95 106.2 106.6 741390 459 0.099 MF22-95 106.6 107.15 741392 255 0.055						
MF22-95 106.6 107.15 741392 255 0.055						
N/E / UB UB UB	MF22-95	107.15	110	741392	130	0.033

1 1		Ī	İ	Ì	l
MF22-95	110	111.5	741394	115	0.025
MF22-95	111.5	111.9	741395	307	0.066
MF22-95	111.9	114.7	741396	221	0.048
MF22-95	118.8	121.65	741397	922	0.198
MF22-95	121.65	122	741398	1530	0.329
MF22-95	122	123.4	741399	108	0.023
MF22-95	123.4	123.7	741400	1750	0.377
MF22-95	123.7	126.15	741402	2260	0.487
MF22-95	126.15	128.8	741403	2150	0.463
MF22-95	128.8	129.15	741404	2060	0.443
MF22-95	129.15	130	741405	74	0.016
MF22-95	130	130.5	741406	1830	0.394
MF22-95	130.5	131.6	741407	383	0.082
MF22-95	131.6	132.25	741408	177	0.038
MF22-95	132.25	132.95	741409	959	0.206
MF22-95	132.95	134	741410	4810	1.035
MF22-95	134	134.95	741412	2800	0.603
MF22-95	134.95	135.65	741413	4220	0.908
MF22-95	135.65	136.3	741414	17100	3.681
MF22-95	136.3	137	741415	4110	0.885
MF22-95	137	139.05	741416	10300	2.217
MF22-95	139.05	140.15	741417	4250	0.915
MF22-95	140.15	141.25	741418	114	0.025
MF22-95	141.25	141.6	741419	1040	0.224
MF22-95	141.6	144.55	741420	699	0.150
MF22-95	146.25	149	741422	1690	0.364
MF22-95	149	149.4	741423	369	0.079
MF22-95	149.4	150.25	741424	379	0.082
MF22-95	150.25	153.2	741425	475	0.102
MF22-95	162.85	165.45	741426	400	0.086
MF22-95	165.45	165.8	741427	668	0.144
MF22-95	165.8	166.65	741428	112	0.024
MF22-95	166.65	167	741429	547	0.118
MF22-95	167	169.9	741430	394	0.085
MF22-96	108.5	108.8	741433	441	0.095
MF22-96	108.8	111	741434	92	0.020
MF22-96	111	113.25	741435	136	0.029

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110.05	110.75	741400	077	
MF22-96	113.25	113.75	741436	277	0.060
MF22-96	128	128.45	741437	549	0.118
MF22-96	128.45	128.9	741438	387	0.083
MF22-96	128.9	130	741439	477	0.103
MF22-96	130	132.9	741440	645	0.139
MF22-96	133.25	134.52	741443	44	0.009
MF22-96	134.52	135.25	741444	508	0.109
MF22-96	135.25	138.2	741445	444	0.096
MF22-96	149	151.9	741446	527	0.113
MF22-96	151.9	152.25	741447	1310	0.282
MF22-96	152.25	154.7	741448	633	0.136
MF22-96	154.7	155.25	741449	872	0.188
MF22-96	155.25	156.95	741450	7000	1.507
MF22-96	156.95	158	741452	6190	1.333
MF22-96	158	158.4	741453	10500	2.260
MF22-96	158.4	159.75	741454	3600	0.775
MF22-96	159.75	160.3	741455	2380	0.512
MF22-96	160.3	161.3	741456	4460	0.960
MF22-96	161.3	162.3	741457	16600	3.573
MF22-96	162.3	163.15	741458	5500	1.184
MF22-96	163.15	164.95	741459	1060	0.228
MF22-96	164.95	167	741460	513	0.110
MF22-96	167	167.35	741462	2140	0.461
MF22-96	167.35	169.75	741463	1240	0.267
MF22-97	50.15	53	741464	256	0.055
MF22-97	53	53.35	741465	81	0.017
MF22-97	53.35	53.7	741466	287	0.062
MF22-97	53.7	54.25	741467	35	0.008
MF22-97	54.25	54.6	741468	192	0.041
MF22-97	54.6	57.4	741469	193	0.042
MF22-97	105.05	105.45	741470	347	0.075
MF22-97	105.45	108	741472	170	0.037
MF22-97	108	110.75	741473	221	0.048
MF22-97	110.75	111.05	741473	335	0.072
MF22-97	111.05	113.75	741474	225	0.072
MF22-97	128.5	131.2	741476	3480	0.749
MF22-97	131.2	131.6	741477	1570	0.338

