4 October 2022 Tietto Minerals Ltd Unit 7, 162 Colin Street West Perth, WA 6005 Tel: +61 8 9420 8270 Web: www.tietto.com # Tietto Step-Out Drilling Hits 195g/t Au at Abujar SG Deposit Tietto Minerals Ltd (ASX: TIE) (**Tietto** or the **Company**) encloses an updated ASX release relating to high-grade gold intercepts at the Abujar Gold Project announced on 20 September 2022. The updated announcement adds a compliance statement at the bottom of page 23. This release is authorised on behalf of Tietto Minerals Limited by: **Matthew Foy** Company Secretary Tel: +61 8 9420 8270 20 September 2022 # Tietto step-out drilling hits 195.53 g/t gold at Abujar's SG Deposit # **Highlights:** - Tietto adds more **high-grade gold intercepts** from step-out drilling at seven prospects at its **3.45Moz** Abujar Gold Project; results include: - > 4m @ 24.73 g/t Au from 85m incl. 0.50m @ 195.53 g/t Au (ZDD1319 SG) - > 1m @ 27.91 g/t Au from 151m (ZDD1256 AGM) - > **0.50m @ 48.81 g/t Au** from 104.9m (ZDD1311 SG) - > 5.50m @ 3.81 g/t Au from 81m incl. 3m @ 6.48 g/t Au (ZDD1320 SG) - Step-out drilling has extended the limits of known gold mineralisation at Abujar with the high-grade sitting outside the current **SG** Inferred Resource (1.6Mt at 1.2 g/t Au for 0.06Moz) - Drilling will now target these high-grade shoots to test strike and depth extensions - Assay results reported from 76 DD holes (13,064m) designed to grow gold Mineral Resources, with results to be incorporated in Tietto's next MRE update expected by the end of CY22 - Assays pending for 35 holes (8,500m) comprising step-out holes as well as infill holes at AG - Tietto's eight diamond rigs are actively drilling, with more than 100,000m of drilling forecast in CY22 - Abujar DFS demonstrated robust financial results and estimated **first-year gold production of 260,000oz** and 1.2Moz over the first six years of Abujar's 11-year mine life for an NPV_{5%} of A\$1.3B (pre-tax) and A\$0.97B (post-tax) using US\$1,700/oz Au and A\$/US\$=0.74 1 - Updated Abujar LOM production plan expected by the end of Q3 CY22 - Abujar gold plant construction is **fully funded and has no debt**; on target for **first gold in Q4 CY22**. West African gold explorer and developer Tietto Minerals Limited (ASX: TIE) (**Tietto** or the **Company**) is pleased to report further **high-grade gold** results from step-out drilling completed along the Abujar Main Shear, host of its **3.45Moz** Abujar Gold Project in Côte d'Ivoire, West Africa. Tietto Managing Director, Dr Caigen Wang, said: "Our exploration team has delivered near-surface, high-grade gold at the **SG** deposit (over 3km north of **AG Core**) with **0.50m @ 195.53 g/t Au** within 4m @ 24.73 g/t Au from 85m at ZDD1319 from shallow step-out drilling. We are reporting results for drilling at seven prospects, four of which are located along strike from high-grade gold mineralisation at **AG Core**, while three prospects are located on the western corridor. This . ¹ Refer ASX Announcement dated 5th October 2021 drilling program was designed to allow for further increases to our open-pit gold resource inventory in the next MRE expected towards the end of CY22. We have no debt and are fully funded to production at Abujar, which has potential to be **one of the largest gold producing mines in Côte d'Ivoire**, with an expected production of **more than 260,000 ounces of gold** in the first year and **1.2M ounces of gold** in the first six years. Tietto has an experienced team on board to deliver Abujar on time and on budget. We are on track to deliver another mineral resource update towards the end of the year. Shareholders can expect further updates from our aggressive diamond drilling program as we advance our dual strategy of 'Drill and Build' and develop our Abujar Project into **West Africa's next gold mine, with first gold by the end of Q4 CY22**." Figure 1: Visible gold in diamond core from ZDD1319 interval from 85m to 85.5m which reported 195.53 g/t gold # **Step-out Drilling** Tietto is pleased to report assay results (76 DD holes for 13,064m) from step-out diamond drilling at seven prospects located on the main Abujar shear and western corridor. A summary of the drill program by prospect is presented in **Table 1**. Table 1: Abujar step-out drilling | Prospect | Holes | Metres | Ave. depth | Max. depth | |------------|-------|--------|------------|------------| | 22* | 6 | 1,125 | 187 | 257 | | AG NW* | 2 | 561 | 281 | 285 | | AGM | 10 | 1,726 | 173 | 290 | | KOFLANKRO* | 10 | 1,721 | 172 | 185 | | PGL | 26 | 4,081 | 157 | 255 | | Prospect | Holes | Metres | Ave. depth | Max. depth | |--------------------|-------|--------|------------|------------| | SG | 17 | 2,996 | 176 | 276 | | ZKP | 5 | 855 | 171 | 234 | | Grand Total | 76 | 13,064 | 172 | 290 | | * Western corrido | or | | | | Step-out drilling has successfully extended the limits of known gold mineralisation. Results from the program will be incorporated into the next update of the mineral resource estimate (MRE), towards the end of CY22. Tietto intersected multiple gold mineralised quartz veins (in some case with visible gold) and alteration zones in the diamond drill core, consistent with the style of gold mineralisation seen at Abujar. Best intersections received from diamond drill samples are summarised in Table 2. Hole id includes³ Depth from Depth to Length g/t Au Prospect ZDD1251 96 105 9 1.46 5m @ 2.50 g/t Au PGL ZDD1251 110 112 2 9.01 2m @ 9.01 g/t Au **PGL** ZDD1252 150 156 6 1.97 1m @ 9.98 g/t Au PGL ZDD1256 151 152 1 27.91 1m @ 27.91 g/t Au **AGM** ZDD1261 57 61 4 3.36 4m @ 3.36 g/t Au **PGL** ZDD1273A 69 78 9 1.22 1m @ 7.21 g/t Au PGL ZDD1311 104.9 105.4 0.5 48.81 0.50m @ 48.81 g/t Au SG 28.44 ZDD1316 37 8.56 1.19 4.50m @ 2.12 g/t Au PGL ZDD1319 85 4 24.73 0.50m @ 195.53 g/t Au 89 SG ZDD1320 81 86.5 5.5 3.81 3m @ 6.48 g/t Au SG Table 2: Significant Intersections from Abujar step-out drilling² Drill collar details by prospect can be found in **Table 3**. Assay results by prospect can be found in **Table 4**. Location of the reported drill collars and associated assay results are presented in Figure 4. An oblique cross-section highlighting selected assay results is presented in Figure 5 and an oblique long section presents results in Figure 6. Gold mineralisation remains open at these prospects and over 2,000m of strike remains to be drill tested. Further drilling is planned and will be required to test the known limits on the main Abujar Shear. # **Next Steps** Tietto is on track to realise first gold production by Q4 CY22 and produce 260,000oz gold in 2023. Tietto recently concluded a placement agreement with Chifeng Jilong Gold Mining Co Ltd (Chifeng Gold) ² 0.4 g/t Au cut off used with max 3m internal dilution and no top cut applied ³ 1.0 g/t Au cut off used with max 3m internal dilution and no top cut applied Web: www.tietto.com subsidiary Chijin International (HK) Limited raising \$49.3 million via the issue of 85 million shares on 16 September 2022. It has no debt. Tietto remains very well positioned to advance its dual strategy of 'Drill and Build' throughout 2022: - 1. Continue to drive rapid resource growth at the 3.45Moz Abujar Gold Project; and - 2. Fast-track development of Abujar Gold Project to achieve first gold in Q4 CY22. Tietto continues to deliver project milestones; with Abujar's maiden Measured gold resources of 7.7Mt @ 1.4 g/t Au for 350,000oz reported on 11 April 2022. Tietto plans to deliver an update on Abujar's LOM production plan by the end of Q3 CY22 using the updated Mineral Resource Estimate, increased mill throughput and higher gold prices (spot price is +20% greater than US\$1407/oz used in the DFS⁴), targeting a material increase to existing LOM production. Tietto has expanded this to incorporate a scoping study to determine the economic benefits of a heap leach operation at APG running in parallel to the Abujar CIL operation. Tietto aims to complete 100,000m of drilling in CY2022 with a fleet of eight company rigs in operation at Abujar, and it is advancing construction of the process plant and associated infrastructure, which remains on schedule. Abujar Gold Project is progressing towards first gold pour by the end of Q4 CY22 and is on track to become West Africa's next producing gold mine. #### **ENDS** This update has been authorised on behalf of Tietto Minerals Limited by: Dr Caigen Wang Managing Director Tel: +61 8 9420 8270 Mark Strizek Executive Director Mob: +61 431 084 305 # **Competent Persons' Statements** The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Mr Mark Strizek, a Competent Person who is a Member or The Australasian Institute of Mining and Metallurgy. Mr Strizek is a non-executive director of the Company. Mr Strizek has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Strizek consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears. Additionally, Mr Strizek confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report. The information in this presentation that relates to Mineral Resources was prepared by RPM Global and released on the ASX platform on 11 April 2022. The Company confirms that it is not aware of any new information or data that materially affects the Minerals Resources in this publication. The Company confirms that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and
