

Ongoing drilling at Challenger's Hualilan Gold Project continues to significantly extend the high-grade mineralisation

Highlights

 Drilling, designed to increase the maiden Hualilan Mineral Resource, at the Verde Zone and Magnata Fault continues to extend mineralisation. Results reported in this release include:

18.8m at 6.3 g/t AuEq¹
 3.4m at 11.5 g/t AuEq¹
 7.4m at 10.8 g/t AuEq¹

4.5 g/t Au, 22.3 g/t Ag, 3.3% Zn from 344.4m including
8.9 g/t Au, 42.5 g/t Ag, 4.5% Zn from 344.4m and

- 7.4 g/t Au, 36.8 g/t Ag, 6.3% Zn from 355.8m (GNDD-642);

11.0m at 9.1 g/t AuEq¹
 7.8m at 12.6 g/t AuEq¹

9.0 g/t Au, 5.7 g/t Ag from 356.0m including
12.5 g/t Au, 7.9 g/t Ag from 356.0m (GNDD-571);

46.0m at 1.7 g/t AuEq¹
 3.9m at 7.9 g/t AuEq¹
 5.1m at 6.6 g/t AuEq¹

1.2 g/t Au, 4.4 g/t Ag, 0.9% Zn from 367.0 including.
7.3 g/t Au, 18.7 g/t Ag, 0.7% Zn from 380.3m and

- 3.7 g/t Au, 19.7 g/t Ag, 5.9% Zn from 400.8m(GNDD-633)

24.7m at 2.8 g/t AuEq¹
 1.2m at 45.3 g/t AuEq¹
 0.9m at 26.7 g/t AuEq¹
 2.3m at 7.5 g/t AuEq¹

2.3 g/t Au, 6.4 g/t Ag, 1.0% Zn from 236.0m including
36.2 g/t Au, 92.1 g/t Ag, 17.3% Zn from 259.5m and

24.9 g/t Au, 15.3 g/t Ag, 3.5% Zn from 375.0m and
3.3 g/t Au, 30.1 g/t Ag, 8.2% Zn from 417.6m (GNDD-604);

18.1m at 2.6 g/t AuEq¹
 1.0m at 34.0 g/t AuEq¹

2.3 g/t Au, 2.8 g/t Ag, 0.5% Zn from 281.4m including
32.6 g/t Au, 18.1 g/t Ag, 1.9% Zn from 289.7m and

87.0m at 0.7 g/t AuEq¹ - 0.7 g/t Au, 1.4 g/t Ag, from 314.0m (GNDD-588);

- Drilling continues to show no sign that it is nearing the limits of the mineralisation, which remains open in all directions.
- Additionally, the majority of infill drilling continues to achieve grades either above or in line with the current resource block model.

Commenting on the first drilling results after the resource, CEL Managing Director, Mr Kris Knauer, said

"These results are a prime example of why we have increased the planned drill program at Hualilan by 50,000 metres following last week's \$25 million financing by two leading resource investors.

This series of results are from the Verde Zone and Magnata Fault and several of these holes have extended the mineralisation by 200 metres and we are seeing no sign we are getting close to the limits of the deposit.

When we released our maiden Resource Estimate at Hualilan it was very much an interim and we expected it to increase significantly. It was based on 126,000 metres of a planned 254,000 metres of drilling and 2.2 of 3.5 kilometres strike. These results continue to support this expectation."

¹ Reported as Gold Equivalent (AuEq) values – for requirements under the JORC Code see page 22

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Challenger Exploration (ASX: CEL) ("CEL" the "Company") is pleased to announce results from drilling at its flagship Hualilan Gold Project, San Juan Argentina. The results are from the Company's ongoing drill program targeting extensions to the current 2.1 million ounce AuEq¹ Mineral Resource Estimate ("MRE")². The holes reported in this release are primarily targeting extensions to the Verde and Gap Zone mineralisation. The drilling continues to show the presence of coherent zones of significantly higher-grade mineralisation at depth in the Verde Zone.

All results were received after the completion of the Company's maiden Hualilan Gold Project MRE. These results, and the remaining 29,000 metres of assays that remain pending from the recently completed 204,000 metre drill program, will be included in an updated MRE. The current MRE, which includes a high-grade core of 1.1 Moz at 5.6 g/t AuEq¹, was based on 125,700 metres of the Company's 204,000 metre diamond core drill program. Following the completion of the \$24.7 million dollar financing (see ASX release dated 9 September 2022) the Company has committed to a further 50,000 metres of drilling which will take total CEL drill metres at Hualilan to 254,000 metres.

The results continue to exceed the Company's expectations and confirm that mineralisation remains open in all directions and there is clear potential for the MRE to grow significantly via continued extension drilling. A summary of selected significant intercepts reported in this in this ASX Release and their impact on the mineralisation is given Table 1 below.

Drillhole	Intercept (AuEq)	Comment	Gram x Metres
GNDD-626	32.3m at 0.8 g/t AuEq	extends Verde mineralisation 25m up-dip of MRE boundary	25.8
GNDD-629	98.0m at 0.4 g/t AuEq inc 2.9 m at 4.1 g/t AuEq	located approximately 400 metres north-west of the current MRE boundary	42.5 11.8
GNDD-554	46.1m at 0.9 g/t AuEq and 24.0m at 0.9 g/t AuEq	extends mineralisation 200 metres below the MRE boundary and intersected significantly higher-grade than MRE model	39.5 21.9
GNDD-591	14.0m at 1.2 g/t AuEq and 3.3m at 5.4 g/t AuEq	extends mineralisation 80 meters downdip of MRE boundary extends mineralisation 100 metres along strike	17.4 17.7
GNDD-570	22.2m at 0.9 g/t AuEq	extends Verde mineralisation 80 metres up-dip of MRE boundary	20.2
GNDD-612	97.6 metres at 0.8 g/t AuEq	intersection much thicker than MRE block model	78.1
GNDD-604	24.7m at 2.8 g/t AuEq and 0.9m at 26.7 g/t AuEq	extends mineralisation 80 metres downdip of MRE boundary extends high-grade zone 200 metres along strike	69.4 24.0
GNDD-571	11.0m at 9.1 g/t AuEq inc 7.8m at 12.6 g/t AuEq	extends Verde Zone 40 metres downdip of the MRE boundary and intersected significantly higher grade than MRE model	100.1 98.6
GNDD-577	17.0m at 1.6 g/t AuEq and 0.6m at 32.0 g/t AuEq	new zone of mineralisation above the main Verde Zone extends mineralisation 200 metres downdip of MRE boundary	27.5 17.6
GNDD-633	46.0m at 1.7 g/t AuEq and 71.0m at 0.4 g/t AuEq and 30.0m at 0.8 g/t AuEq	extends Verde mineralisation 40 metres below MRE boundary new zone of near surface mineralisation within \$1800 pit shell new zone of near surface mineralisation within \$1800 pit shell	76.5 26.2 25.0
GNDD-588	18.1m at 2.6 g/t AuEq and 87.0m at 0.7 g/t AuEq	new zone of mineralisation above the Verde Zone significantly wider intersection than MRE block model	47.1 60.3
GNDD-642	18.8m at 6.3 g/t AuEq 21.2m at 0.7 g/t AuEq	extended high-grade mineralisation 40 metres up-dip	119.3 15.0
GNDD-595	and 39.8m at 0.5 g/t AuEq	extends mineralisation 40 metre below MRE boundary	18.8

Table 1. Selected significant Intercepts reported this ASX Release

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

HIGHLIGHTS

CURRENT MRE

Table 2 shows the contribution to the maiden 2.1Moz AuEq² MRE by domain. While drilling has been ongoing in all domains as mineralisation remains open in all directions, the majority of the drilling, following the completion of the maiden Hualilan MRE, has been focussed in five areas.

- 1. **The Magnata Fault:** where high-grade mineralisation remains open in both directions along strike and at depth
- 2. **Sentazon:** where in addition to the mineralisation remaining open to the south along strike a significant new high-grade discovery has been made at depth
- 3. **Verde Zone (at Depth):** where a significant new high-grade skarn/endoskarn zone is emerging down dip of parts of the Verde Zone
- 4. **Verde Zone (north):** where drilling continues to extend the mineralisation north along strike and at depth with mineralisation open in both these directions
- 5. **South Verde:** where drilling continues to extend the Verde Zone south of the Magnata Fault along strike and at depth with mineralisation open in both these directions

The results reported in this ASX Release comprise the first half of the Verde, Southern Verde, and Gap Zone drilling completed post the release of the maiden and interim MRE. This release also includes the results for the first holes targeting extensions on the Magnata Fault for which assays have been received. Results for the majority of the Magnata Fault, Sentazon and Sentazon Deeps, Sanchez Fault and the deeper high-grade zones within Verde remain pending.

2 Refer to the about Challenger section for MRE.

Domain	Tonnes	ʻ000 oz AuEq¹	Comments
Sanchez Fault	673,754	87,212	Open at depth and to the east
Norte Manto	510,533	97,954	Open north along strike
Magnata Fault	4,309,440	406,521	Open to the east and west and at depth (Drilling Focus)
Magnata Manto	571,746	63,106	Open up dip and along strike
Muchilera Manto	299,504	18,532	Open along strike and at depth
Sentazon MM and FW	1,967,110	334,655	Significant depth extensions, open south (Drilling Focus)
Verde Skarn Zones	2,151,908	177,503	Open at depth and along strike (Drilling Focus)
Skarn Mineralisation	10,483,995	1,185,484	Sub-total (high grade skarn domains)
Verde	17,472,119	470,233	Open at depth and north along strike (Drilling Focus)
Gap Zone	5,063,971	140,228	Open at depth and along strike
South Verde	14,654,682	336,855	Open at depth and south along strike (Drilling Focus)
Intrusion/Sediment-hosted	37,190,772	947,316	Sub-total (intrusion/sediment-hosted domains)
Total MRE	47,674,767	2,132,800	(Refer Table 3, 4, page 24 of this Release for additional data)

Table 2 - Maiden Hualilan Mineral resource estimate by domains

THE VERDE ZONE

The Verde Zone contributes almost 1 million ounces gold equivalent¹ (Table 2) to the current Hualilan MRE when the new high-grade zones at depth are included. The Verde Zone was a CEL discovery targeted using surface magnetics and IP (Induced Polarisation) at the Hualilan Gold Project. The discovery hole (ASX release 2/3/21) returned 125.5 metres at 1.1 g/t AuEq including 71.0 metres at 1.8 g/t AuEq (GNDD-169). The Verde Zone covers 2.0 kilometres of strike and mineralisation remains open along strike and at depth.

Mineralisation in the Verde Zone is oriented north-south, is 50 to 100 metres wide, and hosted by bedding parallel fault-fracture zones in sediments and steeply dipping fracture zones in intrusives. A lower grade halo of mineralisation extends into the overlying sedimentary rocks which have been locally brecciated by the hydrothermal fluids during mineralisation. The overlying mineralisation in the sedimentary rocks dips to the west at 30-50° and is up to 50 metres thick. This overlying halo of lower grade mineralisation is a useful exploration guide to vector to the deeper intrusion-hosted mineralisation. As drilling extends deeper, zones of high-grade skarn mineralisation are being intersected at both limestone-intrusive contacts and also within limestone which is analogous to the Main Norte and Sentazon Manto mineralisation.

The infill and extension drilling at the Verde and Gap Zones is designed as a series of fences of holes at 40 metre spacing along strike. Holes on each fence were collared to target the mineralisation 40 metres below the previous hole. The intention is to drill the entire 2.0 kilometre Verde Zone down to 400 metres vertically on 40 x 40 metre spacing . The infill portion of this program is ongoing as, mineralisation continues to be extended further north and south along strike, and at depth. Accordingly, the focus has been to continue expanding the footprint of the mineralisation rather than infill drilling. The results in this discussion are ordered from north to south along strike.

GNDD-570

GNDD-570 and GNDD-612 were collared on the northern most fence of drilling on the Verde Zone in an area that had seen limited drilling prior to the MRE cut-off date. GNDD-570 was collared to test 80 metres up-dip of GNDD-226 (16 metres at 0.6 g/t AuEq and 44.0 metres at 0.5 g/t AuEq), the most northerly Verde Zone intersection included in the current MRE.

The intersections in GNDD-570 of 22.2m at 0.9 g/t AuEq (0.6 g/t gold, 3.7 g/t silver, 0.4% lead, 0.4% zinc) from 55.8m including 7.3m at 1.8 g/t AuEq (1.4 g/t gold, 9.0 g/t silver, 0.8% lead, 0.4% zinc) and 10.0m at 0.4 g/t AuEq (0.3 g/t gold, 1.4 g/t silver, 0.2% zinc) from 95.0m extend the Verde Zone mineralisation 80 metres up-dip of the current MRE boundary to near surface (Figure 1).

GNDD-612

GNDD-612 was drilled as an infill hole between GNDD-427 and GNDD-570 based on the mineralisation logged in GNDD-570. It intersected 35.3m at 1.2 g/t AuEq (0.9 g/t gold, 2.7 g/t silver, 0.3% lead, 0.5% zinc) from 64.9 metres including 8.0 metres at 4.5 g/t AuEq (3.4 g/t gold, 8.4 g/t silver, 0.9% lead, 1.7% zinc) and 14.0 metres at 1.1 g/t AuEq (1.0 g/t gold, 1.1 g/t silver, 0.2% zinc) from 117.0m.

Additionally, GNDD-612 intersected a zone of deeper mineralisation with an intersection of 14.5 metres at 1.1 g/t AuEq (0.9 g/t gold, 6.3 g/t silver, 0.1% zinc) from 148.0 metres including 4.0 metres at 2.5 g/t AuEq (2.4 g/t gold, 4.7 g/t silver, 0.1% lead, 0.1% zinc).

These three intersections lie within a broad zone of 97.6 metres at 0.8 g/t AuEq (including internal dilution) confirming the continuity of the mineralisation and indicating that the Verde Zone has thickened considerably at this location. Additionally, the intersections are significantly higher-grade than the intersections in earlier drilling, confirming that the mineralisation at the northern limit of the Verde Zone remains strong and open to the north. Results for GNDD-680, collared to test 40 metres down dip of GNDD-427 are pending.

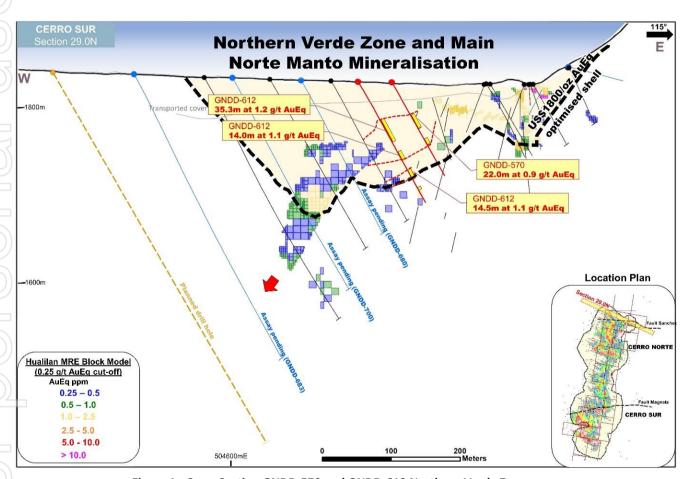


Figure 1 - Cross Section GNDD-570 and GNDD-612 Northern Verde Zone

GNDD-587 and GNDD-594, GNDD-711 (assays pending)

GNDD-587 and GNDD-594 were drilled on the fence of drilling 40 metres south of GNDD-570 and GNDD-612 where drilling is limited. They are part of a series of extension holes (some of which are still assays pending) collared as up and down-dip step-outs of GNDD-402 (37.0 metres at 0.3 g/t AuEq and 24.0 metres at 0.3 g/t AuEq) just inside the northern limit of the Verde Zone.

GNDD-587 intersected four zones of mineralisation including **35.0 metres at 0.3 g/t AuEq (0.2 g/t gold, 0.6 g/t silver, 0.1% lead, 0.1% zinc)** from 85.0m, including **1.6 metres at 1.5 g/t AuEq (1.1 g/t gold, 2.3 g/t silver, 0.4% lead, 0.7% zinc)** which extends the Verde Zone mineralisation 100 metres up-dip into a zone of no drilling. Additionally, the hole intersected **31.0 metres at 0.8 g/t AuEq (0.7 g/t gold, 1.9 g/t silver, 0.3% zinc)** from 182.0m including **5.8 metres at 3.0 g/t AuEq (2.3 g/t gold, 7.3 g/t silver, 1.4% zinc, 0.1% lead)**. This deeper intersection extended the true width of the mineralisation by approximately 15 metres compared to the MRE block model.

GNDD-594 was effectively an infill hole between GNDD-587 and GNDD402 on a 40 metres spacing to allow the reporting of the MRE to indicated status. GNDD-594 confirmed the extension of the mineralisation between the two holes recording intercepts of 12.0 metres at 1.0 g/t AuEq (0.7 g/t gold, 1.8 g/t silver, 0.2% lead, 0.5% zinc) from 104.0m including 2.0 metres at 3.9 g/t AuEq (3.1 g/t gold, 6.5 g/t silver, 1.5% zinc, 0.5% lead) and 1.4 metres at 2.1 g/t AuEq (2.1 g/t gold, 0.3 g/t silver) from 162.0m and 6.0 metres at 0.7 g/t AuEq (0.6 g/t gold, 3.3 g/t silver, 0.1% zinc) from 198.0m.

GNDD-711 (assays pending) has been drilled as a test 80 metres downdip of GNDD-402 and has been logged as intersecting sulphides and skarn alteration. Accordingly, an infill hole is planned between GNDD-711 and GNDD-402.

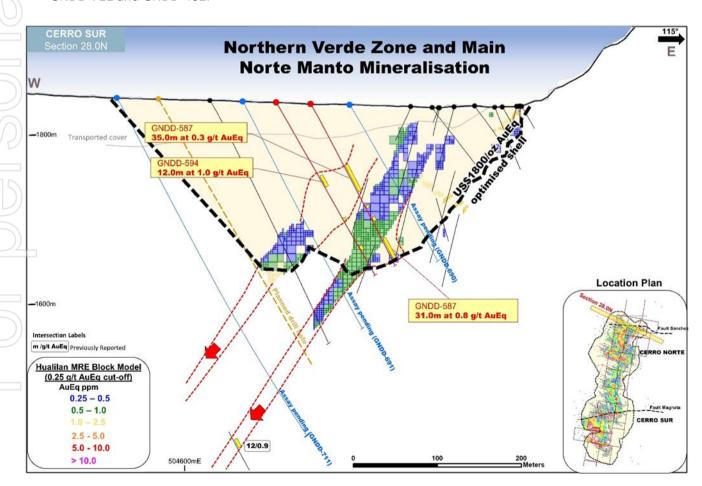


Figure 2 - Cross Section GNDD-587 and GNDD-594 Northern Verde Zone

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

GNDD-554 (Verde Zone)

GNDD-554 was collared on the next fence of drilling 40 metres south of GNDD-587 and GNDD-594 at the northern end of the Verde Zone. The hole intersected 46.1 metres at 0.9 g/t AuEq (0.8 g/t gold, 0.9 g/t silver, 0.1 % zinc) from 259.9m, including 6.5 metres at 3.9 g/t AuEq (3.7 g/t gold, 2.6 g/t silver, 0.3 % zinc) and 24.0 metres at 0.9 g/t AuEq (0.9 g/t gold, 0.8 g/t silver, 0.1 % zinc) from 338.0m including 5.5 metres at 2.9 g/t AuEq (2.8 g/t gold, 1.9 g/t silver, 0.2 % zinc).

GNDD-554 confirmed both the continuity of, and that drilling is providing significant extensions to, the Verde Zone mineralisation. GNDD-554 was an infill hole between GNDD-422 (28.0 metres at 0.3 g/t AuEq and 64.0 metres at 0.4 g/t AuEq) and GNDD-459 (29.0 metres at 0.2 g/t AuEq and 43.0 metres at 0.5 g/t AuEq). GNDD-554 will allow the extension of the MRE between GNDD-422 and GNDD-549 which was not possible in the maiden MRE as the spacing between the holes had been too large (Figure 3). In addition to allowing the MRE to be extended across this 200 metre gap the intersections in GNDD-554 were significantly higher-grade than those in the surrounding holes.