			l		
MF22-97	131.6	133.2	741478	232	0.050
MF22-97	133.2	133.5	741479	2830	0.609
MF22-97	133.5	136.25	741480	3100	0.667
MF22-97	138.15	141	741482	1710	0.368
MF22-97	141	141.35	741483	2020	0.435
MF22-97	141.35	143	741484	79	0.017
MF22-97	143	143.85	741485	2260	0.487
MF22-97	143.85	144.15	741486	14300	3.078
MF22-97	144.15	145.1	741487	1540	0.332
MF22-97	145.1	145.7	741488	1070	0.230
MF22-97	145.7	147	741489	988	0.213
MF22-97	147	148.1	741490	4470	0.962
MF22-97	148.1	150.25	741492	234	0.050
MF22-97	150.25	150.65	741493	1880	0.405
MF22-97	150.65	151.6	741494	1370	0.295
MF22-97	151.6	152	741495	1590	0.342
MF22-97	152	152.7	741496	151	0.033
MF22-97	152.7	153.25	741497	1090	0.235
MF22-97	153.25	154.1	741498	1800	0.387
MF22-97	154.1	154.6	741499	2810	0.605
MF22-97	154.6	155.75	741500	120	0.026
MF22-97	155.75	156.2	799002	1010	0.217
MF22-97	156.2	159.1	799003	1650	0.355
MF22-98	24.3	26.15	799004	281	0.060
MF22-98	26.15	26.65	799005	38	0.008
MF22-98	26.65	28.7	799006	348	0.075
MF22-98	97.55	99.2	799007	378	0.081
MF22-98	99.2	99.6	799008	53	0.011
MF22-98	99.6	101.9	799009	464	0.100
MF22-98	109.8	111.55	799010	1360	0.293
MF22-98	111.55	111.85	799012	1820	0.392
MF22-98	111.85	113	799013	67	0.014
MF22-98	113	114	799014	101	0.022
MF22-98	114	116.15	799015	970	0.209
MF22-98	116.15	118.3	799016	46	0.010
MF22-98	118.3	118.75	799017	1410	0.304
MF22-98	118.75	120	799018	1980	0.426

MF22-98	124.2	126.05	799019	1450	0.312
				·	
MF22-98	126.05	126.4	799020	3250	0.700
MF22-98	126.4	127	799022	4910	1.057
MF22-98	127	127.3	799023	3970	0.855
MF22-98	127.3	127.75	799024	4350	0.936
MF22-98	127.75	128.25	799036	227	0.049
MF22-98	128.25	128.65	799025	4810	1.035
MF22-98	128.65	131.5	799026	970	0.209
MF22-98	137.35	139.3	799027	254	0.055
MF22-98	139.3	139.7	799028	579	0.125
MF22-98	139.7	140	799029	122	0.026
MF22-98	140	142.9	799030	255	0.055
MF22-98	142.9	144.1	799032	262	0.056
MF22-98	144.1	144.4	799033	186	0.040
MF22-98	144.4	144.8	799034	425	0.091
MF22-98	144.8	146.45	799035	243	0.052
MF22-99	34.8	36.5	799037	1780	0.383
MF22-99	36.5	36.85	799038	345	0.074
MF22-99	36.85	37.9	799039	64	0.014
MF22-99	37.9	38.25	799040	551	0.119
MF22-99	38.25	40.05	799042	1120	0.241
MF22-99	84.3	86.25	799043	1390	0.299
MF22-99	86.25	86.7	799044	913	0.197
MF22-99	86.7	88.25	799045	91	0.020
MF22-99	88.25	88.7	799046	5780	1.244
MF22-99	88.7	89.4	799047	101	0.022
MF22-99	89.4	89.75	799048	1260	0.271
MF22-99	89.75	91.6	799049	1230	0.265
MF22-99	94.9	96.6	799050	1290	0.278
MF22-99	96.6	97	799052	558	0.120
MF22-99	97	97.45	799053	89	0.019
MF22-99	97.45	98.35	799054	68	0.015
MF22-99	98.35	98.75	799055	715	0.154
MF22-99	98.75	100.7	799056	473	0.102
MF22-99	110.4	110.8	799057	1060	0.228
MF22-99	110.8	111.2	799058	121	0.026
MF22-99	111.2	111.7	799059	887	0.191