context in which the RPM Global's findings are presented have not been materially modified. The information in this report that relates to Mineral Resources is based on information evaluated by Mr Jeremy Clark who is a Member of The Australasian Institute of Mining and Metallurgy (MAusIMM) and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Clark is an associate of RPM and he consents to the inclusion of the estimates in the report of the Mineral Resource in the form and context in which they appear. The information in this report that relates to Ore Reserves was prepared by RPM and released on the ASX platform on 5 October 2021. The Company confirms that it is not aware of any new information or data that materially affects the Ore Reserves in this publication. The Company confirms that all material assumptions and technical parameters underpinning ⁴ ASX 5 October 2021 Web: www.tietto.com the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the RPM findings are presented have not been materially modified The information in the report that relates to Ore Reserves for the Abujar Gold Project is based on information compiled and reviewed by Mr. Igor Bojanic, who is a Fellow of the Australasian Institute of Mining and Metallurgy, and is an employee of RPM. Mr. Igor Bojanic has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he has undertaken to qualify as a Competent Person, as defined in the 2012 Edition of the Australasian Code for the Reporting of Mineral Resources and Ore Reserves. Mr. Igor Bojanic is not aware of any potential for a conflict of interest in relation to this work for the Client. The estimates of Ore Reserves presented in this Statement have been carried out in accordance with the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (30 September, 2021). ### Compliance Statement This report contains information extracted from ASX market announcements reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ("2012 JORC Code") and available for viewing at www.tietto.com. Includes results reported previously and published on ASX platform, 16 January 2018, 27 March 2018, 23 April 2018, 8 May 2018, 7 June 2018, 4 October 2018, 1 November 2018, 28 November 2018, 31 January 2019, 26 February 2019, 12 March 2019, 19 March 2019, 9 April 2019, 9 May 2019, 30 May 2019, 9 July 2019, 26 July 2019, 2 October 2019, 24 October 2019, 12 December 2019, 23 January 2020, 20 February 2020, 10 March 2020, 24 March 2020, 2 April 2020, 9 April 2020, 23 April 2020, 3 June 2020, 9 June 2020, 25 June 2020, 2 July 2020, 21 July 2020, 20 July 2020, 29 July 2020, 19 August 2020, 9 September 2020, 24 September 2020, 26 October 2020, 11 December 2020, 18 January 2021, 12 February 2021, 23 February 2021, 23 March 2021, 6 April 2021, 8 April 2021, 20 April 2021, 3 May 2021, 6 May 2021, 11 May 2021, 21 May 2021, 27 May 2021, 11 June 2021, 16 June 2021, 12 July 2021, 10 September 2021, 22 September 2021, 25 October 2021, 13 October 2021, 21 October 2021, 8 November 2021, 16 November 2021, 22 November 2021, 30 November 2021, 10 December 2021, 22 December 2021, 18 January 2022, 20 January 2022, 24 January 2022, 7 February 2022, 14 February 2022, 18 February 2022, 25 February 2022, 15 March 2022, 29 March 2022, 11 April 2022, 29 April 2022, 4 May 2022, 16 May 2022, 24 May 2022, 8 June 2022, 10 June 2022, 14 June 2022, 29 June 2022, 4 July 2022, 12 July 2022, 14 July 2022, 21 July 2022, 28 July 2022, 1 August 2022, 17 August 2022, 17 September 2022 and 12 September 2022. The Company confirms that all material assumptions and technical parameters underpinning the Mineral Resources and Ore Reserves continue to apply and have not materially changed. The Company confirms that it is not aware of any new information or data that materially affe Table 3: Drill Collar details listed by prospect | Hole ID Easting Northing Elevation Depth (m) dip Azi Drill Type Prospect | Location Northing Claustian Double (m) din Ari Duill Type Dree | | | | | | | | | | |--|--|---------|----------|-----------|-----------|-----|-----|------------|-----------|--| | ZDD1242 747,286 760,576 226 150 -50 125 DD 22 ZDD1247B 747,608 760,867 250 177 -50 125 DD 22 ZDD1260 747,719 761,076 252 195.5 -50 125 DD 22 ZDD1269 746,383 757,491 246 257 -50 125 DD 22 ZDD1275 746,524 757,736 242 197 -50 125 DD 22 ZDD1272 753,108 768,948 243 276 -50 310 DD AG NW ZDD1272 753,108 768,948 243 276 -50 310 DD AG M ZDD1272 753,108 763,154 251 290 -60 125 DD AGM ZDD1273 751,428 763,285 251 146 -60 125 DD AGM ZDD1241 751,388 7 | Hole ID | Easting | Northing | Elevation | Depth (m) | dip | Azi | Drill Type | Prospect | | | ZDD1247B 747,608 760,867 250 177 -50 125 DD 22 ZDD1260 747,719 761,076 252 195.5 -50 125 DD 22 ZDD1269 746,383 757,491 246 257 -50 125 DD 22 ZDD1275 746,524 757,736 242 197 -50 125 DD 22 ZDD1263 753,769 769,091 235 285 -50 310 DD AG NW ZDD11270 753,108 768,948 243 276 -50 310 DD AG NW ZDD11236 751,351 763,154 251 290 -60 125 DD AGM ZDD1236 751,351 763,154 251 146 -60 125 DD AGM ZDD1237 751,428 763,285 251 146 -60 125 DD AGM ZDD1249 751,641 < | ZDD1238 | 747,457 | 760,543 | 239 | 148 | -50 | 125 | DD | 22 | | | ZDD1260 747,719 761,076 252 195.5 -50 125 DD 22 ZDD1269 746,383 757,491 246 257 -50 125 DD 22 ZDD1275 746,524 757,736 242 197 -50 125 DD 22 ZDD1263 753,769 769,091 235 285 -50 310 DD AG NW ZDD1272 753,108 768,948 243 276 -50 310 DD AG NW ZDD1299 751,097 763,154 251 290 -60 125 DD AGM ZDD1236 751,351 763,210 250 135 -60 125 DD AGM ZDD1237 751,428 763,285 251 146 -60 125 DD AGM ZDD1241 751,388 763,316 252 195 -60 125 DD AGM ZDD1249 751,641 <td< td=""><td>ZDD1242</td><td>747,286</td><td>760,576</td><td>226</td><td>150</td><td>-50</td><td>125</td><td>DD</td><td>22</td></td<> | ZDD1242 | 747,286 | 760,576 | 226 | 150 | -50 | 125 | DD | 22 | | | ZDD1269 746,383 757,491 246 257 -50 125 DD 22 ZDD1275 746,524 757,736 242 197 -50 125 DD 22 ZDD1263 753,769 769,091 235 285 -50 310 DD AG NW ZDD1272 753,108 768,948 243 276 -50 310 DD AG NW ZDD1236 751,351 763,154 251 290 -60 125 DD AGM ZDD1236 751,351 763,210 250 135 -60 125 DD AGM ZDD1237 751,428 763,285 251 146 -60 125 DD AGM ZDD1241 751,388 763,316 252 195 -60 125 DD AGM ZDD1248 751,573 763,453 249 135 -60 125 DD AGM ZDD1250 751,641 | ZDD1247B | 747,608 | 760,867 | 250 | 177 | -50 | 125 | DD | 22 | | | ZDD1275 746,524 757,736 242 197 -50 125 DD 22 ZDD1263 753,769 769,091 235 285 -50 310 DD AG NW ZDD1272 753,108 768,948 243 276 -50 310 DD AG NW ZDD1199 751,097 763,154 251 290 -60 125 DD AGM ZDD1236 751,351 763,210 250 135 -60 125 DD AGM ZDD1237 751,428 763,285 251 146 -60 125 DD AGM ZDD1241 751,388 763,316 252 195 -60 125 DD AGM ZDD1248 751,573 763,453 249 135 -60 125 DD AGM ZDD1249 751,641 763,726 236 135 -55 125 DD AGM ZDD1256 751,535 <td< td=""><td>ZDD1260</td><td>747,719</td><td>761,076</td><td>252</td><td>195.5</td><td>-50</td><td>125</td><td>DD</td><td>22</td></td<> | ZDD1260 | 747,719 | 761,076 | 252 | 195.5 | -50 | 125 | DD | 22 | | | ZDD1263 753,769 769,091 235 285 -50 310 DD AG NW ZDD1272 753,108 768,948 243 276 -50 310 DD AG NW ZDD1199 751,097 763,154 251 290 -60 125 DD AGM ZDD1236 751,351 763,210 250 135 -60 125 DD AGM ZDD1237 751,428 763,285 251 146 -60 125 DD AGM ZDD1241 751,388 763,316 252 195 -60 125 DD AGM ZDD1248 751,573 763,453 249 135 -60 125 DD AGM ZDD1249 751,641 763,756 236 135 -55 125 DD AGM ZDD1256 751,535 763,473 250 186 -60 125 DD AGM ZDD1257 751,845 <t< td=""><td>ZDD1269</td><td>746,383</td><td>757,491</td><td>246</td><td>257</td><td>-50</td><td>125</td><td>DD</td><td>22</td></t<> | ZDD1269 | 746,383 | 757,491 | 246 | 257 | -50 | 125 | DD | 22 | | | ZDD1272 753,108 768,948 243 276 -50 310 DD AG NW ZDD1199 751,097 763,154 251 290 -60 125 DD AGM ZDD1236 751,351 763,210 250 135 -60 125 DD AGM ZDD1237 751,428 763,285 251 146 -60 125 DD AGM ZDD1241 751,388 763,316 252 195 -60 125 DD AGM ZDD1248 751,573 763,453 249 135 -60 125 DD AGM ZDD1249 751,641 763,551 246 216 -55 125 DD AGM ZDD1253 751,745 763,726 236 135 -55 125 DD AGM ZDD1256 751,845 763,874 231 142.5 -55 125 DD AGM ZDD1257 749,845 <t<
td=""><td>ZDD1275</td><td>746,524</td><td>757,736</td><td>242</td><td>197</td><td>-50</td><td>125</td><td>DD</td><td>22</td></t<> | ZDD1275 | 746,524 | 757,736 | 242 | 197 | -50 | 125 | DD | 22 | | | ZDD1199 751,097 763,154 251 290 -60 125 DD AGM ZDD1236 751,351 763,210 250 135 -60 125 DD AGM ZDD1237 751,428 763,285 251 146 -60 125 DD AGM ZDD1241 751,388 763,316 252 195 -60 125 DD AGM ZDD1248 751,573 763,453 249 135 -60 125 DD AGM ZDD1249 751,641 763,551 246 216 -55 125 DD AGM ZDD1253 751,745 763,726 236 135 -55 125 DD AGM ZDD1256 751,535 763,473 250 186 -60 125 DD AGM ZDD1257 751,845 763,473 231 142.5 -55 125 DD AGM ZDD1257 751,845 | ZDD1263 | 753,769 | 769,091 | 235 | 285 | -50 | 310 | DD | AG NW | | | ZDD1236 751,351 763,210 250 135 -60 125 DD AGM ZDD1237 751,428 763,285 251 146 -60 125 DD AGM ZDD1241 751,388 763,316 252 195 -60 125 DD AGM ZDD1248 751,573 763,453 249 135 -60 125 DD AGM ZDD1249 751,641 763,551 246 216 -55 125 DD AGM ZDD1253 751,745 763,726 236 135 -55 125 DD AGM ZDD1256 751,535 763,473 250 186 -60 125 DD AGM ZDD1257 751,845 763,874 231 142.5 -55 125 DD AGM ZDD1266 751,982 764,017 238 145.5 -60 125 DD AGM ZDD1276 749,807 <t< td=""><td>ZDD1272</td><td>753,108</td><td>768,948</td><td>243</td><td>276</td><td>-50</td><td>310</td><td>DD</td><td>AG NW</td></t<> | ZDD1272 | 753,108 | 768,948 | 243 | 276 | -50 | 310 | DD | AG NW | | | ZDD1237 751,428 763,285 251 146 -60 125 DD AGM ZDD1241 751,388 763,316 252 195 -60 125 DD AGM ZDD1248 751,573 763,453 249 135 -60 125 DD AGM ZDD1249 751,641 763,551 246 216 -55 125 DD AGM ZDD1253 751,745 763,726 236 135 -55 125 DD AGM ZDD1256 751,535 763,473 250 186 -60 125 DD AGM ZDD1257 751,845 763,874 231 142.5 -55 125 DD AGM ZDD1266 751,982 764,017 238 145.5 -60 125 DD AGM ZDD1276 749,807 764,848 254 176.5 -50 307 DD KOFLANKRO ZDD1283 749,756 | ZDD1199 | 751,097 | 763,154 | 251 | 290 | -60 | 125 | DD | AGM | | | ZDD1241 751,388 763,316 252 195 -60 125 DD AGM ZDD1248 751,573 763,453 249 135 -60 125 DD AGM ZDD1249 751,641 763,551 246 216 -55 125 DD AGM ZDD1253 751,745 763,726 236 135 -55 125 DD AGM ZDD1256 751,535 763,473 250 186 -60 125 DD AGM ZDD1257 751,845 763,874 231 142.5 -55 125 DD AGM ZDD1266 751,982 764,017 238 145.5 -60 125 DD AGM ZDD1276 749,807 764,848 254 176.5 -50 307 DD KOFLANKRO