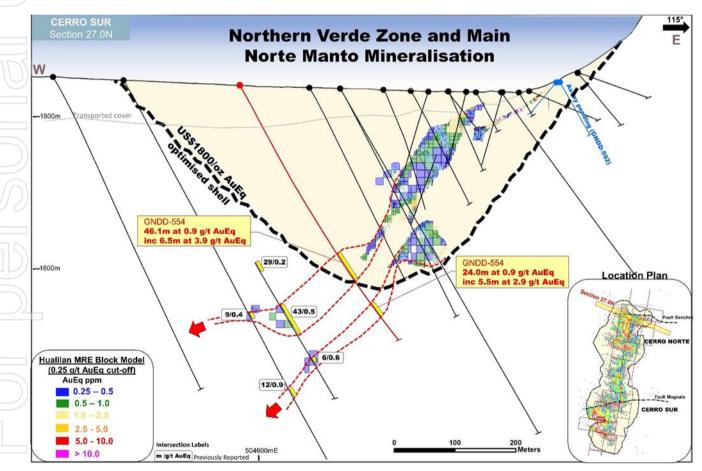


Figure 3 - Cross Section GNDD-554 Northern Verde Zone

GNDD-591

GNDD-591 was collared approximately 600 metres south of the Sanchez Fault in in a relatively lightly drilled section of the northern Verde Zone. The hole was collared to test 80 metres downdip of GNDD-

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

242 (8.6 metres at 0.6 g/t AuEq and 0.7m at 2.3 g/t AuEq). The intersections of **14.0 metres at 1.2 g/t AuEq (1.2 g/t gold, 0.9 g/t silver)** from 224.0m including **2.8 metres at 4.5 g/t AuEq (4.4 g/t gold, 3.5 g/t silver, 0.1% zinc)** correlates with the intersections in GNDD242 and extends the Verde Zone mineralisation 80 metres downdip. Importantly, the mineralisation intersected in GNDD-591 is approximately 50% thicker and considerably higher-grade than surrounding holes.

GNDD-591 intersected several new zones of deeper mineralisation. The intersection of **4.0 metres at 2.0 g/t AuEq (1.7 g/t gold, 3.7 g/t silver, 0.4% zinc, 0.1% lead)** from 250.0m including **0.7 metres at 10.1 g/t AuEq (8.8 g/t gold, 17.7 g/t silver, 2.2% zinc, 0.4% lead)** is significant. This intersection extends a deeper zone of higher-grade Verde mineralisation that covers 200 metres of strike another 40 metres south along strike.

A third deeper intersection of **3.3 metres at 5.4 g/t AuEq (4.6 g/t gold, 12.4 g/t silver, 1.3% zinc)** from 382.0m including **0.7m at 23.8 g/t AuEq (20.5 g/t gold, 55.7 g/t silver, 5.6% zinc)** occurs in the same stratigraphic position as a series of high-grade intercepts in drill holes 100 metres south along strike and may represent the continuation of this zone of mineralisation into this relatively lightly drilled area of the project.

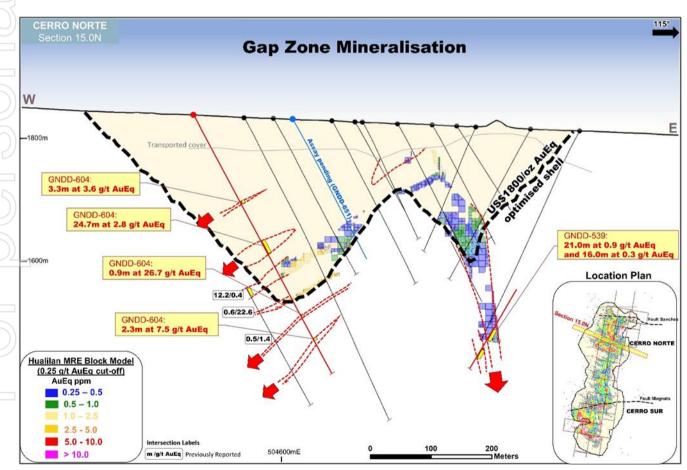


Figure 4 - Cross Section GNDD-604 and GNDD-538 Central Verde and Gap Zone

GNDD-604

GNDD-604 was collared 40 metres south of GNDD-591 in the central Verde Zone and was drilled to test 80 metres downdip of GNDD-456 (12.4 metres at 2.8 g/t AuEq). GNDD-604 intersected 24.7m at 2.8 g/t AuEq (2.3 g/t gold, 6.4 g/t silver, 1.0% zinc) from 236.0m including 1.2m at 45.3 g/t AuEq (36.2 g/t gold, 92.1 g/t silver, 0.1% lead, 17.3% zinc) and 1.5m at 5.2 g/t AuEq (5.0 g/t gold, 3.4 g/t silver, 0.2% lead, 0.3% zinc). This intersection extends the main zone of Verde mineralisation 80 metres downdip from GNDD-456 with additional drilling planned down-dip of GNDD-604 as mineralisation remains strong and open at depth. Importantly this extension lies withing the current US\$1800 pit shell used for the initial MRE.

GNDD-604 also confirmed and extended deeper zones of high-grade mineralisation intersected in GNDD-591 and several holes along strike below the main Verde Zone mineralisation. These deeper intersections in GNDD-604 included **0.9m at 26.7 g/t AuEq (24.9 g/t gold, 15.3 g/t silver, 3.5% zinc)** from 375.0m, **2.3m at 7.5 g/t AuEq (3.3 g/t gold, 30.1 g/t silver, 8.2% zinc)** from 417.6m and **1.8m at 1.4 g/t AuEq (1.4 g/t gold, 0.1 g/t silver)** from 426.4m. These intercepts correlate with and extend intercepts in adjacent holes including 2.0 metres at 9.4 g/t AuEq, 0.9 metres at 10.8 g/t AuEq (GNDD-361), 0.6 metres at 22.6 g/t AuEq (GNDD-472), and 1.0 metres at 14.4 g/t AuEq (GNDD-367). This high-grade mineralisation now extends over 200 metres of strike.

GNDD-539

GNDD-539 was drilled in the central Verde Zone 120 metres south along strike from GNDD-604 and 700 metres south of the Sanchez Fault. The hole was oriented in the opposite direction to the majority of previous drilling as it was designed to test for extensions to the steeply east dipping Gap Zone mineralisation below the current MRE boundary. The hole intersected 21.0 metres at 0.9 g/t AuEq (0.9 g/t gold, 1.0 g/t silver) from 373.0m. The intersection extended the Gap Zone mineralisation 100 metres deeper with mineralisation remaining open at depth.

GNDD571

GNDD-571 was drilled on the same fence of drilling as GNDD-539 however it was drilled 400 metres to the west and drilled eastwards as an infill hole in the central Verde Zone. GNDD-571 was drilled as an up-dip test of GNDD-368 (56.3m at 0.9 g/t AuEq including 5.5m at 5.6 g/t AuEq) with GNDD643 (assays pending) collared to test another 40 metres up-dip as part of the resource drill out (Figure 5).

The intersection of 11.0 metres at 9.1 g/t AuEq (9.0 g/t gold, 5.7 g/t silver, 0.1 % zinc) from 356.0m, including 7.8 metres at 12.6 g/t AuEq (12.5 g/t gold, 7.9 g/t silver, 0.1 % zinc) extends the Verde mineralisation 40 metres down dip from GNDD-368. Additionally, the intersection is considerably higher in grade than the existing MRE block model. GNDD-643 (assays pending) is logged as intersecting three zones of massive and semi massive sulphides and skarn alteration which could significantly extend this zone of high-grade mineralisation up-dip (Figure 5).

Additionally, GNDD-571 intersected **47.0** metres at **0.4** g/t AuEq **(0.3** g/t gold, **1.1** g/t silver, **0.1** % zinc) from 213.0m and **10.0** metres at **0.6** g/t AuEq **(0.6** g/t gold, **0.5** g/t silver) from 328.8m. Both these shallower intersections lie within the US\$1800 Pit Shell used for the MRE and expand the mineralisation expected to be able to be mined from surface.

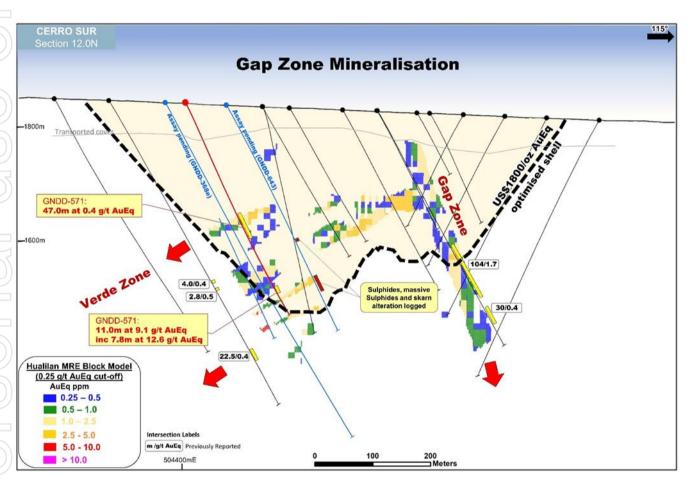


Figure 5 - Cross Section GNDD-571 Verde and Gap Zone mineralisation

GNDD-577

GNDD-577 was collared on the next fence of drilling 40 metres south of GNDD-570 as a 40 metre infill hole between GNDD-359 and GNDD-337. GNDD-577 intersected seven zones of mineralisation successfully extending the mineralisation. The first of intersection 17.0 metres at 1.6 g/t AuEq (1.6 g/t gold, 1.2 g/t silver, 0.1% lead, 0.1% zinc) from 126.0m correlates with a zone of mineralisation intersected in GNDD-337 (7m at 0.5 g/t AuEq) and indicates significant increase in width and grade down dip. This mineralisation lies within the US\$1800 pit shell used for the current MRE.

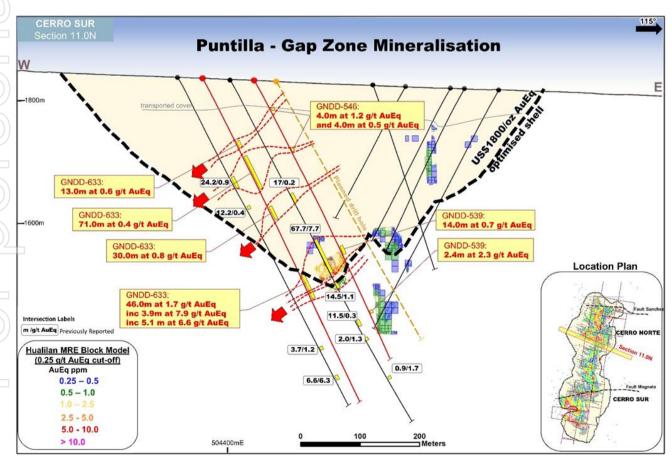
The deepest of the seven zones of mineralisation produced an intersection of **0.6 metres at 32.0 g/t AuEq (22.8 g/t gold, 88.9 g/t silver, 17.6% zinc)**, located almost 200 metres below the current MRE boundary. This intercept continues the theme of intersecting higher grade mineralisation in the Verde Zone at the contacts between the intrusives and limestone due to this boundary being a pathway for

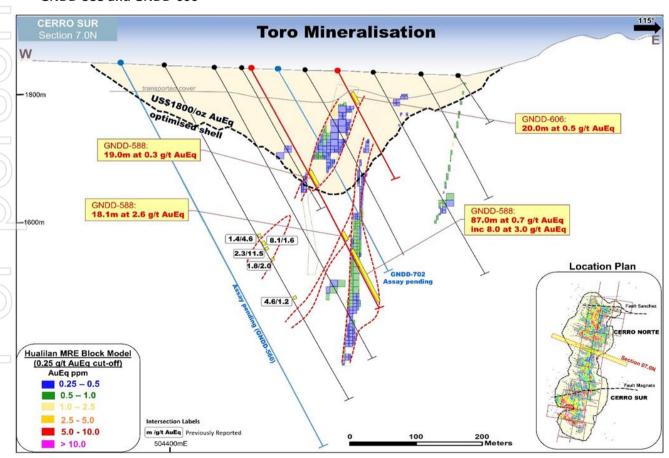
the flow of mineralising fluids. Two additional holes GNDD-653 and GNDD-725 (both assays pending) have been completed to test downdip of GNDD-577 and the Company is planning for GNDD-359 to be re-entered and extended 200 metres deeper .

GNDD-633 and GNDD-546

GNDD-633 and GNDD-546 are located 40 metres south of GNDD-577 in the central Verde Zone. Prior to the intersection of 67.7 metres at 7.7 g/t AuEq in GNDD-458, the Company had only drilled two holes along this 200 metre strike section of the central Verde Zone. GNDD-633 was collared to test 40 metres down dip from GNDD-458. GNDD-633 extended the mineralisation intersected in GNDD-458 some 40 metres down dip with an intersection 46.0 metres at 1.7 g/t AuEq (1.2 g/t gold, 4.4 g/t silver, 0.9% zinc) from 367.0 including 3.9 metres at 7.9 g/t AuEq (7.3 g/t gold, 18.7 g/t silver, 0.8% zinc) from 380.3m and 5.1m at 6.6 g/t AuEq (3.7 g/t gold, 19.7 g/t silver, 5.9% zinc).

Additionally, GNDD-633 intersected three new zones of mineralisation up-dip intersecting **13.1 metres** at **0.6 g/t AuEq (0.6 g/t gold, 0.8 g/t silver)** from 115.5m, **71.0 metres at 0.4 g/t AuEq (0.3 g/t gold, 0.6g/t silver)** from 147.0, and **30.0 metres at 0.8 g/t AuEq (0.8 g/t gold, 1.7 g/t silver, 0.1% zinc)** from 246.0m including **0.7 metres at 25.3 g/t AuEq (23.4 g/t gold, 46.4 g/t silver, 0.3% lead, 2.7% zinc)**.




Figure 6 - Cross Section GNDD-633, GNDD-546 and GNDD-458 Central Verde Zone

As can be seen on Cross Section (Figure 6), which includes the block model for the maiden MRE, the intercept of 67.7 metres at 7.7 g/t AuEq in GNDD-458 was modelled conservatively in the maiden MRE due to the limited drilling. The intersection in GNDD-633 will allow this zone of mineralisation to be extended 40 metres down dip. The three shallower zones of mineralisation correlate with intersections in holes up and down dip and these new results will allow this mineralisation, that lies within the current US\$1800 pit shell to be included in the next MRE. An additional drill hole is planned to be collared to test 80 metres down-dip of GNDD-633.

GNDD-546 was drilled to test 40 metres up-dip of GNDD-458 and intersected 14.0 metres at 0.7 g/t AuEq (0.6 g/t gold, 1.8 g/t silver) from 316.0m including 2.0 metres at 1.9 g/t AuEq (1.8 g/t gold, 2.9 g/t silver). In GNDD-546 the intrusives that host the high-grade mineralisation intersected in GNDD-458 appear not to have extended up-dip with the intersection in GNDD-546 was hosted in limestones that have been baked; likely as they are adjacent to the intrusives that host the high-grade intersection down-dip. GNDD-546 Intersected two zones of mineralisation above this main zone intersecting 4.0 metres at 1.2 g/t AuEq (1.2 g/t gold, 0.3 g/t silver) from 55.0m and 4.0 metres at 0.5 g/t AuEq (0.5 g/t gold, 0.4 g/t silver) from 134.0. These intersections correlate with the new zones intersected in GNDD-633 80 metres downdip and are located within the \$1800 optimised pit shell.

GNDD-588 and GNDD-606

Challenger Exploration Limited ACN 123 591 382

Figure 7 - Cross Section GNDD-588 and GNDD-606 Verde Zone **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Ouinn, Chairman Mr Sergio Rotondo, Exec. Director

GNDD-588 is located 200 metres south of GNDD-633 in the Central Verde Zone. The hole was collared to test 15 metres up-dip of hole GNDD-303 and primarily targeted as a depth extension to GNDD-303 which was ended at 240 metres. This was subsequently interpreted to have been above the main zones of Verde mineralisation.

GNDD-588 intersected several zones of mineralisation. The intersection of **18.1 metres at 2.6 g/t AuEq (2.3 g/t gold, 2.8 g/t silver, 0.2% lead, 0.5% zinc)** from 281.4m including **1.0 metres at 34.0 g/t AuEq (32.6 g/t gold, 18.1 g/t silver, 1.6% lead, 1.9% zinc)** from 289.7m appears to be a new zone of mineralisation above the existing Verde Zone mineralisation (Figure 6 on preceding page). The intersection of **87.0 metres at 0.7 g/t AuEq (0.7 g/t gold, 1.4 g/t silver)**, from 314.0m including **8.0 metres at 3.0 g/t AuEq (2.9 g/t gold, 3.4 g/t silver)** and **10.0 metres at 1.3 g/t AuEq (1.2 g/t Au, 1.6 g/t silver, 0.1% zinc)** is interpreted as a north-east striking zone of Verde mineralisation below GNDD-303. The mineralisation intersected in this zone in GNDD-588 is considerable wider and contains higher-grade zones than in adjacent holes.

The intersection of 19.0 metres at 0.3 g/t AuEq (0.3 g/t gold, 0.7 g/t silver) from 182.0m higher in the hole is the downdip extension of the near surface mineralisation intersected in GNDD-341 (110.4 metres at 0.5 g/t AuEq) and confirms its continuity 100 down-dip. Intersections of 7.0 metres at 0.6 g/t AuEq (0.6 g/t gold, 0.6 g/t silver) from 213.0m and 12.0 metres at 0.3 g/t AuEq (0.2 g/t gold, 1.3 g/t silver, 0.1% lead, 0.2% zinc) from 242.0m represent new zones of mineralisation.

GNDD-629

GNDD-629 is located 600 metres north of the Magnata Fault in the southern section of the Verde Zone. The hole was drilled as an infill hole between GNDD-295 (42.0 metres at 0.3 g/t AuEq) and GNDD-380 (22.0 metres at 0.4 g/t AuEq and 70.0 metres at 0.7 g/t AuEq). The hole intersected 98.0 metres at 0.4 g/t AuEq (0.4 g/t gold, 1.6 g/t silver, 0.1% zinc) from 117.0m including 2.0 metres at 2.0 g/t AuEq (1.9 g/t gold, 2.3 g/t silver, 0.1% zinc) and 2.9 metres at 4.1 g/t AuEq (3.1 g/t gold, 19.1 g/t silver, 0.3% lead, 1.4% zinc). The intersection is double the thickness of mineralisation intersected in GNDD-295 and will extend the mineralisation up dip in the MRE US\$1800 pit shell.

GNDD-538

GNDD-538 was collared just south of the Magnata Fault as a test for extensions to the Verde Zone 40 metres north along strike from GNDD-530 (54 metres at 0.4 g/t AuEq and 28.5 metres at 5.4 g/t AuEq; both hosted in intrusives) for which results were received after the MRE cut-off date. GNDD-538 extended these zones of intrusion-hosted mineralisation, which is the extension of the Verde Zone south of the Magnata Fault.

The hole produced several intersections, all of which are all outside the boundary of the current MRE. Results included 10.0 metres at 1.0 g/t AuEq (1.0 g/t gold, 0.7 g/t silver) from 176.0m and 2.0 metres at 3.1 g/t AuEq (3.1 g/t gold, 0.7 g/t silver) from 182.0m and 79.0 metres at 0.3 g/t AuEq (0.2 g/t gold, 1.3 g/t silver, 0.1% zinc) from 331.0m including and 1.0 metre at 4.7 g/t AuEq (4.0 g/t gold, 11.2 g/t silver, 1.1% lead, 0.6% zinc) from 404.0m.

THE MAGNATA FAULT

The Magnata and Sanchez Faults are two east-west striking sub-vertical faults. The faults can be seen in outcrop and magnetic data extending for tens of kilometres to the east and west of Hualilan. The Magnata Fault is located at Cerro Sur approximately 1.5 kilometres south of the Sanchez Fault and separates into the M1 and M2 Magnata Faults, both of which host high-grade shoots.

The Magnata and Sanchez Faults were historically recognised as hosting mineralisation at Hualilan. The mineralising fluids are interpreted to have migrated from a source below or along strike, within the faults forming steeply dipping zones of mineralisation in the Magnata and Sanchez Faults. These fluids migrating up the faults also formed nearby replacement Manto-style high grade lenses, oriented parallel to the limestone beds, dipping to the west.

GNDD-642 - Magnata Fault

GNDD-642 was an infill hole between the 80 metre spaced GNDD-399 (14.0m at 0.4 g/t AuEq) and GNDD-157 (12.0 metres at 20.9 g/t AuEq) on the Magnata fault. The hole intersected several zones of mineralisation including 18.8 metres at 6.3 g/t AuEq (4.5 g/t gold, 22.3 g/t silver, 3.3 % zinc, 0.1 % lead) from 344.4m, including 7.4 metres at 10.8 g/t AuEq (7.4 g/t gold, 36.8 g/t silver, 6.3 % zinc, 0.1 % lead) and 3.4 metres at 11.5 g/t AuEq (8.9 g/t gold, 42.5 g/t silver, 4.5 % zinc, 0.1 % lead). This extended the high grade mineralisation intersected in GNDD-157 40 metres up-dip. Additionally the hole intersected 64.0 metres at 0.5 g/t AuEq (0.4 g/t gold, 0.8 g/t silver, 0.1 % zinc) from 18.0m hosted in intrusives. This upper intersection confirms the current MRE block model in this location.

As can be seen in Figure 8 over the page, the Magnata Fault mineralisation remains open at depth with GNDD-685 (assays pending) collared to test 40 metres below GNDD-157. GNDD-685 is logged as intersecting several zones of massive and semi massive sulphides and skarn alteration from 544 to 589 metres and 625 to 651 metres downhole. This (subject to assays) indicates that the Magnata Fault and associated mineralisation has swung to a steep northerly plunge in this location and remains strong and open at depth. A deeper follow up hole is planned to test an additional 40 metres below GNDD-685.