1,4500,00	100.4	100.7	700000	071	0.000
MF22-99	120.4	120.7	799060	971	0.209
MF22-99	120.7	121.2	799062	38	0.008
MF22-99	121.2	121.65	799063	447	0.096
MF22-100	16.4	18	799064	290	0.062
MF22-100	18	18.45	799065	660	0.142
MF22-100	18.45	19.05	799066	17	0.004
MF22-100	19.05	19.45	799067	424	0.091
MF22-100	19.45	21.3	799068	179	0.039
MF22-100	68.3	70.15	799069	305	0.066
MF22-100	70.15	70.55	799070	387	0.083
MF22-100	70.55	70.9	799072	77	0.017
MF22-100	70.9	71.29	799073	1150	0.248
MF22-100	71.29	73.1	799074	1050	0.226
MF22-100	84.05	85.85	799075	230	0.050
MF22-100	85.85	86.15	799076	551	0.119
MF22-100	86.15	86.6	799077	24	0.005
MF22-100	86.6	86.95	799078	482	0.104
MF22-100	86.95	89	799079	615	0.132
MF22-101	13.9	14.2	799080	47	0.010
MF22-101	32.5	34.4	799082	211	0.045
MF22-101	34.4	34.7	799083	450	0.097
MF22-101	34.7	35	799084	297	0.064
MF22-101	35	35.65	799085	414	0.089
MF22-101	35.65	36.2	799086	69	0.015
MF22-101	36.2	36.66	799087	383	0.082
MF22-101	36.66	38.4	799088	433	0.093
MF22-101	88	89.98	799089	1460	0.314
MF22-101	89.98	90.55	799090	675	0.145
MF22-101	90.55	92.4	799092	50	0.011
MF22-101	92.4	93.55	799093	112	0.024
MF22-101	93.55	94	799094	1420	0.306
MF22-101	94	95.97	799095	763	0.164
MF22-101	113	113.6	799096	759	0.163
MF22-101	113.6	114.55	799097	204	0.044
MF22-101	114.55	115.15	799098	1360	0.293
MF22-102	32.5	33.05	799099	237	0.051
MF22-102	33.05	33.4	799100	76	0.016

MF22-102	33.4	34.03	799102	332	0.071
MF22-102	60.7	61	799103	308	0.066
MF22-102	67.25	67.8	799104	438	0.094
MF22-102	67.8	69.05	799105	135	0.029
MF22-102	69.05	69.74	799106	418	0.023
MF22-102	86.95	97.25	799107	40	0.009
MF22-102	99.94	100.45	799107	1990	0.428
MF22-102	100.45	100.45	799108	47	0.428
MF22-102	102.35	103.05	799110	71	0.010
MF22-102	103.05	103.63	799112	850	0.183
MF22-102	122.55	123.38	799113	886	0.191
MF22-102	123.38	123.9	799114	319	0.069
MF22-102	123.9	125.75	799115	124	0.027
MF22-102	125.75	126.7	799116	1680	0.362
MF22-102	126.7	128.5	799117	97	0.021
MF22-102	128.5	130.45	799118	2200	0.474
MF22-102	130.45	131.95	799119	66	0.014
MF22-102	131.95	132.42	799120	608	0.131
MF22-102	132.42	134.32	799122	1200	0.258
MF22-103	119	120.9	799123	1260	0.271
MF22-103	120.9	121.65	799124	1000	0.215
MF22-103	121.65	122.85	799125	236	0.051
MF22-103	122.85	123.25	799126	842	0.181
MF22-103	123.25	124.8	799127	2140	0.461
MF22-103	124.8	125.35	799128	523	0.113
MF22-103	132.8	133.25	799129	2100	0.452
MF22-103	133.25	134	799130	66	0.014
MF22-103	134	135.3	799132	39	0.008
MF22-103	135.3	135.65	799133	928	0.200
MF22-103	135.65	137.25	799134	2990	0.644
MF22-103	138.6	139.6	799135	1580	0.340
MF22-103	139.6	141.55	799136	2180	0.469
MF22-103	141.55	141.85	799137	3470	0.747
MF22-103	141.85	143	799138	75	0.016
MF22-103	143	144.8	799139	142	0.031
MF22-103	144.8	146	799140	105	0.023
MF22-103	146	148	799142	298	0.064

