

OVER 500% INCREASE IN LITHIUM RESOURCE WITH 287Kt OF LCE DECLARED AT BITTERWASSER

HIGHLIGHTS

- Updated Inferred JORC Mineral Resource Estimate (MRE) defined over Eden Pan of 85.2 million tonnes @ 633ppm for 286,909t Li₂CO₃ (LCE), representing ~560% increase
- Cyclone Test Work¹ indicates that a concentrate of 59.6 million tonnes
 @ 817ppm for 259,231t Li₂CO₃ could be produced from the MRE
- Li₂CO₃ (LCE) content of Mineral Resource increased by 430%
- Orebody at surface from 0.2 m to 12 m and open to depth
- Mineral Resource Area represents only 19% of 14 exposed pans in the Bitterwasser District, with potential for further pans obscured by cover from mobile Kalahari dunes
- Arcadia proceeding with large scale test work to investigate best recovery processes to possibly produce a Battery Grade Lithium carbonate product
- Leaching test work¹ to date has shown potential for an **organic acid to** recover 82% of Lithium from the clays, outperforming sulphuric acid

Arcadia Minerals Limited (ASX:AM7, FRA:8OH) (Arcadia or the Company), the diversified exploration company targeting a suite of projects aimed at Tantalum, Lithium, Nickel, Copper, and Gold in Namibia, is pleased to announce an updated Mineral Resource Estimate for its Bitterwasser Lithium-in-Clay Project from the Eden Pan in Kalkrand, Namibia.

Philip le Roux, the CEO of Arcadia stated: "We're encouraged by the significant increase in metal content at the Bitterwasser Lithium-in-Clay project, which is now equivalent to a 1% Li₂O hard rock resource of 11.6Mt. This resource is within the first twelve metres from surface, open at depth and covers only one of the known fourteen

Page 1

¹ Refer to ASX Announcements dated 7 March 2022 "Positive Lithium Mineralogical Test Results Received" and 19 August 2022 "Positive Cyclone & Leach Results for Lithium Clays".

exposed clay pans in the area, so these factors along with the potential for further pans obscured by mobile Kalahari dunes, have the potential to expand the Bitterwasser lithium resource substantially. In addition, the recently announced Cyclone Test Work and early tests around leachability of the ore using environmentally friendly and low cost lixiviants, suggests the potential of feeding a comparatively competitive leachplant with higher grade material. This will now be investigated through our association with the University of Stellenbosch in producing a bench-scale lithium carbonate product for battery grade use".

Jurie Wessels, the Executive Chairman of Arcadia stated: With a significant clay mineral resource in hand, combined with the prospect of increasing it over similar geological terrain and early indications of competitive leachability, we are now looking forward to investigating the bench-scale production of a metallurgical lithium carbonate, and, possibly, project economics thereafter. In addition, our work program, which is based on the geological model for Bitterwasser², to explore the vaster potential of the 4,000Km² Bitterwasser basin for lithium brines is progressing well, details of which will be shortly announced".

Revised Mineral Resource Estimate

The previous JORC Mineral Resource released on 3 November 2021³ has been revised following the Phase 2 drilling program⁴ and comprises an updated JORC Mineral Resource defined over Eden Pan of **85.2 million tonnes @ 633ppm for 286,909t Li₂CO₃ (LCE)** wholly classified in the Inferred Category. This updated resource represents a ~560% increase in resource and 430% increase in metal content.

The updated Mineral Resource estimate is based on 77 auger drill holes and 486 core samples taken (refer to Annexure 1 read with Annexure 2 for drilling results). The Mineral Resource estimate (refer to Annexure 3 hereto for JORC Tables) was based on two groups of resources, namely the Upper and Middle Units, which refers all the material inside the wire frames, and the Secondary Unit which refers to the economic mineralisation material outside the wire frames. A summary of the estimated JORC compliant Mineral Resources for the Bitterwasser Project at various cut-off grades is provided in Table 1 below. The estimate includes all the main mineralised geological domains.

The Mineral Resource represents only 19% of the 14 exposed clay pans within three EPL's covering an area of ~593km². The Company plans to continue exploration over the remaining

² Refer to ASX Announcement dated 9 May 2022 "Study advances work program for Lithium-in-Brines"

³ Refer to ASX Announcement dated 3 November 2021 "Arcadia Acquires Adjacent Lithium Project with JORC Mineral Resources"

⁴ Refer to Asx Announcement dated 2 May 2022 "Final Lithium Drilling Assay Results Received at Bitterwasser" and 10 March 2022 "Encouraging Lithium Drilling Assay Results at Bitterwasser"

pans, and areas of pans that may be obscured by mobile Kalahari dunes, and **to commence** with geophysical surveys for lithium brine potential over the entire **4,031km²** of its land holding in Namibia. In addition, and in view of the positive results, Arcadia will conduct large scale leach test work at the University of Stellenbosch Chemical Engineering department from July to September 2022 on various lixiviants to ascertain which gives the optimal leaching results and investigate the best recovery process flowsheet to recover lithium as a lithium carbonate.

The Mineral Resource has been classified as an Inferred Mineral Resource following the guidelines and procedures for classifying the reported Mineral Resources were undertaken within the context of JORC (2012).

CATEGORY	UNIT	TONNAGE	GRADE	CONTAINED					
Cut off Cuod	f 0 1:	ton	Li ppm	Li ton					
Cut-off Grade									
In diant ad	Upper Middle	-	-	-					
Indicated		-	-	-					
	Total Indicated	- 64 540 574	464.60	-					
	Upper	61 518 571	464.60	28 582					
Inferred	Middle	92 382 945	568.85	52 552					
	Total Inferred	153 901 516	527.18	81 134					
Cut-off Grade of 500 ppm Li									
Indicated	Upper	-	-	-					
	Middle	-	-	-					
	Total Indicated	-	-	-					
	Upper	28 192 877	556.86	15 699					
Inferred	Middle	56 955 751	670.72	38 201					
	Total Inferred	85 148 628	633.03	53 900					
Cut-off Grade	e of 600 ppm Li								
	Upper	-	-	-					
Indicated	Middle	-	-	-					
	Total Indicated	-	-	-					
	Upper	2 878 041	634.69	3 659					
Inferred	Middle	21 292 230	729.82	28 282					
	Total Inferred	44 516 575	717.50	31 941					
Cut-off Grade	e of 650 ppm Li								
	Upper	-	-	-					
Indicated	Middle	-	-	-					
	Total Indicated	-	-	-					
	Upper	-	-	-					
Inferred	Middle	29 572 282	761.84	22 529					
	Total Inferred	29 572 282	761.84	22 529					
	Middle	29 572 282	761.84	22 529					

Table 1: Summary of estimated JORC compliant Mineral Resources for the Bitterwasser Project

The classification is based upon an assessment of understanding the geology of the deposit, mineralisation continuity, drill hole spacing, quality control results, search and estimation parameters, and analysing of available bulk density data.

The criteria reviewed for classification was as follows:

- Level of understanding of mineralisation controls.
- Ability to demonstrate geological continuity and understanding of geological setting.
- Assessment of data quality.
- Review of QA/QC procedures applied.
- Review of the drill hole spacing and estimation quality of statistics applied.

The drill spacing is sufficient to allow the geology and mineralisation zones to be modelled into coherent wireframes for each domain. Reasonable consistency is evident in the orientations, thickness and grades of the Inferred Mineral Resources.

Areas that fall within the following lithium grade ranges (< 400 ppm; 500-600 ppm; > 600 ppm) were evaluated onto a block model (Figure 1). No geological or mining losses were applied.

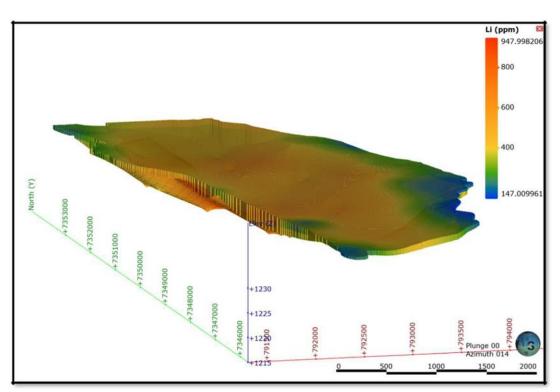


Figure 1: Lithium grade ranges evaluated onto a block model

Inferred Mineral Resources have a significant degree of uncertainty as to whether they can be mined economically, and it cannot be assumed that all or any part of the Inferred Resource will be upgraded to a higher confidence category. In compliance with JORC it is noted that Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. However, the Bitterwasser Mineral Resources have undergone valid modification in PFS conducted by Bitterwasser Lithium and Mineral Reserves that do have demonstrated

economic viability have been recorded. The Competent Person (Dr. Johan Hattingh) is of the opinion that realistic prospects for the economic extraction of lithium exists at the Bitterwasser Eden Pan deposit.

It can be accepted that despite the simplicity of the mineralised horizons and the estimation techniques applied, the estimation methodology used succeeded in presenting a reliable estimate of the resource volume and grade for the Eden Pan.

The Competent Person considers that there is good potential for the delineation of further Mineral Resources and Ore Reserves following on-going exploration and development.

Higher levels of confidence in the geology and grade distribution could be achieved by closer-spaced drilling and through a better understanding of the chemical controls of the mineralisation. High resolution surveying of bore hole collars will assist in improving the confidence of resource volume figures. The auger drilling done in the Upper and Middle Units (refer to Annexure 1 below) is considered sufficient for delineating a sizeable open pit mine with an appreciable proportion of material in the Inferred category.

Auger drilling data and the 3D modelling undertaken indicates that mineralisation may be open ended in depth. Extensional diamond core drilling will improve the geological as well as the resource confidence in the areas currently delineated as a Mineral Resource.

Further to that, it is very likely that the present-day pans such as the Eden Pan, perceived to be confined by dunes in a larger dune field, are in fact part of one large pan in part obscured by mobile dunes in transit over the pan. Here a very good probability exists that the pans seen today are part of a larger pan with younger dunes migrating over and masking a larger pan feature. To clarify this issue the fourteen neighbouring unexplored pans should receive attention in future exploration phases.

To date only the lithium bearing clay has been considered as a potential resource target with no work done on the brine potential at this prospect. This will receive focussed attention shortly. Similarly, the potassium and boron potential at the Eden Pan remains unassessed.

Mineral Resource estimation methodology

The methods used to derive and classify the updated Mineral Resource estimate for the Bitterwasser project is explained below. Expetra (www.expetra.co.za), a team of South African field geologists who specialises in early-phase investigation of mineral deposits, and who uses proven scientific methods with cutting-edge technology, was responsible for resource modelling and calculation of Bitterwasser Lithium Exploration's Mineral Resource figures.

The method used for the estimation of the mineral resources described here were applied to the entire drilling area as part of the resource definition programme at the Eden Pan. The

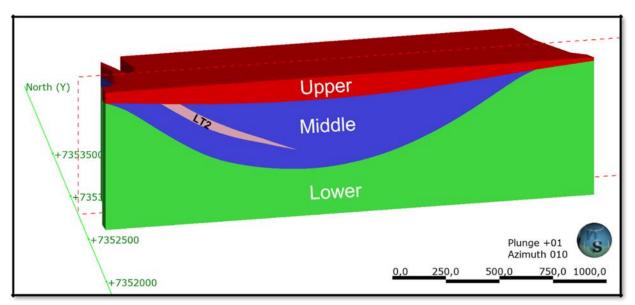
drilling area was considered to be an occurrence of lithium of economic interest in form, quality and quantity as to render reasonable and realistic prospects of lithium extraction for the lithium market.

Lithium mineralisation in pan clay settings does not demonstrate an inherent high variability in the distribution of economic extractable lithium. However, sampling this type of deposit requires a large number of samples. The drilling conducted by Arcadia is considered sufficient to obtain sample volumes and, therefore, the required data to enable estimation of tonnages and grades. The drilling employed also provided sufficient information to determine the volume of the mineralisation zones, and its relationship to geological features.

Due to the uniform nature of the lithium mineralisation zone at the Eden Pan of Bitterwasser, and of the grade within it, most of the data for evaluating resource blocks were derived from data presented by adjacent auger holes. The continuity of grade values within the mineralised horizons is based primarily on sample analysis results. Mineral Resource blocks have been defined based on this information. The lithium deposit geometry has been modelled on the pan geometry, without referencing potential continuation under the Kalahari sand cover.