ZDD1282 749,756 764,994 253 175.5 -50 307 DD KOFLANKRO ZDD1292 749,996 | ZDD1236 | 751,351 | 763,210 | 250 | 135 | -60 | 125 | DD | AGM | | | ZDD1248 751,573 763,453 249 135 -60 125 DD AGM ZDD1249 751,641 763,551 246 216 -55 125 DD AGM ZDD1253 751,745 763,726 236 135 -55 125 DD AGM ZDD1256 751,535 763,473 250 186 -60 125 DD AGM ZDD1257 751,845 763,874 231 142.5 -55 125 DD AGM ZDD1266 751,982 764,017 238 145.5 -60 125 DD AGM ZDD1276 749,807 764,848 254 176.5 -50 307 DD KOFLANKRO ZDD1282 749,756 764,890 254 177 -50 307 DD KOFLANKRO ZDD1292 749,996 764,955 253 184.5 -50 307 DD KOFLANKRO ZDD1300 7 | ZDD1237 | 751,428 | 763,285 | 251 | 146 | -60 | 125 | DD | AGM | | | ZDD1249 751,641 763,551 246 216 -55 125 DD AGM ZDD1253 751,745 763,726 236 135 -55 125 DD AGM ZDD1256 751,535 763,473 250 186 -60 125 DD AGM ZDD1257 751,845 763,874 231 142.5 -55 125 DD AGM ZDD1266 751,982 764,017 238 145.5 -60 125 DD AGM ZDD1276 749,807 764,848 254 176.5 -50 307 DD KOFLANKRO ZDD1282 749,756 764,890 254 177 -50 307 DD KOFLANKRO ZDD1283 749,878 764,994 253 175.5 -50 307 DD KOFLANKRO ZDD1297 750,521 765,639 244 126.5 -50 307 DD KOFLANKRO ZDD1300 | ZDD1241 | 751,388 | 763,316 | 252 | 195 | -60 | 125 | DD | AGM | | | ZDD1253 751,745 763,726 236 135 -55 125 DD AGM ZDD1256 751,535 763,473 250 186 -60 125 DD AGM ZDD1257 751,845 763,874 231 142.5 -55 125 DD AGM ZDD1266 751,982 764,017 238 145.5 -60 125 DD AGM ZDD1276 749,807 764,848 254 176.5 -50 307 DD KOFLANKRO ZDD1282 749,756 764,890 254 177 -50 307 DD KOFLANKRO ZDD1283 749,878 764,994 253 175.5 -50 307 DD KOFLANKRO ZDD1292 749,996 764,955 253 184.5 -50 307 DD KOFLANKRO ZDD1300 750,331 765,491 231 177.5 -50 307 DD KOFLANKRO ZDD1310 <td>ZDD1248</td> <td>751,573</td> <td>763,453</td> <td>249</td> <td>135</td> <td>-60</td> <td>125</td> <td>DD</td> <td>AGM</td> | ZDD1248 | 751,573 | 763,453 | 249 | 135 | -60 | 125 | DD | AGM | | | ZDD1256 751,535 763,473 250 186 -60 125 DD AGM ZDD1257 751,845 763,874 231 142.5 -55 125 DD AGM ZDD1266 751,982 764,017 238 145.5 -60 125 DD AGM ZDD1276 749,807 764,848 254 176.5 -50 307 DD KOFLANKRO ZDD1282 749,756 764,890 254 177 -50 307 DD KOFLANKRO ZDD1283 749,878 764,994 253 175.5 -50 307 DD KOFLANKRO ZDD1292 749,996 764,955 253 184.5 -50 307 DD KOFLANKRO ZDD1307 750,521 765,639 244 126.5 -50 307 DD KOFLANKRO ZDD1300 750,331 765,491 231 177.5 -50 307 DD KOFLANKRO ZD | ZDD1249 | 751,641 | 763,551 | 246 | 216 | -55 | 125 | DD | AGM | | | ZDD1257 751,845 763,874 231 142.5 -55 125 DD AGM ZDD1266 751,982 764,017 238 145.5 -60 125 DD AGM ZDD1276 749,807 764,848 254 176.5 -50 307 DD KOFLANKRO ZDD1282 749,756 764,890 254 177 -50 307 DD KOFLANKRO ZDD1283 749,878 764,994 253 175.5 -50 307 DD KOFLANKRO ZDD1292 749,996 764,955 253 184.5 -50 307 DD KOFLANKRO ZDD1297 750,521 765,639 244 126.5 -50 307 DD KOFLANKRO ZDD1300 750,331 765,491 231 177.5 -50 307 DD KOFLANKRO ZDD1310 750,189 765,336 238 176 -50 307 DD KOFLANKRO | ZDD1253 | 751,745 | 763,726 | 236 | 135 | -55 | 125 | DD | AGM | | | ZDD1266 751,982 764,017 238 145.5 -60 125 DD AGM ZDD1276 749,807 764,848 254 176.5 -50 307 DD KOFLANKRO ZDD1282 749,756 764,890 254 177 -50 307 DD KOFLANKRO ZDD1283 749,878 764,994 253 175.5 -50 307 DD KOFLANKRO ZDD1292 749,996 764,955 253 184.5 -50 307 DD KOFLANKRO ZDD1297 750,521 765,639 244 126.5 -50 307 DD KOFLANKRO ZDD1300 750,331 765,491 231 177.5 -50 307 DD KOFLANKRO ZDD1310 750,388 765,443 229 175 -50 307 DD KOFLANKRO ZDD1314 750,189 765,336 238 176 -50 307 DD KOFLANKRO | ZDD1256 | 751,535 | 763,473 | 250 | 186 | -60 | 125 | DD | AGM | | | ZDD1266 751,982 764,017 238 145.5 -60 125 DD AGM ZDD1276 749,807 764,848 254 176.5 -50 307 DD KOFLANKRO ZDD1282 749,756 764,890 254 177 -50 307 DD KOFLANKRO ZDD1283 749,878 764,994 253 175.5 -50 307 DD KOFLANKRO ZDD1292 749,996 764,955 253 184.5 -50 307 DD KOFLANKRO ZDD1297 750,521 765,639 244 126.5 -50 307 DD KOFLANKRO ZDD1300 750,331 765,491 231 177.5 -50 307 DD KOFLANKRO ZDD1310 750,388 765,443 229 175 -50 307 DD KOFLANKRO ZDD1314 750,189 765,336 238 176 -50 307 DD KOFLANKRO | ZDD1257 | 751,845 | 763,874 | 231 | 142.5 | -55 | 125 | DD | AGM | | | ZDD1282 749,756 764,890 254 177 -50 307 DD KOFLANKRO ZDD1283 749,878 764,994 253 175.5 -50 307 DD KOFLANKRO ZDD1292 749,996 764,955 253 184.5 -50 307 DD KOFLANKRO ZDD1297 750,521 765,639 244 126.5 -50 307 DD KOFLANKRO ZDD1300 750,331 765,491 231 177.5 -50 307 DD KOFLANKRO ZDD1306 750,388 765,443 229 175 -50 307 DD KOFLANKRO ZDD1310 750,189 765,336 238 176 -50 307 DD KOFLANKRO ZDD1314 750,244 765,294 241 175.5 -50 307 DD KOFLANKRO ZDD1239 750,328 760,779 238 90 -55 125 DD PGL | ZDD1266 | | 764,017 | 238 | 145.5 | -60 | 125 | DD | AGM | | | ZDD1283 749,878 764,994 253 175.5 -50 307 DD KOFLANKRO ZDD1292 749,996 764,955 253 184.5 -50 307 DD KOFLANKRO ZDD1297 750,521 765,639 244 126.5 -50 307 DD KOFLANKRO ZDD1300 750,331 765,491 231 177.5 -50 307 DD KOFLANKRO ZDD1306 750,388 765,443 229 175 -50 307 DD KOFLANKRO ZDD1310 750,189 765,336 238 176 -50 307 DD KOFLANKRO ZDD1314 750,244 765,294 241 175.5 -50 307 DD KOFLANKRO ZDD1317 750,113 765,207 245 176.5 -50 307 DD KOFLANKRO ZDD1239 750,328 760,779 238 90 -55 125 DD PGL | ZDD1276 | 749,807 | 764,848 | 254 | 176.5 | -50 | 307 | DD | KOFLANKRO | | | ZDD1292 749,996 764,955 253 184.5 -50 307 DD KOFLANKRO ZDD1297 750,521 765,639 244 126.5 -50 307 DD KOFLANKRO ZDD1300 750,331 765,491 231 177.5 -50 307 DD KOFLANKRO ZDD1306 750,388 765,443 229 175 -50 307 DD KOFLANKRO ZDD1310 750,189 765,336 238 176 -50 307 DD KOFLANKRO ZDD1314 750,244 765,294 241 175.5 -50 307 DD KOFLANKRO ZDD1317 750,113 765,207 245 176.5 -50 307 DD KOFLANKRO ZDD1239 750,328 760,779 238 90 -55 125 DD PGL ZDD1243 750,365 760,815 237 97.5 -55 125 DD PGL | ZDD1282 | 749,756 | 764,890 | 254 | 177 | -50 | 307 | DD | KOFLANKRO | | | ZDD1297 750,521 765,639 244 126.5 -50 307 DD KOFLANKRO ZDD1300 750,331 765,491 231 177.5 -50 307 DD KOFLANKRO ZDD1306 750,388 765,443 229 175 -50 307 DD KOFLANKRO ZDD1310 750,189 765,336 238 176 -50 307 DD KOFLANKRO ZDD1314 750,244 765,294 241 175.5 -50 307 DD KOFLANKRO ZDD1317 750,113 765,207 245 176.5 -50 307 DD KOFLANKRO ZDD1239 750,328 760,779 238 90 -55 125 DD PGL ZDD1243 750,365 760,815 237 97.5 -55 125 DD PGL | ZDD1283 | 749,878 | 764,994 | 253 | 175.5 | -50 | 307 | DD | KOFLANKRO | | | ZDD1300 750,331 765,491 231 177.5 -50 307 DD KOFLANKRO ZDD1306 750,388 765,443 229 175 -50 307 DD KOFLANKRO ZDD1310 750,189 765,336 238 176 -50 307 DD KOFLANKRO ZDD1314 750,244 765,294 241 175.5 -50 307 DD KOFLANKRO ZDD1317 750,113 765,207 245 176.5 -50 307 DD KOFLANKRO ZDD1239 750,328 760,779 238 90 -55 125 DD PGL ZDD1243 750,365 760,815 237 97.5 -55 125 DD PGL | ZDD1292 | 749,996 | 764,955 | 253 | 184.5 | -50 | 307 | DD | KOFLANKRO | | | ZDD1306 750,388 765,443 229 175 -50 307 DD KOFLANKRO ZDD1310 750,189 765,336 238 176 -50 307 DD KOFLANKRO ZDD1314 750,244 765,294 241 175.5 -50 307 DD KOFLANKRO ZDD1317 750,113 765,207 245 176.5 -50 307 DD KOFLANKRO ZDD1239 750,328 760,779 238 90 -55 125 DD PGL ZDD1243 750,365 760,815 237 97.5 -55 125 DD PGL | ZDD1297 | 750,521 | 765,639 | 244 | 126.5 | -50 | 307 | DD | KOFLANKRO | | | ZDD1310 750,189 765,336 238 176 -50 307 DD KOFLANKRO ZDD1314 750,244 765,294 241 175.5 -50 307 DD KOFLANKRO ZDD1317 750,113 765,207 245 176.5 -50 307 DD KOFLANKRO ZDD1239 750,328 760,779 238 90 -55 125 DD PGL ZDD1243 750,365 760,815 237 97.5 -55 125 DD PGL | ZDD1300 | 750,331 | 765,491 | 231 | 177.5 | -50 | 307 | DD | KOFLANKRO | | | ZDD1314 750,244 765,294 241 175.5 -50 307 DD KOFLANKRO ZDD1317 750,113 765,207 245 176.5 -50 307 DD KOFLANKRO ZDD1239 750,328 760,779 238 90 -55 125 DD PGL ZDD1243 750,365 760,815 237 97.5 -55 125 DD PGL | ZDD1306 | 750,388 | 765,443 | 229 | 175 | -50 | 307 | DD | KOFLANKRO | | | ZDD1317 750,113 765,207 245
176.5 -50 307 DD KOFLANKRO ZDD1239 750,328 760,779 238 90 -55 125 DD PGL ZDD1243 750,365 760,815 237 97.5 -55 125 DD PGL | ZDD1310 | 750,189 | 765,336 | 238 | 176 | -50 | 307 | DD | KOFLANKRO | | | ZDD1239 750,328 760,779 238 90 -55 125 DD PGL ZDD1243 750,365 760,815 237 97.5 -55 125 DD PGL | ZDD1314 | 750,244 | 765,294 | 241 | 175.5 | -50 | 307 | DD | KOFLANKRO | | | ZDD1243 750,365 760,815 237 97.5 -55 125 DD PGL | ZDD1317 | 750,113 | 765,207 | 245 | 176.5 | -50 | 307 | DD | KOFLANKRO | | | | ZDD1239 | 750,328 | 760,779 | 238 | 90 | -55 | 125 | DD | PGL | | | ZDD1245 750,515 761,045 223 111 -55 125 DD PGL | ZDD1243 | 750,365 | 760,815 | 237 | 97.5 | -55 | 125 | DD | PGL | | | | ZDD1245 | 750,515 | 761,045 | 223 | 111 | -55 | 125 | DD | PGL | | | ZDD1246 750,332 760,831 238 126 -55 125 DD PGL | ZDD1246 | 750,332 | 760,831 | 238 | 126 | -55 | 125 | DD | PGL | | | ZDD1250 750,447 760,974 233 100.5 -55 125 DD PGL | ZDD1250 | 750,447 | 760,974 | 233 | 100.5 | -55 | 125 | DD | PGL | | | ZDD1251 750,405 761,005 233 176.5 -55 125 DD PGL | ZDD1251 | 750,405 | 761,005 | 233 | 176.5 | -55 | 125 | DD | PGL | | | ZDD1252 750,467 761,079 226 175 -55 125 DD PGL | ZDD1252 | 750,467 | | 226 | 175 | -55 | 125 | DD | PGL | | | ZDD1254 750,248 760,655 233 100.5 -52 125 DD PGL | ZDD1254 | + | 760,655 | 233 | 100.5 | -52 | 125 | DD | PGL | | | ZDD1255 750,220 760,678 234 145.5 -55 125 DD PGL | ZDD1255 | 750,220 | 760,678 | | 145.5 | | | DD | PGL | | | ZDD1258 750,172 760,624 233 135 -52 125 DD PGL | - | + | | | 135 | -52 | | | | | | ZDD1259 750,067 760,487 221 189 -55 125 DD PGL | | + | · · | | | | | DD | | | | ZDD1261 750,135 760,647 233 185.5 -52 125 DD PGL | - | + | · · | | | | | | | | | ZDD1264 750,307 760,728 236 87 -55 125 DD PGL | | | 1 | | | | | | | | | Hole ID | Easting | Northing | Elevation | Depth (m) | dip | Azi | Drill Type | Prospect | |----------|---------|----------|-----------|-----------|-----|-----|------------|----------| | ZDD1265 | 750,177 | 760,469 | 223 | 96 | -55 | 125 | DD | PGL | | ZDD1267A | 750,221 | 760,743 | 236 | 175.5 | -55 | 125 | DD | PGL | | ZDD1268 | 750,134 | 760,499 | 223 | 151.5 | -55 | 125 | DD | PGL | | ZDD1271 | 750,080 | 760,538 | 225 | 202.5 | -55 | 125 | DD | PGL | | ZDD1273A | 750,273 | 760,750 | 236 | 146.5 | -55 | 125 | DD | PGL | | ZDD1277 | 750,273 | 760,819 | 238 | 195 | -55 | 125 | DD | PGL | | ZDD1278 | 750,576 | 761,588 | 224 | 251 | -50 | 125 | DD | PGL | | ZDD1285 | 750,614 | 761,700 | 227 | 247 | -50 | 125 | DD | PGL | | ZDD1291A | 750,715 | 761,635 | 222 | 101.5 | -50 | 125 | DD | PGL | | ZDD1296 | 750,661 | 761,823 | 229 | 255 | -50 | 125 | DD | PGL | | ZDD1302 | 750,779 | 761,877 | 226 | 145.5 | -50 | 125 | DD | PGL | | ZDD1307 | 750,700 | 761,926 | 231 | 247.5 | -50 | 125 | DD | PGL | | ZDD1316 | 750,854 | 762,002 | 224 | 147.5 | -50 | 125 | DD | PGL | | ZDD1280A | 755,992 | 769,660 | 235 | 166.5 | -55 | 307 | DD | SG | | ZDD1281 | 755,935 | 769,550 | 234 | 167 | -55 | 307 | DD | SG | | ZDD1286 | 755,902 | 769,452 | 226 | 171 | -55 | 307 | DD | SG | | ZDD1288 | 756,133 | 769,669 | 200 | 205 | -55 | 307 | DD | SG | | ZDD1289 | 755,836 | 769,377 | 222 | 165 | -55 | 307 | DD | SG | | ZDD1294 | 755,405 | 768,648 | 221 | 185 | -50 | 307 | DD | SG | | ZDD1295 | 755,923 | 769,319 | 224 | 276 | -55 | 307 | DD | SG | | ZDD1299 | 755,267 | 768,608 | 222 | 210 | -50 | 307 | DD | SG | | ZDD1301 | 755,684 | 769,239 | 218 | 135 | -53 | 307 | DD | SG | | ZDD1304 | 754,994 | 768,293 | 215 | 136.5 | -50 | 307 | DD | SG | | ZDD1305A | 755,103 | 768,511 | 212 | 137.5 | -50 | 307 | DD | SG | | ZDD1308 | 755,036 | 768,263 | 213 | 186 | -50 | 307 | DD | SG | | ZDD1309 | 755,151 | 768,479 | 213 | 192 | -50 | 307 | DD | SG | | ZDD1311 | 755,660 | 769,116 | 223 | 136 | -53 | 307 | DD | SG | | ZDD1313 | 755,001 | 768,192 | 218 | 181.5 | -50 | 307 | DD | SG | | ZDD1319 | 755,727 | 769,071 | 215 | 210.5 | -55 | 307 | DD | SG | | ZDD1320 | 755,586 | 769,055 | 225 | 135 | -50 | 307 | DD | SG | | ZDD1279 | 747,689 | 756,713 | 236 | 211.5 | -50 | 125 | DD | ZKP | | ZDD1284 | 747,737 | 756,678 | 235 | 147 | -50 | 125 | DD | ZKP | | ZDD1287 | 747,677 | 756,589 | 232 | 136.5 | -50 | 125 | DD | ZKP | | ZDD1293 | 747,484 | 756,291 | 230 | 126 | -50 | 125 | DD | ZKP | | ZDD1298 | 747,446 | 756,316 | 232 | 234 | -50 | 125 | DD | ZKP | | 76 Holes | | | | 13,063.5m | | | | | Table 4: Assay results being reported by prospect | \geq | Hole id | Depth from | Depth to | Length | g/t Au | Includes ⁵ | Prospect | |--------|----------|------------|----------|--------|--------|-----------------------|----------| | Ī | ZDD1238 | 122 | 127 | 5 | 0.41 | 1m @ 1.23 g/t Au | 22 | | | ZDD1242 | | | | NSI | | 22 | | Ī | ZDD1247B | | | | NSI | | 22 | | | ZDD1260 | 74 | 76 | 2 | 3.35 | 2m @ 3.35 g/t Au | 22 | | | ZDD1260 | 150 | 153 | 3 | 1.01 | 1m @ 2.02 g/t Au | 22 | | 1 | ZDD1269 | 73 | 74 | 1 | 1.46 | 1m @ 1.46 g/t Au | 22 | | | ZDD1269 | 130 | 131 | 1 | 0.45 | | 22 | | | ZDD1275 | | | | NSI | | 22 | | | ZDD1263 | | | | NSI | | AG NW | | | ZDD1272 | | | | NSI | | AG NW | | | ZDD1199 | 248 | 249 | 1 | 2.49 | 1m @ 2.49 g/t Au | AGM | | 5 | ZDD1236 | 12 | 13 | 1 | 1.33 | 1m @ 1.33 g/t Au | AGM | | ľ | ZDD1236 | 30 | 30.75 | 0.75 | 3.22 | 0.75m @ 3.22 g/t Au | AGM | | | ZDD1236 | 55 | 56 | 1 | 0.57 | | AGM | | Ī | ZDD1236 | 68 | 71 | 3 | 0.45 | | AGM | | 1 | ZDD1236 | 110 | 111 | 1 | 0.61 | | AGM | | _ | ZDD1236 | 122 | 124 | 2 | 0.68 | | AGM | | | ZDD1236 | 134 | 135 | 1 | 0.55 | | AGM | | | ZDD1237 | 55 | 59 | 4 | 0.71 | | AGM | | | ZDD1237 | 81 | 82 | 1 | 0.42 | | AGM | | 1 | ZDD1237 | 114 | 115 | 1 | 0.66 | | AGM | | | ZDD1237 | 131 | 133 | 2 | 0.78 | | AGM | | | ZDD1241 | 49.5 | 50 | 0.5 | 0.68 | | AGM | | | ZDD1241 | 73 | 74 | 1 | 0.7 | | AGM | | | ZDD1241 | 100 | 101 | 1 | 0.4 | | AGM | | | ZDD1241 | 106 | 107 | 1 | 0.66 | | AGM | | | ZDD1241 | 177 | 178 | 1 | 0.64 | | AGM | | D | ZDD1248 | 2.66 | 4 | 1.34 | 3.24 | 1.34m @ 3.24 g/t Au | AGM | | l | ZDD1248 | 24 | 25 | 1 | 0.72 | | AGM | | | ZDD1248 | 47 | 48 | 1 | 0.47 | | AGM | | | ZDD1248 | 50 | 51 | 1 | 0.4 | | AGM | | 5 | ZDD1248 | 81 | 82 | 1 | 1.87 | 1m @ 1.87 g/t Au | AGM | | | ZDD1249 | 46 | 47 | 1 | 0.44 | <u> </u> | AGM | | İ | ZDD1249 | 50 | 60 | 10 | 0.53 | 1m @ 1.19 g/t Au | AGM | | | ZDD1249 | 195 | 196 | 1 | 0.44 | <u> </u> | AGM | | r | ZDD1253 | 15 | 16 | 1 | 1.41 | 1m @ 1.41 g/t Au | AGM | | l | ZDD1253 | 36 | 40 | 4 | 1.32 | 1m @ 2.92 g/t Au | AGM | | İ | ZDD1253 | 52 | 53 | 1 | 0.44 | - U | AGM | | f | ZDD1253 | 58 | 61 | 3 | 1.58 | 1m @ 3.23 g/t Au | AGM | $^{^{\}rm 5}$ 1.0 g/t Au cut off used with max 3m internal dilution and no top cut applied | Hole id | Depth from | Depth to | Length | g/t Au | Includes ⁵ | Prospect | |---------|------------|----------|--------|--------|-----------------------|-----------| | ZDD1253 | 104 | 105 | 1 | 0.62 | | AGM | | ZDD1256 | 28.17 | 29 | 0.83 | 0.82 | | AGM | | ZDD1256 | 43 | 44 | 1 | 0.46 | | AGM | | ZDD1256 | 59 | 60 | 1 | 1.12 | 1m @ 1.12 g/t Au | AGM | | ZDD1256 | 85 | 87 | 2 | 1.2 | 1m @ 1.47 g/t Au | AGM | | ZDD1256 | 102 | 103 | 1 | 1.09 | 1m @ 1.09 g/t Au | AGM | | ZDD1256 | 126 | 127 | 1 | 0.54 | | AGM | | ZDD1256 | 146 | 147 | 1 | 1.19 | 1m @ 1.19 g/t Au | AGM | | ZDD1256 | 151 | 152 | 1 | 27.91 | 1m @ 27.91 g/t Au | AGM | | ZDD1256 | 164 | 165 | 1 | 0.48 | | AGM | | ZDD1257 | 4 | 5.39 | 1.39 | 1.13 | 1.39m @ 1.13 g/t Au | AGM | | ZDD1257 | 24 | 25.34 | 1.34 | 0.47 | | AGM | | ZDD1257 | 28.68 | 30 | 1.32 | 0.66 | | AGM | | ZDD1257 | 52 | 54 | 2 | 1 | 1m @ 1.06 g/t Au | AGM | | ZDD1257 | 66 | 67 | 1 | 1.67 | 1m @ 1.67 g/t Au | AGM | | ZDD1257 | 96 | 97 | 1 | 0.46 | | AGM | | ZDD1257 | 101 | 102 | 1 | 0.61 | | AGM | | ZDD1257 | 125 | 126 | 1 | 1.1 | 1m @ 1.1 g/t Au | AGM | | ZDD1266 | 0 | 1 | 1 | 0.65 | | AGM | | ZDD1276 | 54 | 55.04 | 1.04 | 1.06 | 1.04m @ 1.06 g/t Au | KOFLANKRO | | ZDD1276 | 58 | 59 | 1 | 0.58 | | KOFLANKRO | | ZDD1276 | 99 | 100 | 1 | 0.65 | | KOFLANKRO | | ZDD1276 | 101 | 102 | 1 | 0.41 | | KOFLANKRO | | ZDD1276 | 137 | 138 | 1 | 0.52 | | KOFLANKRO | | ZDD1276 | 160 | 161 | 1 | 0.42 | | KOFLANKRO | | ZDD1282 | 73 | 74 | 1 | 0.41 | | KOFLANKRO | | ZDD1282 | 121 | 123 | 2 | 3.09 | 1m @ 5.68 g/t Au | KOFLANKRO | | ZDD1283 | 53.66 | 55 | 1.34 | 0.57 | | KOFLANKRO | | ZDD1283 | 138 | 141 | 3 | 0.57 | | KOFLANKRO | | ZDD1292 | 30.5 | 31.5 | 1 | 0.9 | | KOFLANKRO | | ZDD1292 | 43 | 48.11 | 5.11 | 1.41 | 4m @ 1.56 g/t Au | KOFLANKRO | | ZDD1292 | 49 | 50.5 | 1.5 | 3.49 | 1.50m @ 3.49 g/t Au | KOFLANKRO | | ZDD1292 | 76.31 | 82.41 | 6.1 | 0.6 | 1.50m @ 1.11 g/t Au | KOFLANKRO | | ZDD1292 | 91 | 92.5 | 1.5 | 1.07 | 1.50m @ 1.07 g/t Au | KOFLANKRO | | ZDD1292 | 109 | 112 | 3 | 1.67 | 1.50m @ 2.8 g/t Au | KOFLANKRO | | ZDD1297 | 58.5 | 60 | 1.5 | 0.45 | | KOFLANKRO | | ZDD1297 | 64.78 | 66.5 | 1.72 | 1.24 | 0.72m @ 2.22 g/t Au | KOFLANKRO | | ZDD1297 | 74 | 75.5 | 1.5 | 3.12 | 1.50m @ 3.12 g/t Au | KOFLANKRO | | ZDD1297 | 83 | 92 | 9 | 0.9 | 1.50m @ 2.49 g/t Au | KOFLANKRO | | ZDD1300 | | | | NSI | | KOFLANKRO | | ZDD1306 | 47 | 48.5 | 1.5 | 0.69 | | KOFLANKRO | | ZDD1306 | 91.5 | 94 | 2.5 | 0.57 | | KOFLANKRO | | ZDD1306 | 173.5 | 175 | 1.5 | 0.45 | | KOFLANKRO | | ZDD1310 | | | | NSI | | KOFLANKRO | | Hole id | Depth from | Depth to | Length | g/t Au | Includes ⁵ | Prospect | |---------|------------|----------|--------|--------|-----------------------|-----------| | ZDD1314 | 49.5 | 51 | 1.5 | 0.58 | | KOFLANKRO | | ZDD1317 | 108 | 109.5 | 1.5 | 0.49 | | KOFLANKRO | | ZDD1239 | 12 | 13 | 1 | 0.62 | | PGL | | ZDD1239 | 18 | 20.13 | 2.13 | 0.58 | | PGL | | ZDD1239 | 24 | 24.88 | 0.88 | 0.41 | | PGL | | ZDD1239 | 27 | 28 | 1 | 0.54 | | PGL | | ZDD1239 | 34 | 35 | 1 | 0.65 | | PGL | | ZDD1243 | 2.68 | 4 | 1.32 | 1.3 | 1.32m @ 1.3 g/t Au | PGL | | ZDD1243 | 10 | 10.84 | 0.84 | 1.39 | 0.84m @ 1.39 g/t Au | PGL | | ZDD1245 | 6 | 7 | 1 | 0.7 | | PGL | | ZDD1245 | 12 | 13 | 1 | 0.43 | | PGL | | ZDD1245 | 61 | 62 | 1 | 0.42 | | PGL | | ZDD1246 | 43 | 43.84 | 0.84 | 0.74 | | PGL | |
ZDD1246 | 48 | 49 | 1 | 1.35 | 1m @ 1.35 g/t Au | PGL | | ZDD1246 | 61 | 69 | 8 | 0.52 | 1m @ 1.16 g/t Au | PGL | | ZDD1246 | 82 | 83 | 1 | 0.59 | | PGL | | ZDD1246 | 100 | 101 | 1 | 2.75 | 1m @ 2.75 g/t Au | PGL | | ZDD1250 | 27 | 28 | 1 | 0.65 | - | PGL | | ZDD1250 | 44 | 46 | 2 | 2.19 | 1m @ 3.91 g/t Au | PGL | | ZDD1250 | 60 | 61 | 1 | 0.69 | | PGL | | ZDD1251 | 7 | 8.35 | 1.35 | 0.83 | | PGL | | ZDD1251 | 45 | 45.98 | 0.98 | 1.17 | 0.98m @ 1.17 g/t Au | PGL | | ZDD1251 | 55 | 56 | 1 | 0.59 | - | PGL | | ZDD1251 | 60 | 61 | 1 | 0.68 | | PGL | | ZDD1251 | 67 | 76 | 9 | 0.57 | 1m @ 2.53 g/t Au | PGL | | ZDD1251 | 82 | 83 | 1 | 0.64 | | PGL | | ZDD1251 | 88 | 91 | 3 | 0.81 | 1m @ 1.35 g/t Au | PGL | | ZDD1251 | 96 | 105 | 9 | 1.46 | 5m @ 2.5 g/t Au | PGL | | ZDD1251 | 110 | 112 | 2 | 9.01 | 2m @ 9.01 g/t Au | PGL | | ZDD1251 | 142 | 143 | 1 | 0.65 | - | PGL | | ZDD1252 | 0 | 1 | 1 | 0.6 | | PGL | | ZDD1252 | 29 | 30.34 | 1.34 | 0.6 | | PGL | | ZDD1252 | 52 | 53 | 1 | 0.44 | | PGL | | ZDD1252 | 72 | 73 | 1 | 6.87 | 1m @ 6.87 g/t Au | PGL | | ZDD1252 | 84 | 86 | 2 | 2.96 | 1m @ 5.44 g/t Au | PGL | | ZDD1252 | 99 | 100 | 1 | 0.75 | | PGL | | ZDD1252 | 118 | 119 | 1 | 1.89 | 1m @ 1.89 g/t Au | PGL | | ZDD1252 | 150 | 156 | 6 | 1.97 | 1m @ 9.98 g/t Au | PGL | | ZDD1252 | 167 | 168 | 1 | 0.53 | | PGL | | ZDD1254 | 9 | 9.7 | 0.7 | 0.56 | | PGL | | ZDD1254 | 34.84 | 40 | 5.16 | 1.75 | 4m @ 2.09 g/t Au | PGL | | ZDD1254 | 95 | 96 | 1 | 1.65 | 1m @ 1.65 g/t Au | PGL | | ZDD1255 | 52 | 53 | 1 | 0.92 | | PGL | | ZDD1255 | 56 | 57 | 1 | 0.48 | | PGL | | | Hole id | Depth from | Depth to | Length | g/t Au | Includes ⁵ | Prospect | |----------|----------|------------|----------|--------|--------|-----------------------|----------| | | ZDD1255 | 59 | 60 | 1 | 0.53 | | PGL | | | ZDD1255 | 78 | 79 | 1 | 0.46 | | PGL | | | ZDD1255 | 90 | 95 | 5 | 0.54 | 1m @ 1.34 g/t Au | PGL | | | ZDD1258 | 48 | 53 | 5 | 0.43 | 1m @ 1.5 g/t Au | PGL | | | ZDD1258 | 77 | 78 | 1 | 0.43 | | PGL | | | ZDD1258 | 89 | 90 | 1 | 0.54 | | PGL | | | ZDD1258 | 94 | 96 | 2 | 1.99 | 2m @ 1.99 g/t Au | PGL | | | ZDD1258 | 100 | 101 | 1 | 0.42 | | PGL | | | ZDD1259 | 67 | 70 | 3 | 1.18 | 1m @ 3.02 g/t Au | PGL | | | ZDD1259 | 100 | 101 | 1 | 0.46 | | PGL | | | ZDD1259 | 106 | 107 | 1 | 0.44 | | PGL | | | ZDD1259 | 119 | 125 | 6 | 1.21 | 3m @ 1.84 g/t Au | PGL | | | ZDD1259 | 161 | 162 | 1 | 0.5 | | PGL | | | ZDD1261 | 57 | 61 | 4 | 3.36 | 4m @ 3.36 g/t Au | PGL | | | ZDD1261 | 97 | 98 | 1 | 0.53 | | PGL | | | ZDD1261 | 100 | 101 | 1 | 0.71 | | PGL | | | ZDD1261 | 108 | 109 | 1 | 1.25 | 1m @ 1.25 g/t Au | PGL | | | ZDD1261 | 120 | 121 | 1 | 0.45 | | PGL | | | ZDD1261 | 128 | 129 | 1 | 0.42 | | PGL | | | ZDD1261 | 141 | 142 | 1 | 0.78 | | PGL | | | ZDD1261 | 154 | 166 | 12 | 0.48 | 1m @ 1.53 g/t Au | PGL | | | ZDD1264 | 16 | 16.58 | 0.58 | 0.44 | <u> </u> | PGL | | | ZDD1264 | 18 | 19.36 | 1.36 | 0.74 | | PGL | | | ZDD1264 | 21 | 21.64 | 0.64 | 0.86 | | PGL | | 2/ | ZDD1264 | 39 | 40 | 1 | 0.41 | | PGL | | | ZDD1265 | 32 | 33 | 1 | 0.63 | | PGL | | | ZDD1265 | 43 | 44 | 1 | 0.58 | | PGL | | 715 | ZDD1265 | 67 | 68 | 1 | 0.59 | | PGL | | | ZDD1267A | 75 | 76 | 1 | 0.94 | | PGL | | | ZDD1267A | 125 | 126 | 1 | 0.41 | | PGL | | (| ZDD1267A | 140 | 142 | 2 | 2.58 | 2m @ 2.58 g/t Au | PGL | | _ | ZDD1268 | 30 | 31.03 | 1.03 | 0.44 | <u> </u> | PGL | | | ZDD1268 | 36 | 37 | 1 | 0.51 | | PGL | | | ZDD1268 | 52 | 58 | 6 | 1.58 | 2m @ 3.49 g/t Au | PGL | | | ZDD1268 | 70 | 71 | 1 | 0.63 | <u> </u> | PGL | | | ZDD1271 | 84 | 85 | 1 | 0.44 | | PGL | | | ZDD1271 | 111 | 113 | 2 | 2.03 | 2m @ 2.03 g/t Au | PGL | | | ZDD1271 | 148 | 150 | 2 | 1.01 | 1m @ 1.18 g/t Au | PGL | | | ZDD1271 | 154 | 155 | 1 | 0.47 | | PGL | | | ZDD1273A | 23 | 23.86 | 0.86 | 2.84 | 0.86m @ 2.84 g/t Au | PGL | | | ZDD1273A | 31 | 32.15 | 1.15 | 0.4 | 2 0,1 | PGL | | ⊢ | ZDD1273A | 35 | 36 | 1 | 0.83 | | PGL | | | ZDD1273A | 58 | 59 | 1 | 0.54 | | PGL | | | ZDD1273A | 64 | 65 | 1 | 0.92 | | PGL | | Hole id | Depth from | Depth to | Length | g/t Au | Includes ⁵ | Prospect | |----------|------------|----------|--------|--------|-----------------------|----------| | ZDD1273A | 69 | 78 | 9 | 1.22 | 1m @ 7.21 g/t Au | PGL | | ZDD1273A | 89 | 94 | 5 | 0.43 | 1m @ 1.04 g/t Au | PGL | | ZDD1273A | 104 | 105 | 1 | 0.66 | | PGL | | ZDD1277 | 2.68 | 3.32 | 0.64 | 1.49 | 0.64m @ 1.49 g/t Au | PGL | | ZDD1277 | 7 | 8.08 | 1.08 | 1.58 | 1.08m @ 1.58 g/t Au | PGL | | ZDD1277 | 25 | 25.82 | 0.82 | 0.42 | | PGL | | ZDD1277 | 81 | 82 | 1 | 3.26 | 1m @ 3.26 g/t Au | PGL | | ZDD1277 | 100 | 101 | 1 | 0.56 | | PGL | | ZDD1277 | 109 | 110 | 1 | 0.95 | | PGL | | ZDD1277 | 118 | 121 | 3 | 0.58 | | PGL | | ZDD1277 | 125 | 126 | 1 | 0.41 | | PGL | | ZDD1277 | 135 | 138 | 3 | 0.62 | 1m @ 1 g/t Au | PGL | | ZDD1278 | 129 | 130 | 1 | 0.41 | | PGL | | ZDD1278 | 131 | 132 | 1 | 0.54 | | PGL | | ZDD1278 | 138 | 144 | 6 | 0.69 | 1m @ 2.16 g/t Au | PGL | | ZDD1278 | 152 | 153 | 1 | 1.06 | 1m @ 1.06 g/t Au | PGL | | ZDD1278 | 169 | 170 | 1 | 2.37 | 1m @ 2.37 g/t Au | PGL | | ZDD1278 | 179 | 184 | 5 | 0.59 | 1m @ 1.28 g/t Au | PGL | | ZDD1278 | 192 | 193 | 1 | 0.57 | | PGL | | ZDD1285 | 94 | 95 | 1 | 0.72 | | PGL | | ZDD1285 | 114 | 115 | 1 | 0.81 | | PGL | | ZDD1285 | 128 | 129 | 1 | 0.5 | | PGL | | ZDD1285 | 150 | 151 | 1 | 0.45 | | PGL | | ZDD1285 | 218 | 223 | 5 | 0.46 | 1m @ 1.15 g/t Au | PGL | | ZDD1291A | 29.75 | 30.97 | 1.22 | 0.56 | | PGL | | ZDD1296 | 28.5 | 31.5 | 3 | 0.64 | | PGL | | ZDD1296 | 102.5 | 104 | 1.5 | 1.17 | 1.50m @ 1.17 g/t Au | PGL | | ZDD1296 | 130 | 131 | 1 | 0.43 | | PGL | | ZDD1296 | 149 | 150.5 | 1.5 | 0.41 | | PGL | | ZDD1296 | 186 | 187 | 1 | 3.41 | 1m @ 3.41 g/t Au | PGL | | ZDD1296 | 214.45 | 215.45 | 1 | 0.4 | | PGL | | ZDD1296 | 253 | 254 | 1 | 0.49 | | PGL | | ZDD1302 | 57 | 58 | 1 | 0.54 | | PGL | | ZDD1302 | 82 | 85 | 3 | 0.44 | | PGL | | ZDD1302 | 112.5 | 113.5 | 1 | 0.46 | | PGL | | ZDD1302 | 123.5 | 125 | 1.5 | 0.55 | | PGL | | ZDD1302 | 126.5 | 128 | 1.5 | 0.41 | | PGL | | ZDD1302 | 142 | 143.5 | 1.5 | 0.43 | | PGL | | ZDD1307 | 49.5 | 51 | 1.5 | 0.72 | | PGL | | ZDD1307 | 129.5 | 131 | 1.5 | 0.53 | | PGL | | ZDD1307 | 166 | 167 | 1 | 0.54 | | PGL | | ZDD1307 | 188 | 189 | 1 | 1.65 | 1m @ 1.65 g/t Au | PGL | | ZDD1316 | 28.44 | 37 | 8.56 | 1.19 | 4.50m @ 2.12 g/t Au | PGL | | ZDD1316 | 55.5 | 57 | 1.5 | 0.62 | | PGL | | | Hole id | Depth from | Depth to | Length | g/t Au | Includes ⁵ | Prospect | |-----|----------|------------|----------|--------|--------|-----------------------|----------| | | ZDD1316 | 63 | 64.5 | 1.5 | 0.47 | | PGL | | | ZDD1316 | 85.5 | 87 | 1.5 | 0.49 | | PGL | | | ZDD1316 | 99 | 102 | 3 | 1.27 | 1.50m @ 1.71 g/t Au | PGL | | | ZDD1316 | 107 | 108 | 1 | 0.47 | | PGL | | | ZDD1280A | 15 | 16 | 1 | 0.48 | | SG | | | ZDD1280A | 19 | 20 | 1 | 0.91 | | SG | | | ZDD1280A | 53 | 54 | 1 | 0.59 | | SG | | | ZDD1280A | 64 | 65 | 1 | 0.96 | | SG | | | ZDD1280A | 77 | 78 | 1 | 1.32 | 1m @ 1.32 g/t Au | SG | | | ZDD1281 | 26 | 28 | 2 | 0.68 | | SG | | | ZDD1281 | 33 | 36 | 3 | 0.85 | 1m @ 1.03 g/t Au | SG | | 06 | ZDD1281 | 102 | 104 | 2 | 1.02 | 1m @ 1.42 g/t Au | SG | | | ZDD1281 | 116 | 117 | 1 | 0.7 | | SG | | | ZDD1286 | 45 | 46 | 1 | 3.62 | 1m @ 3.62 g/t Au | SG | | | ZDD1286 | 57 | 58 | 1 | 0.73 | | SG | | | ZDD1286 | 71 | 74 | 3 | 0.63 | | SG | | | ZDD1286 | 94 | 95 | 1 | 0.41 | | SG | | | ZDD1286 | 99 | 100 | 1 | 1.49 | 1m @ 1.49 g/t Au | SG | | | ZDD1286 | 122 | 123 | 1 | 0.46 | | SG | | | ZDD1288 | 124.5 | 126 | 1.5 | 0.67 | | SG | | | ZDD1288 | 127.5 | 129 | 1.5 | 0.44 | | SG | | | ZDD1288 | 188 | 189 | 1 | 0.67 | | SG | | | ZDD1288 | 197 | 198 | 1 | 0.76 | | SG | | | ZDD1289 | 60 | 61 | 1 | 0.58 | | SG | | | ZDD1289 | 99 | 102 | 3 | 0.58 | | SG | | | ZDD1289 | 117 | 118.5 | 1.5 | 2.72 | 1.50m @ 2.72 g/t Au | SG | | | ZDD1294 | 106.83 | 108.33 | 1.5 | 0.8 | | SG | | | ZDD1294 | 118.83 | 120 | 1.17 | 0.48 | | SG | | QL. | ZDD1294 | 151 | 152 | 1 | 0.47 | | SG | | | ZDD1295 | 127.29 | 128.29 | 1 | 6.29 | 1m @ 6.29 g/t Au | SG | | | ZDD1295 | 145.5 | 147 | 1.5 | 0.61 | | SG | | | ZDD1295 | 199.5 | 203 | 3.5 | 0.92 | 0.75m @ 2.2 g/t Au | SG | | | _ZDD1295 | 213 | 215 | 2 | 1.73 | 1m @ 2.51 g/t Au | SG | | | ZDD1299 | 80 | 81 | 1 | 0.4 | | SG | | | ZDD1299 | 97 | 98 | 1 | 0.42 | | SG | | Пп | ZDD1299 | 145 | 146.5 | 1.5 | 0.8 | | SG | | | ZDD1301 | 30 | 31 | 1 | 0.53 | | SG | | | ZDD1301 | 38.19 | 39.92 | 1.73 | 0.7 | | SG | | | ZDD1301 | 78 | 79.5 | 1.5 | 0.76 | | SG | | | ZDD1301 | 94.5 | 97.5 | 3 | 0.76 | 1.50m @ 1.04 g/t Au | SG | | | ZDD1304 | 28 | 31 | 3 | 0.52 | | SG | | | ZDD1304 | 37 | 37.9 | 0.9 | 1.62 | 0.90m @ 1.62 g/t Au | SG | | | ZDD1305A | | | | NSI | | SG | | | ZDD1308 | 52 | 60 | 8 | 0.74 | 1.15m @ 1.46 g/t Au | SG | | Hole id | Depth from | Depth to | Length | g/t Au | Includes ⁵ | Prospect | |---------|------------|----------|--------|--------|-----------------------|----------| | ZDD1309 | 37.5 | 39 | 1.5 | 0.74 | | SG | | ZDD1311 | 89 | 90 | 1 | 0.47 | | SG | | ZDD1311 | 98 | 100 | 2 | 1.71 | 1m @ 3.01 g/t Au | SG | | ZDD1311 | 104.9 | 105.4 | 0.5 | 48.81 | 0.50m @ 48.81 g/t Au | SG | | ZDD1313 | 73 | 73.5 | 0.5 | 0.79 | | SG | | ZDD1319 | 85 | 89 | 4 | 24.73 | 0.50m @ 195.53 g/t Au | SG | | ZDD1319 | 139.5 | 140.5 | 1 | 1.26 | 1m @ 1.26 g/t Au | SG | | ZDD1319 | 147.5 | 148.5 | 1 | 3.22 | 0.50m @ 5.75 g/t Au | SG | | ZDD1319 | 152.5 | 153.5 | 1 | 0.89 | | SG | | ZDD1319 | 167 | 176 | 9 | 0.78 | 4m @ 1 g/t Au | SG | | ZDD1320 | 18 | 19.5 | 1.5 | 0.52 | | SG | | ZDD1320 | 81 | 86.5 | 5.5 | 3.81 | 3m @ 6.48 g/t Au | SG | | ZDD1320 | 110 | 111.5 | 1.5 | 0.59 | | SG | | ZDD1320 | 122 | 123.5 | 1.5 | 2.45 | 1.50m @ 2.45 g/t Au | SG | | ZDD1279 | 78 | 79 | 1 | 0.72 | | ZKP | | ZDD1279 | 87 | 88 | 1 | 0.59 | | ZKP | | ZDD1279 | 147 | 148 | 1 | 0.45 | | ZKP | | ZDD1279 | 156 | 157 | 1 | 0.65 | | ZKP | | ZDD1284 | 28 | 29.25 | 1.25 | 3.45 | 1.25m @ 3.45 g/t Au | ZKP | | ZDD1284 | 33 | 34 | 1 | 1.98 | 1m @ 1.98 g/t Au | ZKP | | ZDD1284 | 45 |
46 | 1 | 0.63 | | ZKP | | ZDD1284 | 62 | 65 | 3 | 0.82 | 1m @ 1.34 g/t Au | ZKP | | ZDD1284 | 69 | 72 | 3 | 0.44 | | ZKP | | ZDD1284 | 97 | 98 | 1 | 0.47 | | ZKP | | ZDD1284 | 104 | 105 | 1 | 0.61 | | ZKP | | ZDD1287 | 28.5 | 30 | 1.5 | 0.43 | | ZKP | | ZDD1287 | 69 | 70.5 | 1.5 | 1.68 | 1m @ 2.31 g/t Au | ZKP | | ZDD1287 | 81 | 82.5 | 1.5 | 0.58 | | ZKP | | ZDD1287 | 94.5 | 96 | 1.5 | 0.61 | | ZKP | | ZDD1287 | 105 | 106.5 | 1.5 | 0.44 | | ZKP | | ZDD1293 | 32 | 32.63 | 0.63 | 1.76 | 0.63m @ 1.76 g/t Au | ZKP | | ZDD1293 | 97 | 104 | 7 | 0.73 | 1m @ 1.46 g/t Au | ZKP | | ZDD1293 | 108 | 111 | 3 | 0.44 | | ZKP | | ZDD1293 | 116 | 118 | 2 | 0.5 | | ZKP | | ZDD1298 | 28 | 29 | 1 | 0.51 | | ZKP | | ZDD1298 | 77 | 78 | 1 | 0.8 | | ZKP | | ZDD1298 | 140 | 143 | 3 | 0.81 | 1m @ 1.89 g/t Au | ZKP | | ZDD1298 | 147 | 149 | 2 | 0.54 | | ZKP | | ZDD1298 | 178 | 179 | 1 | 0.87 | | ZKP | Figure 2: Plan view showing location of Tietto's Projects Figure 3: Plan view showing Abujar Project Figure 4: Plan view showing latest drill results at Abujar Figure 5: Oblique cross section view showing latest drill results at SG - ZDD1319 (+/-50m) Figure 6: Northwest view (Isometric) showing location of latest drill results on the main Abujar Shear Web: www.tietto.com ## Abujar Gold Project, Côte d'Ivoire The Abujar Gold Project is located approximately 30km from the major regional city of Daloa in central western Côte D'Ivoire. It is close to good regional and local infrastructure to facilitate exploration and development being only 15km from nearest tarred road and grid power. The Abujar Gold Project is comprised of three contiguous exploration tenements, Middle, South and North tenement, with a total land area of 1,114km², of which less than 10% has been explored. It features an NNE-orientated gold corridor over 70km striking across three tenements. In December 2020, a