]					
MF22-103	148	148.35	799143	1600	0.344
MF22-103	148.35	150.1	799144	1340	0.288
MF22-104	35	35.45	799145	777	0.167
MF22-104	35.45	36	799146	184	0.040
MF22-104	36	36.6	799147	431	0.093
MF22-104	67.3	69.1	799148	356	0.077
MF22-104	69.1	69.5	799149	434	0.093
MF22-104	69.5	70.1	799150	272	0.059
MF22-104	70.1	70.5	799152	348	0.075
MF22-104	70.5	72.25	799153	279	0.060
MF22-104	77.8	79.7	799154	2800	0.603
MF22-104	79.7	80	799155	928	0.200
MF22-104	80	80.55	799156	124	0.027
MF22-104	80.55	81.75	799157	1350	0.291
MF22-104	81.75	82.4	799158	17	0.004
MF22-104	82.4	82.8	799159	482	0.104
MF22-104	82.8	84.7	799160	359	0.077
MF22-104	100.8	102.45	799162	1290	0.278
MF22-104	102.45	102.9	799163	1570	0.338
MF22-104	102.9	103.3	799164	291	0.063
MF22-104	103.3	103.65	799165	299	0.064
MF22-104	103.65	105.3	799166	214	0.046
MF22-104	105.3	105.75	799167	338	0.073
MF22-104	105.75	106.1	799168	103	0.022
MF22-104	106.1	107.9	799169	88	0.019
MF22-104	107.9	109.6	799170	76	0.016
MF22-104	109.6	110.7	799172	145	0.031
MF22-104	110.7	112	799173	80	0.017
MF22-104	112	113.6	799174	229	0.049
MF22-104	113.6	115.1	799175	303	0.065
MF22-104	115.1	116.2	799176	262	0.056
MF22-104	116.2	116.5	799177	64	0.014
MF22-104	116.5	116.85	799178	993	0.214
MF22-104	116.85	117.8	799179	364	0.078
MF22-104	117.8	118.25	799180	1060	0.228
MF22-104	118.25	118.6	799182	231	0.050
MF22-104	118.6	119	799183	1210	0.260

1 1					
MF22-104	119	120	799184	404	0.087
MF22-104	120	120.45	799185	956	0.206
MF22-104	120.45	122	799186	92	0.020
MF22-104	122	122.85	799187	576	0.124
MF22-104	122.85	124.4	799188	3970	0.855
MF22-104	124.4	125.1	799189	2080	0.448
MF22-104	125.1	125.55	799190	1710	0.368
MF22-104	125.55	127.35	799192	495	0.107
MF22-104	127.35	127.7	799193	1650	0.355
MF22-104	127.7	128.15	799194	326	0.070
MF22-104	128.15	128.75	799195	1800	0.387
MF22-104	128.75	130.05	799196	351	0.076
MF22-104	130.05	130.45	799197	532	0.115
MF22-104	130.45	130.75	799198	343	0.074
MF22-104	130.75	132.45	799199	318	0.068
MF22-104	140.65	142.25	799200	408	0.088
MF22-104	142.25	142.6	799202	343	0.074
MF22-104	142.6	144.2	799209	81	0.017
MF22-104	144.2	144.55	799210	1140	0.245
MF22-104	144.55	146.55	799212	449	0.097
MF22-105	45.15	46.95	799213	399	0.086
MF22-105	46.95	47.25	799214	386	0.083
MF22-105	47.25	47.65	799215	1230	0.265
MF22-105	47.65	49.25	799216	464	0.100
MF22-105	52	53.8	799217	367	0.079
MF22-105	53.8	54.2	799218	1380	0.297
MF22-105	54.2	54.55	799219	153	0.033
MF22-105	54.55	55	799220	1040	0.224
MF22-105	55	56.2	799222	677	0.146
MF22-105	56.2	57.4	799223	467	0.101
MF22-105	57.4	57.7	799224	1220	0.263
MF22-105	57.7	58.2	799225	70	0.015
MF22-105	58.2	58.65	799226	677	0.146
MF22-105	58.65	60.5	799227	1070	0.230
MF22-106	104	106	799228	1610	0.347
MF22-106	106	106.35	799229	2890	0.622
MF22-106	106.35	107.9	799230	2780	0.598