Drillhole data was composited within Leapfrog Geo® (Version 2021.2.4) on a 460 m composite length. A total of 281 composites were used in the statistical analysis and resource estimation. The Competent Person is satisfied that the Mineral Resource estimation globally reflects the deposit based on the available data. Suitably experienced and qualified geologists, surveyors and other mineral resource practitioners employed by Arcadia were responsible for the capture of the drillhole information and compilation of geological information.

Assumptions, parameters and estimation methodology


Grade estimation was undertaken using Ordinary Kriging and the estimation approach was considered appropriate based on review of a number of factors, including the quantity and spacing of available data, the interpreted controls on mineralisation, and the style and geometry of mineralisation. In places, higher grade zones occur within a lower grade background and the individual mineralisation boundaries of these high-grade zones can be difficult to define. Indicator Kriging was therefore chosen to delineate the areas with continuous grades and was used later as a start model to adequately define the mineralisation.

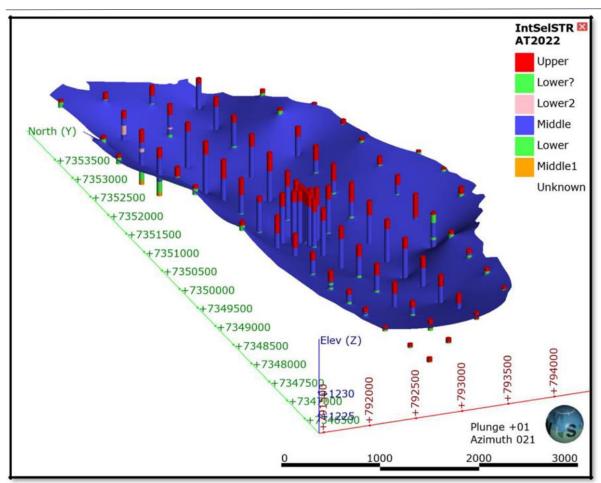
Based on grade information and geological logging and observations, the Upper Unit, Middle Unit and Lower Units mineralised domain boundaries have been interpreted and formulated into wireframes to permit the resource estimation for the Bitterwasser Project. The interpretation and wireframe models were developed using Leapfrog Geo® geological modelling software package. It was determined that a 50 m x 50 m x 10 m block size provided the best results for delineating the mineralised zones using the Indicator Kriging methodology and a 5 m x 5 m x variable block size provided the best results for geo-statistical estimation and hence the estimation was conducted on a 10 m x 10 m x 10 m (X, Y & Z respectively) block model size.

Geological and mineralisation domains

For the purpose of the mineral resource estimation, two main mineralised domains were interpreted (Upper and Middle Domains) and were modelled on a bottom cut-off grade of 0 ppm Li. The main mineralised domains are located within the previously broadly delineated mineralised zones, whereas the secondary mineralised domains are located outside these main mineralised zones. The main domains are shown in Figure 2.

Figure 2: A cross-section indicating the different stratigraphic zones. Only the Upper and Middle units were used as domains for estimation (Expetra, 2022).

To delineate the mineralisation inside the previously defined wireframes, Indicator Kriging was implemented using a lithium cut-off grade of 0 ppm Li.


Statistical analysis of the raw data

Classical statistics of each of the individual Units was undertaken in order to establish the extent of the homogeneity within the unit, the global mean and outlier analysis.

Drilling data

Borehole logs from eighty auger boreholes were prepared by Arcadia. All boreholes were drilled vertically, and their aggregate depth was approximately 505 m in total. The average depth of the boreholes is 6.3 m. The holes were drilled predominantly on a regular grid spacing of 500 m x 500 m (see Figure 3), that extends across the entire pan. Near the centre of the pan, on a cross of this grid pattern, holes were drilled at an inter-hole spacing of 62.5 m.

Figure 3: Image showing holes were drilled predominantly on a regular grid spacing of 500 m x 500 m that extends across the entire pan

Lithology logs, with major and minor lithology units, as well as assay results for Li (ppm) and K (%) were compiled by Arcadia. Due to the nature of the drilling and the deposit, no structural measurements or orientations of lithological contacts were provided. Topographical survey data was recorded using a hand-held GPS. The collar elevations were set to a constant elevation of 1 234 m above mean sea level. Interval errors and warnings in the geological data were flagged by Leapfrog Geo®. Boreholes were also visually inspected by the geologist to ensure that a "clean" database was used for modelling. The data was placed in a compatible format for modelling in Leapfrog Geo® modelling software as described below.

Geological Modelling

A model boundary was created from a GIS outline of the Eden Pan, surveyed and supplied by Arcadia. Implicit geological models were created in Leapfrog Geo® (Version 2021.2.4). Implicit modelling, based on a method of global interpolation using radial basis functions, provides a viable alternative to the traditional explicit modelling. Two geological models were constructed, one from the minor lithology units, and the other from the major lithology units (referred to as 'Stratigraphy') that was logged.

Compositing of interval assay values was conducted prior to estimation to ensure that the input data is of constant support (i.e., the sample lengths are distributed equally according to grade). Compositing decreases the variability of samples and homogenises it to an appropriate data scale, which results in more robust geostatistical analysis, including variography. The average sample length was 1.1 m. A length of 2 m was chosen for the compositing.

Geostatistical domaining was investigated for units modelled in the Lithology Model, as well as the Stratigraphy model. The Middle and Upper units of the Stratigraphic Model were used for resource estimation during this phase. Sub-domaining was investigated, since statistical stationarity of these larger domains were considered questionable.

Downhole variograms were constructed to permit the determination of the nugget value, as well as the vertical or across deposit search range for the Kriging estimation (refer to Figure 4 below). In general, it was established that the average vertical range for the domains and grade was 8 samples per octant. Point experimental variograms were generated and modelled for each domain to assess the spatial variability for K (%) and Li (ppm) within the Upper and Middle domains, respectively.

The domain analysis performed and the stationarity of the two domains that were selected was shown to be sub-optimal. The reliability of the variograms varied to some degree. However, realistic spatial variability was demonstrated and used to assist with determining the appropriate range of influence with regards to the spatial correlation of the grade components.

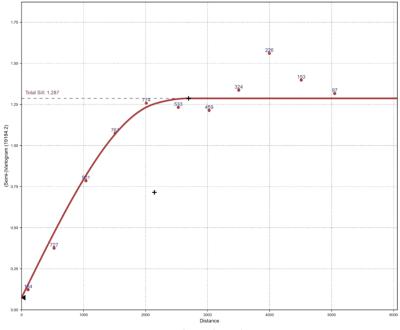


Figure 4: Major direction variogram for Li (ppm) in the Upper stratigraphic unit.

A sub-blocked model was constructed for the Stratigraphic Model described above. The X and Y dimensions of the parent blocks were set to 50 m, with a vertical height of 10 m. Parent blocks were divided into five sub-blocks, along the X and Y axes. Variable height sub-blocking was enabled along the Z-axis to better cover the thinner parts of the mining unit. The contacts of the Stratigraphic Model's units were used as triggers for sub-blocking.

Wireframe models were constructed to delineate the Inferred Resources for each domain. Expetra used the existing mineral resource category boundaries as a template to determine the new resource category areas. The resultant mineral resource classification model is presented in Figure 1 (above).

Mineralogical and Metallurgical Test Work⁵

A representative sample composed of subsamples from 5 drillholes sampled during the second phase drilling campaign was sent to Anzaplan in Germany for mineralogical test work. The test work included sample analyses (XRF and ICP) and four different XRD analyses (Normal, Texture, Glycolyzed and Calcined). The results indicate that the following minerals are present within the sample: Quartz, Calcite, Dolomite, Feldspar (Microcline and Albite), Muscovite and Montmorillonite.

The test work confirmed the clay to be an aluminium-rich clay mineral, Montmorillonite of the smectite group (swelling clays). Montmorillonite is also the clay that is present in the Nevada (USA) lithium clay deposits. Mineralogical examinations by SGS, indicate that the quartz, dolomite, and calcrete minerals to be located in the coarse-grained + 20-micron fraction.

Arcadia investigated cost effective methods to separate the coarse-grained quartz, dolomite and calcite fraction from the clay fraction. Given most of the lithium should be adsorbed in the fine-grained clay particles, an increase in the lithium grade in the sample can be achieved by removing coarse grained (>10 μ m) quartz, dolomite and calcite grains, thereby leaving a lithium rich fine-grained clay. This could greatly enhance the economic extraction potential of the mineral resource and reduce leaching cost.

To test this, Arcadia appointed Multotec, a technology-driven global supplier of mineral processing equipment, based in Johannesburg South Africa, to conduct bulk (800kg) cyclone test work to separate the clay fraction from the coarse fraction. The composite 800 kg auger drilled core sample represents a clay sample combining all the different zones (both the brown and green clay) and from all the boreholes drilled as part of phase 2 drilling campaign. This sample is regarded as a truly representative sample of the Eden Pan clay covering the complete stratigraphy from surface to approximately twelve meters below surface. The cyclone test work on the bulk sample was processed by applying a 10 µm bottom cut. Comparing the PSD (Particle Size Distribution) of the feed to that of the overflow (fines) it is

⁵ Refer to Asx Announcements: 19 August 2022 "Positive Cyclone Leach Results for Lithium Clays" and 2 March 2022 "Positive lithium mineralogical Test Results Received" and 20 December 2021 "Operational Update: Bitterwasser Lithium Clays"

evident that using a 10 μ m bottom cut, results in approximately 70% of the material report to the cyclone overflow (fine fraction) and 30% to the cyclone underflow (coarse fraction).

Cutting at 10 μ m the cyclone would therefore remove about 30% of the volume of material. During the cyclone test process three samples of the feed, overflow and underflow were collected and analysed by UIS Analytical Services. The results of the feed samples (620, 620 & 640 ppm Li, average 626 ppm Li) the overflow (790, 820 & 820 ppm Li, average 810 ppm Li) and the underflow (140, 150 & 150 ppm Li, average 147 ppm Li) indicate a 29% increase in grade of the cyclone overflow. As such, bulk cyclone test work on the Eden Pan clay deposit indicates that using a 10 μ m cut, the volume could be decreased by around 30% and the grade increased by 29%. See Table 2 below.

CONVERSION TABLE OF ORE-FEEDSTOCK TO CYCLONE CONCENTRATE

				Cyclone		
Cut-off	Tons (Mt)	Grade	LCE (Tons)	Tons (Mt)	Grade	LCE (Tons)
0	153.7	527	431,162	107.6	680	389,340
500	85.2	633	287,078	59.6	817	259,231
600	44.5	717	169,838	31.2	925	153,364
650	29.6	761	119,904	20.7	982	108,273
Maiden	15.1	828	66,552			

Table 2: Summary of potential ore feedstock converted to cyclone concentrate for leaching

Sample Collection and Analyses

Phase 1 sampling consisted of sampling a total of 14 of the 16 Phase I drillholes. From these holes a total of 89 samples were collected over the course of the drilling programme, with 74 samples taken for chemical/metallurgical analysis (see Annexure 2 below) while the other 15 samples (16.85 % of the total number) were used for quality control and quality assurance (QA/QC) purposes. A total of 15 clay density samples were also collected, of which 7 are of the Upper Unit and 8 are of the Middle Unit.

A total of 63 of the 64 Phase II drillholes were sampled over the course of the drilling programme, during which a total of 397 samples were collected, with 352 samples taken for chemical analysis (see Annexure 3), while the other 45 samples were used for quality control and quality assurance purposes. A total of 38 clay density samples were also collected, of which 15 are of the Upper Unit and 23 are of the Middle Unit.

The samples collected were composite samples which represents each 20 cm run (sample tube length) as best as possible and do not extend over lithological boundaries. Each 20 cm sample was split into smaller sub-samples (A-samples and B-samples). The composite sample contain between 33-50% of each 20 cm sample depending on the size. Composite samples contain as close to equal amount as possible from top to bottom of each lithological unit sampled. The A-samples were shipped to the lab for analysis, while the B-samples were stored and used for duplicates and bulk sampling.

Core recovery was almost 100% due to the cohesive nature of the clay.

A composite sample were collected according to lithology units. Samples didn't cross over lithological boundaries. A representative sample were taken of each 20 cm run, considering the sample weight and size. i.e., one composite sample contain a weighted sample of each run.

Sound chain of custody with a well-documented paper trail was in place during both sampling programs. Phase I samples were shipped to SGS Laboratories in Randfontein, South Africa where they took over custody of the samples. The Phase II samples were shipped with the project geologist to the Windhoek office and to the ALS laboratory where they took custody of the samples. The B-samples are stored in a secure facility.