GNDD-586

GNDD-586 was drilled as a down-dip test below GNDD-348 (53.0 metres at 0.5 g/t AuEq) on the western limit of known mineralisation on the Magnata Fault. GNDD-586 intersected **57.7 metres at 0.4 g/t AuEq (0.3 g/t gold, 2.6 g/t silver, 0.2 % zinc)** including **8.0 metres at 1.8 g.t AuEq (1.3 g/t gold, 10.0 g/t silver, 0.9 % zinc)**.

Mineralisation remains open at depth, to the west along strike, and within the intrusives near the fault zone with additional drilling planned down-dip. The broad halo of lower grade mineralisation is similar to the near surface mineralisation intersected 80 metres east in drill holes GNDD-313 (24.0 metres at 0.7 g/t AuEq and 14.8 metres at 0.9 g/t AuEq) and GNDD-351 (4 metres at 0.5 g/t AuEq and 4.0 metres at 0.6 g/t AuEq) before deeper hole GNDD-491 intersected 16.8 metres at 11.7 g/t AuEq at depth.

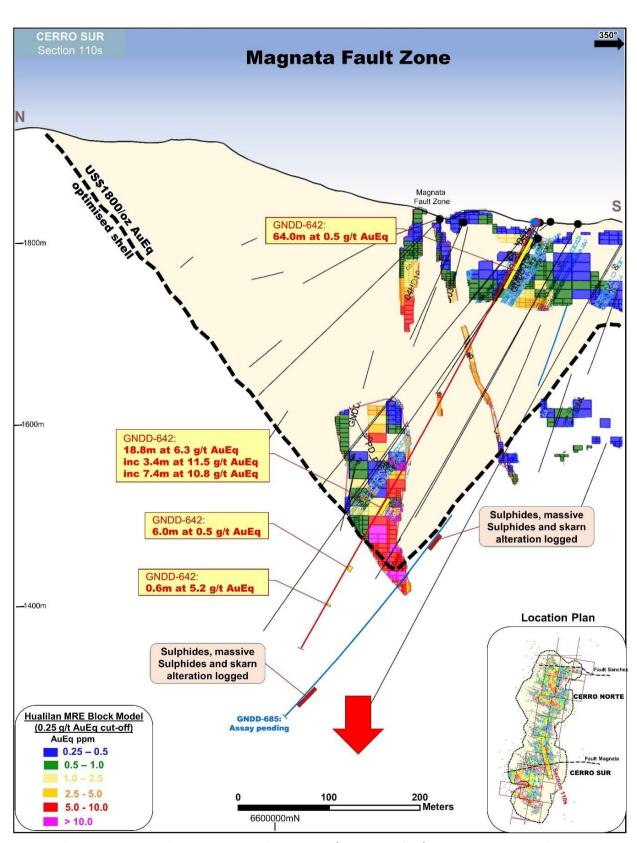


Figure 8 - Cross Section GNDD-642 and GNDD-685 (assays pending) Eastern Magnata Fault

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

GNDD-595

GNDD-595 was drilled as a downdip test below GNDD-540 (52.5 metres at 0.5 g/t AuEq and 30.0 metres at 0.6 g/t AuEq and 2.5 metres at 8.1 g/t AuEq) 40 metres east of GNDD-586. The hole intersected a similar broad zone of lower grade mineralisation to GNDD-540 with intersections including 13.8 metres at 0.4 g/t AuEq (0.3 g/t gold, 2.5 g/t silver) from 198.4m and 21.2 metres at 0.7 g/t AuEq (0.6 g/t gold, 4.0 g/t silver, 0.1 % lead, 0.1% zinc) from 226.0m, and 39.8 metres at 0.5 g/t AuEq (0.3 g/t gold, 2.9 g/t silver, 0.1 % lead, 0.3% zinc) from 266.0m including 1.4 metres at 5.7 g/t AuEq (1.2 g/t gold, 28.5 g/t silver, 2.1 % lead, 8.0 % zinc).

The hole also intersected a fourth zone of deeper mineralisation intersecting 6.9 metres at 0.5 g/t AuEq (0.3 g/t gold, 3.8 g/t silver, 0.1 % lead, 0.3% zinc) from 381.4m including 0.8 meters at 3.8 g/t AuEq (2.3 g/t gold, 30.8 g/t silver, 0.2 % lead, 2.3 % zinc) AuEq. GNDD-615 (assays pending) has been collared to test another 40 metres down dip from GNDD-595 with deeper drilling contingent on the results on GNDD-615.

Ends

This ASX release was approved by the CEL Board

For further information contact:

Kris Knauer Scott Funston Media Enquiries
Managing Director Chief Financial Officer Jane Morgan
+61 411 885 979 +61 413 867 600 +61 405 555 618

kris.knauer@challengerex.com scott.funston@challengerex.com jm@janemorganmanagement.com.au

Previous announcements referred to in this release include:

24 June 2022 - Drilling at Hualilan Solidifies Outlook to Uplift Maiden MRE

1 June 2022 - 2.1M Ounce AuEq Maiden Resource at Hualilan Gold Project

30 March 2022 - High-grade gold mineralisation extended at Hualilan Gold Project

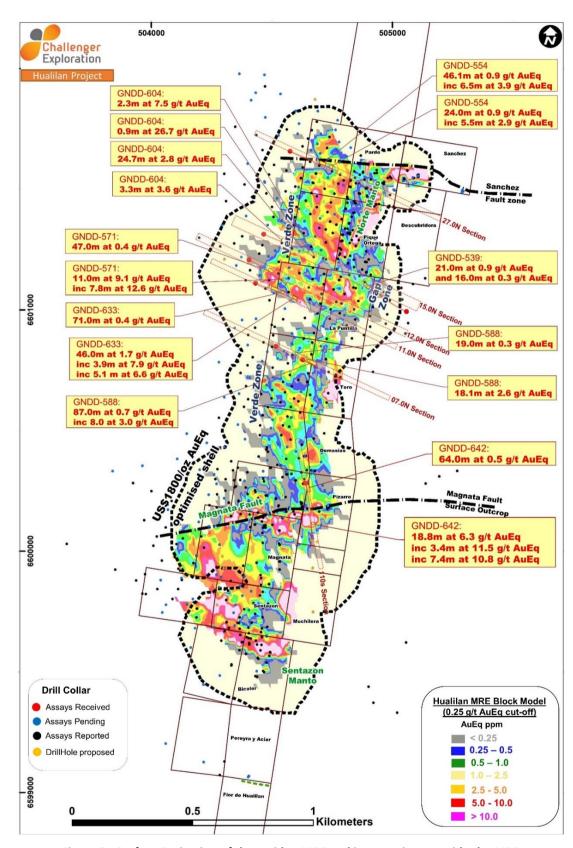


Figure 9 - Surface Projection of the maiden MRE and intersections outside the MRE

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Table 2 - New Intercepts Reported this Release

Drill Hole	From	То	Interval	Gold	Ag	Pb	Zn	AuEq	Comments	Grams x
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(g/t)	Comments	metres
GNDD375	490.70	491.20	0.50	1.1	13.0	0.00	0.64	1.6		0.8
and	508.00	508.50	0.50	6.4	55.0	0.05	2.1	8.0		4.0
and	521.35	524.70	3.35	1.5	15.7	0.02	0.58	1.9		6.4
GNDD538	115.50	122.00	6.50	0.18	3.4	0.05	0.08	0.27	0.2 g/t AuEq cut	1.7
and	134.70	141.00	6.30	0.45	1.4	0.01	0.03	0.48	0.2 g/t AuEq cut	3.1
and	176.00	186.00	10.00	1.02	0.7	0.00	0.01	1.0	0.2 g/t AuEq cut	10.4
inc	182.00	184.00	2.00	3.11	0.7	0.00	0.01	3.1	5,7 1 4,111	6.2
and	198.50	200.00	1.50	1.60	1.7	0.00	0.06	1.6		2.5
and	331.00	410.00	79.00	0.21	1.3	0.03	0.05	0.26	0.2 g/t AuEq cut	20.6
inc	404.00	405.00	1.00	4.0	11.2	0.60	1.1	4.7	<u> </u>	4.7
GNDD539	315.00	321.00	6.00	0.22	0.11	0.00	0.01	0.22	0.2 g/t AuEq cut	1.3
and	373.00	394.00	21.00	0.88	1.0	0.00	0.04	0.91	0.2 g/t AuEq cut	19.1
inc	379.00	381.00	2.00	1.8	0.21	0.00	0.01	1.8	5. 1	3.7
inc	388.00	392.00	4.00	1.7	2.4	0.00	0.01	1.7		6.8
and	410.00	426.00	16.00	0.30	0.14	0.00	0.01	0.31	0.2 g/t AuEq cut	4.9
inc	424.00	426.00	2.00	1.07	0.53	0.00	0.01	1.1	5,7 5 4,755	2.2
GNDD541	398.00	399.60	1.60	0.72	0.01	0.00	0.00	0.72	0.2 g/t AuEq cut	1.1
and	436.00	441.00	5.00	0.07	62.3	0.06	0.10	0.88	0.2 g/t AuEq cut	4.4
inc	439.90	441.00	1.10	0.24	222	0.18	0.35	3.1	0.12 g/ 0.10 = q 0.00	3.4
and	464.20	464.70	0.50	1.4	48.7	0.00	3.7	3.7		1.8
GNDD546	55.00	59.00	4.00	1.2	0.34	0.00	0.0	1.2		5.0
and	134.00	138.00	4.00	0.48	0.40	0.00	0.0	0.48	0.2 g/t AuEq cut	1.9
and	316.00	330.00	14.00	0.56	1.8	0.03	0.2	0.66	0.2 g/t AuEq cut	9.2
inc	326.00	328.00	2.00	1.8	2.9	0.01	0.1	1.9	0.2 8/ 0.1 0.2 0.0	3.8
and	437.00	439.35	2.35	2.2	8.1	0.00	0.1	2.3	0.2 g/t AuEq cut	5.4
inc	438.30	438.80	0.50	9.7	35.7	0.01	0.0	10.2	10 g/t AuEq cut	5.1
GNDD554	232.90	240.00	7.10	0.26	0.62	0.08	0.18	0.37	0.2 g/t AuEq cut	2.6
and	259.90	306.00	46.10	0.79	0.86	0.02	0.12	0.86	0.2 g/t AuEq cut	39.5
inc	259.90	261.00	1.10	0.89	2.2	0.21	0.45	1.2	0.12 g/ 0.10 = q 0.00	1.3
inc	272.50	279.00	6.50	3.7	2.6	0.01	0.31	3.9		25.2
inc	286.20	287.30	1.10	1.3	0.51	0.01	0.12	1.3		1.4
inc	295.40	296.65	1.25	1.1	2.0	0.06	0.13	1.2		1.4
and	318.80	323.00	4.20	0.43	0.16	0.00	0.01	0.43	0.2 g/t AuEq cut	1.8
and	338.00	362.00	24.00	0.88	0.80	0.00	0.05	0.91	0.2 g/t AuEq cut	21.9
inc	344.70	350.20	5.50	2.8	1.9	0.00	0.21	2.9	<i>Si</i> 1	16.2
GNDD558	310.00	314.00	4.00	0.25	0.62	0.05	0.11	0.32	0.2 g/t AuEq cut	1.3
and	348.00	353.00	5.00	0.25	1.1	0.10	0.14	0.35	0.2 g/t AuEq cut	1.8
and	380.00	382.50	2.50	0.29	0.88	0.04	0.29	0.45	0.2 g/t AuEq cut	1.1
GNDD560	407.00	409.00	2.00	0.55	0.74	0.00	0.00	0.56	0.2 g/t AuEq cut	1.1
and	483.40	486.00	2.60	0.15	4.9	0.05	0.05	0.25	0.2 g/t AuEq cut	0.6
GNDD565	NSI									
GNDD566	434.05	452.25	18.20	0.05	0.65	0.00	0.3	0.19	0.2 g/t AuEq cut	3.4
and	608.15	608.65	0.50	6.4	79.8	0.00	0.81	7.7	<u> </u>	3.9
GNDD570	55.80	78.00	22.20	0.60	3.7	0.36	0.43	0.91	0.2 g/t AuEq cut	20.2
inc	55.80	57.00	1.20	0.60	2.8	0.41	0.80	1.1	<i>O,</i> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.3
inc	63.00	70.30	7.30	1.4	9.0	0.82	0.41	1.8		13.4

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

and	95.00	105.00	10.00	0.33	1.4	0.02	0.15	0.43	0.2 g/t AuEq cut	4.3
inc	103.00	105.00	2.00	0.94	2.6	0.08	0.32	1.1		2.3
GNDD571	213.00	260.00	47.00	0.34	1.1	0.00	0.08	0.39	0.2 g/t AuEq cut	18.1
and	280.00	312.00	32.00	0.19	0.71	0.00	0.02	0.21	0.2 g/t AuEq cut	6.6
and	328.00	338.00	10.00	0.59	0.49	0.00	0.01	0.61	0.2 g/t AuEq cut	6.1
inc	334.00	336.00	2.00	1.6	1.4	0.00	0.01	1.6		3.2
and	356.00	367.00	11.00	9.0	5.7	0.00	0.05	9.1	0.2 g/t AuEq cut	100.1
inc	356.00	363.80	7.80	12.5	7.9	0.00	0.06	12.6		98.6
inc	357.90	359.40	1.50	15.7	9.7	0.00	0.01	15.8	10 g/t AuEq cut	23.7
inc	362.50	363.80	1.30	46.7	31.4	0.00	0.34	47.2	10 g/t AuEq cut	61.4
GNDD577	104.00	114.40	10.40	0.21	0.92	0.03	0.05	0.25	0.2 g/t AuEq cut	2.6
and	126.00	143.00	17.00	1.6	1.2	0.07	0.08	1.6	0.2 g/t AuEq cut	27.5
inc	136.00	138.00	2.00	10.8	1.8	0.02	0.02	10.8	10 g/t AuEq cut	21.7
and	161.00	169.00	8.00	0.25	0.78	0.00	0.01	0.26	0.2 g/t AuEq cut	2.1
and	185.00	190.00	5.00	1.1	6.2	0.34	0.61	1.5		7.5
and	266.00	275.50	9.50	0.22	0.44	0.02	0.07	0.26	0.2 g/t AuEq cut	2.5
and	288.00	294.00	6.00	0.34	0.17	0.00	0.01	0.35	0.2 g/t AuEq cut	2.1
and	532.70	533.25	0.55	22.8	88.9	0.04	17.64	32.0	10 g/t AuEq cut	17.6
GNDD578	349.00	354.25	5.25	0.26	1.3	0.00	0.14	0.34	0.2 g/t AuEq cut	1.8
inc	353.65	354.25	0.60	1.0	6.3	0.02	1.2	1.6		1.0
GNDD581	173.00	175.00	2.00	1.1	7.7	0.02	0.02	1.2	0.2 g/t AuEq cut	2.4
inc	173.65	175.00	1.35	1.5	4.4	0.01	0.01	1.5		2.1
and	191.00	198.00	7.00	0.22	28.1	0.07	0.19	0.67	0.2 g/t AuEq cut	4.7
inc	192.60	193.20	0.60	0.35	288	0.71	1.8	4.8		2.9
GNDD582	305.35	310.00	4.65	0.22	1.1	0.01	0.14	0.30	0.2 g/t AuEq cut	1.4
and	417.80	418.60	0.80	1.0	11.0	0.06	2.4	2.3		1.9
GNDD586	30.00	34.00	4.00	0.12	11.7	1.5	2.1	1.5	0.2 g/t AuEq cut	6.0
inc	30.00	32.00	2.00	0.20	16.1	2.2	3.2	2.3		4.6
and	199.00	203.00	4.00	0.40	7.2	0.01	0.03	0.50	0.2 g/t AuEq cut	2.0
and	263.00	320.65	57.65	0.32	2.6	0.01	0.20	0.45	0.2 g/t AuEq cut	25.7
inc	272.00	273.00	1.00	0.54	3.7	0.00	1.06	1.1		1.1
inc	294.00	302.00	8.00	1.3	10.0	0.01	0.90	1.8		14.7
inc	318.00	319.05	1.05	0.64	4.3	0.01	0.7	1.0		1.1
GNDD587	85.00	120.00	35.00	0.23	0.55	0.07	0.11	0.30	0.2 g/t AuEq cut	10.7
inc	116.45	118.00	1.55	1.1	2.3	0.36	0.68	1.5		2.4
and	138.00	142.00	4.00	0.38	0.79	0.01	0.23	0.50	0.2 g/t AuEq cut	2.0
and	154.00	158.80	4.80	0.38	0.70	0.01	0.22	0.49	0.2 g/t AuEq cut	2.4
and	182.00	213.00	31.00	0.66	1.9	0.01	0.29	0.82	0.2 g/t AuEq cut	25.3
inc	182.90	188.65	5.75	2.3	7.3	0.05	1.4	3.0		17.5
inc	211.80	213.00	1.20	2.6	7.5	0.01	0.40	2.9		3.4
GNDD588	182.00	201.00	19.00	0.30	0.71	0.01	0.04	0.33	0.2 g/t AuEq cut	6.3
inc	182.00	183.00	1.00	1.2	1.3	0.01	0.01	1.2		1.2
inc	187.80	189.00	1.20	1.7	1.9	0.02	0.04	1.8		2.2
and	213.00	220.30	7.30	0.57	0.58	0.00	0.01	0.58	0.2 g/t AuEq cut	4.2
and	242.00	254.00	12.00	0.22	1.3	0.14	0.17	0.34	0.2 g/t AuEq cut	4.1
and	281.40	299.50	18.10	2.3	2.8	0.23	0.46	2.6	0.2 g/t AuEq cut	47.1
inc	281.40	282.65	1.25	4.6	13.3	1.51	3.4	6.6		8.3
inc	289.70	290.70	1.00	32.6	18.1	1.57	1.9	34.0	10 g/t AuEq cut	34.0
inc	298.85	299.50	0.65	2.1	4.4	0.33	1.9	3.1		2.0

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

and	314.00	401.00	87.00	0.67	1.4	0.00	0.01	0.69	0.2 g/t AuEq cut	60.3
inc	315.00	323.00	8.00	2.9	3.4	0.01	0.01	3.0		23.8
inc	331.00	341.00	10.00	1.2	1.6	0.00	0.05	1.3		12.8
inc	379.00	381.00	2.00	2.2	0.4	0.00	0.00	2.3		4.5
inc	399.00	401.00	2.00	1.0	0.30	0.00	0.00	1.0		2.1
GNDD589	394.00	395.00	1.00	4.2	8.5	1.0	0.83	4.9		4.9
and	266.00	269.25	3.25	0.59	6.3	0.09	0.24	0.79	0.2 g/t AuEq cut	2.6
and	273.80	274.40	0.60	0.93	9.6	0.03	0.14	1.1		0.7
GNDD591	224.00	238.00	14.00	1.2	0.91	0.02	0.0	1.2	0.2 g/t AuEq cut	17.4
inc	229.25	232.00	2.75	4.4	3.5	0.05	0.1	4.5		12.4
inc	236.00	238.00	2.00	1.3	0.48	0.02	0.0	1.3		2.7
and	250.00	254.00	4.00	1.7	3.7	0.07	0.4	2.0	0.2 g/t AuEq cut	7.8
inc	253.30	254.00	0.70	8.80	17.7	0.39	2.2	10.1		7.1
and	382.70	386.00	3.30	4.6	12.4	0.02	1.3	5.4	0.2 g/t AuEq cut	17.7
inc	382.70	383.40	0.70	20.5	55.7	0.01	5.6	23.8	10 g/t AuEq cut	16.6
and	425.00	429.60	4.60	0.53	0.63	0.00	0.01	0.5	0.2 g/t AuEq cut	2.5
inc	429.00	429.60	0.60	3.1	0.56	0.00	0.02	3.1		1.9
and	436.40	437.00	0.60	1.4	13.1	0.00	2.3	2.6		1.6
GNDD593	105.50	124.00	18.50	0.16	2.2	0.00	0.08	0.23	0.2 g/t AuEq cut	4.3
and	139.00	141.00	2.00	0.68	0.92	0.00	0.10	0.74	0.2 g/t AuEq cut	1.5
and	153.00	164.00	11.00	0.83	1.7	0.02	0.10	0.90	0.2 g/t AuEq cut	9.8
inc	153.00	157.00	4.00	1.7	4.0	0.05	0.20	1.8		7.3
GNDD594	104.00	116.00	12.00	0.72	1.8	0.21	0.51	1.0	0.2 g/t AuEq cut	12.2
inc	108.00	110.00	2.00	3.1	6.5	0.48	1.5	3.9		7.9
and	162.00	163.40	1.40	2.1	0.30	0.00	0.01	2.1		2.9
and	198.00	204.00	6.00	0.63	3.3	0.02	0.13	0.73	0.2 g/t AuEq cut	4.4
inc	198.00	198.50	0.50	1.7	3.3	0.12	0.32	2.0		1.0
GNDD595	198.35	212.10	13.75	0.32	2.5	0.00	0.02	0.36	0.2 g/t AuEq cut	5.0
and	226.00	247.20	21.20	0.58	4.0	0.06	0.14	0.71	0.2 g/t AuEq cut	15.0
inc	230.00	231.30	1.30	1.2	3.6	0.10	0.40	1.5		1.9
inc	240.45	242.00	1.55	3.2	20.3	0.28	0.86	3.9		6.0
and	266.00	305.80	39.80	0.26	2.9	0.08	0.30	0.45	0.2 g/t AuEq cut	18.0
inc	266.00	268.00	2.00	1.6	8.5	0.01	0.04	1.7		3.4
inc	304.45	305.80	1.35	1.2	28.5	2.1	8.0	5.7		7.7
and	375.20	382.10	6.90	0.28	3.8	0.08	0.31	0.48	0.2 g/t AuEq cut	3.3
inc	381.35	382.10	0.75	2.3	30.8	0.17	2.3	3.8		2.8
GNDD597	NSI									0.0
GNDD598	114.85	120.35	5.50	0.41	1.6	0.06	0.06	0.47	0.2 g/t AuEq cut	2.6
inc	114.85	115.65	0.80	1.0	3.0	0.17	0.16	1.1	9. 1	0.9
and	168.00	240.00	72.00	0.24	1.0	0.01	0.10	0.30	0.2 g/t AuEq cut	21.5
inc	204.00	206.00	2.00	1.4	0.86	0.00	0.00	1.4	<i>G,</i> 1	2.9
and	253.00	271.00	18.00	0.34	0.62	0.00	0.01	0.35	0.2 g/t AuEq cut	6.2
and	283.00	295.00	12.00	0.40	1.5	0.00	0.01	0.42	0.2 g/t AuEq cut	5.1
GNDD599	NSI								<u> </u>	0.0
GNDD603	61.00	85.90	24.90	0.20	7.7	0.00	0.0	0.31	0.2 g/t AuEq cut	7.6
inc	81.00	83.00	2.00	0.88	17.4	0.00	0.1	1.1	3, 1 14 113	2.2
and	124.00	132.00	8.00	0.22	2.3	0.03	0.1	0.29	0.2 g/t AuEq cut	2.3
GNDD604	163.45	166.70	3.25	2.0	15.7	1.3	2.5	3.6	G, 1 1512 q 1510	11.7
and	236.00	260.65	24.65	2.3	6.4	0.04	1.0	2.8	0.2 g/t AuEq cut	69.4