	1	•	•		
MF22-106	107.9	109.3	799232	10300	2.217
MF22-106	109.3	111.3	799233	4890	1.053
MF22-106	111.3	112	799234	6610	1.423
MF22-106	112	112.3	799235	5240	1.128
MF22-106	112.3	113.75	799236	6250	1.345
MF22-106	113.75	114.2	799237	806	0.174
MF22-106	114.2	114.75	799238	1240	0.267
MF22-106	114.75	115.65	799239	164	0.035
MF22-106	115.65	116	799240	3350	0.721
MF22-106	116	117.95	799242	1610	0.347
MF22-106	122.6	124.35	799243	465	0.100
MF22-106	124.35	124.85	799244	385	0.083
MF22-106	124.85	125.35	799245	65	0.014
MF22-106	125.35	125.8	799246	30	0.006
MF22-106	125.8	127.45	799247	32	0.007
MF22-107	24.7	26.5	799248	260	0.056
MF22-107	26.5	26.9	799249	875	0.188
MF22-107	26.9	27.3	799250	57	0.012
MF22-107	27.3	27.6	799252	485	0.104
MF22-107	27.6	29	799253	337	0.073
MF22-107	42.4	44.3	799254	1430	0.308
MF22-107	44.3	44.65	799255	4500	0.969
MF22-107	44.65	45.6	799256	529	0.114
MF22-107	45.6	46.05	799257	11000	2.368
MF22-107	46.05	46.8	799258	20300	4.370
MF22-107	46.8	47.25	799259	264	0.057
MF22-107	47.25	47.6	799260	3220	0.693
MF22-107	47.6	49.3	799262	1710	0.368
MF22-108	37.95	39.95	799263	590	0.127
MF22-108	39.95	41.95	799264	596	0.128
MF22-108	41.95	42.75	799265	956	0.206
MF22-108	42.75	43.75	799266	4270	0.919
MF22-108	43.75	44.75	799267	4530	0.975
MF22-108	44.75	45.75	799268	5680	1.223
MF22-108	45.75	46.75	799269	4420	0.951
MF22-108	46.75	47.35	799270	1440	0.310
MF22-108	47.35	48.35	799272	2710	0.583

i I		1	1	1	I
MF22-108	48.35	50.35	799273	2840	0.611
MF22-108	50.35	52.35	799274	371	0.080
MF22-108	56.5	56.8	799275	3360	0.723
MF22-108	56.8	57.5	799276	2620	0.564
MF22-108	57.5	58.5	799277	51	0.011
MF22-108	58.5	59	799278	175	0.038
MF22-108	59	60	799279	69	0.015
MF22-108	60	60.56	799280	76	0.016
MF22-108	60.56	61.3	799282	1130	0.243
MF22-108	61.3	61.83	799283	172	0.037
MF22-108	61.83	62.13	799284	545	0.117
MF22-108	62.13	64.13	799285	737	0.159
MF22-108	64.13	66.16	799286	581	0.125
MF22-109	29.3	29.6	799287	165	0.036
MF22-109	38.75	39.25	799288	610	0.131
MF22-109	39.25	39.65	799289	304	0.065
MF22-109	49.5	51.5	799290	695	0.150
MF22-109	51.5	51.8	799292	659	0.142
MF22-109	51.8	52.8	799293	1370	0.295
MF22-109	52.8	53.1	799294	1870	0.403
MF22-109	53.1	55.1	799295	661	0.142
MF22-109	57.2	59.2	799296	1340	0.288
MF22-109	59.2	61.2	799297	3390	0.730
MF22-109	61.2	61.5	799298	1010	0.217
MF22-109	61.5	62.1	799299	198	0.043
MF22-109	62.1	62.9	799300	199	0.043
MF22-109	62.9	63.6	799302	2390	0.514
MF22-109	63.6	64.6	799303	7140	1.537
MF22-109	64.6	65.6	799304	4430	0.954
MF22-109	65.6	66.2	799305	5080	1.094
MF22-109	66.2	66.8	799306	3840	0.827
MF22-109	66.8	67.8	799307	876	0.189
MF22-109	67.8	68.5	799308	1470	0.316
MF22-109	68.5	70.5	799309	659	0.142
MF22-109	70.5	72.5	799310	381	0.082
MF22-109	87.1	87.4	799312	543	0.117
MF22-109	87.4	87.7	799313	133	0.029