Arcadia routinely added certified reference material (CRM), blanks and duplicates during the sampling phases. A total of 17 QA/QC samples were inserted into the sampling stream during Phase I and overall, the results are within acceptable accuracy and precision ranges as certified for those reference materials.

Umpire samples were taken as a precaution method. The samples received from ALS fell within the standard deviation of Amis reference material.

Bulk density determinations have been undertaken over all the lithologies and oxidation states except the Lower Unit (LT). The procedure followed used the standard bulk density determination method based on the Archimedes Principle of weight "in-air" versus weight "in-water".

The lithium grade of samples collected during the Phase I drill campaign shows a consistent increase from the borehole collar to the end of the hole with the highest values at the base of the Middle Unit at its interface with the underlying sandy clay unit called the Lower Unit

Conclusions and Future Exploration

Auger drilling data and the 3D modelling undertaken indicates that **mineralisation may extend the resource to depth**. Infill and extensional diamond core drilling will improve the geological as well as the resource confidence in the areas currently identified as targets. Further to that, it is very likely that the present-day pans such as the Eden Pan, perceived to be confined by mobile dunes in a larger mobile dune field, are in fact part of one large pan in part obscured by dunes. Here a very good probability exists that the pans seen today are part of a larger pan with younger dunes migrating over and masking a larger pan feature.

In addition to the Eden Pan, fourteen neighbouring pans remain unexplored and will receive attention in future exploration phases.

Arcadia is to execute further exploration work in order to potentially delineate the saline and/or brine aquifer system (represented by the electrically conducive anomaly underlying the mineralized Li-clay sequences) in the Eden Pan, with the intention to confirm the existence of significant Li grades within this saline and/or brine aquifer.

Arcadia plans to advance the project by commencing with the prospecting and test work listed below as a next phase of exploration:

- A high-resolution topographic survey of the Eden Pan surface to increase the MRE confidence level. This will include the generation of a digital terrain model from the surveyed data which will enhance the accuracy of the geological model and the resource estimate.
- 2. Drilling of 4 diamond core holes at the Eden Pan to support and enhance the classification and MRE of additional resources.
- 3. Initiate a drilling campaign on the neighbouring 7 pans at Bitterwasser (2 3 holes in the centre of each pan), and pans being obscured by mobile Kalahari dunes, and if good lithium grades are encountered in a particular pan the pan will be drilled out on an appropriate grid.
- 4. Bulk testing using mineral processing cyclones to determine if the clay fraction could be separated from the sand/silt fraction as a possible method to increase the lithium grade prior to leaching.
- 5. Arcadia will conduct large scale leach test work using 500 kg samples at the University of Stellenbosch Chemical Engineering department during July and August 2022 on various lixiviants to ascertain which gives optimal leaching results.
- 6. Investigate the best recovery process flow to recover lithium as lithium carbonate.

This announcement has been authorised for release by the directors of Arcadia Minerals Limited.

For further information please contact:
Jurie Wessels
Executive Chairman
Arcadia Minerals Limited
info@arcadiaminerals.global

COMPETENT PERSONS STATEMENT & PREVIOUSLY REPORTED INFORMATION

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by the Competent Person(s) whose name(s) appears below, each of whom is either an independent consultant to the Company and a member of a Recognised Professional Organisation or a director of the Company. The Competent Person(s) named below have sufficient experience relevant to the style of mineralisation and types of deposits under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the JORC Code 2012.

The information in this announcement that relates to Mineral Resources complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and that has been compiled, assessed, and created under the supervision of Dr Johan Hattingh B.Sc. (Hons.), Ph.D., who is a member of the South African Council for Natural Scientific Professions (membership no. #400112/93) and is a director of Geological and GIS Consulting firm Creo Design (Pty) Ltd, which is a consultant to Arcadia and Bitterwasser Lithium Exploration (Pty) Ltd.

Dr Hattingh has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Persons as defined in the 2012 Edition of the JORC Code. Dr Hattingh is the competent person for the estimation and has relied on provided information and data from the Company, including but not limited to the geological model, database and expertise gained from site visits. Dr Hattingh consents to the inclusion in this announcement of matters based on his information in the form and context in which it appears. The Mineral Resource is based on standard industry practises for drilling, logging, sampling, assay methods including quality assurance and quality control measures as detailed in the annexures.

Competent Person	Membership	Report/Document
Dr Johan Hattingh	South African Council for Natural Scientific Professions #400112/93	Independent Geological Report on the Lithium Resource at the Eden Pan,
B.Sc. (Hons.), Ph.D.	F10165510115 #400112/ 35	Bitterwasser, Hardap Region, Namibia, Aug. 2022
Mr Philip le Roux (Director Arcadia Minera	South African Council for Natural Scientific ls)Professions #400125/09	This announcement and JORC Tables

As stated above, the Company confirms that the form and context in which a Competent Person's findings are presented have not been materially modified from the original market announcements.

Release Date	ASX Announcements
3 November 2021	Arcadia Acquires Adjacent Lithium Project with JORC Mineral Resources
7 March 2022	Positive Lithium Mineralogical Test Results Received
10 March 2022	Encouraging Lithium Drilling Assay Results at Bitterwasser
2 May 2022	Final Lithium Drilling Assay Results Received at Bitterwasser
9 May 2022	Study advances work program for Lithium-in-Brines
19 August 2022	Positive Cyclone & Leach Results for Lithium Clays

BACKGROUND ON ARCADIA

Arcadia is a Namibia-focused diversified metals exploration company, which is domiciled in Guernsey. The Company explores for a suite of Gold and new-era metals (Lithium, Tantalum, Palladium, Nickel and Copper). The Company's strategy is to bring the advanced Swanson Tantalum project into production and then to use the cashflows (which may be generated) to drive exploration and development at the potentially company transforming exploration assets. As such, the first two pillars of Arcadia's development strategy (a potential cash generator and company transforming exploration assets) are established through a third pillar, which consists of utilising the Company's human capital of industry specific experience, tied with a history of project generation and bringing projects to results, and thereby, to create value for the Company and its shareholders.

Most of the Company's projects are located in the neighbourhood of established mining operations and significant discoveries. The mineral exploration projects include-

- 1. Bitterwasser Project prospective for lithium-in-brines and that includes a potentially expanding JORC Mineral Resource from lithium-in-clays.
- 2. Kum-Kum Project prospective for nickel, copper, and platinum group elements.
- 3. Karibib Project prospective for copper and gold.
- 4. The Swanson Project advanced tantalum project undergoing a feasibility study, and which contains a potentially expanding JORC Mineral Resource within the Swanson Project area and neighbouring tenements held by the Company.

As an exploration company, all the projects of the company are currently receiving focus. However, currently the Swanson project and the Bitterwasser Lithium project may be considered as Arcadia's primary projects due to their potential to enhance the Company's value.

For more details, please visit www.arcadiaminerals.global

DISCLAIMER

Some of the statements appearing in this announcement may be forward-looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which Arcadia operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. No forward-looking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by a number of factors and subject to various uncertainties and contingencies, many of which will be outside Arcadia's control.

The Company does not undertake any obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of Arcadia, its directors, employees, advisors or agents, nor any other person, accepts any liability for any loss arising from the use of the information contained in this announcement. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

This announcement is not an offer, invitation, or recommendation to subscribe for, or purchase securities by the Company. Nor does this announcement constitute investment or financial product advice (nor tax, accounting, or legal advice) and is not intended to be used for the basis of making an investment decision. Investors should obtain their own advice before making any investment decision.

ANNEXURE 1

Drillhole Locations and Intersections

List of all auger holes which were drilled as a part of Phase I.

AUGER ID	WGS84_ UTM33S_ X	WGS84_ UTM33S_ Y	ESTIMATED ELEVATION (MAMSL)	AZIMUTH (°)	INCLINATION (°)	DATE FROM	DATE TO	EOH (M.B.G.L.)
BMB07	792500	7351501	1226	N/A	-90	2019/10/17	2019/10/17	9.30
BMB01	793000	7351501	1226	N/A	-90	2019/10/12	2019/10/12	11.20
BMB05	793500	7351501	1226	N/A	-90	2019/10/13	2019/10/13	6.00
BMB06	793500	7351001	1226	N/A	-90	2019/10/13	2019/10/15	6.60
BMB04	793500	7350502	1226	N/A	-90	2019/10/15	2019/10/15	7.80
BMB03	793000	7350502	1226	N/A	-90	2019/10/11	2019/10/12	12.20
BMB09	792500	7350499	1226	N/A	-90	2019/10/16	2019/10/16	7.80
BMB08	792500	7351001	1226	N/A	-90	2019/10/16	2019/10/17	7.80
BMB02	793000	7351001	1226	N/A	-90	2019/10/10	2019/10/10	10.80
BMB10	792000	7351500	1226	N/A	-90	2019/10/17	2019/10/17	2.20
BMB11	792000	7351000	1226	N/A	-90	2019/10/17	2019/10/17	2.00
BMB12	794000	7351500	1226	N/A	-90	2019/10/18	2019/10/18	1.80
BMB13	794000	7351000	1226	N/A	-90	2019/10/18	2019/10/18	1.80
BMB14	794000	7350500	1226	N/A	-90	2019/10/18	2019/10/18	4.20
BMB15	794499	7350501	1226	N/A	-90	2019/10/18	2019/10/18	0.80
BMB16	794421	7350999	1226	N/A	-90	2019/10/18	2019/10/18	0.80

List of all the geostatistical auger holes which were drilled as a part of Phase II.

AUGER ID	WGS84_ UTM33S_ X	WGS84_ UTM33S_ Y	ESTIMATED ELEVATION (MAMSL)	AZIMUTH (°)	INCLINATION (°)	DATE FROM	DATE TO	EOH (M.B.G.L.)
BVRG1	793000	7350565	1229	N/A	-90	2021-11-30	2021-12-01	11.4
BVRG2	793000	7350627	1235	N/A	-90	2021-12-01	2021-12-03	13
BVRG3	793000	7350752	1233	N/A	-90	2021-12-03	2021-12-04	11.6
BVRG4	793063	7350502	1232	N/A	-90	2021-11-30	2021-12-02	11.8
BVRG5	793125	7350502	1230	N/A	-90	2021-12-03	2021-12-03	12.2
BVRG6	793250	7350502	1230	N/A	-90	2021-12-03	2021-12-04	10.4
BVRG7	793000	7350440	1235	N/A	-90	2021-12-04	2021-12-05	11
BVRG8	793000	7350377	1233	N/A	-90	2021-12-05	2021-12-06	11.8
BVRG9	793000	7350252	1232	N/A	-90	2021-12-06	2021-12-08	10.6
BVRG10	792938	7350502	1231	N/A	-90	2021-12-04	2021-12-05	12
BVRG11	792875	7350501	1231	N/A	-90	2021-12-05	2021-12-06	12
BVRG12	792750	7350501	1231	N/A	-90	2021-12-06	2021-12-08	11.6

List of all auger holes which were drilled as a part of Phase II.