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Functon, Finance Dir

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

inc	236.00	238.00	2.00	1.0	10.8	0.05	0.52	1.4		2.8
inc	247.50	249.00	1.50	5.0	3.4	0.18	0.26	5.2		7.7
inc	259.45	260.65	1.20	36.2	92.1	0.09	17.3	45.3	10 g/t AuEq cut	54.4
and	375.00	375.90	0.90	24.9	15.3	0.01	3.5	26.7	10 g/t AuEq cut	24.0
and	417.60	419.85	2.25	3.3	30.1	0.01	8.2	7.5		16.8
and	426.40	428.20	1.80	1.4	0.14	0.00	0.01	1.4		2.5
GNDD605	15.00	19.00	4.00	0.12	1.8	0.16	0.32	0.32	0.2 g/t AuEq cut	1.3
and	46.00	70.00	24.00	0.13	2.6	0.01	0.54	0.41	0.2 g/t AuEq cut	9.8
GNDD606	42.00	62.00	20.00	0.40	1.6	0.01	0.16	0.50	0.2 g/t AuEq cut	9.9
inc	48.00	50.00	2.00	2.3	2.6	0.01	0.17	2.4		4.9
GNDD610	93.00	99.00	6.00	0.19	4.8	0.01	0.05	0.27	0.2 g/t AuEq cut	1.6
GNDD612	64.90	100.15	35.25	0.93	2.7	0.30	0.49	1.2	0.2 g/t AuEq cut	44.1
inc	76.00	84.00	8.00	3.4	8.4	0.91	1.7	4.5		35.7
inc	99.00	100.15	1.15	0.76	3.8	0.70	0.82	1.3		1.5
and	117.00	131.00	14.00	1.0	1.1	0.01	0.22	1.1	0.2 g/t AuEq cut	16.0
inc	117.00	121.00	4.00	3.0	3.1	0.02	0.61	3.3		13.3
and	148.00	162.50	14.50	0.93	6.3	0.04	0.10	1.1	0.2 g/t AuEq cut	15.4
inc	154.00	158.00	4.00	2.4	4.7	0.05	0.11	2.5		9.9
and	176.20	180.00	3.80	0.28	0.52	0.00	0.03	0.30	0.2 g/t AuEq cut	1.1
GNDD618	90.50	99.00	8.50	1.1	4.9	0.13	0.51	1.4	0.2 g/t AuEq cut	12.0
inc	90.50	96.00	5.50	1.5	6.4	0.16	0.68	1.9	,	10.5
and	147.00	191.00	44.00	0.28	0.66	0.00	0.03	0.31	0.2 g/t AuEq cut	13.5
inc	169.00	171.00	2.00	1.0	1.2	0.00	0.04	1.0	<i>9</i> , 1	2.1
and	206.50	260.00	53.50	0.20	1.2	0.03	0.10	0.27	0.2 g/t AuEq cut	14.3
inc	211.00	211.50	0.50	1.6	13.0	0.00	4.3	3.8	, , , , , , , , , , , , , , , , , , ,	1.9
GNDD626	6.00	40.00	34.00	0.20	6.0	0.02	0.20	0.37	0.2 g/t AuEq cut	12.6
inc	14.00	17.10	3.10	0.73	30.7	0.09	0.40	1.3		4.1
and	135.70	168.00	32.30	0.65	1.4	0.06	0.18	0.76	0.2 g/t AuEq cut	24.6
inc	155.00	157.00	2.00	0.95	1.5	0.10	0.11	1.0	-	2.1
inc	166.45	168.00	1.55	8.3	13.2	0.81	2.6	9.8		15.2
and	202.00	209.20	7.20	0.45	1.1	0.03	0.14	0.54	0.2 g/t AuEq cut	3.9
inc	205.00	206.80	1.80	1.1	2.6	0.09	0.48	1.4	, , , , , , , , , , , , , , , , , , ,	2.5
GNDD629	117.00	215.00	98.00	0.36	1.6	0.01	0.10	0.43	0.2 g/t AuEq cut	42.5
inc	129.00	131.00	2.00	1.9	2.3	0.00	0.13	2.0	·	3.9
inc	164.00	166.00	2.00	1.0	0.62	0.00	0.05	1.0		2.0
inc	191.75	194.65	2.90	3.1	19.1	0.26	1.4	4.1		11.8
and	262.55	266.50	3.95	0.26	2.0	0.03	0.14	0.36	0.2 g/t AuEq cut	1.4
and	278.00	284.00	6.00	0.39	0.21	0.00	0.00	0.40	0.2 g/t AuEq cut	2.4
GNDD633	115.50	128.55	13.05	0.56	0.76	0.02	0.04	0.59	0.2 g/t AuEq cut	7.7
inc	118.60	120.20	1.60	1.2	2.3	0.11	0.21	1.3	5, 1,111	2.1
inc	126.00	128.55	2.55	1.5	0.89	0.00	0.02	1.5		3.8
and	147.00	218.00	71.00	0.34	0.56	0.01	0.04	0.37	0.2 g/t AuEq cut	26.2
inc	148.65	153.00	4.35	1.3	1.4	0.00	0.17	1.4	5, 1,111	5.9
inc	189.00	191.00	2.00	1.6	1.5	0.02	0.04	1.6		3.2
and	246.00	276.00	30.00	0.77	1.7	0.01	0.08	0.83	0.2 g/t AuEq cut	25.0
inc	252.00	252.70	0.70	23.4	46.4	0.32	2.7	25.3	10 g/t AuEq cut	17.7
and	367.00	413.00	46.00	1.2	4.4	0.01	0.87	1.7	0.2 g/t AuEq cut	76.5
inc	380.30	384.20	3.90	7.3	18.7	0.00	0.75	7.9	6, 0, 10 and 000	30.6
	500.50	307.20	3.50	, .5	10.7	0.00	0.75	7.5		30.0

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO

Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

inc	411.20	411.75	0.55	4.0	21.0	0.03	10.5	9.2		5.0
GNDD635	97.00	100.00	3.00	0.33	0.73	0.01	0.01	0.35	0.2 g/t AuEq cut	1.0
and	283.10	287.40	4.30	0.32	10.7	0.09	0.82	0.85	0.2 g/t AuEq cut	3.6
inc	285.00	287.40	2.40	0.53	15.0	0.14	1.3	1.3		3.2
and	296.70	297.40	0.70	0.86	27.7	0.03	11.9	6.7		4.7
and	344.00	346.00	2.00	0.60	1.6	0.00	0.11	0.67	0.2 g/t AuEq cut	1.3
GNDD642	18.00	82.00	64.00	0.45	0.80	0.03	0.05	0.49	0.2 g/t AuEq cut	31.1
inc	18.00	20.00	2.00	1.54	1.0	0.02	0.09	1.6		3.2
inc	40.00	42.00	2.00	1.23	0.76	0.01	0.03	1.3		2.5
inc	62.00	64.00	2.00	2.17	1.4	0.28	0.10	2.3		4.6
inc	72.00	74.00	2.00	1.49	0.79	0.11	0.17	1.6		3.2
and	306.00	313.00	7.00	0.20	1.4	0.04	0.11	0.28	0.2 g/t AuEq cut	1.9
and	344.40	347.80	3.40	8.9	42.5	0.12	4.5	11.5	10 g/t AuEq cut	39.1
and	355.80	363.20	7.40	7.4	36.8	0.08	6.3	10.8	10 g/t AuEq cut	79.9
combined	344.40	363.20	18.80	4.5	22.3	0.06	3.3	6.3		119.3
and	430.00	436.00	6.00	0.23	2.2	0.04	0.51	0.51	0.2 g/t AuEq cut	3.0
inc	433.70	434.20	0.50	1.2	16.3	0.03	4.3	3.4		1.7
and	480.90	481.45	0.55	0.21	19.7	0.03	10.3	5.2		2.9

¹ Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1900 Oz, Ag US\$24 Oz, Zn US\$4,000/t, Pb US\$2000/t
- Metallurgical recoveries are estimated to be Au (95%), Ag (91%), Zn (67%) Pb (58%) across all ore types (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x 0.012106] + [Zn (%) x 0.46204] + [Pb (%) x 0.19961]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America with a maiden **2.1 million ounce gold Resource Estimate** recently announced for the Hualilan Gold Project in San Juan, Argentina. Three rigs are currently drilling at Hualilan with 2-rigs operating at the Company's El Guayabo project in Ecuador.

The Company strategy is for the 100% owned Hualilan Gold Project to provide a high-grade low capex operation in the near term while it prepares for much larger bulk gold operations at both Hualilan and El Guaybo in Ecuador.

- 1. Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive drilling with over 150 historical and 700 CEL drill-holes and the Company has released an Interim JORC 2012 Compliant resource of 2,133,065 ounces which remains open in most directions. This resource contains a Skarn component 6.3 Mt at 5.6 g/t AuEq for 1.1 Moz AuEg and an intrusion/sediment-hosted component of 41.5Mt at 0.8 g/t AuEg for 1.0 Moz AuEq. The resource was based on 126,000 metres of CEL's 264,000 metre drill program. The project was locked up in a dispute for the 15 years prior to the Company's involvement and as a consequence had seen no modern exploration until CEL acquired the project in 2019. In the past 2 years CEL has completed over 700 drill holes for more than 200,000 metres of drilling. Results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 67.7m @ 7.3 g/t Au, 5.7 g/t Ag, 0.6% Zn, and 63.3m @ 8.5 g/t Au, 7.6 g/t Ag, 2.8% Zn. This drilling intersected high-grade gold over 3.5 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 209.0m at 1.0 g/t Au, 1.4 g/t Ag, 0.1% Zn and 110.5m at 2.5 g/t Au, 7.4 g/t Au, 0.90% Zn in intrusives. CEL's current program which is fully funded will include an additional 60,000 metres of drilling, an updated JORC Compliant Mineral Resource Estimate, and Scoping Study.
- 2. El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and is located 5 kilometres along strike from the 22-million ounce Cangrejos Gold Project¹. Prior to CEL the project was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t Ag which have never been followed up. CEL's maiden drilling program confirmed the discovery of a major Au-Cu-Ag-Mo gold system spanning several zones of significant scale. results from CEL's maiden drill program included 257.8m at 1.4 g/t AuEq including 53.7m at 5.3 g/t AuEq and 309.8m at 0.7 g/t AuEq including 307.1m at 0.8 g/t AuEq, and 528.7m at 0.5 g/t AuEq from surface to the end of the hole including 397.1m at 0.6 g/t AuEq from surface. The Company has drilled five of fifteen regionally significant Au-soil anomalies with over 500 metres of mineralisation intersected at all anomalies, confirming the potential for a major bulk gold system at El Guayabo. The Company has two rigs on site completing an additional 25,000 metres of diamond core drilling designed to allow the reporting of a maiden JORC 2012 Compliant resource for the main GY-A discovery zone.

¹ Source: Lumina Gold (TSX: LUM) July 2020 43-101 Technical Report

Mineralisation Style	Mt (0.25 g/t AuEq cut-off)	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	Au Eq (g/t)
Skarn (limestone hosted)	6.3	4.4	19.4	2.0	0.2	5.6
intrusion/sediment hosted	41.4	0.6	4.0	0.2	0.04	0.8
Mineralisation Style	Contained Metal	Au (Moz)	Ag (Moz)	Zn (kt)	Pb (kt)	Au Eq (kOz
Skarn (limestone hosted)		0.9	3.9	123	11	1.13
intrusion/sediment hosted		0.8	5.3	95	19	1.00
Total Contained metal		1.7	9.2	218	29	2.13

Table 3 Interim MRE reported as Skarn and Intrusion/sediment hosted components of mineralisation

Domain	Category	Mt	Au g/t	Ag g/t	Zn %	Pb %	AuEq g/t	AuEq (Mozs)
US\$1800 optimised shell	Indicated	18.7	1.1	5.4	0.41	0.07	1.3	0.80
> 0.25ppm AuEq	Inferred	25.0	1.0	5.6	0.39	0.06	1.2	1.00
Below US\$1800 shell >1.0ppm AuEq	Inferred	4.0	1.9	11.5	1.04	0.07	2.6	0.33
Total Indicated and Inj	47.7	1.1	6.0	0.45	0.06	1.4	2.13	

Note: Some rounding errors may be present

Table 4 Total Interim MRE (Combined skarn and Intrusion hosted domains)

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND MINERAL RESOURCES

The information that relates to sampling techniques and data, exploration results, geological interpretation and Mineral Resource Estimate has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results and Mineral Resources. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

The Mineral Resource Estimate for the Hualilan Gold Project was first announced to the ASX on 1 June 2022. The Company confirms it is not aware of any information or assumptions that materially impacts the information included in that announcement and that the material assumptions and technical parameters underpinning the Mineral Resource Estimate continue to apply and have not materially changed.

JORC Code, 2012 Edition – Table 1 report template Section 1 Sampling Techniques and Data -Hualilan Project

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard 	Diamond core (HQ3 and NQ3) was cut longitudinally on site using a diamond saw or split using a hand operated hydraulic core sampling splitter. Samples lengths are generally from 0.5m to 2.0m in length (average 1.74m). Sample lengths are selected according to lithology, alteration, and mineralization contacts.
	measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes,	For reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled were collected from a face sample recovery cyclone mounted on the drill machine.
	or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of	Channel samples are cut into underground or surface outcrop using a hand-held diamond edged cutting tool. Parallel saw cuts 3-5cm apart are cut 2-4cm deep into the rock which allows for the extraction of a representative sample using a hammer and chisel. The sample is collected onto a plastic mat and collected into a sample bag.
	sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any	Core, RC and channel samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75 μ m. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.
	measurement tools or systems used Aspects of the determination of mineralisation that are Material to	A 10g charge was analysed for at least 48 elements by 4-acid digest and ICP-MS determination. Elements determined include Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr.
	the Public Report In cases where 'industry standard'	For Ag $>$ 100 g/t, Zn, Pb and Cu $>$ 10,000 ppm and S $>$ 10%, overlimit analysis was done by the same method using a different calibration.
	work has been done this would be relatively simple (eg 'reverse	Unused pulps are returned from the laboratory to the Project and stored in a secure location, so they are available for any further analyses. Remaining drill core is stored undercover for future use if required.
	circulation drilling was used to obtain 1 m samples from which 3 kg	Visible gold observed has been observed in only 1 drill core sample only. Coarse gold is not likely to result in sample bias.
	was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be	Historic Data: There is little information provided by previous explorers to detail sampling techniques. Selected drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns,
	required, such as where there is coarse gold that has inherent	Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.
	sampling problems. Unusual commodities or mineralisation types	
	(eg submarine nodules) may warrant disclosure of detailed	
	information.	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

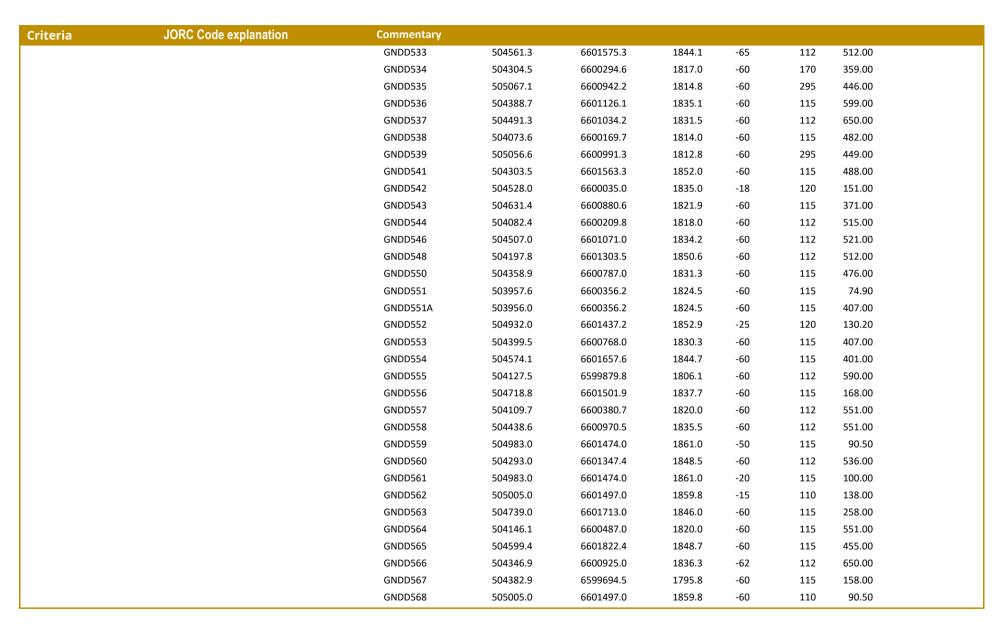
Criteria

JORC Code explanation

Commentary

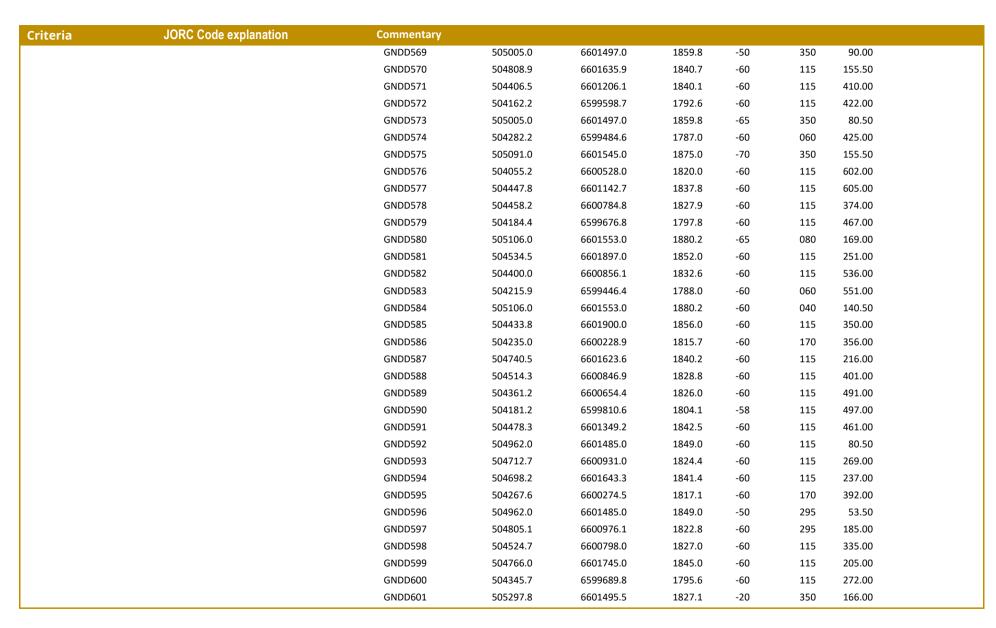
Drilling techniques

 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). CEL drilling of HQ3 core (triple tube) was done using various truck and track mounted drill machines that are operated by various drilling contractors based in Mendoza and San Juan. The core has not been oriented as the rock is commonly too broken to allow accurate core orientation.