MF22-109	87.7	88	799314	337	0.073
MF22-110	61	63	799315	354	0.076
MF22-110	63	65	799316	424	0.091
MF22-110	65	67	799317	1650	0.355
MF22-110	67	68.25	799318	3590	0.773
MF22-110	68.25	69.05	799319	625	0.135
MF22-110	69.05	69.55	799320	2290	0.493
MF22-110	69.55	70.4	799322	188	0.040
MF22-110	70.4	71.1	799323	3980	0.857
MF22-110	71.1	71.8	799324	116	0.025
MF22-110	71.8	72.1	799325	1580	0.340
MF22-110	72.1	74.1	799326	627	0.135
MF22-110	74.1	76.1	799327	903	0.194
MF22-111	45.5	47.5	799328	604	0.130
MF22-111	47.5	47.8	799329	523	0.113
MF22-111	47.8	48.65	799330	73	0.016
MF22-111	48.65	49.1	799332	792	0.170
MF22-111	49.1	51.1	799333	332	0.071
MF22-111	65.35	67.35	799334	268	0.058
MF22-111	67.35	69.35	799335	329	0.071
MF22-111	69.35	69.65	799336	3120	0.672
MF22-111	69.65	70.25	799337	115	0.025
MF22-111	70.25	70.8	799338	111	0.024
MF22-111	70.8	71.2	799339	2500	0.538
MF22-111	71.2	72.1	799340	12600	2.712
MF22-111	72.1	72.5	799342	569	0.122
MF22-111	72.5	73.1	799343	3330	0.717
MF22-111	73.1	73.7	799344	149	0.032
MF22-111	73.7	74.2	799345	15	0.003
MF22-111	74.2	76.2	799346	2340	0.504
MF22-111	76.2	77	799347	1390	0.299
MF22-111	77	79	799348	1170	0.252
MF22-111	79	81	799349	422	0.091
MF22-111	101.5	102	799350	737	0.159
MF22-111	102	103.5	799352	1710	0.368
MF22-111	103.5	103.7	799353	661	0.142
MF22-111	103.7	104.2	799354	1290	0.278

MF22-111	104.2	105.05	799355	9610	2.069
MF22-111	105.05	105.55	799356	4990	1.074
MF22-111	105.55	106.55	799357	9480	2.041
MF22-111	106.55	107.9	799358	12600	2.712
MF22-111	107.9	108.9	799359	5610	1.208
MF22-111	108.9	110	799360	7330	1.578
MF22-111	110	111	799362	3790	0.816
MF22-111	111	112	799363	1100	0.237
MF22-111	112	113	799364	365	0.079
MF22-111	113	114.6	799365	3670	0.790
MF22-111	114.6	115	799366	226	0.049
MF22-111	115	116.5	799367	921	0.198
MF22-112	76.7	78.2	799368	468	0.101
MF22-112	78.2	79.7	799369	802	0.173
MF22-112	79.7	80.05	799370	3410	0.734
MF22-112	80.05	80.75	799372	370	0.080
MF22-112	80.75	81.45	799373	1180	0.254
MF22-112	81.45	82.45	799374	10500	2.260
MF22-112	82.45	83.45	799375	7450	1.604
MF22-112	83.45	84.15	799376	2730	0.588
MF22-112	84.15	85	799377	952	0.205
MF22-112	85	86	799378	4670	1.005
MF22-112	86	86.8	799379	1690	0.364
MF22-112	86.8	87.8	799380	11600	2.497
MF22-112	87.8	88.55	799382	3460	0.745
MF22-112	88.55	89.25	799383	961	0.207
MF22-112	89.25	91.75	799384	2240	0.482
MF22-112	91.75	92.5	799385	949	0.204
MF22-112	92.5	94	799386	867	0.187
MF22-112	94	95.5	799387	754	0.162

^{*}No cut off grades are applied. All assays from each released drill hole are present.

JORC Table 1 - MF22-90 to MF22-112 Exploration Results

Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC-Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Oriented NQ core was cut in half using a diamond saw, with a half core sent for assay and half core retained. No other measurement tools other than directional survey tools have been used in the holes at this stage.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	 Oriented core was placed V-rail and a consistent cut-line drawn along core to ensure cutting (halving) of representative samples. Sampling is conducted based on core logging, 100% of drill hole core is logged. The core logger is a geologist, has experience in lithium mineralisation, and determines the intervals of samples. All pegmatite intersections are sampled regardless of the visual presence of lithium minerals/spodumene. Host rock is typically not sampled as lithium mineralisation is localized to pegmatites (spodumene mineral) or their alteration halos (holmquistite mineral) within mafic volcanic host rock. Determination of mineralisation has been based on geological logging and photo analysis.
		measurement. • Assay samples are selected based on geological logging boundaries or on the nominal metre marks.

Criteria	JORC-Code Explanation	Commentary
		Samples will be dispatched to an accredited laboratory (ActLabs) in Dryden, Ontario, Canada for sample preparation and shipment to analysis.
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether	 NQ2 diamond double tube coring by Cyr EF-50 rig was used throughout the hole. Core orientation was carried out by the drilling contractor.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Lithological logging, photography Core samples were measured with a standard tape within the core trays. Length of core was then compared to the interval drilled, and any core loss was attributed to individual rock units based on the amount of fracturing, abrasion of core contacts, and the conservative judgment of the core logger.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Results of core loss are discussed below. • Experienced driller contracted to carry out drilling. •In broken ground the driller produced NQ core from short runs to maximise core recovery. • Core was washed before placing in the core trays.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Core was visually assessed by professional geologists before cutting to ensure representative sampling. See "Aspects of the determination of mineralisation that are Material to the Public Report" above.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	

	The of t log
DEFSONA!	