DMC04	Х	UTM33S_ Y	ELEVATION (MAMSL)	AZIMUTH (°)	INCLINATION (°)			EOH (M.B.G.L.)
BMC01	793993	7352001	1231	N/A	-90	2022-01-18	2022-01-18	1
BMC02	793500	7352000	1230	N/A	-90	2022-01-18	2022-01-18	6.8
BMC03	793000	7352000	1232	N/A	-90	2022-01-12	2022-01-13	9.8
BMC04	792500	7352000	1229	N/A	-90	2022-01-13	2022-01-15	12.2
BMC05	792000	7352000	1232	N/A	-90	2022-01-15	2022-01-17	10.4
BMC06	791560	7352005	1230	N/A	-90	2022-01-17	2022-01-17	2
BMC07	791584	7352497	1232	N/A	-90	2022-01-14	2022-01-14	2
BMC08	792000	7352500	1228	N/A	-90	2022-01-15	2022-01-16	12
BMC09	792500	7352500	1228	N/A	-90	2022-01-12	2022-01-13	10.4
BMC10	793000	7352500	1229	N/A	-90	2022-01-14	2022-01-14	7
BMC11	793500	7352500	1228	N/A	-90	2022-01-17	2022-01-17	4.4
BMC12	793872	7352497	1233	N/A	-90	2022-01-17	2022-01-17	0.6
BMC13	793505	7353001	1230	N/A	-90	2022-01-17	2022-01-17	1.4
BMC14	793000	7353000	1225	N/A	-90	2022-01-17	2022-01-26	10.8
BMC15	792500	7353000	1232	N/A	-90	2022-01-26	2022-01-26	7.6
BMC16	792000	7353000	1227	N/A	-90	2022-01-27	2022-01-27	7.4
BMC17	791510	7353497	1231	N/A	-90	2022-01-27	2022-01-27	1.6
BMC18	791998	7353505	1233	N/A	-90	2022-01-27	2022-01-27	1.6
BMC19	792500	7353500	1236	N/A	-90	2022-01-26	2022-01-26	4
BMC20	793005	7353497	1228	N/A	-90	2022-01-18	2022-01-26	7.8
BMC21	792117	7349988	1233	N/A	-90	2021-12-08	2021-12-08	2
BMC22	792500	7350000	1232	N/A	-90	2021-12-08	2021-12-09	7.8
BMC23	793000	7350000	1228	N/A	-90	2021-12-09	2021-12-09	10.8
BMC24	793500	7350000	1229	N/A	-90	2021-12-09	2021-12-09	9.4
BMC25	794000	7350000	1238	N/A	-90	2021-12-08	2021-12-09	5.6
BMC26	794494	7349995	1232	N/A	-90	2021-12-08	2021-12-08	3.2
BMC27	794000	7349500	1234	N/A	-90	2022-01-28	2022-01-29	8.6
BMC28	793500	7349500	1231	N/A	-90	2022-01-28	2022-01-28	9.6
BMC29	793000	7349500	1226	N/A	-90	2022-01-28	2022-01-28	9.4
BMC30	792500	7349500	1230	N/A	-90	2022-01-28	2022-01-29	4.8
BMC31	792500	7349000	1233	N/A	-90	2022-01-29	2022-01-29	4.8
BMC32	793000	7349000	1235	N/A	-90	2022-01-29	2022-01-29	8.2
BMC33	793500	7349000	1233	N/A	-90	2022-01-29	2022-01-29	9.6
BMC34	794000	7349000	1230	N/A	-90	2022-01-28	2022-01-28	1.6
BMC35	794000	7348500	1230	N/A	-90	2022-01-30	2022-01-30	1.8
BMC36	793500	7348500	1229	N/A	-90	2022-01-30	2022-01-30	7.2
BMC37	793000	7348500	1230	N/A	-90	2022-01-30	2022-01-30	6.2
BMC38	792500	7348500	1234	N/A	-90	2022-01-30	2022-01-30	4
BMC39	794000	7348000	1230	N/A	-90	2022-01-28	2022-01-28	4.2

BMC4	793500	7348000	1229	N/A	-90	2022-01-28	2022-01-28	6.8
BMC4	793000	7348000	1232	N/A	-90	2022-01-29	2022-01-29	6
BMC4	792503	7347994	1232	N/A	-90	2022-01-29	2022-01-29	3.2
BMC4	792492	7347506	1229	N/A	-90	2022-01-31	2022-01-31	1.6
BMC4	793000	7347500	1235	N/A	-90	2022-01-31	2022-01-31	3.2
BMC4	793500	7347500	1221	N/A	-90	2022-01-31	2022-01-31	4.2
BMC4	793991	7347492	1231	N/A	-90	2022-01-31	2022-01-31	0.8
BMC4	793500	7347000	1231	N/A	-90	2022-01-30	2022-01-30	1.6
BMC4	793000	7347000	1234	N/A	-90	2022-01-30	2022-01-30	2.4
BMC4	792510	7347001	1232	N/A	-90	2022-01-30	2022-01-30	1
BMC5	792588	7346498	1231	N/A	-90	2022-01-30	2022-01-30	0.8
BMC5	792998	7346488	1230	N/A	-90	2022-01-30	2022-01-30	1
BMC5	792644	7346106	1233	N/A	-90	2022-01-30	2022-01-30	1

ANNEXURE 2

List of Samples taken during Auger Programs (Phases 1 &2) and Assay Results

List of all samples collected during Phase I of the auger drilling programme.

		•			-	_		
AUGER ID	REMAINDER COMPOSITE SAMPLE ID (LEACHING)	ICP-OES/MS COMPOSITE SAMPLE ID (ICP-OES)	SAMPLE TYPE	FROM (m)	TO (m)	THICKNESS (m)	SAMPLE WEIGHT (g)	MAJOR UNIT
BMB02	BMB02_S1	X2101	Geo	0	0.2	0.2	317	Upper
BMB02	BMB02_S2	X2102	Geo	0.2	1.2	1	538.5	Upper
BMB02	BMB02_S3	X2103	Geo	1.2	2.4	1.2	570	Upper
BMB02	BMB02_S4	X2104	Geo	2.4	3.2	0.8	574	Upper
BMB02	BMB02_S5	X2105	Geo	3.2	4	0.8	823	Middle
BMB02	BMB02_S6	X2107	Geo	4	5.6	1.6	657.5	Middle
BMB02	BMB02_S7	X2108	Geo	5.6	7.2	1.6	601.5	Middle
BMB02	BMB02_S8	X2109	Geo	7.2	8.8	1.6	570.5	Middle
BMB02	BMB02_S9	X2110	Geo	8.8	9.8	1	663.5	Middle
BMB02	BMB02_S10	X2111	Geo	9.8	10.6	0.8	559	Middle
BMB03	BMB03_S1	X2114	Geo	0	0.2	0.2	159	Upper
BMB03	BMB03_S2	X2115	Geo	0.2	1	0.8	356	Upper
BMB03	BMB03_S3	X2116	Geo	1	2	1	471.5	Upper
BMB03	BMB03_S4	X2118	Geo	2	3	1	358.5	Upper
BMB03	BMB03_S5	X2119	Geo	3	3.6	0.6	291.5	Middle
BMB03	BMB03_S6	X2120	Geo	3.6	5.6	2	535.5	Middle
BMB03	BMB03_S7	X2121	Geo	5.6	7.6	2	440.5	Middle
BMB03	BMB03_S8	X2122	Geo	7.6	9.4	1.8	772	Middle
BMB03	BMB03_S9	X2123	Geo	9.4	10.7	1.3	559	Middle
BMB03	BMB03_S10	X2124	Geo	10.7	12	1.3	621.5	Middle
BMB01	BMB01_S1	X2127	Geo	0	0.2	0.2	486	Upper
BMB01	BMB01_S2	X2128	Geo	0.2	2	1.8	846	Upper
BMB01	BMB01_S3	X2129	Geo	2	3	1	942.5	Upper
BMB01	BMB01_S4	X2130	Geo	3	4	1	500	Upper
BMB01	BMB01_S5	X2131	Geo	4	4.4	0.4	562	Middle
BMB01	BMB01_S6	X2133	Geo	4.4	5.2	0.8	732	Middle
BMB01	BMB01_S7	X2134	Geo	5.2	6.4	1.2	859	Middle
BMB01	BMB01_S8	X2135	Geo	6.4	7.6	1.2	682.5	Middle
BMB01	BMB01_S9	X2136	Geo	7.6	9	1.4	1012.5	Middle
BMB01	BMB01_S10	X2137	Geo	9	10	1	776	Middle
BMB01	BMB01_S11	X2138	Geo	10	11	1	792.5	Middle
BMB05	BMB05_S1	X2141	Geo	0	0.2	0.2	486	Upper
BMB05	BMB05_S2	X2142	Geo	0.2	2.4	2.2	555.5	Upper
BMB05	BMB05_S3	X2144	Geo	2.4	3.2	0.8	468	Upper

							min	1101013
AUGER ID	REMAINDER COMPOSITE SAMPLE ID (LEACHING)	ICP-OES/MS COMPOSITE SAMPLE ID (ICP-OES)	SAMPLE TYPE	FROM (m)	TO (m)	THICKNESS (m)	SAMPLE WEIGHT (g)	MAJOR UNIT
BMB05	BMB05_S4	X2145	Geo	3.2	4.4	1.2	548.5	Middle
BMB05	BMB05 S5	X2146	Geo	4.4	5.8	1.4	474	Middle
BMB06	BMB06 S1	X2148	Geo	0	0.2	0.2	450.5	Upper
BMB06	BMB06 S2	X2149	Geo	0.2	1.2	1	574.5	Upper
BMB06	BMB06_S3	X2150	Geo	1.2	2.4	1.2	544.5	Upper
вмво6	BMB06 S4	X2152	Geo	2.4	3.6	1.2	707	Middle
BMB06	BMB06 S5	X2153	Geo	3.6	4.8	1.2	552	Middle
BMB06	BMB06 S6	X2154	Geo	4.8	6.2	1.4	699	Middle
BMB04	BMB04 S1	X2156	Geo	0	0.2	0.2	345	Upper
BMB04	BMB04_S2	X2157	Geo	0.2	2.2	2	705	Upper
BMB04	BMB04_S3	X2157 X2158	Geo	2.2	3.6	1.4	562.5	Upper
BMB04	BMB04_S4	X2159	Geo	3.6	4.2	0.6	537	Upper
BMB04	BMB04_S5	X2161	Geo	4.2	4.8	0.6	668	Middle
BMB04	BMB04_55	X2161 X2162	Geo	4.8	6	1.2	756	Middle
BMB04	BMB04_S7	X2163	Geo	6	7.4	1.4	628.5	Middle
BMB09	BMB09 S1	X2165	Geo	0	0.2	0.2	239	Upper
BMB09	BMB09_S2	X2166	Geo	0.2	0.6	0.4	461.5	Upper
BMB09	BMB09_32	X2167	Geo	0.6	1	0.4	573	Upper
BMB09	BMB09_33	X2167 X2169	Geo	1	2	1	508.5	Middle
BMB09	BMB09_54	X2109 X2170	Geo	2	4.8	2.8	643.5	Middle
BMB09	BMB09_33	X2170 X2171	Geo	4.8	7.6	2.8	610	Middle
BMB08	BMB08 S1	X2171 X2173	Geo	0	0.2	0.2	42	Upper
BMB08	BMB08_S1	X2173	Geo	0.2	1.8	1.6	677.5	Upper
BMB08	BMB08_32	X2174 X2175	Geo	1.8	2.6	0.8	527	Upper
BMB08	BMB08_53	X2173 X2177	Geo	2.6	3.6	1	633	Upper
BMB08	BMB08_55	X2177 X2178	Geo	3.6	5.4	1.8	708	Middle
BMB08	BMB08_55	X2178 X2179	Geo	5.4	7.6	2.2	674.5	Middle
BMB07	BMB07 S1	X2173	Geo	0	0.2	0.2	267.5	Upper
BMB07	BMB07_S1	X2181 X2182	Geo	0.2	2	1.8	584.5	Upper
BMB07	BMB07_S3	X2183	Geo	2	3.2	1.2	585	Upper
BMB07	BMB07_S4	X2185	Geo	3.2	4	0.8	488	Upper
BMB07	BMB07_S5	X2186	Geo	4	7	3	829.5	Middle
BMB07	BMB07_S6	X2187	Geo	7	9	2	593	Middle
BMB10	BMB10 S1	X2187 X2189	Geo	0.2	2	1.8	513.5	Upper
BMB11	BMB10_S1	X2190	Geo	0.2	0.6	0.4	524.5	Upper
BMB14	BMB14 S1	X2191	Geo	0.2	2	1.8	399.5	Upper
BMB14	BMB14_S1	X2191 X2192	Geo	2	4	2	918	Middle
BMB13	BMB13 S1	X2192 X2193	Geo	0.2	0.6	0.4	258	Upper
BMB13	BMB13_S1	X2193 X2194	Geo	0.6	1.6	1	399.5	Upper
BMB12	BMB12_S1	X2194 X2195	Geo	0.0	1.4	1.2	119	Upper
PINIDIT	DIVID17-21	V5133	Geo	0.2	1.4	1.2	113	oppei