CEL drilling of reverse circulation (RC) drill holes was done using a track mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling was done using a 5.25 inch hammer bit.

Collar details for DD drill holes not included in the 01 June 2022 Resource Estimate are shown below in WGS84, zone 19s projection. Collar locations for drill holes are surveyed using DGPS following drilling. For drill collar and channel sample details for holes that are included in the 01 June 2022 Resource Estimate, see CEL ASX release of 01 June 2022.

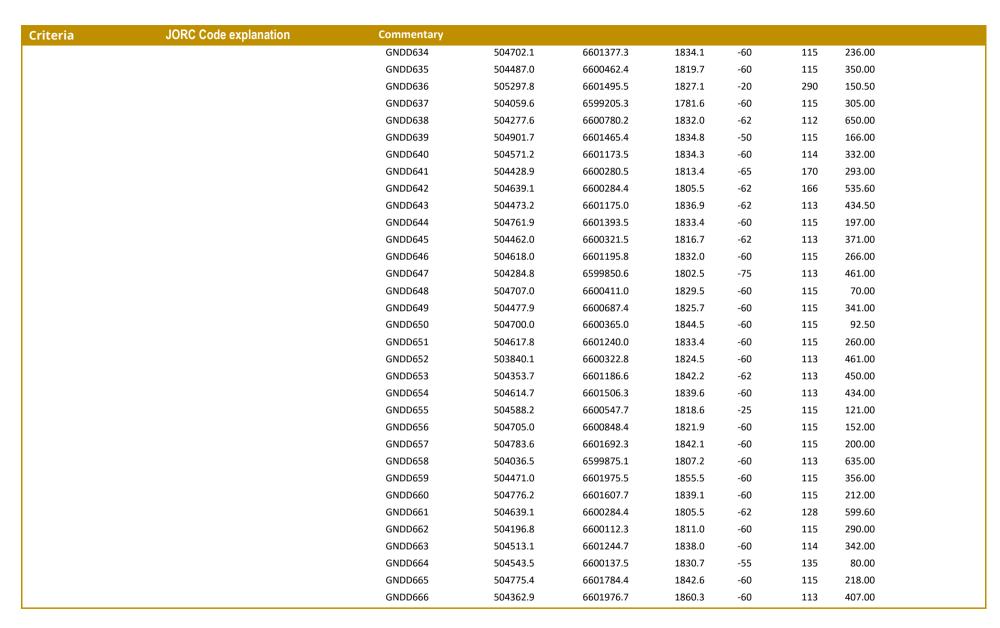
Hole_id	East (m)	North (m)	Elevation (m)	Dip (°)	Azimuth (°)	Depth (m)
GNDD316 EXT	504121.0	6599927.0	1804.4	-60	115	217.40
GNDD359 EXT	504408.4	6601161.1	1827.6	-60	115	118.00
GNDD483	504127.1	6599924.1	1804.4	-50	115	380.00
GNDD487	504284.6	6601262.1	1844.7	-60	115	602.00
GNDD495	504339.7	6599517.9	1787.6	-60	115	167.00
GNDD497	504339.7	6599517.9	1787.6	-60	060	293.00
GNDD501	504467.0	6599500.0	1797.0	-60	060	290.00
GNDD505	503976.2	6599818.0	1802.9	-60	112	635.00
GNDD506	504635.7	6600966.9	1817.2	-60	115	515.00
GNDD508	504276.1	6600340.1	1818.3	-60	112	560.00
GNDD509	504491.3	6599599.8	1794.7	-60	115	232.00
GNDD510	504517.3	6600933.8	1827.7	-60	115	500.00
GNDD511	504526.0	6600059.0	1833.3	-10	110	175.00
GNDD516	504723.4	6600793.6	1821.3	-60	115	188.00
GNDD518	504468.5	6600287.0	1818.4	-60	170	332.00
GNDD519	504491.2	6599622.0	1794.8	-50	115	101.00
GNDD521	504907.6	6600928.4	1814.5	-60	295	392.00
GNDD525	504331.6	6600372.6	1819.5	-60	170	437.00
GNDD526	504529.0	6599963.0	1840.1	-15	115	190.00
GNDD528	505056.2	6600903.2	1813.2	-60	295	489.00
GNDD529	504539.1	6600347.5	1817.5	-60	170	452.00
GNDD530	504038.0	6600143.0	1815.0	-60	115	557.00
GNDD531	504431.9	6600929.5	1833.0	-60	115	461.00


Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

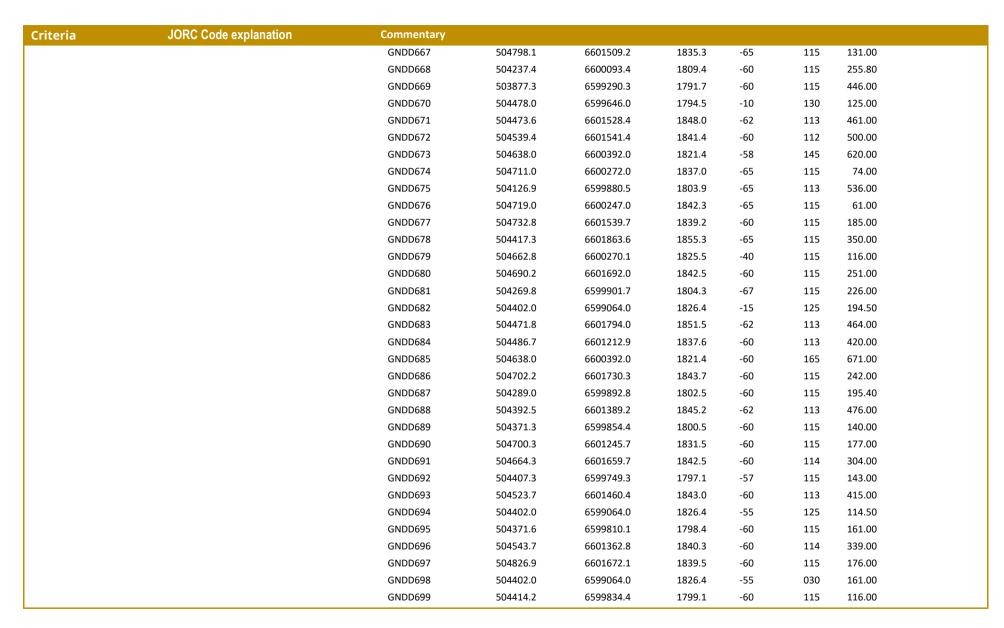
Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

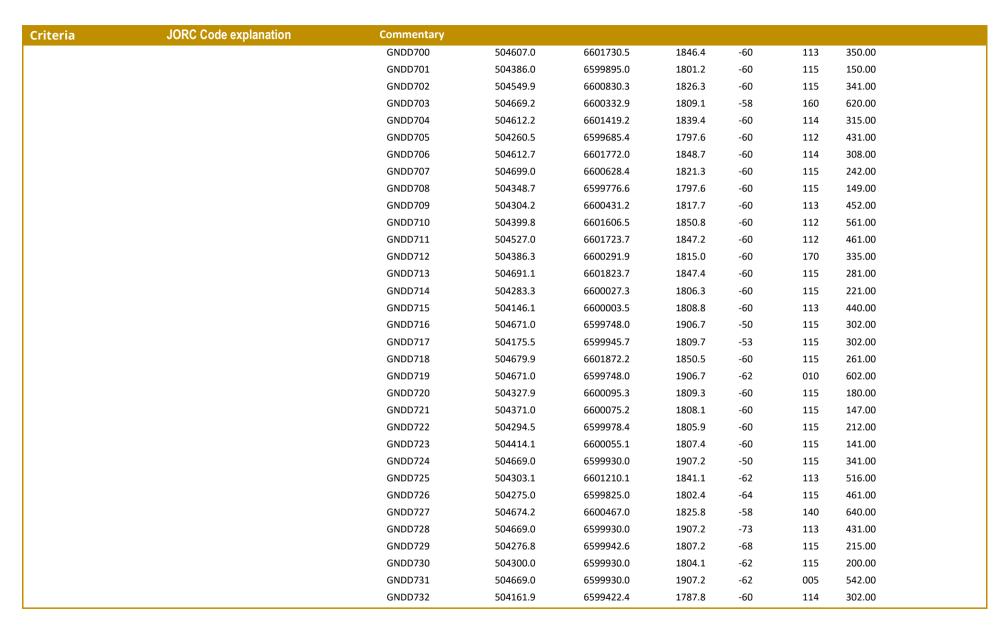
Contact T: +61 8 6380 9235 E: admin@challengerex.com


Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com


Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com


Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD733	503981.8	6599506.4	1791.9	-60	113	410.00
		GNDD734	504669.0	6599930.0	1907.2	-60	345	311.00
		GNDD735	504339.7	6601149.0	1840.5	-60	113	501.00
		GNDD736	504211.1	6599576.0	1792.4	-62	115	206.00
		GNDD737	504671.0	6599748.0	1903.0	-50	035	302.00
		GNDD738	503877.8	6599378.3	1794.6	-60	112	467.00
		GNDD739	504671.0	6599748.0	1906.7	-60	345	524.00
		GNDD740	503877.3	6599202.0	1787.2	-60	112	452.00
		GNDD741	504396.1	6601255.1	1840.7	-60	113	423.00
		GNDD742	503960.0	6598987.0	1775.1	-60	114	305.00
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and	d run. These depth:	s are reconciled by	CEL geologists whe	n measuring c			en blocks at the end of each sing core loss. Triple tube
	results assessed.		eing done by CEL t	o maximise core re	covery.			
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists 	collected for each splitter to split ou consistency in san	metre of RC drilling t a 2-4 kg sub-samp	g. Duplicate sample	es are taken at	the rate of	I every 25-	lone. A 2-4 kg sub-samples is 30 samples using a riffle sample recovery and
	between sample recovery and grad and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Channel samples I	saw-cut channels					eights. The channel samples no correlation between
		low recoveries had by the intensity of	ve resulted lower re	eported values. His in the rock. A posit	toric core reco ive correlatior	overy data is n between r	incomplet ecovery and	u Ag or Zn values whereby e. Core recovery is influenced d RQD has been observed.
Logging	 Whether core and chip samples have been geologically and geotechnical logged to a level of detail to suppor appropriate Mineral Resource estimation mining studies and 	y mineralization, an t metallurgical test geological modelli	d structure to a lev work. RC drill chips ing resource estima	el that is suitable for are logged for geo tion and metallurg	or geological mology, alterationical test work.	nodelling, M n and mine Where pos	ineral Reso ralisation to sible loggin	ng, lithology, alteration, urce Estimation and o a level that is suitable for g is quantitative. Geological nsferred to a secure, offsite,

Directors

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

www.challengerex.com

Issued Capital

10m options

1,044.9m shares

120m perf shares

16m perf rights

Australian Registered Office

Level 1

1205 Hay Street

West Perth WA 6005

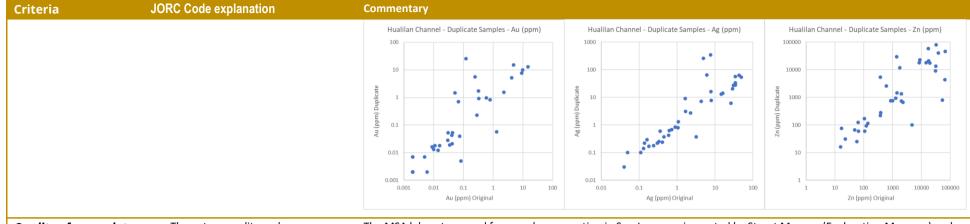
Challenger Exploration Limited

ACN 123 591 382

ASX: CEL

Criteria	iteria JORC Code explanation			Commentary									
	metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or	cloud-based database which holds all drill hole logging sample and assay data. No specialist geotechnical logging has been undertaken. Detailed logs are available for most of the historical drilling. Some logs have not been recovered. No core photographs											
	 costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	from the historic drilling have been found. No drill core has survived due to poor storage and neglect. No historic RC sample chips have been found.											
Sub-sampling techniques and sample preparation	If core whether cut or sawn and whether quarter half or all core taken. CEL samples have been submitted to the MSA laboratory in San Juan, the ALS laboratory in Mendoza and the for laboratory in San Juan for sample preparation. The sample preparation technique is considered appropriate for of mineralization present in the Project.												
	 If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. 	Sample sizes are appropriate for the mineralisation style and grain size of the deposit.											
		Sample intervals are selected based on lithology, alteration, and mineralization boundaries. Representative samples of of the core are selected. Sample length averages 1.74m. Second-half core or ¼ core samples have been submitted for a mineralised interval in 1 drill hole only and for some metallurgical samples. The second half of the core samples has been retained in the core trays for future reference.											
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	Competent drill core is cut longitudinally using a diamond saw for sampling of ½ the core. Softer core is split using a wideline blade chisel or a manual core split press. The geologist logging the core, marks where the saw cut or split is to be made ensure half-core sample representivity.											
	 Measures taken to ensure that the sampling is representative of the insitu material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	From GNDD073 and later holes, duplicate core samples consisting of two $\frac{1}{4}$ core samples over the same interval have to collected approximately every 30-50m drilled.											
		Duplicate core sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:											
			count	RSQ		ean		dian		ance			
		Au (ppm) Ag (ppm)	2,897 2,897	0.961 0.691	original 0.083 0.56	0.084 0.50	original 0.007 0.17	0.007 0.16	original 0.766 9.37	duplicate 0.977 3.99			
		Cd (ppm)	2,897	0.979	1.50	1.40	0.09	0.09	193.22	173.70			
		Cu (ppm) Fe (%)	2,897 2,897	0.433 0.988	15.04 1.944	13.91 1.940	3.20 1.700	3.20 1.700	5.0E+03 3.22	2.8E+03 3.20			
		Pb (ppm) S (%)	2,897 2,897	0.944 0.975	68.6 0.340	65.9 0.337	14.2 0.150	13.8 0.150	2.3E+05 0.389	3.3E+05 0.372			
		Zn (ppm) RSQ = R squar	2,897 ed	0.976	275	262	74	72	4.6.E+06	4.2.E+06	l		

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director


JORC Code explanation Criteria Commentary Hualilan DD - Duplicate Samples - Au (ppm) Hualilan DD - Duplicate Samples - Ag (ppm) Hualilan DD - Duplicate Samples - Zn (ppm) 100 1000 100000 100 10000 1000 0.001 10 100 0.1 10 100 1000 Ag (ppm) Original Au (ppm) Original Zn (ppm) Original Hualilan DD - Duplicate Samples - Pb (ppm) 2020 Hualilan DD - Duplicate Samples - Fe (pct) 2020 Hualilan DD - Duplicate Samples - S (pct) 10000 1000 0.01 0.001 100 100 0.1 0.01 10 0.1 Fe (pct) Original Pb (ppm) Original S (pct) Original RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled. The duplicate RC sample results and correlation plots (log scale for Au, Ag and Zn) are shown below: RSQ median count mean variance duplicate original duplicate original duplicate original Au (ppm) 85 0.799 0.101 0.140 0.017 0.016 0.041 0.115 Ag (ppm) 85 0.691 1.74 2.43 0.59 0.58 13.59 64.29 Cd (ppm) 85 0.989 15.51 16.34 0.41 0.44 4189 4737 Cu (ppm) 85 0.975 47.74 53.86 5.80 5.70 2.4E+04 3.1E+04 Fe (%) 85 0.997 1.470 1.503 0.450 0.410 7.6 7.6

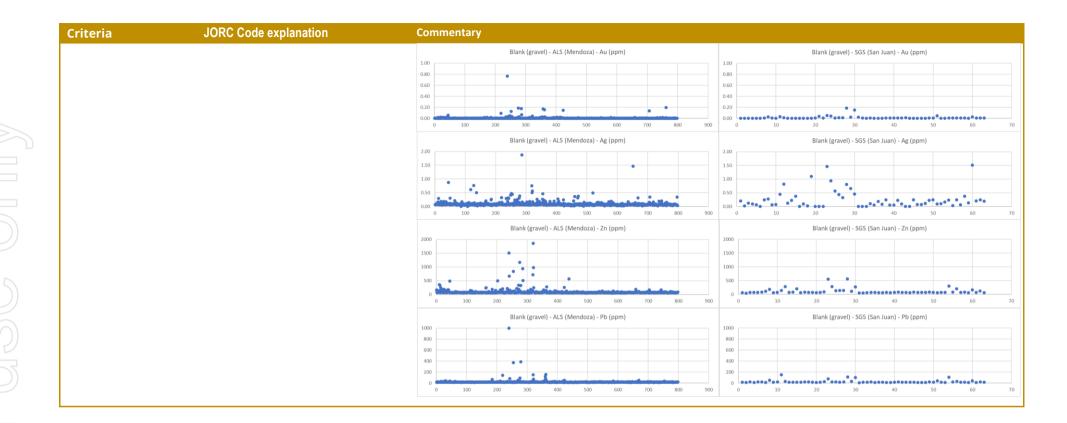
Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

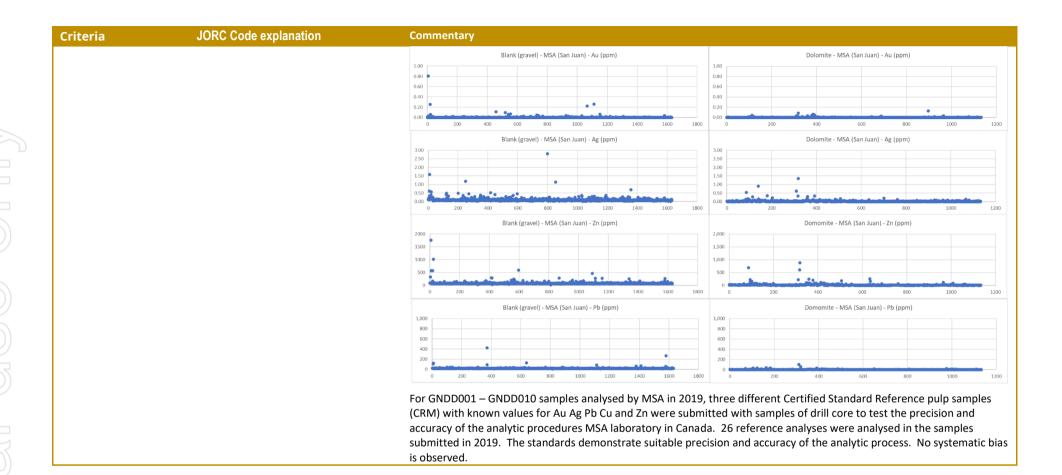
DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Quality of assay data and laboratory tests


- The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc.
- Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

The MSA laboratory used for sample preparation in San Juan was inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (CEL Director) prior to any samples being submitted. The laboratory has been visited and revied most recently by Stuart Munroe (Exploration Manager) in May 2022. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The SGS laboratory in San Juan and the ALS laboratory in Mendoza has not yet been inspected by CEL representatives due to COVID-19 restrictions. Each laboratory presents internal laboratory standards for each job to gauge precision and accuracy of assays reported.

CEL have used two different blank samples, submitted with drill core and subjected to the same preparation and assay as the core samples, RC sub-samples and channel samples. The blank samples are sourced from surface gravels in the Las Flores area of San Juan and from a commercial dolomite quarry near San Juan. In both cases the blank material is commonly for construction. Commonly, the blank samples are strategically placed in the sample sequence immediately after samples that were suspected of containing higher grade Au, Ag, S or base metals to test the lab preparation and contamination procedures. The values received from the blank samples suggest only rare cross contamination of samples during sample preparation.


Challenger Exploration Limited ACN 123 591 382 ASX: CEL

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

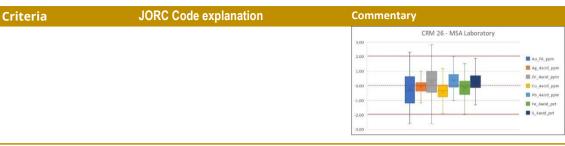
1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director


Contact T: +61 8 6380 9235 E: admin@challengerex.com

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Verification of sampling and assaying

The verification of significant intersections by either independent or alternative company personnel.

- The use of twinned holes.
- Documentation of primary data entry procedures data verification data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

Final sample assay analyses are received by digital file in PDF and CSV format. There is no adjustment made to any of the assay values received. The original files are backed-up and the data copied into a cloud-based drill hole database, stored offsite from the project. The data is remotely accessible for geological modelling and resource estimation.

Assay results summarised in the context of this report have been rounded appropriately to 2 significant figures. No assay data have been otherwise adjusted. Replicate assay of 186 coarse reject samples from 2019 drilling has been done to verify assay precision. Original core samples were from the 2019 DD drilling which were analysed by MSA (San Juan preparation and Vancouver analysis). Coarse reject samples were analysed by ALS (Mendoza preparation and Vancouver analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing high confidence in precision of results between MSA and ALS. A summary of the results for the 186 sample pairs for key elements is provided below:

	Mean		Median		Std Devia	ation	
Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903
Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987
Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988
As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983
Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994
REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954
Cd values >1000 are set at 1000	١						

Cd values >1000 are set at 1000.