The total length and percentage of the relevant intersections logged.

- Core samples were not geotechnically logged.
- Core samples have been geologically logged to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
- The core logging was qualitative in nature.
- All core was photographed
- •Total length of the MF22-90 was 68m
- 100% of the relevant intersections were logged.

Total length of the MF22-91 was 62m

100% of the relevant intersections were logged.

Total length of the MF22-92 was 62m

• 100% of the relevant intersections were logged.

Total length of the MF22-93 was 100m

• 100% of the relevant intersections were logged.

Total length of the MF22-94 was 148m

100% of the relevant intersections were logged.

Total length of the MF22-95 was 173m

100% of the relevant intersections were logged.

Total length of the MF22-96 was 191m

• 100% of the relevant intersections were logged.

Total length of the MF22-97 was 182m

100% of the relevant intersections were logged.

Total length of the MF22-98 was 164m

100% of the relevant intersections were logged.

Total length of the MF22-99 was 149m

100% of the relevant intersections were logged.

Total length of the MF22-100 was 140m

• 100% of the relevant intersections were logged.

Total length of the MF22-101 was 131m

100% of the relevant intersections were logged.

Total length of the MF22-102 was 158m

100% of the relevant intersections were logged.

Total length of the MF22-103 was 212m

100% of the relevant intersections were logged.

Total length of the MF22-104 was 158m

100% of the relevant intersections were logged.

Total length of the MF22-105 was 62m

• 100% of the relevant intersections were logged.

Total length of the MF22-106 was 140m

100% of the relevant intersections were logged.

Total length of the MF22-107 was 77m

(Criteria	JORC-Code Explanation	Commentary
ľ			• 100% of the relevant intersections were logged.
			Total length of the MF22-108 was 86m
			• 100% of the relevant intersections were logged.
			Total length of the MF22-109 was 107m
			• 100% of the relevant intersections were logged.
			Total length of the MF22-110 was 104m
			• 100% of the relevant intersections were logged.
			Total length of the MF22-111 was 134m
			• 100% of the relevant intersections were logged.
			Total length of the MF22-112 was 140m
			• 100% of the relevant intersections were logged.
•		If core, whether cut or sawn and	•Oriented core was placed V-rail and a consistent cut-line
S	sample oreparation	takan	drawn along core to ensure cutting (halving) of representative samples
		If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Oriented NQ core was cut in half using a diamond saw, with half core sent for assay and half core retained.
		For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Core sample intervals were based in logged mineralisation No duplicates or second half-sampling Appropriate method: oriented NQ core cut in half using a diamond saw, with a half core sent for assay and half core
		Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	retained
		Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	
		Whether sample sizes are appropriate to the grain size of the material being sampled.	
•	data and laboratory tests	appropriatorioss or the dissaying	Assays methods appropriate for style of mineralisation: UT-7 (Li up to 5%) QOP Sodium Peroxide (Sodium Peroxide Fusion ICPOES + ICPMS.

Criteria	JORC-Code Explanation	Commentary
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	Samples have been sent to an accredited laboratory - Activation Laboratories Ltd. (ActLabs). Either standards or blanks are inserted every 10 th sample interval as a part of a QAQC process. Standard and blank results from recent drilling are within acceptable margins of error. Activation Laboratory performs internal QAQC measures. Results are released once all internal QAQC is verified and confirmed to be acceptable.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 No independent verification completed at this stage. No holes are twins of previous holes. Core measured, photographed and logged by geologists. Digitally recorded plus back-up records. All assay results are provided. No adjustments to the assay data. No assay cut off grades are applied.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Drill collars recorded with Garmin GPS that has an accuracy in the order of ±3 metres for location. A registered surveyor will be contracted to accurately survey all drill collars at completed of drill program. WGS 1984 UTM Zone 15N. No specific topography survey has been completed over the project area.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore	