List of all samples collected during Phase II of the auger drilling programme

AUGER ID	COMPOSITE	ASSAY SAMPLE	SAMPLE	FROM	то	THICKNESS	MAJOR UNIT
AUGENTE	SAMPLE ID	ID (ICP-OES)	TYPE	(m)	(m)	(m)	WAJOK ONT
BVRG1	BVRG1_S1	Y1602	Geo	0	0.2	0.2	Upper
BVRG1	BVRG1_S2	Y1603	Geo	0.2	1	0.8	Upper
BVRG1	BVRG1_S3	Y1604	Geo	1	2.8	1.8	Upper
BVRG1	BVRG1_S4	Y1605	Geo	2.8	4.4	1.6	Middle
BVRG1	BVRG1_S5	Y1606	Geo	4.4	6.8	2.4	Middle
BVRG1	BVRG1_S6	Y1639	Geo	6.8	9.2	2.4	Middle
BVRG1	BVRG1_S7	Y1607	Geo	9.2	11.2	2	Middle
BVRG1	BVRG1_S8	Y1608	Geo	11.2	11.4	0.2	Middle
BVRG4	BVRG4_S1	Y1609	Geo	0	0.6	0.6	Upper
BVRG4	BVRG4_S2	Y1610	Geo	0.6	2.6	2	Upper
BVRG4	BVRG4_S3	Y1611	Geo	2.6	4	1.4	Upper
BVRG4	BVRG4_S4	Y1612	Geo	4	4.6	0.6	Middle
BVRG4	BVRG4_S5	Y1614	Geo	4.6	6.8	2.2	Middle
BVRG4	BVRG4_S6	Y1640	Geo	6.8	9	2.2	Middle
BVRG4	BVRG4_S7	Y1641	Geo	9	11.2	2.2	Middle
BVRG4	BVRG4_S8	Y1615	Geo	11.2	11.6	0.4	Middle
BVRG2	BVRG2_1	Y1620	Geo	0	0.2	0.2	Upper
BVRG2	BVRG2_2	Y1621	Geo	0.2	1	0.8	Upper
BVRG2	BVRG2_3	Y1622	Geo	1	2.6	1.6	Upper
BVRG2	BVRG2_4	Y1623	Geo	2.6	4	1.4	Middle
BVRG2	BVRG2_5	Y1624	Geo	4	6.6	2.6	Middle
BVRG2	BVRG2_6	Y1642	Geo	6.6	9.2	2.6	Middle
BVRG2	BVRG2_7	Y1626	Geo	9.2	11	1.8	Middle
BVRG2	BVRG2_8	Y1627	Geo	11	12.8	1.8	Middle
BVRG5	BVRG5_S1	Y1628	Geo	0	0.2	0.2	Upper
BVRG5	BVRG5_S2	Y1629	Geo	0.2	1.4	1.2	Upper
BVRG5	BVRG5_S3	Y1631	Geo	1.4	3	1.6	Upper
BVRG5	BVRG5_S4	Y1632	Geo	3	3.8	0.8	Upper
BVRG5	BVRG5_S5	Y1633	Geo	3.8	4.4	0.6	Middle
BVRG5	BVRG5_S6	Y1634	Geo	4.4	6.2	1.8	Middle
BVRG5	BVRG5_S7	Y1635	Geo	6.2	8	1.8	Middle
BVRG5	BVRG5_S8	Y1636	Geo	8	9.4	1.4	Middle
BVRG5	BVRG5_S9	Y1637	Geo	9.4	9.8	0.4	Middle
BVRG5	BVRG5_S10	Y1638	Geo	9.8	12	2.2	Middle
BVRG6	BVRG6_S1	Y1644	Geo	0	0.2	0.2	Upper
BVRG6	BVRG6_S2	Y1645	Geo	0.2	0.6	0.4	Upper
BVRG6	BVRG6_S3	Y1646	Geo	0.6	2.8	2.2	Upper
BVRG6	BVRG6_S4	Y1647	Geo	2.8	4.8	2	Middle
BVRG6	BVRG6_S5	Y1648	Geo	4.8	6.8	2	Middle

ALICERIA	COMPOSITE	ACCAV CANADI F	CANADIE	FDOM	то.	THICKNESS	MAJORIJANIT
AUGER ID	COMPOSITE SAMPLE ID	ASSAY SAMPLE ID (ICP-OES)	SAMPLE TYPE	FROM (m)	TO (m)	THICKNESS (m)	MAJOR UNIT
BVRG6	BVRG6_S6	Y1649	Geo	6.8	8.8	2	Middle
BVRG6	BVRG6_S7	Y1650	Geo	8.8	10	1.2	Middle
BVRG3	BVRG3_S1	Y1651	Geo	0	0.4	0.4	Upper
BVRG3	BVRG3_S2	Y1652	Geo	0.4	1	0.6	Upper
BVRG3	BVRG3_S3	Y1653	Geo	1	2.8	1.8	Upper
BVRG3	BVRG3_S4	Y1654	Geo	2.8	3.8	1	Middle
BVRG3	BVRG3_S5	Y1655	Geo	3.8	5	1.2	Middle
BVRG3	BVRG3_S6	Y1656	Geo	5	7	2	Middle
BVRG3	BVRG3_S7	Y1657	Geo	7	9.4	2.4	Middle
BVRG3	BVRG3_S8	Y1658	Geo	9.4	11.4	2	Middle
BVRG7	BVRG7_S1	Y1664	Geo	0	0.4	0.4	Upper
BVRG7	BVRG7_S2	Y1665	Geo	0.4	1.4	1	Upper
BVRG7	BVRG7_S3	Y1666	Geo	1.4	2.8	1.4	Upper
BVRG7	BVRG7_S4	Y1667	Geo	2.8	3.8	1	Middle
BVRG7	BVRG7_S5	Y1668	Geo	3.8	5.8	2	Middle
BVRG7	BVRG7_S6	Y1669	Geo	5.8	7.8	2	Middle
BVRG7	BVRG7_S7	Y1670	Geo	7.8	9	1.2	Middle
BVRG7	BVRG7_S8	Y1671	Geo	9	10.8	1.8	Middle
BVRG10	BVRG10_S1	Y1672	Geo	0	0.4	0.4	Upper
BVRG10	BVRG10_S2	Y1673	Geo	0.4	8.0	0.4	Upper
BVRG10	BVRG10_S3	Y1674	Geo	0.8	2.2	1.4	Upper
BVRG10	BVRG10_S4	Y1675	Geo	2.2	3.2	1	Middle
BVRG10	BVRG10_S5	Y1676	Geo	3.2	5.2	2	Middle
BVRG10	BVRG10_S6	Y1677	Geo	5.2	7.2	2	Middle
BVRG10	BVRG10_S7	Y1678	Geo	7.2	9.2	2	Middle
BVRG10	BVRG10_S8	Y1679	Geo	9.2	10.4	1.2	Middle
BVRG10	BVRG10_S9	Y1680	Geo	10.4	11.6	1.2	Middle
BVRG11	BVRG11_S1	Y1683	Geo	0	0.2	0.2	Upper
BVRG11	BVRG11_S2	Y1684	Geo	0.2	0.6	0.4	Upper
BVRG11	BVRG11_S3	Y1685	Geo	0.6	2.2	1.6	Upper
BVRG11	BVRG11_S4	Y1686	Geo	2.2	4.4	2.2	Middle
BVRG11	BVRG11_S5	Y1690	Geo	4.4	6.4	2	Middle
BVRG11	BVRG11_S6	Y1691	Geo	6.4	8.4	2	Middle
BVRG11	BVRG11_S7	Y1692	Geo	8.4	9.4	1	Middle
BVRG11	BVRG11_S8	Y1693	Geo	9.4	11.8	2.4	Middle
BVRG8	BVRG8_S1	Y1695	Geo	0	0.2	0.2	Upper
BVRG8	BVRG8_S2	Y1696	Geo	0.2	2	1.8	Upper
BVRG8	BVRG8_S3	Y1697	Geo	2	2.6	0.6	Upper
BVRG8	BVRG8_S4	Y1698	Geo	2.6	5.2	2.6	Middle
BVRG8	BVRG8_S5	Y1699	Geo	5.2	7.2	2	Middle
BVRG8	BVRG8_S6	Y1700	Geo	7.2	9.2	2	Middle
BVRG8	BVRG8_S7	Y1701	Geo	9.2	10.6	1.4	Middle

							minerais
AUGER ID	COMPOSITE SAMPLE ID	ASSAY SAMPLE ID (ICP-OES)	SAMPLE TYPE	FROM (m)	TO (m)	THICKNESS (m)	MAJOR UNIT
BVRG8	BVRG8_S8	Y1702	Geo	10.6	11.6	1	Middle
BVRG9	BVRG9_S1	Y1705	Geo	0	0.4	0.4	Upper
BVRG9	BVRG9_S2	Y1706	Geo	0.4	2	1.6	Upper
BVRG9	BVRG9_S3	Y1707	Geo	2	2.8	0.8	Upper
BVRG9	BVRG9_S4	Y1708	Geo	2.8	4	1.2	Middle
BVRG9	BVRG9_S5	Y1709	Geo	4	5.4	1.4	Middle
BVRG9	BVRG9_S6	Y1710	Geo	5.4	7	1.6	Middle
BVRG9	BVRG9_S7	Y1711	Geo	7	8.8	1.8	Middle
BVRG9	BVRG9_S8	Y1712	Geo	8.8	9.6	0.8	Middle
BVRG9	BVRG9_S9	Y1713	Geo	9.6	10.4	0.8	Middle
BVRG12	BVRG12_S1	Y1714	Geo	0	0.2	0.2	Upper
BVRG12	BVRG12_S2	Y1715	Geo	0.2	1.8	1.6	Upper
BVRG12	BVRG12_S3	Y1716	Geo	1.8	2.8	1	Upper
BVRG12	BVRG12_S4	Y1717	Geo	2.8	5.4	2.6	Middle
BVRG12	BVRG12_S5	Y1718	Geo	5.4	6.6	1.2	Middle
BVRG12	BVRG12_S6	Y1719	Geo	6.6	8.4	1.8	Middle
BVRG12	BVRG12_S7	Y1720	Geo	8.4	10	1.6	Middle
BVRG12	BVRG12_S8	Y1721	Geo	10	11.4	1.4	Middle
BMC22	BMC22_S1	Y1724	Geo	0.2	2.8	2.6	Upper
BMC22	BMC22_S2	Y1725	Geo	2.8	3.8	1	Upper
BMC22	BMC22_S3	Y1726	Geo	3.8	4.4	0.6	Middle
BMC22	BMC22_S4	Y1727	Geo	4.4	6	1.6	Middle
BMC22	BMC22_S5	Y1728	Geo	6	7.6	1.6	Middle
BMC26	BMC26_S1	Y1729	Geo	0.2	1.4	1.2	Upper
BMC26	BMC26_S2	Y1730	Geo	1.4	3	1.6	LOWER
BMC25	BMC25_S1	Y1731	Geo	0	5	5	Upper
BMC25	BMC25_S2	Y1732	Geo	5	5.6	0.6	Middle
BMC24	BMC24_S1	Y1733	Geo	0.2	1.6	1.4	Upper
BMC24	BMC24_S2	Y1734	Geo	1.6	3	1.4	Upper
BMC24	BMC24_S3	Y1735	Geo	3	4.4	1.4	Middle
BMC24	BMC24_S4	Y1736	Geo	4.4	6	1.6	Middle
BMC24	BMC24_S5	Y1737	Geo	6	7.6	1.6	Middle
BMC24	BMC24_S6	Y1738	Geo	7.6	8.8	1.2	Middle
BMC24	BMC24_S7	Y1739	Geo	8.8	9.2	0.4	Middle
BMC23	BMC23_S1	Y1740	Geo	0.2	1.6	1.4	Upper
BMC23	BMC23_S2	Y1741	Geo	1.6	2.6	1	Upper
BMC23	BMC23_S3	Y1742	Geo	2.6	4.2	1.6	Middle
BMC23	BMC23_S4	Y1743	Geo	4.2	6.2	2	Middle
BMC23	BMC23_S5	Y1744	Geo	6.2	8.2	2	Middle
BMC23	BMC23_S6	Y1745	Geo	8.2	9.6	1.4	Middle
BMC23	BMC23_S7	Y1746	Geo	9.6	10.6	1	Middle
BMC21	BMC2_S1	Y1747	Geo	0	0.6	0.6	Upper