REE is the sum off Ce, La, Sc, Y. CE > 500 is set at 500. Below detection is set at zero

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Issued Capital 1.044.9m shares 10m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

GNDD144 - GNDD021 - 05HD39 GNRC107 - GNDD008/008A GNDD206 - DDH54

> Contact T: +61 8 6380 9235 E: admin@challengerex.com

Correlation

coefficient

0.9837

0.9995

0.9942

0.9967

0.9959

0.9953

0.9956

0.9947

0.9781

0.9096

0.3026

Criteria	JORC Code explanation	Commentary
		GNDD421 – GNDD424
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys) trenches mine 	Following completion of drilling, collars are marked and surveyed using a differential GPS (DGPS) relative to a nearby Argentinian SGM survey point. The collars have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.
	workings and other locations used in Mineral Resource estimation Specification of the grid system	Following completion of the channel sampling, the location of the channel samples is surveyed from a survey mark at the entrance to the underground workings, located using differential GPS. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.
	used Quality and adequacy of	The drill machine is set-up on the drill pad using hand-held survey equipment according to the proposed hole design.
	topographic control.	Diamond core drill holes up to GNDD390 are surveyed down-hole at 30-40m intervals down hole using a down-hole compass and inclinometer tool. RC drill holes and diamond core holes from GNDD391 were continuously surveyed down hole using a gyroscope to avoid magnetic influence from the drill string and rocks. The gyroscope down-hole survey data is recorded in the drill hole database at 10m intervals.
		Ten diamond drill holes have no down hole survey data due to drill hole collapse or blockage of the hole due to loss of drilling equipment. These are GNDD036, 197, 212, 283, 376, 423, 425, 439, 445 and 465. For these holes, a survey of the collar has been used with no assumed deviation to the end of the hole.
		All current and previous drill collar sites, Minas corner pegs and strategic surface points have been surveyed using DGPS to provide topographic control for the Project. In addition, AWD3D DTM model with a nominal 2.5 metre precision has been acquired for the project and greater surrounding areas. Drone-based topographic survey data with 0.1 meter precision is being acquired over the project to provide more detail where required.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the 	No regular drill hole spacing has been applied across the Project, although nominal 80m x 80m, 40m x 80m and 40m x 40m drill spacing is being applied to the drilling to define mineralised areas, where appropriate. Drilling has been completed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. 80m x 80m drilling is designed for broad exploration of intrusion-hosted targets, whereas 40 m x 40m drilling is used to define and area that is expected to form part of a Mineral Resource Estimate in sedimentary and intrusive-hosted targets.
	Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	Samples have not been composited for reporting.

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	As far as is currently understood and where practicable, the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Some exploration holes have drilled at a low angle to mineralisation and have been followed up with drill holes in the opposite direction to define mineralised domains. For underground channel sampling, the orientation of the sample is determined by the orientation of the workings. Where the sampling is parallel with the strike of the mineralisation, plans showing the location of the sampling relative to the orientation of the mineralisation, weighted average grades and estimates of true thickness are provided to provide a balanced report of the mineralisation that has been sampled. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	 The measures taken to ensure sample security. 	Samples were under constant supervision by site security, senior technical personnel and courier contractors prior to delivery to the preparation laboratories in San Juan and Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria

status

JORC Code explanation

Mineral tenement and land tenure

- Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Commentary

The Hualilan Project comprises fifteen Minas (equivalent of mining leases) and five Demasias (mining lease extensions) held under an farmin agreement with Golden Mining SRL (Cerro Sur) and CIA GPL SRL (Cerro Norte). Fourteen additional Minas and eight exploration licences (Cateos) have been transferred to CEL under a separate farmin agreement. Six Cateos and eight requested mining leases are directly held. This covers all of the currently defined mineralization and surrounding prospective ground.

Granted mining leases (Minas Otorgadas) at the Hualilan Project

There are no royalties held over the tenements.

Name	Number	Current Owner	Status	Grant Date	Area (ha)
Cerro Sur					
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Cerro Norte					
La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Mining Lease extensions (Demasias) at the Hualilan Project

Name	Number	Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	29/12/1981	2.42
Cerro Norte					

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary					
		South of "Andacollo" Mine	545.208-B-94	CIA GPL S.R.L.	Pending Reconsideration	14/02/1994	1.83
		South of "Sanchez" Mine	545.209-B-94	CIA GPL S.R.L.	Application	14/02/1994	3.50
		South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	29/12/1981	2.42
		South of "Pizarro" Mine	545.207-B-94	Golden Mining S.R.L.	Application	14/02/1994	2.09

Requested Mining Leases (Minas Solicitados)

Name	Number	Status	Area (ha)
Elena	1124.328-G-2021	Application	2,799.24
Juan Cruz	1124.329-G-2021	Application	933.69
Paula (over "Lo Que Vendra")	1124.454-G-2021	Application	1,460.06
Argelia	1124.486-G-2021	Application	3,660.50
Ana Maria (over Ak2)	1124.287-G-2021	Application	5,572.80
Erica (Over "El Peñón")	1124.541-G-2021	Application	6.00
Silvia Beatriz (over "AK3")	1124.572-G-2021	Application	2,290.75
Soldado Poltronieri (over 1124188-20,	1124.108-2022	Application	777.56
545867-R-94 and 545880-O-94)			

Mining Lease Farmin Agreements

Name	Number	Transfrred to CEL	Status	Area (ha)	
Marta Alicia	2260-S-58	Yes	Current	23.54	
Marta	339.154-R-92	Yes	Current	478.50	
Marta 1	339.153-R-92	Yes	Current	163.42	
AK4	1124.299-R-18	Yes	Current	1,498.39	
Solitario 1-5 545.604-C-94		Yes	Current	685.00	
Solitario 1-4 545.605-C-94		Yes	Current	310.83	
Solitario 1-1	545.608-C-94	Yes	Subject to Approval	TBA	
Solitario 6-1	545.788-C-94	Yes	Subject to Approval	TBA	
AGU 3	11240114-2014	Yes	Registered	1,500.00	
AGU 5	1124.0343-2014	Yes	Registered	1,443.58	
AGU 6	1124.0623-2017	Yes	Registered	1,500.00	
AGU 7	1124.0622-S-17	Yes	Registered	1,500.00	
Guillermina	1124.045-S-2019	Yes	Registered	2,921.05	

Challenger Exploration LimitedACN 123 591 382
ASX: **CEL**

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

JORC Code explanation Criteria Commentary El Petiso 1124.2478-71 Yes Registered 18.00 Exploration Licence (Cateo) Farmin Agreements Name Number Transfrred to CEL Status Area (ha) 295.122-R-1989 Yes Current 1,882.56 228.441-R-1993 Subject to Approval 2,800.00 Yes 545.880-0-1994 Yes Current 149.99 Exploration Licence (Cateo) Held (Direct Award) Grant Name Number Transfrred to CEL **Status** Area (ha) Date 1124.495-I-20 2,059.60 Aven Yes Current 933.20 1124-248G-20 Yes Current 1124-188-G-20 (2 zones) Yes 327.16 Current 1124.313-2021 Yes Current 986.41 Yes 1,521.12 1124.564-G-2021 Current 4,287.38 1124.632-G-2022 Yes Current There are no known impediments to obtaining the exploration licenses or operating the Project. **Exploration done** Intermittent historic sampling has produced a large volume of information and data including sampling, Acknowledgment and appraisal of geological maps, reports, trenching data, underground surveys, drill hole results, geophysical surveys, non-JORC by other parties exploration by other parties. resource estimates plus property examinations and detailed studies by multiple geologists. Prior to exploration by CEL, no work has been completed on the Project since 2006. There is at least 6 km of underground workings that pass through mineralised zones at Hualilan. Surveys of the workings are likely to be incomplete. Commonly incomplete records of the underground geology and sampling have been compiled and digitised as has sample data geological mapping adit exposures and drill hole results. Historic geophysical surveys exist but have been superseded by surveys completed by CEL. Historic drilling on or near the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling programs are: 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totalling 2,040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1,500 RC chip samples 1998 - Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 diamond core holes (DDH-20 to 79) plus 1,700m

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

RC program

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		- 2003 – 2005 – La Mancha (TSE Listed) undertook 7,447m of DDH core drilling (HD-01 to HD-48)
		- Detailed resource estimation studies were undertaken by EPROM Ltd. (EPROM) in 1996 and CMEC (19
		revised 2000) both of which are well documented and La Mancha 2003 and 2006.
		The collection of all exploration data by the various operators was of a high standard and appropriate
		sampling techniques intervals and custody procedures were used. Not all the historic data has been archiv and so there are gaps in the availability of the historic data.
Geology	 Deposit type geological setting and style of mineralisation. 	Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occur in fault zones and in fracture networks within dacitic intrusions.
		The mineralisation is Zn-(Pb-Cu-Ag) distal skarn (or manto-style skarn) overprinted with vein-hosted mesothermal to epithermal Au-Ag mineralisation. It has been divided into three phases – prograde skarn, retrograde skarn and a later quartz-rich mineralisation consistent with the evolution of a large hydrothermal system. Precise mineral paragenesis and hydrothermal evolution is the subject of on-going work which is bein used for exploration and detailed geometallurgical test work.
		Gold occurs in native form as inclusions with sulphide (predominantly pyrite) and in pyroxene. The mineralisation commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matrix within fracture dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 metres and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important localising the mineralisation.
		Complete oxidation of the surface rock due to weathering is thin. A partial oxidation / fracture oxidation laye near surface is 1 to 40m thick and has been modelled from drill hole intersections.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	Significant intersections reported by previous explorers and used in the Hualilan Mineral Resource Estimate of June 2022 are included in the CEL ASX release date 01 June 2022. A cut-off grade of 1 g/t Au equivalent has be used with up to 2m of internal diltion or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltich has been allowed. No metallurcial or recovery factors have been used in reporting historic drill hole intersections.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	The significant intersections from CEL drill holes and channel samples that have been used in the Mineral Resource Estimate are reported in the CEL ASX release date 01 June 2022. Significant intersections are listed below for drill holes that are not included in the Resource Estimate. Significant intersections are reported to a cut-off of 1.0 g/t AuEq (gold equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.
	 dip and azimuth of the hole 	The following metals and metal prices have been used to report gold grade equivalent (AuEq): Au US\$ 1900 /

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria

JORC Code explanation

- Commentary
- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report the Competent Person should clearly explain why this is the case.

Ag US\$24 /oz, Zn US\$ 4,000 /t and Pb US 2,000/t.

Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from the results of Stage 1 metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation combined metallurgical samples as detailed in the Criteria below.

For the AuEq calculation average metallurgical recovery is estimated as 94.9% for gold, 90.9% for silver, 67.0% for Zn and 57.8% for Pb.

Accordingly, the formula used for Au Equivalent is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x (0.909/0.949)] + [Zn (%) x (40.00*31.1/1900) x (0.670/0.949)] + (Pb (%) x (20.00*31.1/1900) x (0.578/.9490).

Hole_id	from (m)	to (m)	int (m)	Au (g/t)	Ag (g/t)	Pb (%)	Zn (%)	AuEq (g/t)	Note
GNDD375 EXT	490.70	491.20	0.50	1.1	13.0	0.00	0.64	1.6	
and	508.00	508.50	0.50	6.4	55.0	0.05	2.1	8.0	
and	521.35	524.70	3.35	1.5	15.7	0.02	0.58	1.9	
GNDD487	358.00	362.00	4.00	0.43	0.11	0.00	0.01	0.43	2
and	373.20	376.00	2.80	0.41	5.1	0.01	0.03	0.48	2
and	495.50	518.00	22.5	0.42	0.47	0.00	0.01	0.43	2
inc	497.00	497.50	0.50	4.0	5.8	0.00	0.01	4.1	
and	545.40	547.00	1.60	0.55	3.1	0.00	1.05	1.1	
GNDD495	NSI								
GNDD497	NSI								
GNDD501	35.00	53.25	18.2	0.22	32.7	0.02	0.07	0.65	2
inc	39.00	41.00	2.00	1.15	78.7	0.03	0.05	2.1	
inc	52.50	53.25	0.75	0.93	276	0.18	0.88	4.7	
and	187.65	189.00	1.35	2.5	2.0	0.00	0.02	2.5	2
inc	187.65	188.35	0.70	4.4	2.5	0.00	0.03	4.4	
GNDD505	443.00	445.00	2.00	0.29	25.9	0.04	0.41	0.80	2
GNDD506	116.10	118.20	2.10	0.02	4.5	0.09	1.9	0.98	2
inc	117.00	118.20	1.20	0.03	5.2	0.07	2.2	1.1	
and	205.40	216.00	10.6	0.87	1.1	0.00	0.10	0.93	2
inc	205.40	214.00	8.60	0.90	1.3	0.00	0.09	1.0	
and	238.40	273.60	35.2	0.32	1.4	0.01	0.49	0.57	2
inc	238.40	239.60	1.20	0.24	4.1	0.02	2.2	1.3	
inc	267.50	273.60	6.10	0.93	3.1	0.01	1.5	1.7	
and	294.00	302.00	8.00	0.42	0.52	0.01	0.07	0.46	2
and	318.00	323.50	5.50	0.34	0.71	0.01	0.09	0.39	2
and	430.35	438.65	8.30	0.29	0.26	0.02	0.03	0.31	2
GNDD508	89.75	91.10	1.35	0.85	2.01	0.10	0.32	1.0	
and	125.00	128.40	3.40	0.24	8.6	0.00	0.19	0.43	2
and	167.00	191.00	24.0	0.33	0.47	0.04	0.06	0.37	2

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Directors

Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	331.00	333.00	2.00	1.1	7.0	0.02	0.09	1.2	
		and	388.35	389.00	0.65	1.0	40.0	0.03	1.6	2.2	
		and	498.80	499.30	0.50	2.6	30.6	0.01	3.1	4.4	
		GNDD509	17.00	19.00	2.00	0.72	8.0	0.01	0.04	0.83	2
		and	61.00	63.00	2.00	2.0	15.5	0.00	0.01	2.2	
		and	223.75	227.30	3.55	2.3	2.5	0.00	0.03	2.4	
		GNDD510	167.00	169.00	2.00	1.4	0.30	0.00	0.01	1.4	
		and	224.00	284.00	60.0	0.24	2.0	0.03	0.07	0.31	2
		inc	238.00	240.00	2.00	0.78	7.8	0.06	0.44	1.1	
		and	348.00	350.00	2.00	3.7	5.9	0.44	1.2	4.4	
		and	430.00	447.00	17.0	0.91	0.43	0.00	0.00	0.91	2
		inc	439.60	447.00	7.40	1.8	0.32	0.00	0.00	1.8	
		and	461.00	465.00	4.00	0.40	0.82	0.00	0.01	0.41	2
		GNDD511	68.00	70.00	2.00	0.54	2.9	0.06	0.07	0.62	2
		and	130.00	132.00	2.00	0.26	26.5	0.03	0.07	0.62	2
		GNDD513	148.00	172.00	24.0	0.24	1.2	0.00	0.02	0.26	2
		and	186.00	188.00	2.00	0.96	15.2	0.23	0.30	1.3	
		and	239.00	243.00	4.00	0.34	1.0	0.00	0.01	0.36	2
		and	484.00	486.00	2.00	2.1	4.8	0.01	0.01	2.20	
		and	508.00	512.00	4.00	0.46	0.23	0.00	0.00	0.47	2
		and	532.00	542.00	10.0	0.32	1.0	0.04	0.08	0.37	2
		and	644.10	653.00	8.90	0.13	3.2	0.01	0.53	0.42	2
		inc	644.10	644.70	0.60	0.40	12.4	0.00	5.4	3.0	
		GNDD514	294.00	295.40	1.40	0.60	268	0.63	1.45	4.6	
		and	307.80	315.85	8.05	1.0	12.7	0.07	1.0	1.6	
		and	324.10	326.45	2.35	8.5	59.1	0.14	5.2	11.6	
		and	349.30	351.15	1.85	0.69	11.0	0.06	2.6	2.0	
		and	401.50	406.05	4.55	0.53	5.3	0.03	1.3	1.2	2
		inc	402.60	404.45	1.85	0.94	8.7	0.02	2.4	2.1	
		and	418.10	419.00	0.90	1.5	2.9	0.00	0.21	1.7	
		and	548.95	549.50	0.55	0.76	11.7	0.00	1.4	1.5	
		GNDD516	NSI								
		GNDD518	172.00	175.00	3.0	0.39	1.3	0.00	0.00	0.40	2
		and	183.50	185.00	1.50	1.5	25.0	0.58	0.79	2.3	
		and	201.00	206.00	5.00	0.83	2.5	0.17	0.21	1.0	2
		inc	203.00	204.25	1.25	2.2	0.87	0.05	0.14	2.2	
		GNDD519	NSI								
		GNDD521	82.00	86.00	4.00	0.26	0.20	0.00	0.0	0.26	2
		and	267.00	307.00	40.0	0.22	2.0	0.04	0.1	0.31	2
		inc	302.00	307.00	5.00	0.78	3.4	0.08	0.3	1.0	
		GNDD525	157.00	160.50	3.50	0.29	5.2	0.01	0.3	0.50	2
		and	268.00	274.00	6.00	0.62	1.6	0.10	0.2	0.73	2
		and	330.00	331.00	1.00	1.6	7.9	0.23	0.6	2.0	

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	353.55	359.30	5.75	0.43	0.91	0.01	0.0	0.47	2
		inc	358.30	359.30	1.00	1.1	1.5	0.04	0.1	1.2	
		and	428.00	429.00	1.00	0.37	28.8	0.44	0.8	1.2	
		GNDD526	0.00	0.55	0.55	0.75	19.7	0.03	0.2	1.1	
		GNDD528	412.00	437.95	25.9	0.29	0.60	0.00	0.04	0.31	2
		inc	426.80	428.00	1.20	1.4	0.40	0.00	0.01	1.4	
		and	448.00	462.00	14.0	0.24	0.42	0.00	0.02	0.26	2
		GNDD529	144.00	150.00	6.00	0.42	1.0	0.06	0.07	0.48	2
		and	248.90	249.95	1.05	0.17	11.9	1.5	1.9	1.5	
		and	311.00	311.80	0.80	1.4	4.5	0.06	0.1	1.5	
		GNDD530	107.00	130.00	23.0	0.27	1.2	0.01	0.02	0.29	2
		and	159.00	213.00	54.0	0.30	2.0	0.01	0.06	0.35	2
		inc	196.00	198.90	2.90	1.8	12.2	0.05	0.51	2.2	
		and	357.50	386.00	28.5	5.0	23.9	0.02	0.03	5.3	
		inc	358.80	360.00	1.20	116	536	0.31	0.25	122	1
		GNDD531	283.00	295.00	12.0	0.20	2.3	0.01	0.03	0.25	2
		and	319.50	324.00	4.50	0.41	2.4	0.01	0.02	0.45	2
		inc	319.50	320.00	0.50	1.7	18.1	0.00	0.02	2.0	
		and	348.10	348.60	0.50	0.22	7.2	0.03	2.3	1.4	
		and	402.15	403.25	1.10	1.6	14.8	0.02	2.6	3.0	
		and	416.20	416.70	0.50	2.6	11.4	0.00	0.16	2.8	
		GNDD533	213.00	225.60	12.6	0.26	0.13	0.01	0.02	0.27	2
		inc	224.50	225.60	1.10	1.1	0.59	0.08	0.05	1.1	
		and	254.00	267.00	13.0	0.21	0.26	0.00	0.02	0.23	2
		and	362.00	363.35	1.35	67.0	101	0.04	15.0	75.1	1
		and	378.15	378.80	0.65	16.6	5.7	0.00	0.74	17.0	1
		and	403.50	404.00	0.50	3.0	32.6	0.04	1.4	4.0	
		and	473.00	494.00	21.0	0.43	0.89	0.00	0.01	0.44	2
		inc	481.00	483.00	2.00	1.2	0.33	0.00	0.01	1.2	
		GNDD534	88.00	92.00	4.00	0.18	1.4	0.06	0.19	0.29	2
		and	219.00	236.00	17.0	0.58	7.6	0.01	0.08	0.71	2
		inc	228.00	234.00	6.00	1.3	15.1	0.03	0.07	1.5	
		and	247.00	249.00	2.00	1.2	10.4	0.00	0.05	1.3	
		and	261.00	277.00	16.0	0.20	1.9	0.04	0.17	0.31	2
		and	312.00	321.35	9.35	0.22	1.8	0.04	0.08	0.29	2
		and	334.00	337.00	3.00	1.3	0.30	0.00	0.01	1.3	
		inc	334.00	335.00	1.00	3.5	0.63	0.01	0.02	3.5	
		GNDD535	88.00	90.00	2.00	0.69	0.13	0.00	0.01	0.69	2
		and	392.00	414.25	22.2	0.22	0.43	0.00	0.10	0.27	2
		inc	401.75	403.00	1.25	1.5	2.9	0.00	0.59	1.8	
		and	428.00	440.00	12.0	0.44	0.10	0.00	0.00	0.44	2
		GNDD536	188.85	213.00	24.1	0.74	1.7	0.02	0.23	0.87	2
		inc	201.20	203.00	1.80	2.9	13.4	0.01	2.2	4.1	