gold exploitation (mining) licence within the Abujar Middle exploration tenement was granted. The mining tenement covers an area of 120.36km². Tietto is well placed to grow its resource inventory. It has substantially advanced the project since starting exploration in mid-2015 with the identification of 3.45 million ounces Measured, Indicated, and Inferred JORC 2012 Mineral Resources and has completed metallurgical test work and a DFS. Tietto is currently constructing the Abujar Gold Plant and expects to produce first gold in Q4 CY2022. # **Abujar Mineral Resources** Results of the independent Mineral Resources estimate for the Project are tabulated in the Statement of Mineral Resources below, which are reported in line with the requirements of the 2012 JORC Code; as such the Statement of Mineral Resources is suitable for public reporting. The Statement of Mineral Resources shown in Table 5. Within AG, the Mineral Resource is reported at a cut of grade of 0.25 g/t Au within a pit shell that used a gold price of 2,000 USD per troy ounce, and 1.1 g/t Au below the pit shell. The cut off grades were based on estimated mining and processing costs and recovery factors and are detailed in JORC Table 1. It is highlighted that while a 2,000 USD per ounce pit shell was utilised the cut-off grades were estimated based on the gold price of 1,800 USD per troy ounce which is 1.25 times the consensus forecast as of February 2022. Within APG, the Mineral Resource is reported at a cut of grade of 0.30 g/t Au within a pit shell that used a gold price of 2,000 USD per troy ounce, and 1.1 g/t Au below the pit shell. The cut off grades were based on estimated mining and processing costs and recovery factors and are detailed in JORC Table 1. It is highlighted that while a 2,000 USD per ounces pit shell was utilised the cut-off grades were estimated based on the gold price of 1,800 USD per troy ounce which is 1.25 times the consensus forecast as of February 2021. Web: www.tietto.com South Gamina Resource is reported to a depth of 120m and not reported at depths below 120m. | | | | Oxide | | | Transition | | | Fresh | | | Total | | |------|-----------|------------------|----------|-------------|------------------|------------|-------------|------------------|----------|-------------|------------------|----------|-------------| | Area | Class | Quantity
(Mt) | Au (g/t) | Au
(Moz) | Quantity
(Mt) | Au (g/t) | Au
(Moz) | Quantity
(Mt) | Au (g/t) | Au
(Moz) | Quantity
(Mt) | Au (g/t) | Au
(Moz) | | | Measured | 0.1 | 1.4 | 0.01 | 0.5 | 1.3 | 0.02 | 7.1 | 1.4 | 0.32 | 7.7 | 1.4 | 0.35 | | 500 | Indicated | 0.5 | 1.0 | 0.02 | 1.8 | 1.1 | 0.06 | 28.1 | 1.3 | 1.19 | 30.4 | 1.3 | 1.27 | | AG | Inferred | 0.3 | 0.9 | 0.01 | 1.4 | 0.8 | 0.04 | 15.4 | 1.5 | 0.76 | 17.1 | 1.5 | 0.81 | | | Total | 0.9 | 1.0 | 0.03 | 3.7 | 1.0 | 0.12 | 50.6 | 1.4 | 2.27 | 55.2 | 1.4 | 2.43 | | | Indicated | 0.5 | 0.7 | 0.01 | 1.9 | 0.7 | 0.04 | 6.1 | 0.8 | 0.15 | 8.5 | 0.7 | 0.20 | | APG | Inferred | 1.3 | 0.7 | 0.03 | 5.1 | 0.7 | 0.11 | 27.0 | 0.7 | 0.62 | 33.3 | 0.7 | 0.76 | | | Total | 1.8 | 0.7 | 0.04 | 7.0 | 0.7 | 0.15 | 33.1 | 0.7 | 0.77 | 41.9 | 0.7 | 0.96 | | SG | Inferred | 0.08 | 0.74 | 0.002 | 0.15 | 1.09 | 0.01 | 1.3 | 1.3 | 0.05 | 1.6 | 1.2 | 0.06 | | Gra | and Total | 2.8 | 0.8 | 0.07 | 10.8 | 0.8 | 0.28 | 85.1 | 1.1 | 3.10 | 98.7 | 1.1 | 3.45 | Note: The Mineral Resources have been compiled under the supervision of Mr. Jeremy Clark who is a subconsultant to RPM and a Registered Member of the Australian Institute of Mining and Metallurgy. Mr. Clark has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he has undertaken to qualify as a Competent Person as defined in the JORC Code. - 1. All Mineral Resources figures reported in the table above represent estimates at 28 February 2022. Mineral Resource estimates are not precise calculations, being dependent on the interpretation of limited information on the location, shape and continuity of the occurrence and on the available sampling results. The totals contained in the above table have been rounded to reflect the relative uncertainty of the estimate. Rounding may cause some computational discrepancies. - Mineral Resources are reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The Joint Ore Reserves Committee Code – JORC 2012 Edition). - The Mineral Resources have been reported at a 100% equity stake and not factored for ownership proportions. The total resource at AG and APG is reported at varying cut-off grades are provided in Table 6 below. However, RPM recommends that the Mineral Resource be reported using the criteria shown in Table 5. It is highlighted that Table 6 is not a Statement of Mineral Resources and does not include the use of pit shells to report the quantities rather the application of various cut off grades. As such variations with Table 5 will occur and a direct comparison is not able to be completed. Table 6: Abujar Mineral Resources at varying cut off grades | | | AG Measure | d | | AG Indicated | <u> </u> | | AG Inferred | | <i>P</i> | APG Indicate | <u>d</u> | | APG Inferre | <u> </u> | | Total | | |------|----------------|-------------|-------------|----------------|--------------|-------------|----------------|-------------|-------------|----------------|--------------|-------------|----------------|-------------|-------------|----------------|-------------|-----------| | cog | Tonnes
(Mt) | Au
(g/t) | Au
(Moz) | Tonnes
(Mt) | Au
(g/t) | Au
(Moz) | Tonnes
(Mt) | Au
(g/t) | Au
(Moz) | Tonnes
(Mt) | Au
(g/t) | Au
(Moz) | Tonnes
(Mt) | Au
(g/t) | Au
(Moz) | Tonnes
(Mt) | Au
(g/t) | Au
(Mo | | 0.1 | 8.6 | 1.3 | 0.4 | 42.2 | 1.0 | 1.4 | 45.5 | 0.9 | 1.3 | 12.0 | 0.6 | 0.2 | 66.6 | 0.6 | 1.2 | 175.0 | 0.8 | 4.5 | | 0.2 | 8.1 | 1.3 | 0.3 | 39.9 | 1.1 | 1.4 | 43.6 | 0.9 | 1.3 | 11.9 | 0.6 | 0.2 | 64.2 | 0.6 | 1.2 | 167.7 | 0.8 | 4.4 | | 0.3 | 7.2 | 1.5 | 0.3 | 34.5 | 1.2 | 1.4 | 38.3 | 1.0 | 1.2 | 10.2 | 0.7 | 0.2 | 56.2 | 0.6 | 1.1 | 146.5 | 0.9 | 4.3 | | 0.4 | 6.1 | 1.7 | 0.3 | 28.1 | 1.4 | 1.3 | 31.1 | 1.1 | 1.1 | 7.9 | 0.8 | 0.2 | 40.7 | 0.7 | 0.9 | 113.9 | 1.1 | 3.9 | | 0.5 | 5.2 | 1.9 | 0.3 | 23.0 | 1.6 | 1.2 | 24.7 | 1.3 | 1.1 | 5.7 | 0.9 | 0.2 | 27.1 | 0.9 | 0.8 | 85.7 | 1.3 | 3.5 | | 0.6 | 4.4 | 2.1 | 0.3 | 19.2 | 1.8 | 1.1 | 19.4 | 1.5 | 1.0 | 4.3 | 1.1 | 0.1 | 17.7 | 1.0 | 0.6 | 65.0 | 1.5 | 3.1 | | 0.7 | 3.8 | 2.4 | 0.3 | 16.2 | 2.1 | 1.1 | 15.9 | 1.7 | 0.9 | 3.3 | 1.2 | 0.1 | 12.2 | 1.2 | 0.5 | 51.3 | 1.7 | 2.9 | | 0.8 | 3.2 | 2.6 | 0.3 | 13.9 | 2.3 | 1.0 | 13.6 | 1.9 | 0.8 | 2.5 | 1.3 | 0.1 | 9.3 | 1.3 | 0.4 | 42.6 | 1.9 | 2.6 | | 0.9 | 2.8 | 2.9 | 0.3 | 12.2 | 2.5 | 1.0 | 12.0 | 2.0 | 0.8 | 2.0 | 1.5 | 0.1 | 7.2 | 1.5 | 0.3 | 36.1 | 2.1 | 2.5 | | J1.0 | 2.5 | 3.2 | 0.3 | 10.8 | 2.7 | 0.9 | 10.7 | 2.2 | 0.8 | 1.6 | 1.6 | 0.1 | 5.9 | 1.6 | 0.3 | 31.5 | 2.3 | 2.3 | | 1.1 | 2.2 | 3.5 | 0.2 | 9.7 | 2.9 | 0.9 | 9.6 | 2.3 | 0.7 | 1.3 | 1.7 | 0.1 | 4.5 | 1.8 | 0.3 | 27.2 | 2.5 | 2.2 | | 1.2 | 2.0 | 3.7 | 0.2 | 8.8 | 3.1 | 0.9 | 8.5 | 2.4 | 0.7 | 1.1 | 1.8 | 0.1 | 3.9 | 1.9 | 0.2 | 24.2 | 2.7 | 2.1 | | 1.3 | 1.8 | 4.0 | 0.2 | 8.1 | 3.2 | 0.8 | 7.7 | 2.6 | 0.6 | 0.9 | 1.9 | 0.1 | 2.9 | 2.1 | 0.2 | 21.4 | 2.8 | 2.0 | | 1.4 | 1.7 | 4.2 | 0.2 | 7.4 | 3.4 | 0.8 | 6.8 | 2.7 | 0.6 | 0.7 | 2.1 | 0.05 | 2.5 | 2.2 | 0.2 | 19.2 | 3.0 | 1.9 | | 1.5 | 1.5 | 4.5 | 0.2 | 6.9 | 3.5 | 0.8 | 6.1 | 2.9 | 0.6 | 0.6 | 2.2 | 0.04 | 2.0 | 2.4 | 0.2 | 17.0 | 3.2 | 1.8 | | 1.6 | 1.4 | 4.7 | 0.2 | 6.4 | 3.7 | 0.8 | 5.4 | 3.1 | 0.5 | 0.5 | 2.3 | 0.04 | 1.5 | 2.8 | 0.1 | 15.2 | 3.4 | 1. | | 1.7 | 1.3 | 4.9 | 0.2 | 5.9 | 3.8 | 0.7 | 4.9 | 3.2 | 0.5 | 0.4 | 2.4 | 0.03 | 1.3 | 2.9 | 0.1 | 13.9 | 3.6 | 1.0 | | 1.8 | 1.2 | 5.1 | 0.2 | 5.5 | 4.0 | 0.7 | 4.4 | 3.4 | 0.5 | 0.4 | 2.5 | 0.03 | 1.2 | 3.0 | 0.1 | 12.8 | 3.7 | 1. | | 1.9 | 1.1 | 5.4 | 0.2 | 5.1 | 4.2 | 0.7 | 4.1 | 3.5 | 0.5 | 0.3 | 2.6 | 0.03 | 1.1 | 3.1 | 0.1 | 11.9 | 3.9 | 1.
 | 2.0 | 1.1 | 5.6 | 0.2 | 4.8 | 4.3 | 0.7 | 3.8 | 3.6 | 0.4 | 0.3 | 2.6 | 0.03 | 1.1 | 3.1 | 0.1 | 11.0 | 4.0 | 1.4 | | 2.5 | 0.8 | 6.7 | 0.2 | 3.6 | 5.0 | 0.6 | 2.4 | 4.4 | 0.3 | 0.1 | 3.4 | 0.01 | 0.7 | 3.7 | 0.1 | 7.6 | 4.9 | 1. | | 3.0 | 0.6 | 7.7 | 0.2 | 2.7 | 5.8 | 0.5 | 1.7 | 5.0 | 0.3 | 0.1 | 3.9 | 0.01 | 0.4 | 4.1 | 0.1 | 5.6 | 5.6 | 1. | Web: www.tietto.com # **Abujar Ore Reserves** A total of 34.4 Mt of Open Cut Ore Reserves at 1.3 g/t Au grade for 1.45Moz were estimated as at 30 September 2021 by RPM, refer Table 7 (refer ASX release 5 October 2021). As no mining has taken place at the site, the reporting date reflects the completion of the technical work supporting the estimate. Table 7: Open Cut Ore Reserve Estimate as at 30 September 2021 | | Pro | oved | | Pro | bable | | To | otal | | |---------|----------|------|-----|----------|-------|------|----------|------|------| | Deposit | Quantity | Au | Au | Quantity | Au | Au | Quantity | Au | Au | | | Mt | g/t | Moz | Mt | g/t | Moz | Mt | g/t | Moz | | AG | 0 | 0 | 0 | 31.3 | 1.4 | 1.38 | 31.3 | 1.4 | 1.38 | | APG | 0 | 0 | 0 | 3.2 | 0.7 | 0.07 | 3.2 | 0.7 | 0.07 | | Total | 0 | 0 | 0 | 34.4 | 1.3 | 1.45 | 34.4 | 1.3 | 1.45 | #### Notes: - 1. The Ore Reserves has been compiled under the supervision of Mr. Igor Bojanic who is a full-time employee of RPM and a Fellow of the Australian Institute of Mining and Metallurgy. Mr. Bojanic has sufficient experience that is relevant to the style of mineralisation, type of deposit and mining method under consideration and to the activity, which he has undertaken, to qualify as a Competent Person as defined in the JORC Code. - 2. The following marginal cut-off grades determined based on a US\$ 1,407 per troy ounce gold price, and costs and mining and metallurgical modifying factors estimated as part of the DFS. - 3. Marginal cut-off grades for AG: Oxide 0.29 g/t Au, Transition 0.29 g/t Au and Fresh 0.30 g/t Au. - 4. Marginal cut-off