							11111101010
AUGER ID	COMPOSITE SAMPLE ID	ASSAY SAMPLE ID (ICP-OES)	SAMPLE TYPE	FROM (m)	TO (m)	THICKNESS (m)	MAJOR UNIT
BMC21	BMC2_S2	Y1748	Geo	0.6	0.8	0.2	Upper
BMC21	BMC2_S3	Y1749	Geo	0.8	1.2	0.4	Lower
BMC21	BMC2_S4	Y1750	Geo	1.2	2	0.8	Lower
BMC03	BMC03_S1	Y1755	Geo	0	0.2	0.2	Upper
BMC03	BMC03_S2	Y1756	Geo	0.2	0.6	0.4	Upper
BMC03	BMC03_S3	Y1757	Geo	0.6	1.6	1	Upper
BMC03	BMC03_S4	Y1758	Geo	1.6	2.6	1	Upper
BMC03	BMC03_S5	Y1759	Geo	2.6	3.8	1.2	Middle
BMC03	BMC03_S6	Y1760	Geo	3.8	5	1.2	Middle
ВМС03	BMC03_S7	Y1761	Geo	5	7	2	Middle
BMC03	BMC03_S8	Y1762	Geo	7	7.4	0.4	Middle
BMC03	BMC03_S9	Y1763	Geo	7.4	8.8	1.4	Middle
BMC03	BMC03_S10	Y1764	Geo	8.8	9.8	1	Middle
вмс09	BMC09_S1	Y1765	Geo	0	0.2	0.2	Upper
BMC09	BMC09_S2	Y1766	Geo	0.2	0.8	0.6	Upper
вмс09	BMC09_S3	Y1767	Geo	0.8	1.8	1	Upper
вмс09	BMC09_S4	Y1768	Geo	1.8	2.8	1	Middle
вмс09	BMC09_S5	Y1769	Geo	2.8	4.2	1.4	Middle
ВМС09	BMC09_S6	Y1770	Geo	4.2	5.2	1	Middle
BMC09	BMC09_S7	Y1771	Geo	5.2	6.8	1.6	Middle
вмс09	BMC09_S8	Y1772	Geo	6.8	7.8	1	Middle
BMC09	BMC09_S9	Y1773	Geo	7.8	9.2	1.4	Middle
ВМС09	BMC09_S10	Y1774	Geo	9.2	9.6	0.4	Middle
BMC09	BMC09_S11	Y1775	Geo	9.6	10.2	0.6	Middle
BMC10	BMC10_S1	Y1776	Geo	0	0.6	0.6	Upper
BMC10	BMC10_S2	Y1777	Geo	0.6	1.4	0.8	Upper
BMC10	BMC10_S3	Y1778	Geo	1.4	3	1.6	Middle
BMC10	BMC10_S4	Y1779	Geo	3	4.4	1.4	Middle
BMC10	BMC10_S5	Y1780	Geo	4.4	6.6	2.2	Middle
BMC04	BMC04_S1	Y1781	Geo	0.2	0.8	0.6	Upper
BMC04	BMC04_S2	Y1782	Geo	0.8	2.8	2	Upper
BMC04	BMC04_S3	Y1783	Geo	2.8	4.4	1.6	Middle
BMC04	BMC04_S4	Y1784	Geo	4.4	5.2	0.8	Middle
BMC04	BMC04_S5	Y1785	Geo	5.2	6.6	1.4	Middle
BMC04	BMC04_S6	Y1786	Geo	6.6	8	1.4	Middle
BMC04	BMC04_S7	Y1787	Geo	8	10	2	Middle
вмс04	BMC04_S8	Y1788	Geo	10	11.2	1.2	Middle
BMC04	BMC04_S9	Y1793	Geo	11.2	12	0.8	Middle
ВМС07	BMC07_S1	Y1789	Geo	0	0.4	0.4	Upper
ВМС07	BMC07_S2	Y1790	Geo	0.4	0.6	0.2	Upper
вмс07	BMC07_S3	Y1791	Geo	0.6	1	0.4	Lower
ВМС07	BMC07_S4	Y1792	Geo	1	2	1	Lower

AUGER ID	COMPOSITE SAMPLE ID	ASSAY SAMPLE ID (ICP-OES)	SAMPLE TYPE	FROM (m)	TO (m)	THICKNESS (m)	MAJOR UNIT
BMC05	BMC07_S1	Y1796	Geo	0.2	1.2	1	Upper
BMC05	BMC07_S2	Y1797	Geo	1.2	2	0.8	Upper
BMC05	BMC07_S3	Y1798	Geo	2	3	1	Middle
BMC05	BMC07_S4	Y1799	Geo	3	4.6	1.6	Middle
BMC05	BMC07_S5	Y1800	Geo	4.6	6.4	1.8	Middle
BMC05	BMC07_S6	Y1501	Geo	6.4	7.2	0.8	Middle
BMC05	BMC07_S7	Y1515	Geo	8.6	9.6	1	Lower
BMC05	BMC07_S8	Y1516	Geo	9.6	10.4	0.8	Middle
BMC08	BMC08_S1	Y1503	Geo	0	0.4	0.4	Upper
BMC08	BMC08_S2	Y1504	Geo	0.4	1	0.6	Upper
BMC08	BMC08_S3	Y1505	Geo	1	2.6	1.6	Upper
BMC08	BMC08_S4	Y1506	Geo	2.6	3.8	1.2	Middle
BMC08	BMC08_S5	Y1507	Geo	3.8	4	0.2	Middle
BMC08	BMC08_S6	Y1508	Geo	4	4.8	0.8	Lower
BMC08	BMC08_S7	Y1509	Geo	4.8	5.6	0.8	Middle
BMC08	BMC08_S8	Y1510	Geo	5.6	7	1.4	Middle
BMC08	BMC08_S9	Y1511	Geo	7	8.2	1.2	Middle
BMC08	BMC08_S10	Y1512	Geo	10	11	1	Lower
BMC08	BMC08_S11	Y1513	Geo	11	11.4	0.4	Middle
BMC08	BMC08_S12	Y1514	Geo	11.4	12	0.6	Middle
BMC11	BMC11_S1	Y1521	Geo	0	0.2	0.2	Upper
BMC11	BMC11_S2	Y1522	Geo	0.2	0.4	0.2	Upper
BMC13	BMC13_S1	Y1519	Geo	0	0.6	0.6	Upper
ВМС06	BMC06_S1	Y1520	Geo	0.2	0.6	0.4	Upper
BMC02	BMC02_S1	Y1523	Geo	0.2	0.6	0.4	Upper
BMC02	BMC02_S2	Y1524	Geo	0.6	2	1.4	Upper
BMC02	BMC02_S3	Y1525	Geo	2	3	1	Middle
BMC02	BMC02_S4	Y1526	Geo	3	4	1	Middle
BMC02	BMC02_S5	Y1527	Geo	4	5.2	1.2	Middle
BMC02	BMC02_S6	Y1528	Geo	5.2	6	0.8	Middle
BMC02	BMC02_S7	Y1529	Geo	6	6.6	0.6	Middle
BMC14	BMC14_S1	Y1530	Geo	0.2	0.4	0.2	Upper
BMC14	BMC14_S2	Y1531	Geo	0.4	2	1.6	Upper
BMC14	BMC14_S3	Y1532	Geo	2	3.8	1.8	Middle
BMC14	BMC14_S4	Y1533	Geo	3.8	4.6	0.8	Middle
BMC14	BMC14_S5	Y1534	Geo	4.6	6	1.4	Middle
BMC14	BMC14_S6	Y1535	Geo	6	7	1	Middle
BMC14	BMC14_S7	Y1536	Geo	7	7.8	0.8	Middle
BMC14	BMC14_S8	Y1537	Geo	9	10.8	1.8	Middle
BMC20	BMC20_S1	Y1538	Geo	0	0.4	0.4	Upper
BMC20	BMC20_S2	Y1539	Geo	0.4	1	0.6	Upper
BMC20	BMC20_S3	Y1540	Geo	1	1.4	0.4	Middle

AUGER ID	COMPOSITE SAMPLE ID	ASSAY SAMPLE ID (ICP-OES)	SAMPLE TYPE	FROM (m)	TO (m)	THICKNESS (m)	MAJOR UNIT
BMC20	BMC20_S4	Y1541	Geo	1.4	3.2	1.8	Middle
BMC20	BMC20_S5	Y1542	Geo	3.2	6	2.8	Middle
BMC20	BMC20_S6	Y1546	Geo	6	7.2	1.2	Middle
BMC01	BMC01_S1	Y1543	Geo	0.2	8.0	0.6	Upper
BMC17	BMC17_S1	Y1550	Geo	0	0.2	0.2	Upper
BMC17	BMC17_S2	Y1551	Geo	0.2	0.4	0.2	Upper
BMC17	BMC17_S3	Y1552	Geo	0.4	1.6	1.2	Lower
BMC18	BMC18_S1	Y1553	Geo	0	0.4	0.4	Upper
BMC18	BMC18_S2	Y1554	Geo	0.4	8.0	0.4	Upper
BMC18	BMC18_S3	Y1555	Geo	8.0	1.4	0.6	Upper
BMC19	BMC19_S1	Y1556	Geo	0	0.4	0.4	Upper
BMC19	BMC19_S2	Y1557	Geo	0.4	0.6	0.2	Upper
BMC19	BMC19_S3	Y1558	Geo	0.6	2	1.4	Upper
BMC19	BMC19_S4	Y1559	Geo	2	2.2	0.2	Middle
BMC19	BMC19_S5	Y1560	Geo	2.2	3.8	1.6	Middle
BMC15	BMC15_S1	Y1561	Geo	0	0.2	0.2	Upper
BMC15	BMC15_S2	Y1562	Geo	0.2	0.6	0.4	Upper
BMC15	BMC15_S3	Y1563	Geo	0.6	2.2	1.6	Upper
BMC15	BMC15_S4	Y1564	Geo	2.2	3.4	1.2	Middle
BMC15	BMC15_S5	Y1565	Geo	3.4	4.4	1	Middle
BMC15	BMC15_S6	Y1566	Geo	4.4	5	0.6	Middle
BMC15	BMC15_S7	Y1567	Geo	5	5.4	0.4	Lower
BMC15	BMC15_S8	Y1568	Geo	5.4	6.6	1.2	Middle
BMC16	BMC16_S1	Y1571	Geo	0	0.2	0.2	Upper
BMC16	BMC16_S2	Y1572	Geo	0.2	8.0	0.6	Upper
BMC16	BMC16_S3	Y1573	Geo	0.8	1.4	0.6	Upper
BMC16	BMC16_S4	Y1574	Geo	1.4	2	0.6	Middle
BMC16	BMC16_S5	Y1575	Geo	2	3	1	Middle
BMC16	BMC16_S6	Y1576	Geo	3	4.4	1.4	Lower
BMC16	BMC16_S7	Y1577	Geo	4.4	5	0.6	Lower
BMC16	BMC16_S8	Y1578	Geo	5	6.8	1.8	Middle
BMC16	BMC16_S9	Y1579	Geo	6.8	7.2	0.4	Lower
BMC28	BMC28_S1	Y1580	Geo	0.2	1	0.8	Upper
BMC28	BMC28_S2	Y1581	Geo	1	2	1	Upper
BMC28	BMC28_S3	Y1582	Geo	2	3	1	Middle
BMC28	BMC28_S4	Y1583	Geo	3	4.2	1.2	Middle
BMC28	BMC28_S5	Y1584	Geo	4.2	5.4	1.2	Middle
ВМС28	BMC28_S6	Y1585	Geo	5.4	6.8	1.4	Middle
ВМС28	BMC28_S7	Y1586	Geo	6.8	7.4	0.6	Middle
BMC28	BMC28_S8	Y1587	Geo	7.4	9.4	2	Middle
ВМС34	BMC34_S1	Y1588	Geo	0	0.6	0.6	Upper
ВМС34	BMC34 S2	Y1589	Geo	0.6	1.6	1	Upper