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

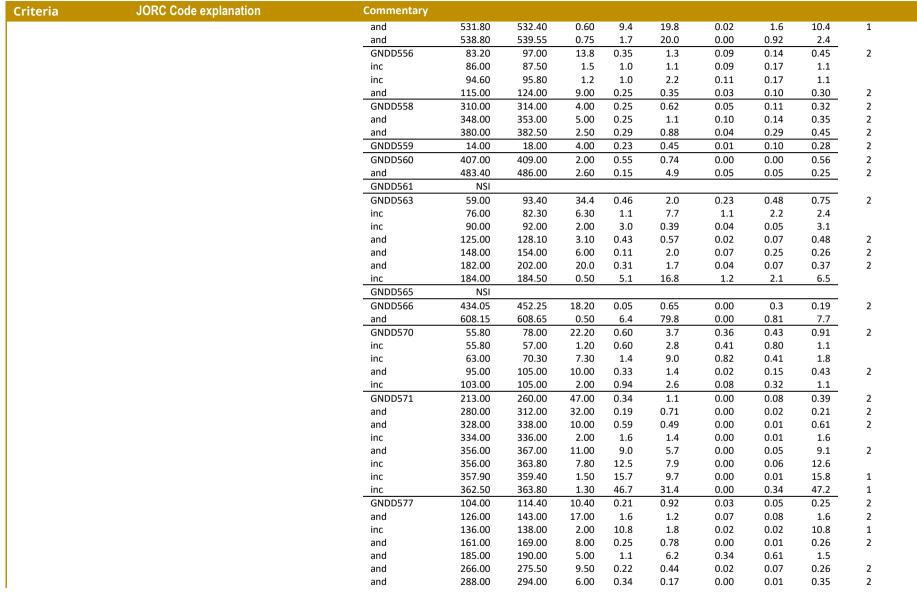
riteria	JORC Code explanation	Commentary									
		inc	211.00	213.00	2.00	4.4	0.13	0.00	0.01	4.4	
		and	240.50	252.70	12.2	0.40	0.38	0.00	0.01	0.41	2
		and	508.30	512.00	3.70	1.0	1.7	0.03	0.40	1.2	
		inc	508.30	510.05	1.75	1.7	1.3	0.02	0.15	1.8	
		and	552.00	558.60	6.60	4.2	50.0	0.01	3.4	6.4	
		inc	556.80	558.60	1.80	14.2	183	0.04	12.5	22.1	1
		inc	556.80	558.10	1.30	19.2	252	0.06	17.1	30.2	1
		GNDD537	78.00	94.30	16.30	0.30	1.2	0.01	0.02	0.32	2
		and	144.00	150.00	6.00	0.24	0.64	0.03	0.03	0.27	2
		and	308.00	336.50	28.50	0.21	1.0	0.02	0.05	0.25	2
		GNDD538	115.50	122.00	6.50	0.18	3.4	0.05	0.08	0.27	2
		and	134.70	141.00	6.30	0.45	1.4	0.01	0.03	0.48	2
		and	176.00	186.00	10.00	1.02	0.7	0.00	0.01	1.0	2
		inc	182.00	184.00	2.00	3.11	0.7	0.00	0.01	3.1	_
		and	198.50	200.00	1.50	1.60	1.7	0.00	0.06	1.6	
		and	331.00	410.00	79.00	0.21	1.3	0.03	0.05	0.26	2
		inc	404.00	405.00	1.00	4.0	11.2	0.60	1.1	4.7	-
		GNDD539	315.00	321.00	6.00	0.22	0.11	0.00	0.01	0.22	2
		and	373.00	394.00	21.00	0.22	1.0	0.00	0.01	0.22	2
		inc	373.00	381.00	2.00	1.8	0.21	0.00	0.04	1.8	2
		inc	388.00	392.00	4.00	1.7	2.4	0.00	0.01	1.7	
		and	410.00	426.00	16.00	0.30	0.14	0.00	0.01	0.31	2
		inc	424.00	426.00	2.00	1.07	0.14	0.00	0.01	1.1	2
		GNDD540		186.50	52.5	0.29	5.1	0.00	0.01	0.38	2
			134.00								2
		inc	136.60	137.40	0.80	0.77	49.5	0.03	0.14	1.5	
		inc	150.00	152.00	2.00	1.2	19.4	0.00	0.08	1.5	2
		and	224.00	254.20	30.2	0.40	4.5	0.06	0.26	0.57	2
		inc	234.00	236.00	2.00	3.8	41.8	0.17	2.4	5.4	
		and	309.15	311.65	2.50	4.0	67.5	0.45	7.5	8.1	_
		GNDD541	398.00	399.60	1.60	0.72	0.01	0.00	0.00	0.72	2
		and	436.00	441.00	5.00	0.07	62.3	0.06	0.10	0.88	2
		inc	439.90	441.00	1.10	0.24	222	0.18	0.35	3.1	
		and	464.20	464.70	0.50	1.4	48.7	0.00	3.7	3.7	
		GNDD542	NSI								
		GNDD543	90.30	106.00	15.7	0.18	1.7	0.01	0.1	0.24	2
		and	179.60	181.00	1.40	0.87	1.2	0.16	0.4	1.1	
		GNDD544	48.00	58.60	10.6	0.10	3.6	0.23	1.0	0.65	2
		inc	57.00	58.60	1.60	0.12	11.0	0.91	3.5	2.1	
		and	152.00	160.00	8.00	0.22	1.4	0.00	0.0	0.25	2
		and	299.00	318.00	19.0	0.25	1.0	0.00	0.0	0.27	2
		and	333.45	338.00	4.55	0.31	1.8	0.00	0.0	0.34	2
		and	409.00	410.40	1.40	1.1	12.0	0.13	0.6	1.5	
		and	422.00	426.00	4.00	0.43	2.9	0.07	0.0	0.49	2

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com


Criteria	JORC Code explanation	Commentary									
		GNDD546	55.00	59.00	4.00	1.2	0.34	0.00	0.0	1.2	
		and	134.00	138.00	4.00	0.48	0.40	0.00	0.0	0.48	2
		and	316.00	330.00	14.00	0.56	1.8	0.03	0.2	0.66	2
		inc	326.00	328.00	2.00	1.8	2.9	0.01	0.1	1.9	
		and	437.00	439.35	2.35	2.2	8.1	0.00	0.1	2.3	2
		inc	438.30	438.80	0.50	9.7	35.7	0.01	0.0	10.2	1
		GNDD548	NSI							<u></u>	
		GNDD549	2.00	17.50	15.5	0.31	5.9	0.01	0.05	0.41	2
		and	28.10	39.00	10.9	4.0	71.5	0.51	0.81	5.3	
		inc	29.20	31.75	2.55	15.4	245	1.7	2.1	19.4	1
		inc	29.80	30.85	1.05	31.1	381	2.8	3.2	37.4	1
		inc	37.00	39.00	2.00	1.6	44.3	0.60	0.32	2.3	
		GNDD550	373.30	377.70	4.40	1.0	16.0	0.03	4.5	3.3	
		inc	374.00	377.70	3.70	1.1	18.7	0.03	5.4	3.8	
		and	425.00	427.10	2.10	3.7	27.0	0.01	1.7	4.8	
		and	437.50	443.00	5.50	0.49	15.3	0.02	3.3	2.2	
		GNDD552	2.20	36.00	33.8	0.75	12.1	0.10	0.15	1.0	2
		inc	9.00	12.35	3.35	6.0	82.4	0.80	0.58	7.4	
		inc	11.40	12.35	0.95	15.6	254	1.1	0.07	18.9	1
		GNDD553	300.00	306.00	6.00	0.21	1.1	0.10	0.18	0.33	2
		and	323.50	325.35	1.85	2.2	11.2	0.02	1.0	2.9	
		and	343.00	343.50	0.50	0.19	5.8	0.07	2.1	1.2	
		GNDD554	232.90	240.00	7.10	0.26	0.62	0.08	0.18	0.37	2
		and	259.90	306.00	46.10	0.79	0.86	0.02	0.12	0.86	2
		inc	259.90	261.00	1.10	0.89	2.2	0.21	0.45	1.2	
		inc	272.50	279.00	6.50	3.7	2.6	0.01	0.31	3.9	
		inc	286.20	287.30	1.10	1.3	0.51	0.01	0.12	1.3	
		inc	295.40	296.65	1.25	1.1	2.0	0.06	0.13	1.2	
		and	318.80	323.00	4.20	0.43	0.16	0.00	0.01	0.43	2
		and	338.00	362.00	24.00	0.88	0.80	0.00	0.05	0.91	2
		inc	344.70	350.20	5.50	2.8	1.9	0.00	0.21	2.9	
		GNDD555	68.55	69.10	0.55	0.03	79.0	0.09	0.12	1.1	
		and	284.00	288.00	4.00	0.37	4.4	0.13	0.51	0.69	
		and	314.00	327.70	13.7	0.29	8.0	0.25	0.76	0.79	
		inc	314.00	316.00	2.00	0.32	34.9	0.23	0.72	1.1	
		inc	326.85	327.70	0.85	1.0	32.5	3.3	10.1	6.7	
		and	468.70	470.00	1.30	1.0	19.5	0.01	2.7	2.4	
		and	481.10	482.55	1.45	0.59	11.5	0.04	2.2	1.7	
		and	489.75	490.25	0.50	0.23	6.0	0.05	1.7	1.1	
		and	495.00	498.70	3.70	0.90	11.3	0.01	1.2	1.6	
		inc	496.35	498.70	2.35	1.1	15.6	0.01	1.6	2.0	
		and	520.85	522.50	1.65	1.3	16.5	0.00	0.20	1.6	2
		inc	521.80	522.50	0.70	2.3	26.7	0.00	0.42	2.8	

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

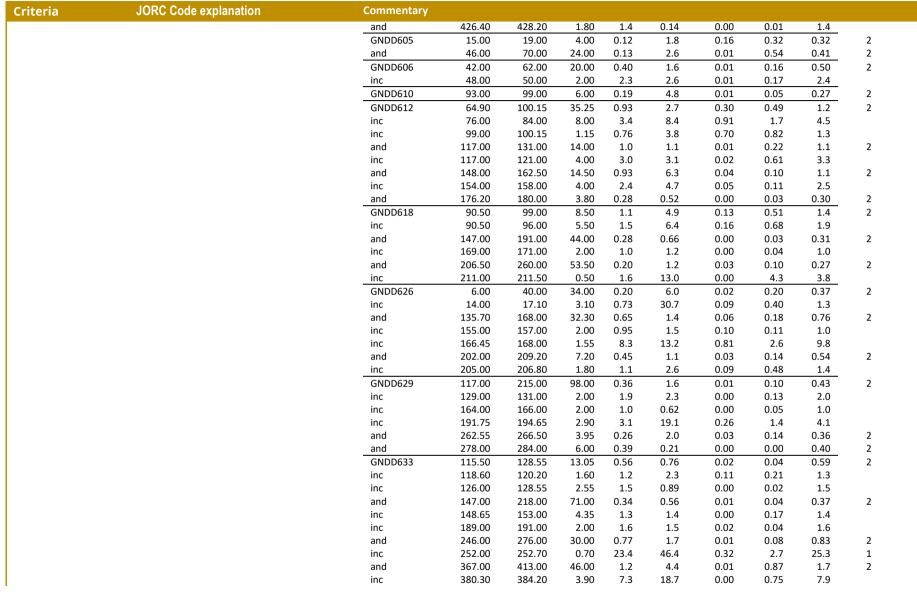
Criteria	JORC Code explanation	Commentary									
		and	532.70	533.25	0.55	22.8	88.9	0.04	17.64	32.0	1
		GNDD578	349.00	354.25	5.25	0.26	1.3	0.00	0.14	0.34	2
		inc	353.65	354.25	0.60	1.0	6.3	0.02	1.2	1.6	
		GNDD581	173.00	175.00	2.00	1.1	7.7	0.02	0.02	1.2	2
		inc	173.65	175.00	1.35	1.5	4.4	0.01	0.01	1.5	
		and	191.00	198.00	7.00	0.22	28.1	0.07	0.19	0.67	2
		inc	192.60	193.20	0.60	0.35	288	0.71	1.8	4.8	
		GNDD582	305.35	310.00	4.65	0.22	1.1	0.01	0.14	0.30	2
		and	417.80	418.60	0.80	1.0	11.0	0.06	2.4	2.3	
		GNDD586	30.00	34.00	4.00	0.12	11.7	1.5	2.1	1.5	2
		inc	30.00	32.00	2.00	0.20	16.1	2.2	3.2	2.3	
		and	199.00	203.00	4.00	0.40	7.2	0.01	0.03	0.50	2
		and	263.00	320.65	57.65	0.32	2.6	0.01	0.20	0.45	2
		inc	272.00	273.00	1.00	0.54	3.7	0.00	1.06	1.1	_
		inc	294.00	302.00	8.00	1.3	10.0	0.01	0.90	1.8	
		inc	318.00	319.05	1.05	0.64	4.3	0.01	0.7	1.0	
		GNDD587	85.00	120.00	35.00	0.23	0.55	0.07	0.11	0.30	2
		inc	116.45	118.00	1.55	1.1	2.3	0.36	0.68	1.5	_
		and	138.00	142.00	4.00	0.38	0.79	0.01	0.23	0.50	2
		and	154.00	158.80	4.80	0.38	0.70	0.01	0.22	0.49	2
		and	182.00	213.00	31.00	0.66	1.9	0.01	0.29	0.43	2
		inc	182.90	188.65	5.75	2.3	7.3	0.05	1.4	3.0	_
		inc	211.80	213.00	1.20	2.6	7.5 7.5	0.01	0.40	2.9	
		GNDD588	182.00	201.00	19.00	0.30	0.71	0.01	0.04	0.33	2
		inc	182.00	183.00	1.00	1.2	1.3	0.01	0.04	1.2	2
		inc	187.80	189.00	1.20	1.7	1.9	0.01	0.01	1.8	
			213.00	220.30	7.30	0.57	0.58	0.02	0.04	0.58	2
		and	242.00		12.00	0.37	1.3		0.01	0.34	2
		and	242.00	254.00 299.50	18.10	2.3	2.8	0.14 0.23	0.17	2.6	2
		and									2
		inc	281.40	282.65	1.25	4.6	13.3	1.51	3.4	6.6	1
		inc	289.70	290.70 299.50	1.00 0.65	32.6 2.1	18.1	1.57	1.9	34.0	1
		inc	298.85			2.1 0.67	4.4	0.33	1.9	3.1	2
		and	314.00	401.00 323.00	87.00	2.9	1.4	0.00	0.01	0.69 3.0	2
		inc	315.00		8.00		3.4	0.01	0.01		
		inc	331.00	341.00	10.00	1.2	1.6	0.00	0.05	1.3	
		inc	379.00	381.00	2.00	2.2	0.4	0.00	0.00	2.3	
		inc	399.00	401.00	2.00	1.0	0.30	0.00	0.00	1.0	
		GNDD589	394.00	395.00	1.00	4.2	8.5	1.0	0.83	4.9	•
		and	266.00	269.25	3.25	0.59	6.3	0.09	0.24	0.79	2
		and	273.80	274.40	0.60	0.93	9.6	0.03	0.14	1.1	_
		GNDD591	224.00	238.00	14.00	1.2	0.91	0.02	0.0	1.2	2
		inc	229.25	232.00	2.75	4.4	3.5	0.05	0.1	4.5	
		inc	236.00	238.00	2.00	1.3	0.48	0.02	0.0	1.3	

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com


riteria	JORC Code explanation	Commentary									
		and	250.00	254.00	4.00	1.7	3.7	0.07	0.4	2.0	2
		inc	253.30	254.00	0.70	8.80	17.7	0.39	2.2	10.1	
		and	382.70	386.00	3.30	4.6	12.4	0.02	1.3	5.4	2
		inc	382.70	383.40	0.70	20.5	55.7	0.01	5.6	23.8	1
		and	425.00	429.60	4.60	0.53	0.63	0.00	0.01	0.5	2
		inc	429.00	429.60	0.60	3.1	0.56	0.00	0.02	3.1	
		and	436.40	437.00	0.60	1.4	13.1	0.00	2.3	2.6	
		GNDD593	105.50	124.00	18.50	0.16	2.2	0.00	0.08	0.23	2
		and	139.00	141.00	2.00	0.68	0.92	0.00	0.10	0.74	2
		and	153.00	164.00	11.00	0.83	1.7	0.02	0.10	0.90	2
		inc	153.00	157.00	4.00	1.7	4.0	0.05	0.20	1.8	
		GNDD594	104.00	116.00	12.00	0.72	1.8	0.21	0.51	1.0	2
		inc	108.00	110.00	2.00	3.1	6.5	0.48	1.5	3.9	
		and	162.00	163.40	1.40	2.1	0.30	0.00	0.01	2.1	
		and	198.00	204.00	6.00	0.63	3.3	0.02	0.13	0.73	2
		inc	198.00	198.50	0.50	1.7	3.3	0.12	0.32	2.0	_
		GNDD595	198.35	212.10	13.75	0.32	2.5	0.00	0.02	0.36	2
		and	226.00	247.20	21.20	0.58	4.0	0.06	0.14	0.71	2
		inc	230.00	231.30	1.30	1.2	3.6	0.10	0.40	1.5	-
		inc	240.45	242.00	1.55	3.2	20.3	0.28	0.86	3.9	
		and	266.00	305.80	39.80	0.26	2.9	0.08	0.30	0.45	2
		inc	266.00	268.00	2.00	1.6	8.5	0.01	0.04	1.7	-
		inc	304.45	305.80	1.35	1.2	28.5	2.1	8.0	5.7	
		and	375.20	382.10	6.90	0.28	3.8	0.08	0.31	0.48	2
		inc	381.35	382.10	0.75	2.3	30.8	0.17	2.3	3.8	_
		GNDD597	NSI	302.10	0.73	2.3	30.0	0.17	2.3	3.0	
		GNDD598	114.85	120.35	5.50	0.41	1.6	0.06	0.06	0.47	2
		inc	114.85	115.65	0.80	1.0	3.0	0.00	0.16	1.1	2
		and	168.00	240.00	72.00	0.24	1.0	0.17	0.10	0.30	2
		inc	204.00	206.00	2.00	1.4	0.86	0.01	0.10	1.4	2
		and	253.00	271.00	18.00	0.34	0.62	0.00	0.00	0.35	2
		and	283.00	295.00	12.00	0.34	1.5	0.00	0.01	0.33	2
		GNDD599	NSI	233.00	12.00	0.40	1.5	0.00	0.01	0.42	4
		GNDD599 GNDD603	61.00	85.90	24.90	0.20	7.7	0.00	0.0	0.31	2
				83.90 83.00	24.90	0.20	7.7 17.4				2
		inc	81.00 124.00	132.00		0.88	2.3	0.00	0.1	1.1	2
		and			8.00			0.03	0.1	0.29	2
		GNDD604	163.45	166.70	3.25	2.0	15.7	1.3	2.5	3.6	2
		and	236.00	260.65	24.65	2.3	6.4	0.04	1.0	2.8	2
		inc	236.00	238.00	2.00	1.0	10.8	0.05	0.52	1.4	
		inc	247.50	249.00	1.50	5.0	3.4	0.18	0.26	5.2	
		inc	259.45	260.65	1.20	36.2	92.1	0.09	17.3	45.3	1
		and	375.00	375.90	0.90	24.9	15.3	0.01	3.5	26.7	1
		and	417.60	419.85	2.25	3.3	30.1	0.01	8.2	7.5	

1,044.9m shares 10m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	400.80	405.90	5.10	3.7	19.7	0.02	5.9	6.6	
		inc	411.20	411.75	0.55	4.0	21.0	0.03	10.5	9.2	
		GNDD635	97.00	100.00	3.00	0.33	0.73	0.01	0.01	0.35	2
		and	283.10	287.40	4.30	0.32	10.7	0.09	0.82	0.85	2
		inc	285.00	287.40	2.40	0.53	15.0	0.14	1.3	1.3	
		and	296.70	297.40	0.70	0.86	27.7	0.03	11.9	6.7	
		and	344.00	346.00	2.00	0.60	1.6	0.00	0.11	0.67	2
		GNDD642	18.00	82.00	64.00	0.45	0.80	0.03	0.05	0.49	2
		inc	18.00	20.00	2.00	1.54	1.0	0.02	0.09	1.6	
		inc	40.00	42.00	2.00	1.23	0.76	0.01	0.03	1.3	
		inc	62.00	64.00	2.00	2.17	1.4	0.28	0.10	2.3	
		inc	72.00	74.00	2.00	1.49	0.79	0.11	0.17	1.6	_
		and	306.00	313.00	7.00	0.20	1.4	0.04	0.11	0.28	2
		and	344.40	347.80	3.40	8.9	42.5	0.12	4.5	11.5	1
		and	355.80	363.20	7.40	7.4	36.8	0.08	6.3	10.8	1
		combined	344.40	363.20	18.80 6.00	<i>4.5</i> 0.23	<i>22.3</i> 2.2	0.06	3.3 0.51	<i>6.3</i> 0.51	<i>3</i> 2
		and	430.00	436.00				0.04			2
		inc and	433.70	434.20	0.50	1.2	16.3	0.03	4.3	3.4	
			480.90 f 10 g/t Au equ	481.45	0.55	0.21	19.7	0.03	10.3	5.2	
).2 g/t Au equiv								
		٠,	ed zones with 0		off (grades	include i	atornal dilut	ion from ho	1400n 70n0	c)	
			ed zones with 1		off (grades	include i	nternai dilat	ion from be	tween zone	s)	
			nificant intersec							- \ -	
Data aggregation	- In reporting Exploration Results weighting		d average sign		•	•	-		•	•••	
methods	averaging techniques maximum and/or		to cut-off gra								
	minimum grade truncations (eg cutting o	f internal of	dilution betwe	en samples	above th	e cut-off	grade and	l 0.2 g/t Au	equivalen	t allowing	up to 10m of
	high grades) and cut-off grades are usual	ı _{ly} internal o	dilution betwe	en samples	above th	e cut-off	grade. The	e following	metals an	d metal p	rices have
	Material and should be stated.	been use	d to report go	ld grade eq	uivalent (AuEq): A	u US\$ 178	0 / oz Ag U	S\$24 /oz a	nd Zn US	\$ 2800 /t.
	- Where aggregate intercepts incorporate										
	short lengths of high-grade results and	No top c	uts have been	applied to t	the repor	ted grad	es.				
	longer lengths of low-grade results the										
	procedure used for such aggregation sho	uld									
	be stated and some typical examples of s	uch									
	aggregations should be shown in detail.										
	- The assumptions used for any reporting o	of									
	metal equivalent values should be clearly										
	stated.										
	Statea.										