grades for APG: Oxide 0.32 g/t Au, Transition 0.32 g/t Au and Fresh 0.33 g/t Au (as greater haulage distance to AG ROM pad) - 5. Ore Reserve estimates are not precise calculations, being dependent on the interpretation of limited information on the location, shape and continuity of the occurrence and on the available sampling results. The quantities contained in the above table have been rounded to three significant figures to reflect the relative uncertainty of the estimate. Rounding may cause values in the table to appear to have computational errors. - 6. All Ore Reserve estimates are on a dry basis. - 7. The Ore Reserves have been reported at a 100% equity stake and not factored for ownership proportions. - 8. The Company first reported the production targets and forecast financial information derived from its production targets in accordance with Listing Rules 5.16 and 5.17 in its ASX announcement on 5 October 2021 titled "Tietto to Deliver 260,000 oz Gold in Abujar First Year". The Company confirms that all material assumptions underpinning the production targets and the forecast financial information derived from the production targets continue to apply and have not materially changed. Web: www.tietto.com # Section 1 of the JORC Code, 2012 Edition - Table 1 | Sampling Tecl | hniques and Data | | |---------------------|--|--| | Criteria | IORC Code explanation | Commentary | | Sampling techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Samples at AG and APG project areas were collected using drilling techniques including Air Core Drilling (AC), Reverse Circulation (RC), and Diamond Drilling (DD). Holes were generally angled at 60° to 90° towards northwest at AG to optimally intersect the mineralised zones however within APG the recent holes were drilled to the North East due to the reinterpreted westerly dip of the mineralisation. AC samples were collected every 1m from cyclone, and 2m composite samples which is combined with two 1/3 of each one meter sample were sent for assaying. No Aircore samples were used in the estimates reported in the Report. RC samples were collected as 1m samples from the cyclone, which were subsequently spear sampled to form 2 m samples which were subsequently sent using a riffle splitter with 1/4 of the same retained in the plastic bags, the remainder was re-split with 1/4 retained in calico bag and the remainder discarded. Diamond core was logged both for geological and mineralised structures as noted above. The core was then cut in half using a diamond brick cutting saw on 1m intervals. Typically the core was sampled to geological intervals as defined by the geologist within the even two metre sample intervals within the even two metre sample intervals withing the right-hand side of the core was always submitted for analysis with the left side being stored in trays on site. No QAQC was completed during the 2015 drilling program, however the vast majority of the data is sourced from the 2016-2020 drilling which implemented definitive QAQC program, to provide verification of the sample procedure, the sample preparation and the analytical precision and accuracy of the primary laboratory. Sampling and QAQC procedures were carried out to industry standards upon the advice of RPM. Sample preparation was completed by independent international accredited laboratories ALS Ghana in 2016 and Intertek Minerals Ltd in 2018 to 2020. Fol | | Criteria | JORC Code explanation | Commentary | |---|--
---| | | | (ALS Ghana) and 150g fire assay in 2018-
2020 (Intertek Ghana). | | Drilling
techniques | Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). | AC drilling size is 89 mm, RC drilling comprising 105mm diameter face sampling bit. Diamond drilling carried out with mostly NTW and some HQ sized equipment. PQ-size rods and casing were used at the top the holes to stabilise the collars although no samples were taken from the PQ size core. | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Within the Diamond drilling typically core recoveries ranged between 85% and 100% for all holes with no significant issues noted. All 2019 and 2020 holes have recoveries above 95% in the majority of the mineralised areas. Some low recoveries are associated with intensely fractured or faulted intervals and the more intensely weathered upper zone however These low recoveries are not considered material to the total Mineral Resource currently estimated. AC, RC samples were visually checked for recovery, moisture and contamination. RPM notes that it has relied on information for the majority of holes for sample recovery suitable and notes that the majority of the Mineral Resources reported are underpinned by diamond holes. No relationship exists between sample recovery and grade. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | All holes were field logged by company geologists. Lithological, alteration and mineralogical nomenclature of the deposit as well as sulphide content were recorded. Metallurgical, Geotechnical and structural data has been recorded from both purpose designed and general resource definition holes. Photography and recovery measurements were carried out by assistants under a geologist's supervision. The logging for all RC holes is also recorded on a logging "chipboard", where the chips for each metre are glued to a board to form a visual log of the entire hole All drill holes were logged in full. Logging was qualitative and quantitative in nature. | | Sub-sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. | HQ and NTW core were cut in half using a core saw. Typically, the core was sampled to major geological intervals as defined by the geologist within the even two metre sample intervals utilised. All samples were collected from the same side of the core. | | | For all sample types, the nature, quality and
appropriateness of the sample preparation
technique. | AC, RC samples were collected as 1m samples from the cyclone, which were subsequently composited using as spear samples to form 2 m samples. | | | Quality control procedures adopted for all sub- | Sampling of diamond core and AC, RC chips | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Criteria | sampling stages to maximise representivity of samples. • Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled. | used industry standard techniques. Sample preparation for the 2020 drilling is detailed below: previous releases detail the 2016 and 2018 drilling results. After drying the sample is subject to a primary crush to 2mm. Sample is split through a riffle splitter until 250gm is left (this involves 4-5 splits through the riffle splitter). The 250gm sample is milled through an LM5 using a single puck to 90% <75 micron Milled sample is homogenised through a matt roll with a 150gm routine sample collected using a spoon around the quadrants and sent to Ghana for analysis and the remaining 100gm kept at Intertek for checks. Field QC procedures involved the use of 2 types of certified reference materials (1 in 20) which is certified by Geostats Ltd, Primary RC duplicates: Generated from the first splitter off the rig and inserted 5% (1 in 20 samples). This sample is collected from a spear sample from the reject material of the primary split. Primary DD duplicate: Generated by cutting the remaining half core into a ¼ and sampled. Coarse blank samples: Inserted 1 in every 20 samples Laboratory Internal Duplicates and Standards Sample sizes are considered appropriate to correctly represent the moderately nuggetty gold mineralisation based on: the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for Au. | | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometres, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | The analytical techniques used Fire Assay on 150g pulp samples. No geophysical tools were used to determine any element concentrations used in this Mineral Resource estimate. Sample preparation checks for fineness were carried out by the laboratory as part of internal procedures to ensure the grind size of 2mm was being attained. Laboratory QAQC includes the use of internal standards using certified reference material, and pulp replicates. No anomalous assays were noted in information provided to RPM or from discussions with the Client. The QAQC results confirm that acceptable levels of accuracy and precision have been established for the Classifications applied. | | Verification