AUGER ID	COMPOSITE SAMPLE ID	ASSAY SAMPLE ID (ICP-OES)	SAMPLE TYPE	FROM (m)	TO (m)	THICKNESS (m)	MAJOR UNIT
BMC29	BMC29_S1	Y1592	Geo	0	0.4	0.4	Upper
BMC29	BMC29_S2	Y1593	Geo	0.4	1.2	0.8	Upper
BMC29	BMC29_S3	Y1594	Geo	1.2	2.6	1.4	Upper
BMC29	BMC29_S4	Y1595	Geo	2.6	4.6	2	Middle
BMC29	BMC29_S5	Y1596	Geo	4.6	7.2	2.6	Middle
BMC29	BMC29_S6	Y1597	Geo	7.2	8.2	1	Middle
BMC29	BMC29_S7	Y1598	Geo	8.2	9.2	1	Middle
ВМС30	BMC30_S1	Y1599	Geo	0	1	1	Upper
ВМС30	BMC30_S2	Y1600	Geo	1	3	2	Upper
ВМС30	BMC30_S3	Y1301	Geo	3	4.6	1.6	Middle
ВМС30	BMC30_S4	Y1313	Geo	4.6	4.8	0.2	Lower
BMC27	BMC27_S1	Y1305	Geo	0	0.4	0.4	Upper
BMC27	BMC27_S2	Y1306	Geo	0.4	2.2	1.8	Lower
BMC27	BMC27_S3	Y1307	Geo	2.2	3.2	1	Middle
BMC27	BMC27_S4	Y1317	Geo	3.2	5.4	2.2	Middle
BMC27	BMC27_S5	Y1318	Geo	5.4	6	0.6	Lower
BMC27	BMC27_S6	Y1319	Geo	6	7	1	Middle
BMC27	BMC27_S7	Y1320	Geo	7	7.4	0.4	Middle
ВМС39	BMC39_S1	Y1308	Geo	0	0.6	0.6	Upper
вмс39	BMC39_S2	Y1309	Geo	1.8	3.6	1.8	Lower
BMC40	BMC40_S1	Y1310	Geo	0	1	1	Upper
BMC40	BMC40_S2	Y1311	Geo	1	2.4	1.4	Upper
BMC40	BMC40_S3	Y1312	Geo	2.4	3.8	1.4	Middle
BMC40	BMC40_S4	Y1314	Geo	3.8	5	1.2	Middle
BMC40	BMC40_S5	Y1315	Geo	5	5.4	0.4	Middle
BMC40	BMC40_S6	Y1316	Geo	5.4	6.6	1.2	Middle
BMC41	BMC41_S1	Y1321	Geo	0	1.6	1.6	Upper
BMC41	BMC41_S2	Y1322	Geo	1.6	2.4	0.8	Upper
BMC41	BMC41_S3	Y1323	Geo	2.4	4	1.6	Middle
BMC41	BMC41_S4	Y1324	Geo	4	5.2	1.2	Middle
BMC41	BMC41_S5	Y1325	Geo	5.2	6	0.8	Middle
BMC32	BMC32_S1	Y1326	Geo	0	0.4	0.4	Upper
BMC32	BMC32_S2	Y1327	Geo	0.4	1	0.6	Upper
BMC32	BMC32_S3	Y1328	Geo	1	2.4	1.4	Upper
BMC32	BMC32_S4	Y1329	Geo	2.4	3.8	1.4	Middle
BMC32	BMC32_S5	Y1330	Geo	3.8	4.6	0.8	Middle
BMC32	BMC32_S6	Y1331	Geo	4.6	6	1.4	Middle
BMC32	BMC32_S7	Y1345	Geo	6	6.6	0.6	Middle
BMC32	BMC32_S8	Y1346	Geo	6.6	7.8	1.2	Lower
BMC32	BMC32_S9	Y1347	Geo	7.8	8.2	0.4	Middle
ВМС33	BMC33_S1	Y1332	Geo	0	0.8	0.8	Upper
ВМС33	BMC33_S2	Y1333	Geo	8.0	2.2	1.4	Upper

ALICERIA	COMPOSITE	ACCAV CANADI F	CANADIE	FROM	то.	THICKNESS	MAJORJUNIT
AUGER ID	COMPOSITE SAMPLE ID	ASSAY SAMPLE ID (ICP-OES)	SAMPLE TYPE	FROM (m)	TO (m)	(m)	MAJOR UNIT
ВМС33	BMC33_S3	Y1334	Geo	2.2	3.8	1.6	Middle
ВМС33	BMC33_S4	Y1335	Geo	3.8	4.8	1	Middle
ВМС33	BMC33_S5	Y1336	Geo	4.8	5.8	1	Middle
ВМС33	BMC33_S6	Y1348	Geo	5.8	6	0.2	Middle
ВМС33	BMC33_S7	Y1349	Geo	6	8	2	Middle
ВМС33	BMC33_S8	Y1350	Geo	8	9.4	1.4	Middle
BMC42	BMC42_S1	Y1339	Geo	0	0.2	0.2	Upper
BMC42	BMC42_S2	Y1340	Geo	0.2	0.4	0.2	Upper
BMC42	BMC42_S3	Y1341	Geo	0.4	1	0.6	Upper
BMC42	BMC42_S4	Y1342	Geo	1	2	1	Middle
BMC42	BMC42_S5	Y1343	Geo	2	2.6	0.6	Middle
BMC42	BMC42_S6	Y1344	Geo	2.6	3.2	0.6	Lower
BMC48	BMC48_S1	Y1351	Geo	0.2	1.8	1.6	Upper
BMC47	BMC47_S1	Y1352	Geo	0.6	1.4	0.8	Upper
BMC49	BMC49_S1	Y1353	Geo	0.2	0.6	0.4	Upper
BMC31	BMC31_S1	Y1356	Geo	0.4	1.6	1.2	Upper
BMC31	BMC31_S2	Y1357	Geo	1.6	3.4	1.8	Middle
BMC31	BMC31_S3	Y1358	Geo	3.4	4.2	0.8	Middle
BMC31	BMC31_S4	Y1359	Geo	4.2	4.6	0.4	Middle
ВМС36	BMC36_S1	Y1360	Geo	0	0.4	0.4	Upper
ВМС36	BMC36_S2	Y1361	Geo	0.4	2.4	2	Upper
ВМС36	BMC36_S3	Y1362	Geo	2.4	3.4	1	Middle
ВМС36	BMC36_S4	Y1363	Geo	3.4	4.4	1	Middle
ВМС36	BMC36_S5	Y1364	Geo	4.4	5.6	1.2	Middle
вмс36	BMC36_S6	Y1365	Geo	5.6	7.2	1.6	Lower
BMC35	BMC35_S1	Y1366	Geo	0.2	0.8	0.6	Upper
BMC35	BMC35_S2	Y1367	Geo	8.0	1.2	0.4	Middle
BMC35	BMC35_S3	Y1368	Geo	1.2	1.8	0.6	Lower
BMC37	BMC37_S1	Y1369	Geo	0	0.4	0.4	Upper
BMC37	BMC37_S2	Y1370	Geo	0.4	1.8	1.4	Upper
BMC37	BMC37_S3	Y1371	Geo	1.8	2.4	0.6	Upper
BMC37	BMC37_S4	Y1372	Geo	2.4	3	0.6	Middle
BMC37	BMC37_S5	Y1373	Geo	3	3.8	0.8	Middle
BMC37	BMC37_S6	Y1374	Geo	3.8	4.4	0.6	Middle
BMC37	BMC37_S7	Y1375	Geo	4.4	5.8	1.4	Middle
BMC37	BMC37_S8	Y1376	Geo	5.8	6.2	0.4	Lower
BMC50	BMC50_S1	Y1377	Geo	0	0.6	0.6	Upper
BMC51	BMC51_S1	Y1378	Geo	0	0.6	0.6	Upper
BMC52	BMC52_S1	Y1379	Geo	0	0.4	0.4	Upper
BMC38	BMC38_S1	Y1380	Geo	0	0.4	0.4	Upper
BMC38	BMC38_S2	Y1381	Geo	0.4	2.2	1.8	Upper
BMC38	BMC38_S3	Y1382	Geo	2.2	2.6	0.4	Middle

AUGER ID	COMPOSITE SAMPLE ID BMC38 S4	ASSAY SAMPLE ID (ICP-OES) Y1383	SAMPLE TYPE Geo	FROM (m) 2.6	TO (m) 3	THICKNESS (m) 0.4	MAJOR UNIT
вмс38	BMC38_S5	Y1384	Geo	3	3.6	0.6	Middle
ВМС38	BMC38_S6	Y1385	Geo	3.6	4	0.4	Lower
BMC43	BMC38_S1	Y1386	Geo	0	0.4	0.4	Upper
BMC43	BMC38_S2	Y1387	Geo	0.4	0.8	0.4	Upper
BMC43	BMC38_S3	Y1388	Geo	0.8	1.4	0.6	Lower
BMC44	BMC44_S1	Y1389	Geo	0	0.4	0.4	Upper
BMC44	BMC44_S2	Y1390	Geo	0.4	1.4	1	Upper
BMC44	BMC44_S3	Y1391	Geo	1.4	2	0.6	Middle
BMC44	BMC44_S4	Y1392	Geo	2	2.8	0.8	Middle
BMC44	BMC44_S5	Y1393	Geo	2.8	3.2	0.4	Lower
BMC45	BMC45_S1	Y1394	Geo	0	0.2	0.2	Upper
BMC45	BMC45_S2	Y1395	Geo	0.2	1.2	1	Upper
BMC45	BMC45_S3	Y1396	Geo	1.2	2	0.8	Middle
BMC45	BMC45_S4	Y1397	Geo	2	2.4	0.4	Middle
BMC45	BMC45_S5	Y1398	Geo	2.4	3	0.6	Middle
BMC45	BMC45_S6	Y1399	Geo	3	3.8	0.8	Middle
BMC46	BMC46_S1	Y1400	Geo	0	0.4	0.4	Upper
BMC46	BMC46_S2	Y1401A	Geo	0.4	0.8	0.4	Lower

Assays results of all samples collected during Phase I of the auger drilling programme.

	Wt	Al	Si	As	Li	Fe	Mg	K	Mn
SAMPLE ID	g	%	%	ppm	ppm	%	%	%	ppm
X2101	317	3.17	23.6	68	545	1.79	8.17	1.79	345
X2102	538.5	2.54	20.9	63	683	1.47	9.88	1.69	292
X2103	570	2.37	21.2	87	630	1.36	9.7	1.64	270
X2104	574	2.52	21.5	47	628	1.43	9.48	1.77	273
X2105	823	2.15	18.6	72	828	1.28	11.8	1.67	240
X2107	657.5	2.09	17.3	116	757	1.26	11.3	1.7	236
X2108	601.5	1.93	16.8	46	943	1.19	11.9	1.54	222
X2109	570	5	1.76	18.5	1060	1.1	12	1.52	201
X2110	663.5	2.7	20.4	<30	1190	1.66	10.1	2.64	277
X2111	559	2.7	19.2	141	1070	1.74	9.58	2.7	337
X2114	159	2.99	23.4	77	478	1.67	7.27	1.61	315
X2115	356	2.65	20.3	34	686	1.48	9.89	1.62	292
X2116	471.5	2.38	21.1	44	696	1.35	10.4	1.71	275
X2118	358.5	2.4	20.2	45	677	1.39	10.4	1.69	277
X2119	291.5	2.52	19.8	74	680	1.46	10.4	1.77	286
X2120	535.5	2.25	19.4	60	813	1.35	11	1.84	250
X2121	440.5	1.84	17.6	81	961	1.18	11.6	1.57	220
X2122	772	1.75	19.1	48	1090	1.04	11.9	1.57	186

	Wt	Al	Si	As	Li	Fe	Mg	K	Mn
SAMPLE ID	g	АI %	31 %	ppm	ррт	ге %	wig %	%	ppm
X2123	5	2.67	22.9	31	1180	1.65	9.43	2.57	267
X2123 X2124	621.5	3.08	>25	54	784	1.92	4.63	2.81	291
X2127	486	2.93	22.6	36	534	1.66	7.86	1.7	312
X2127 X2128	846	2.4	19.1	51	667	1.37	9.45	1.67	273
X2129,	942.5	2.31	19.6	208	668	1.36	10.3	1.67	271
X2130	500	2.24	18.2	48	687	1.36	10.1	1.59	268
X2131	562	2.33	18.8	32	704	1.39	10.4	1.62	266
X2133	732	2.17	17.9	116	774	1.32	11	1.66	259
X2134	859	2.23	18.3	78	757	1.3	10.9	1.7	240
X2135	682.5	1.92	17	108	863	1.16	11.7	1.47	220
X2136	1012.5	2.11	23.6	<30	693	1.08	8.99	1.75	183
X2137	776	2.95	>25	93	935	1.65	8.37	2.83	269
X2138	792.5	3.1	>25	39	936	1.77	8.17	2.93	287
X2141	486	2.5	>25	<30	349	1.39	5.63	1.33	255
X2142	555.5	2.57	20.9	76	493	1.43	8.56	1.7	273
X2144	468	2.76	21	<30	472	1.56	8.35	2.02	288
X2145	548.5	2.21	18.2	<30	451	1.23	10.3	1.56	221
X2146	474	1.94	15.5	80	411	1.08	10.3	1.4	190
X2148	450.5	2.96	23.7	62	422	1.61	7.19	1.48	307
X2149	574.5	2.6	20.1	64	566	1.42	8.53	1.38	274
X2150	544.5	2.49	21.7	83	533	1.38	9.04	1.67	260
X2152	707	2.54	21.9	42	564	1.48	8.7	1.94	276
X2153	552	2.61	19.2	<30	677	1.59	10.4	2.07	299
X2154	699	2.34	17.9	<30	695	1.36	10.8	1.72	248
X2156	345	3	22.4	45	470	1.64	7.87	1.5	317
X2157	705	2.34	19.7	31	579	1.29	9.36	1.53	268
X2158	562.5	2.49	19.7	58	649	1.39	9.77	1.8	269
X2159	537	2.53	19.7	99	763	1.5	10.8	1.94	291
X2161	668	2.65	17.9	38	838	1.55	10.7	1.97	292
X2162	756	2.45	20.4	91	806	1.38	10.1	1.82	260
X2163	628.5	2.06	19.3	36	1010	1.28	11.8	1.74	235
X2165	239	3.38	>25	103	488	1.86	7.48	1.72	353
X2166	461.5	3.46	24.2	47	528	1.81	8.22	1.7	359
X2167	573	2.97	21.6	76	675	1.58	9.52	1.56	301
X2169	508.5	2.49	22.7	54	653	1.42	10.2	1.66	281
X2170	643.5	2.65	24.3	79	574	1.3	8.88	1.84	250
X2171	610	2.1	18.9	<30	855	1.25	12.8	1.55	214
X2173	233	3.29	24.2	50	556	1.77	8.83	1.66	337
X2174	677.5	2.68	20.8	<30	730	1.54	10.2	1.72	313
X2175	527	2.38	21	65	622	1.37	9.78	1.63	271
X2177	633	2.5	20.8	84	709	1.49	10	1.87	300