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known'). 	The mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is insufficient information to confidently establish the true width of the mineralized intersections at this stage of the exploration program. Apparent widths may be thicker in the case where the dip of the mineralisation changes and/or bedding-parallel mineralisation intersects NW or ENE-striking cross faults and veins. Representative cross section interpretations have been provided periodically with releases of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of reports released to the ASX.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available final data have been reported where possible and plans of all drilling with results.
Other substantive exploration data	- Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. Specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are used to estimate densities in Resource Estimates. Eight Induced Polarisation (IP) lines have been completed in the northern areas of the Project. Stage 1 surveying was done on 1 kilometre length lines oriented 115° azimuth, spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Stage 2 surveying was done across the entire field on 1 – 3 kilometre length lines oriented 090°, spaced 400m apart with a 50m dipole. On-going data interpretation is being done as drilling proceeds. Two ground magnetic surveys and a drone magnetic survey have been completed. The results of these data and subsequent geological interpretations are being used to guide future exploration.

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	 CEL Plans to undertake the following over the next 12 months Additional resource extension, infill and exploration drilling; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Further metallurgical and comminution test work. A preliminary economic assessment / scoping study for a mining project.

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into a series of excel spreadsheets. These data have been checked for errors. Checks have been made against the original logs and with follow-up twin and close spaced drilling. Only some of the historic drill holes have been used in the Resource Estimate, including the results presented in Section2. Some drill holes have been excluded where the geology indicates that the drill hole is likely mis-located or where the drill hole has been superseded by CEL drilling. For CEL drilled holes, assay data is received in digital format. Backup copies are backed up into a cloud-based file storage system and the data is entered into a drill hole database which is also securely backed up off site.
		The drill hole data is backed up and is updated periodically by the CEL GIS and data management team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The Competent Person has undertaken site visits during exploration. Site visits were undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020 before COVID-19 closed international travel. Post COVID site visit were undertaken from 21 November – 4 December 2021 and 11 – 23 May 2022. The performance of the drilling program collection of data, sampling procedures, sample submission and exploration program were initiated and reviewed during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The geological interpretation is considered appropriate given the drill core density of data that has been collected, access to mineralisation at surface and underground exposures. Given the data, geological studies past and completed by CEL, the Competent Person has a high level of confidence in the geological model that has been used to constrain the mineralised domains. It is assumed that networks of fractures controlled by local geological factors have focussed hydrothermal fluids and been the site of mineralisation in both the prograde zinc skarn and retrograde mesothermal – epithermal stages of hydrothermal evolution. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities. Mineralised domains have been built using explicit wireframe techniques from 0.2 – 0.5 g/t AuEq mineralised intersections, joined between holes by the instruction from the geology and structure. Continuity of grade between drill holes is determined by the intensity of fracturing, the host rock contacts (particularly dacite – limestone contacts) and by bedding parallel faults, particularly within limestone, at the limestone and overlying sedimentary rock contact and within the lower sequences of the sedimentary rocks within 40m of the contact. No alternative interpretations have been made form which a Mineral Resource Estimate has been made.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the 	30 separate domains were interpreted over a strike length of 2.2kms. The domains vary in width and orientation from 2n up to 100m in width. The deepest interpreted domain extends from the surface down approximately 550m below the surface.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary								
	Mineral Resource.									
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. 	Estimation was made for Au Ag, Zn and Pb being the elements of economic interest. Estimate was also made for Fe a being the elements that for pyrite which is of economic and metallurgical interest and is also used to estimate the der for bocks in the Mineral Resource Estimate. No previous JORC Resource estimates or non-JORC Foreign Resource estimates were made with similar methods to compare to the current Resource estimate. No production records are available to provide comparisons. A 2m composite length was selected after reviewing the original sample lengths from the drilling which showed an avalength of 1.54m for samples taken within the mineralised domains. A statistical analysis was undertaken on the sample composites Top cuts were applied to the Au, Ag, Zn and Pb composite on a domain-by-domain basis. The domains were then grouped by host rock and mineralisation style and group domatop cuts were applied in order to reduce the influence of extreme values on the resource estimates without downgrate high-grade composites too severely. The top-cut values were chosen by assessing the high-end distribution of the grade population within each group and selecting the value above which the distribution became erratic. The following table shows the top cuts applied to each group and domain for Au, Ag, Zn and Pb.								
	 Estimation of deleterious elements or other non-grade variables of economic 		Group	Domain	Au (ppm)	Ag (ppm)	Zn (%)	Pb (%)	1	
	significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed.		Fault Zone hosted (Magnata and Sanchez)	101 102 103 104 201	80	300	20	2.5		
	Any assumptions behind modelling of selective mining units.Any assumptions about correlation		LUT (siltstone) hosted	111 114 212	14	70	4.5	0.8		
	 between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation 		DAC (intrusive) hosted	112 113 115 131 132 133 134 203 213	9	65	7	1.2		

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria JORC Code	explanation Commentary	,						
data if a	vailable		301					
			302					
			303					
			304					
			305					
			202					
			121					
			211					
		CAL (limestone) hosted	221	80	300	20	2.5	
			222					
			223					
			224					_

Block modelling was undertaken in Surpac™ V6.6 software.

A block model was set up with a parent cell size of 10m (E) x 20m (N) x 10m (RL) with standard sub-celling to 2.5m (E) x 5.0m (N) x 2.5m (RL) to maintain the resolution of the mineralised domains. The 20m Y and vertical block dimensions were chosen to reflect drill hole spacing and to provide definition for potential mine planning. The shorter 10m X dimension was used to reflect the geometry and orientation of the majority of the domain wireframes.

Variography was carried out using Leapfrog Edge software on the two metre composited data from each of the 28 domains for each variable.

All relevant variables; Au, Ag, Zn, Fe and S in each domain were estimated using Ordinary Kriging using only data from within that domain. The orientation of the search ellipse and variogram model was controlled using surfaces designed to reflect the local orientation of the mineralized structures.

An oriented "ellipsoid" search for each domain was used to select data for interpolation.

A 3 pass estimation search was conducted, with expanding search ellipsoid dimensions and decreasing minimum number of samples with each successive pass. First passes were conducted with ellipsoid radii corresponding to 40% of the complete range of variogram structures for the variable being estimated. Pass 2 was conducted with 60% of the complete range of variogram structures for the variable being estimated. Pass 3 was conducted with dimensions corresponding to 200% of the semi-variogram model ranges. Blocks within the model where Au was not estimated during the first 3 passes were assigned as unclassified. Blocks for Ag, Zn, Fe and S that were not estimated were assigned the average values on a per-domain basis.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

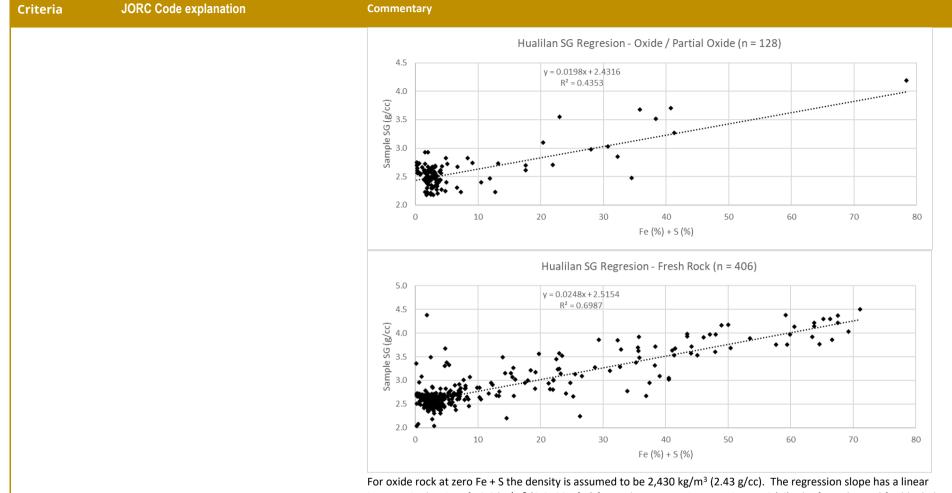
Criteria	JORC Code explanation	Commentary
		Validation checks included statistical comparison between drill sample grades and Ordinary Kriging block estimate results for each domain. Visual validation of grade trends for each element along the drill sections was also completed in addition to swath plots comparing drill sample grades and model grades for northings, eastings and elevation. These checks show good correlation between estimated block grades and drill sample grades.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	Tonnage is estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The following metals and metal prices have been used to report gold grade equivalent (AuEq): Au US\$ 1900 / oz Ag US\$24 /oz, Zn US\$ 4,000 /t and Pb US 2,000/t. Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from the results of Stage 1 metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation combined metallurgical samples as detailed in the Criteria below. For the AuEq calculation average metallurgical recovery is estimated as 94.9% for gold, 90.9% for silver, 67.0% for Zn and 57.8% for Pb. Accordingly, the formula used for Au Equivalent is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x (0.909/0.949)] + [Zn (%) x (40.00*31.1/1900) x (0.670/0.949)] + (Pb (%) x 20.00*31.1/1900) x (0.578/.9490). Based on the break-even grade for an optimised pit shell for gold equivalent, a AuEq cut-off grade of 0.25 ppm is used to report the resource within an optimised pit shell run at a gold price of US\$1,800 per ounce and allowing for Ag, Zn and Pb credits. Under this scenario, blocks with a grade above the 0.25 g/t Au Eq cut off are considered to have reasonable prospects of mining by open pit methods. A AuEq cut-off grade of 1.0 ppm was used to report the resource beneath the optimised pit shell run as these blocks are
Mining factors or assumptions	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should	considered to have reasonable prospects of future mining by underground methods. The Resource estimate has assumed that near surface mineralisation would be amenable to open pit mining given that the mineralisation is exposed at surface and under relatively thin unconsolidated cover. A surface mine optimiser has been used to determine the proportion of the Resource estimate model that would be amenable to eventual economic extraction by open pit mining methods. The surface mine optimiser was bult using the following parameters with prices in USD: - Au price of \$1,800 per oz, Ag price of \$23.4 per oz, Zn price of \$3,825 per tonne and Pb price of \$1,980 per tonne - Average metallurgical recoveries of 94.9% for Au, 90.9 % for Ag and 67 % for Zn and 57.8 % for Pb. - Ore and waste mining cost of \$2.00 per tonne - Unconsolidated cover removal cost of \$0.10 per tonne - Processing cost of \$10.00 per tonne - Transport and marketing of \$50 / oz of AuEq (road to Jan Juan then rail to Rosario Port) - Royalty of \$60 per oz Au, 3% for Ag, Zn and Pb.

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	be reported with an explanation of the	- Assumed concentrate payability of 94.1% for Au, 82.9% for Ag, 90 % for Zn and 95 % for Pb.
	basis of the mining assumptions made.	- 45° pit slopes on the western side of the pit and 55° on the eastern side of the pit
		Blocks above a 0.25 g/t AuEq within the optimised open pit shell are determined to have reasonable prospects of future economic extraction by open pit mining and are included in the Resource estimate on that basis.
		Blocks below the open pit shell that are above 1.0 g/t AuEq are determined to have reasonable prospects of future economic extraction by underground mining methods and are included in the Resource estimate on that basis.
Metallurgical	- The basis for assumptions or predictions	CEL has completed Stage 1 metallurgical test work on representative composite sample of mineralisation from:
factors or	regarding metallurgical amenability. It is	1. Two separate composite samples of limestone-hosted massive sulphide (manto) Sample A has a weighted average
assumptions	always necessary as part of the process of determining reasonable prospects for	grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn and 0.46 % Pb. Sample B has a weighted average grade of 9.7 g/t Au, 41.6 g/t Ag, 4.0% Zn and 0.48% Pb.
	eventual economic extraction to consider potential metallurgical methods but the	2. One dacite (intrusive) composite sample with a weighted average grade of 1.1 g/t Au, 8.1 g/t Ag and 0.10 % Zn and 0.04% Pb.
	assumptions regarding metallurgical treatment processes and parameters made	3. One sediment hosted (fine grained sandstone and siltstone) composite sample with a weighted average grade of 0.68 g/t Au, 7.5 g/t Ag, 0.34 % Zn and 0.06 % Pb.
	when reporting Mineral Resources may not	4. One oxidised limestone (manto oxide) composite sample with a weighted average grade of 7.0 g/t Au, 45 g/t Ag,
	always be rigorous. Where this is the case this should be reported with an explanation	3.7% Zn and 0.77% Pb.
	of the basis of the metallurgical	Gravity recovery and sequential flotation tests of the higher-grade limestone hosted mineralisation involved;
	assumptions made.	1. primary P80 = 51 micron primary grind,
		2. gravity recovery,
		3. Pb-Cu followed by Zn rougher flotation,
		4. p80 = 29 micron regrind of the Zn rougher concentrate,
		5. two re-cleaning stages of the Pb/Cu rougher concentrate,
		6. four re-cleaning Sages on the Zn rougher concentrate, and
		7. additional gravity recovery stages added to the Zn Rougher concentrate
		This results in the following products that are likely to be saleable
		- Au-Ag concentrate (118 g/t Au, 286 g/t Ag) with low deleterious elements,
		- Pb concentrate (65% Pb, 178 g/t Au, 765 g/t Ag) with low deleterious elements, and
		- Zn concentrate (51% Zn, 10 g/t Au, 178 g/t Ag) with low deleterious elements, relatively high Cd, but at a level that is unlikely to attract penalties.
		- tailing grades of 2 to 3 g/t Au which respond to intensive cyanide leach with recoveries of 70-80% of any residual gold and silver to a gold doré bar.
		Gravity recovery and flotation tests of the intrusive-hosted mineralisation involved;
		1. primary P80 = 120-80 micron primary grind,
		2. gravity recovery,

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director


Criteria	JORC Code explanation	Commentary
		3. single stage rougher sulphide flotation,
		4. P80 = 20-30 micron regrind of the rougher concentrate (5-10% mass),
		5. one or two re-cleaning stages of the Au-Ag Rougher concentrate
		At primary grind of p80 = 76 micron and regrind of p80 = 51 micron an AuAg concentrate can be produced grading 5
		g/t Au and 284 g/t Ag with total recoveries of 97% (Au) and 85% (Ag).
		One test of a sediment hosted composite sample (5-10% of the mineralisation at the Project) was a repeat of the
		testing done on the intrusive-hosted mineralisation. This produced an Au-Ag concentrate grading 23.6 g/t Au and 23
		g/t Ag at total recoveries of 85% (Au) and 87% (Ag). Further test work is likely to be done as part of more detailed
		studies. It is likely that the concentrate produced from the sediment-hosted mineralisation will be combined with t
		Au-Ag concentrate from the limestone and intrusive-hosted mineralisation.
		Applying recoveries of 70% for both gold and silver to the various concentrate tailings components
		where leaching is likely to be undertaken during production generates recoveries of:
		• 95% (Au), 93% (Ag), 89% (Zn), 70% (Pb) from the high-grade skarn (manto) component of the mineralisation;
		 96% (Au) and 88% (Ag) from the intrusion-hosted component of the mineralisation;
		 85% (Au) and 87% (Ag) from the sediment-hosted component of the mineralisation;
		An intensive cyanide leach test of oxide (limestone and dacite hosted mineralisation has produced recoveries of 78%
		(Au) and 64% (Ag) which is expected to be recovered into gold doré bar. While the oxide component of the
		mineralisation comprises only a small percentage of the Hualilan mineralisation its lies in the top 30-40 metres and
		would be mined early in the case of an open pit operation.
		Based on the test work to date and the proportions of the various mineralisation types in the current geological
		model, it is expected that overall average recoveries for potentially saleable metals will be:
		- 94.9% Au,
		- 90.9% for Ag
		- 67.0% for Zn and
		- 57.8% for Pb
		Additional Stage 2 work involving comminution and variability testing, blended test work, and pilot plant testing is ongoing and planned.
Environmental	- Assumptions made regarding possible	It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold
factors or	waste and process residue disposal options.	from the project. Environmental surveys and assessments have been completed in the past and will form a part of future
•	It is always necessary as part of the process	pre-feasibility studies.
assumptions	of determining reasonable prospects for	pre reasismey seaules.
	o, acternining reasonable prospects for	

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Bulk density	eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. - Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. - The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. - Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	CEL has collected specific gravity measurements from drill core, which have been used to estimate block densities for the Resource estimate. Within the mineralised domains there are 534 specific gravity measurements made on drill core samples of 0.1 – 0.2 metres length. Measurements we determined on a dry basis by measuring the difference in sample weight in water and weight in air. For porous samples, the weight in water was measured after wrapping the sample so that no water enters the void space during weighing. A regression model for block density determination in oxide / partial oxide / fracture oxide (oxide) rock and a separate regression model for fresh rock samples has been made by plotting assay interval Fe (%) + S (%) from the interval where the SG measurement was made against the SG measurement. Fe and S are the two elements that form pyrite which is the mineral that is commonly associated with gold and base metal mineralisation at Hualilan. SG plotted against (Fe+S) follows a linear trend within the mineralised domains for oxide and fresh rock as shown in the graphs below.

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

For oxide rock at zero Fe + S the density is assumed to be 2,430 kg/m 3 (2.43 g/cc). The regression slope has a linear increase in density of 19.8 kg/m 3 (0.0198 g/cc) for each 1 percent increase in Fe + S (%). The formula used for block density (kg/m 3) determination in oxide rock is 2,430 + 19.8 x (Fe % + S%).

For fresh rock at zero Fe + S the density is assumed to be 2,520 kg/m 3 (2.52 g/cc). The regression slope has a linear increase in density of 24.8 kg/m 3 (0.0248 g/cc) for each 1 percent increase in Fe + S (%). The formula used for block density (kg/m 3) determination in oxide rock is 2,520 + 24.8 x (Fe % + S%).

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The Mineral Resource has been classified based on the guidelines specified in the JORC Code. The classification level is based upon semi-qualitative assessment of the geological understanding of the deposit, geological and mineralisation continuity, drill hole spacing, QC results, search and interpolation parameters and an analysis of available density information. The estimation search strategy was undertaken in three separate passes with different search distances, and the minimum number of samples used to estimate a block which were then used as a guide for the classification of the resource into Indicated, Inferred and Unclassified. The classification was then further modified to restrict the Indicated Resource to the domains with closer spaced drilling. The potential open pit resource was constrained within an optimised pit shell run using a gold price of \$1,800 per ounce. Resources reported inside the pit shell were reported above a AuEq cut-off grade of 0.25 ppm and Resources outside the pit shell were reported above a AuEq cut-off grade of 1.0 ppm. Resource reported outside the pit shell above a 1.0 g/t AuEq cut-off is considered 100% Inferred. The Competent Person has reviewed the result and determined that these classifications are appropriate given the confidence in the data and results from drilling.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	The Mineral Resource estimate has not been independently audited or reviewed.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. 	There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach and procedure is deemed appropriate given the confidence limits. The main factors which could affect relative accuracy are: - domain boundary assumptions - orientation - grade continuity - top cut. Grade continuity is variable in nature in this style of deposit and has not been demonstrated to date and closer spaced drilling is required to improve the understanding of the grade continuity in both strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha are encouraging in terms of grade repeatability. The deposit contains very high grades and there is need for the use of top cuts. No production data is available for comparison.

Directors

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

www.challengerex.com

Issued Capital

10m options

1,044.9m shares

120m perf shares

16m perf rights

Australian Registered Office

Level 1

1205 Hay Street

West Perth WA 6005

Challenger Exploration Limited

ACN 123 591 382

ASX: CEL

Criteria	JORC Code explanation	Commentary
	- These statements of relative accuracy and	
	confidence of the estimate should be	
	compared with production data where	
	available.	

1,044.9m shares 10m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director