С	riteria	JORC-Code Explanation	Commentary
		Reserve estimation procedure(s) and classifications applied.	Not relevant to current drilling.
		Whether sample compositing has been applied.	Not relevant to current drilling. Core sample intervals were based in logged mineralisation and
			no sample composting applied. Reporting of final results includes many weighted average- composting of assay data.
do to	geological cructure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The orientation of the mineralisation is unknown. The drilling program is aimed at determining orientation of the mineralisation. If orientation of mineralisation is known or thought to be known, drill holes are planned to intersect at an appropriate angle relative to true width of the mineralisation. Intercepts with mineralisation released are given as downhole widths, not true widths unless true widths are stated It is uncertain whether sampling bias has been introduced, or whether the thickness drilled is a true thickness.
Sc	ample security	The measures taken to ensure sample security.	 Core samples were stored at the Dryden core yard and core shack under lock and key before delivery to ActLabsGroups in Dryden, Ontario for analysis.
Au	udits or reviews	The results of any audits or reviews of sampling techniques and data.	• Not undertaken at this stage.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC-Code Explanation	Commentary
Mineral	Type, reference name/number, location	The Mavis Lake Lithium Project consists of 189 unpatented
tenement	and ownership including agreements or	Single Cell Mining Claims and six separate surface leases
and land	material issues with third parties such	which secure the surface rights of the land required for the
tenure status	as joint ventures, partnerships,	Project footprint.
	overriding royalties, native title interests,	
	historical sites, wilderness or national	All claims and leases are active and in good standing. The
	park and environmental settings.	leases have a term of 21 years and are not set to expire until

Criteria	JORC-Code Explanation	Commer	ntary					
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	2032, at which time they can be renewed for an additional 21 years if required.						
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous exploration has been conducted by a number of parties including Lun-Echo Gold Mines Limited (1956), Selco Mining Corporation (1979-1980), Tantalum Mining Corporation of Canada Limited (1981-1982), Emerald Field Resources (2002), International Lithium Corp (2006-2021) and Pioneer Resources Limited/Essential Metals Limited (2018-2021). The Fairservice and Mavis Lake Prospects host zoned 						
Geology	Deposit type, geological setting and style of mineralisation.			and Mav e prospect				
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar	Hole ID MF22-90 MF22-91 MF22-92	Easting 524005 523951 523914	Northing 5517957 5517947 5517926	RL 440 440 430	Azimuth 190 190 310	Dip -70 -70 -50	To Depth 68 62 62
		MF22-93 MF22-94 MF22-95	523953 523955 523955	5517992 5518059 5518061	442 430 429	190 190.1 109.8	-70 -70 -82	100 148 173
	Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	MF22-96 MF22-97	523956 523904	5518055 5518040	430 434	344.8 344.9	-79.7 -80.1	191
	Dip and azimuth of the hole	MF22-98 MF22-99	523907 523904	5518039 5518037	434 429	109.7 179.9	-82.1 -50.4	164
	down hole length and interception depth	MF22-100 MF22-101	523903 523905	5518037 5518037	425 425	189.8 149.7	-70.4 -50.4	140
	hole length.	MF22-102	523847	5518048	421	189.6	-70.2	158
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	MF22-103 MF22-104 MF22-105	523847 523848 523855	5518045 5518046 5517951	421 413 424	345.5 110.4 192.11	-79.9 -82 -	212 158 62
		MF22-106 MF22-107	524295 524253	5517998 5517951	444 447	89.8	70.34 -68.9 -70	140
		MF22-108 MF22-109 MF22-110	524299 524551 524503	5517949 5518003 5518006	445 439 435	190 190 190	-70 -70 -70	86 107 104
		MF22-111 MF22-112	524503 524503	5518004 5518004	433 434	290 190	-80 -70	134 140
			on of drill	re-surveye hole for ad				es.

	Criteria	JORC-Code Explanation	Commentary		
	aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	• Uncut.		
		Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 All aggregate intercepts detailed on tables are weighted averages. 		
		The assumptions used for any reporting of metal equivalent values should be clearly stated.	• None used		
be m wi int	between mineralisation	Results.	True width is calculated from logging geologists structural measurements from upper and lower contacts of pegmatite dyke and the host rock. Both apparent downhole lengths and		
	engths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	rue widths are provided. The precise geometry is not currently known but is being ested by the planned drilling, with diamond drill hole azimuths		
		If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not	designed to drill normal to the interpreted mineralised structure.		
		known').	 Down-hole length reported, true width not known. 		
		`	The drilling is aimed at clarifying the structure of the mineralisation.		
	reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative reporting of all relevant grades is provided in tables to avoid misleading reporting of Exploration Results.		

Criteria	JORC-Code Explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale stepout drilling).	 Further drilling underway to confirm, infill and extend known mineralisation. A total of 17,500m has been approved with consideration for further extensions at the Board's discretion.