of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. | The Company has developed logging and sampling procedures that is based on the African experience of the local teams and subsequently reviewed by RPM during the site visits that confirmed the processes and protocols implemented giving the results a high level of confidence. The Company | | Criteria | JORC Code explanation | Commentary | |-------------------------|---|--| | Criteria | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | geologists log the core and RC samples according to the existing lithological, alteration and mineralogical nomenclature of the deposit as well as sulphide content. Photography and recovery measurements were carried out by assistants under a geologist's supervision. The logging for all RC holes is also recorded on a logging "chipboard", where the chips for each metre are glued to a board to form a visual log of the entire hole Twinned holes have not been drilled as not considered appropriate as the Company has been responsible for all holes. Logging records were mostly registered in physical format and were input into a digital format. The core photographs, collar coordinates and down the hole surveys were received in digital format. Assay values that were below detection limit were adjusted to equal half of the detection limit value. Un-sampled intervals were assumed to have no mineralisation and they were therefore set to blank in the database, however these are minimal. The selective original data review and site visit observations carried out by RPM did not identify any material issues with the data entry or digital data. In addition, RPM considers that the onsite data management system meets industry standard which minimizes potential 'human' data-entry errors and no systematic fundamental data | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | entry errors or data transfer errors. All drill hole and trench collar locations were surveyed utilising the differential GPS methods by third party surveyors. RPM notes that the DGPS system utilised is typically within a 10 cm accuracy range which is suitable for the classification applied. The Client's drilling teams utilised the Reflex EZ-shot instrument to measure deviations in azimuth and inclination angles for all holes; however, vertical holes were not surveyed. The first measurement is taken at 5 m depth, and then at approximately every 30 to 50m depth interval and at the end of the hole. Small scale artisanal mining has been undertaken on several areas within the project. This mining is restricted typically to the upper 10m of the oxide material however is variable in depth and extent with recent underground mining occurring in the fresh rock. For AG area, the latest provided topographic survey models based on satellite imagery. In addition, two key areas with known underground mining were depleted a further 20m. For AGP area, no significant UG mining has been undertaken | Web: www.tietto.com | Criteria | JORC Code explanation | Commentary | |---|--|---| | | · | as such the latest topography was utilised as the depletion. | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Drill hole collars were generally spaced on an approximate 100 m by 50 m grid in both deposits with recent drilling including infill drilling on 50m by 50m spacing within AG with some closer spacing in the central core of AG. The drill hole spacing and distribution is considered sufficient to establish the degree of continuity appropriate for the Inferred and Indicated Mineral Resource estimation procedures. A combined composited file of the 5 largest lodes with the AG area was created for constructing variogram. Object 40 was also investigated which returned very similar variograms. The most prevalent sample lengths inside the mineralised wireframes are 1m and as a result, 1m was chosen as the composite length. The samples inside the mineralised wireframes were then composited to 1 m lengths | | Orientation of
data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | No bias was interpreted to be introduced as most drill holes are angled to northwest in AG, which is approximately perpendicular to the orientation of the mineralised trends are interpreted being comprised of southeast-dipping lodes striking 30° dipping at varying angles of inclination typically between 60° and 80°. APG has recently been reinterpreted to have a westerly dipping orientation, as such recent holes have been drilled to the southeast. All previous holes were drilled to the northwest, however given the large drill spacing this is not considered to be a bias in the sampling and was considered during interpretation. | | Sample
security | The measures taken to ensure sample security. | Chain of custody is managed by the Client's senior site geologists and geotechnicians. Samples are stored in a core shed at site and samples were delivered to the laboratory by client geologists. Client employees have no further involvement in the preparation or analysis of the samples. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | A review of sampling techniques was carried out on each site visit by RPM in July 2016, July 2018, October 2019 and December 2021. | # Section 2 of the JORC Code, 2012 Edition - Table 1 | Criteria | JORC Code explanation | Commentary | |--------------|---|---| | Mineral | • Type, reference name/number, location and | • The Project is contained within three | | tenement and | ownership including agreements or material | adjacent exploration licenses (Zoukougbeu, | | land tenure
 issues with third parties such as joint ventures, | Zahibo and Issia licenses) which are | | status | partnerships, overriding royalties, native title | currently held by third party companies, of | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. | which Tietto or its wholly owned subsidiaries are part owners. All resource is contained within the Zahibo tenement. The tenements are in good standing. | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration
by other parties. | No exploration programs have been conducted by other parties on the Project. The license area was not historically known as a prospective region for gold, but recent artisanal workings revealed the presence of primary gold mineralisation in artisanal pits and small-scale underground mining. | | Geology | Deposit type, geological setting and style of mineralisation. | The AG-APG Deposits are located within the Proterozoic Birimian rocks of the Man shield. It is situated on the Daloa 1:200,000 geologic sheet, 30km west of Daloa. It is located in the Hana-Lobo belt, east of the Sassandra fault that marks the boundary between the Man shield (Archean) and Eburnean domain. The regional trend is NNE to NE. The AG-APG deposits resemble typical shear zone deposits of the West African granite-greenstone terrane. The deposits themselves are associated with a major regional shear zone and are developed in a granodiorite host. Mineralisation may be spatially related to the emplacement of intrusives. The gold mineralisation is mesothermal in origin and occurs as free gold in quartz vein stockworks and zones of silicification, associated with pyrite and chalcopyrite. The gold mineralisation is found in linear zones with the contacts showing evidence of shearing. Free gold is frequently observed. Alteration is weak to strong depending on the development of the system. Two types of deformation are present in the drill cores: ductile deformation and brittle deformation. The gold mineralisation is related to deformed granodiorite, in shear zones, with sulphides (mainly pyrite and minor chalcopyrite) associated with visible gold. Alteration is characterized by chlorite, sericite, calcite, secondary quartz and disseminated pyrite. This assemblage is well developed in schistose, foliated rocks with presence of quartz veins or veinlets. | | Drill hole
information | A summary of all information material to the under-standing of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length | Drill hole locations are shown on the map within the body of this Mineral Resource report and the ASX release. All information has been included in the appendices. No RC or DD drill hole information has been excluded however no AC drilling is utilised. | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Data
aggregation
methods | If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Intervals are shown in detail. Drilling intervals are predominantly 1m and 2m. AC, RC samples were collected as 1m samples from the cyclone, which were subsequently spear samples to form 2 m samples which were subsequently sent to the laboratory Metal equivalent values are not being reported. | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g.'down hole length, true width not known'). | Most drill holes are angled to northwest at AG, which is approximately perpendicular to the orientation of the mineralised trends as all deposits have similar styles of mineralisation which was interpreted as being comprised of southeast-dipping lodes striking 30° dipping at varying angles of inclination typically between 60° and 80°. APG has recently been reinterpreted to the westerly dip with changes to drilling orientation completed at such. Sections are provided in the main body of the report and the press release however exploration results are not being reported | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Relevant diagrams have been included within
the Mineral Resource report main body of
report and ASX release However exploration
results are not being reported | | Balanced
Reporting | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both
low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | All drill hole and trench collar locations were surveyed utilising the differential GPS methods by third party surveyors. DGPS system utilised it typically within 10 cm accuracy range. Drilling teams utilised the Reflex EZ-shot instrument to measure deviations in azimuth and inclination angles for all holes; however, vertical holes were not surveyed. The first measurement is taken at 6 m depth, and then at approximately every 30m depth interval and at the end of the hole. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock | All interpretations for each deposit are consistent with observations made and information gained during drilling at the project. Feasibility studies have been completed; a PFS in Q1 CY2021 and a DFS in Q3 CY2021. Work completed to date has not identified | Tietto Minerals Ltd Unit 7, 162 Colin Street Perth, WA 6005 Tel: +61 8 9420 8270 Web: www.tietto.com | Criteria | JORC Code explanation | Commentary | |--------------|---|--| | | characteristics; potential deleterious or contaminating substances. | any potential deleterious or contaminating substances. | | Further work | The nature and scale of planned further work
(e.g. tests for lateral extensions or depth
extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of
possible extensions, including the main
geological interpretations and future drilling | planned and is in the process of being executed | areas, provided this information is not commercially sensitive.