	Wt	Al	Si	As	Li	Fe	Mg	К	Mn
SAMPLE ID	g	%	%	ppm	ppm	%	%	%	ppm
X2178	708	2.37	19.6	114	700	1.37	10.4	1.78	259
X2179	674.5	1.92	16.3	89	1030	1.22	12.3	1.5	223
X2181	267.5	3.2	23.6	60	478	1.72	7.6	1.59	418
X2182	584.5	2.51	19.7	92	712	1.55	9.7	1.75	313
X2183	585	2.42	20.7	138	602	1.4	9.64	1.7	283
X2185	488	2.49	19.9	119	642	1.46	10.1	1.71	288
X2186	829.5	2.35	17.8	96	797	1.37	11.2	1.64	276
X2187	593	2	17.3	47	1020	1.27	11.7	1.54	231
X2188	43	0.85	>25	<30	20	1.63	0.02	0.28	166
X2189	513.5	2.5	19.7	124	678	1.4	9.75	1.37	276
X2190	524.5	2.95	20.9	58	440	1.74	8.51	1.83	301
X2191	399.5	2.24	20.8	69	425	1.18	9.03	1.09	242
X2192	918	2.37	19.9	144	502	1.31	10.4	1.53	249
X2193	258	2.38	23.1	76	279	1.23	6.49	1.15	217
X2194	399.5	2.42	20.2	76	284	1.32	7.85	1.21	227
X2195	119	2.3	19	103	343	1.31	8.03	1.23	217

Assays results of all samples collected during Phase II of the auger drilling programme

	Li	К	As	Fe	Mg	Mn
SAMPLE ID	ppm	%	ppm	%	%	ppm
Y1602	410	1.42	21	1.74	6.66	280
Y1603	520	1.42	30	1.7	8.08	280
Y1604	560	1.42	35	1.42	8.92	230
Y1605	640	1.55	41	1.48	9.62	240
Y1606	800	1.5	49	1.45	10.3	230
Y1639	860	1.44	35	1.26	9.86	200
Y1607	990	2.41	21	1.92	8.28	270
Y1608	950	2.72	15	2.22	7.11	330
Y1609	480	1.49	28	1.84	7.38	300
Y1610	520	1.39	29	1.44	8.54	230
Y1611	590	1.5	33	1.4	9.41	230
Y1612	640	1.54	42	1.38	9.78	230
Y1614	900	1.68	31	1.32	9.47	190
Y1640	850	1.56	33	1.42	9.7	230
Y1641	1020	2.45	28	1.94	8.23	300
Y1615	990	3.09	11	2.31	5.66	330
Y1620	450	1.49	19	1.78	7.19	310
Y1621	510	1.43	25	1.78	7.98	320
Y1622	560	1.42	28	1.5	8.77	280
Y1623	590	1.49	30	1.4	9.21	250

CANADIE	Li	K	As	Fe	Mg	Mn
SAMPLE ID	ppm	%	ppm	%	%	ppm
Y1624	810	1.4	36	1.34	10.75	230
Y1642	870	1.42	39	1.26	10.4	200
Y1626	870	2.52	16	1.83	6.68	250
Y1627	830	2.65	7	2.07	5.13	290
Y1628	430	1.49	22	1.86	6.86	320
Y1629	540	1.41	24	1.64	8.31	300
Y1631	530	1.45	27	1.5	8.61	280
Y1632	590	1.49	31	1.5	9.32	280
Y1633	670	1.5	33	1.44	9.89	250
Y1634	780	1.58	37	1.44	10.05	250
Y1635	860	1.44	33	1.46	9.71	230
Y1636	880	1.18	29	1.04	10.3	180
Y1637	840	1.72	24	1.28	9.55	190
Y1638	980	2.35	13	1.94	6.22	300
Y1644	400	1.38	17	1.68	6.9	260
Y1645	450	1.37	16	1.7	7.5	280
Y1646	490	1.44	20	1.38	8.5	250
Y1647	570	1.52	30	1.48	9.25	270
Y1648	750	1.54	33	1.38	10.05	230
Y1649	840	1.36	32	1.2	10.35	180
Y1650	890	2.3	19	1.6	7.6	240
Y1651	400	1.46	22	1.67	6.48	290
Y1652	510	1.47	21	1.36	7.63	250
Y1653	580	1.48	28	1.28	8.51	240
Y1654	560	1.56	26	1.26	8.73	230
Y1655	550	1.56	33	1.28	8.5	230
Y1656	780	1.44	41	1.24	10.3	220
Y1657	880	1.34	36	1.12	10.4	200
Y1658	950	2.56	16	1.7	7.2	280
Y1664	420	1.39	15	1.47	6.13	270
Y1665	530	1.4	31	1.51	7.64	280
Y1666	530	1.46	30	1.3	8.34	250
Y1667	600	1.54	30	1.48	8.96	290
Y1668	690	1.57	33	1.42	9.57	240
Y1669	840	1.46	40	1.33	9.74	250
Y1670	750	1.67	30	1.12	8.18	180
Y1671	930	2.3	13	1.58	7.53	280
Y1672	400	1.5	18	1.62	6.37	300
Y1673	490	1.56	27	1.7	7.37	310
Y1674	530	1.42	29	1.42	8.04	290
Y1675	540	1.48	30	1.3	8.5	250

0444D1 - :-	Li	K	As	Fe	Mg	Mn
SAMPLE ID	ppm	%	ppm	%	%	ppm
Y1676	690	1.59	36	1.27	9.64	230
Y1677	720	1.39	43	1.26	10.55	230
Y1678	770	1.48	33	1.12	9.28	190
Y1679	840	2.42	14	1.6	6.67	260
Y1680	820	2.79	15	1.9	6.11	300
Y1683	370	1.51	17	1.66	5.94	300
Y1684	460	1.59	23	1.65	7.22	300
Y1685	540	1.52	25	1.36	8.44	260
Y1686	520	1.56	30	1.28	8.12	250
Y1690	680	1.55	35	1.22	9.75	230
Y1691	850	1.43	37	1.1	10.35	200
Y1692	780	1.6	24	1.05	8.03	170
Y1693	780	2.53	10	1.58	4.89	240
Y1695	470	1.48	21	1.7	6.53	310
Y1696	610	1.46	26	1.46	7.76	270
Y1697	550	1.4	27	1.31	8.04	250
Y1698	610	1.49	30	1.32	8.17	250
Y1699	910	1.44	35	1.23	9.93	220
Y1700	850	1.44	25	1.06	7.99	180
Y1701	1010	2.47	20	1.78	7.44	260
Y1702	1050	2.89	13	2.1	6.04	320
Y1705	400	1.35	19	1.54	5.43	280
Y1706	580	1.45	26	1.38	7.3	260
Y1707	570	1.42	27	1.28	7.91	250
Y1708	550	1.48	30	1.21	7.12	230
Y1709	730	1.48	32	1.27	8.81	230
Y1710	900	1.34	36	1.11	9.15	200
Y1711	830	1.39	31	1.03	8.07	170
Y1712	170	1.98	6	0.92	1.48	140
Y1713	740	2.27	13	1.33	5.04	220
Y1714	470	1.5	19	1.72	6.39	300
Y1715	540	1.42	23	1.52	7.21	270
Y1716	450	1.4	18	1.16	6.74	220
Y1717	470	1.36	21	1.01	6.2	190
Y1718	750	1.56	34	1.28	9.78	220
Y1719	940	1.37	30	1.16	9.85	210
Y1720	108	1.99	6	0.96	0.88	130
Y1721	750	2.17	14	1.65	6.8	260
Y1724	540	1.42	29	1.52	8.1	260
Y1725	550	1.43	31	1.5	8.46	250
Y1726	630	1.64	27	1.42	8.86	250

	Li	K	As	Fe	Mg	Mn
SAMPLE ID	ppm	%	ppm	%	%	ppm
Y1727	550	1.62	26	1.26	8.22	210
Y1728	710	1.46	18	1.23	9.65	190
Y1729	166	0.84	18	0.98	5.84	140
Y1730	166	0.94	6	0.8	7.64	120
Y1731	240	1.01	16	0.94	6.86	160
Y1732	230	1.29	9	1	6.05	140
Y1733	450	1.39	27	1.65	7.03	310
Y1734	530	1.51	29	1.41	8.3	260
Y1735	610	1.56	37	1.52	8.93	280
Y1736	790	1.54	28	1.28	9.91	230
Y1737	790	1.5	29	1.18	9.01	200
Y1738	230	2.14	8	1.25	2.36	180
Y1739	770	2.22	11	1.52	6.78	270
Y1740	600	1.52	29	1.59	8.12	290
Y1741	500	1.47	26	1.33	8.1	250
Y1742	560	1.6	27	1.33	8.58	240
Y1743	690	1.67	27	1.48	9.4	270
Y1744	860	1.57	28	1.25	9.46	220
Y1745	109	1.98	6	1.14	1.02	150
Y1746	600	1.98	6	1.08	4.56	160
Y1747	270	1.56	19	1.26	6.08	180
Y1748	290	1.53	21	1.63	4.81	270
Y1749	201	1.29	9	0.97	7.08	150
Y1750	145	1.56	7	1.54	4.29	190
Y1755	440	1.41	21	1.84	6.55	310
Y1756	490	1.44	23	1.84	7.29	310
Y1757	590	1.41	26	1.62	8.27	290
Y1758	510	1.4	15	1.07	7.85	210
Y1759	520	1.54	20	1.36	8.17	250
Y1760	590	1.56	23	1.29	8.89	240
Y1761	630	1.39	25	1.4	9.51	220
Y1762	600	1.42	27	1.39	10.2	210
Y1763	270	1.72	11	1.8	4.02	240
Y1764	500	1.72	14	1.6	6.93	220
Y1765	400	1.4	17	1.91	5.87	320
Y1766	510	1.45	22	1.62	7.35	270
Y1767	600	1.36	32	1.5	8.42	250
Y1768	450	1.36	23	1.39	7.86	250
Y1769	510	1.48	26	1.47	7.97	250
Y1770	490	1.33	24	1.29	9.25	210
Y1771	550	1.24	19	1.32	10.05	210

044401	Li	K	As	Fe	Mg	Mn
SAMPLE ID	ppm	%	ppm	%	%	ppm
Y1772	460	1.18	23	1.25	9.25	180
Y1773	189	1.64	7	1.53	3.35	190
Y1774	500	1.86	13	1.69	7.18	210
Y1775	470	1.62	8	1.79	5.92	210
Y1776	450	1.34	22	1.74	7.06	300
Y1777	520	1.28	25	1.47	7.93	270
Y1778	380	1.41	21	1.38	7.32	230
Y1779	400	1.46	18	1.3	7.88	200
Y1780	390	1.27	17	1.23	8.53	180
Y1781	480	1.46	26	1.72	7.08	290
Y1782	550	1.41	30	1.33	8.28	240
Y1783	550	1.42	28	1.28	8.39	230
Y1784	540	1.34	33	1.2	8.25	200
Y1785	610	1.5	32	1.31	8.53	220
Y1786	660	1.38	36	1.44	8.83	220
Y1787	780	1.26	34	1.15	9.34	190
Y1788	360	2.25	14	1.77	3.42	240
Y1793	780	2.29	17	1.68	7.22	240
Y1789	320	1.52	19	1.58	4.57	250
Y1790	84	1.55	13	1.68	1.54	210
Y1791	38	1.54	12	1.54	0.87	190
Y1792	20	1.64	9	1.64	0.74	190
Y1796	540	1.46	36	1.96	6.96	280
Y1797	580	1.53	30	1.56	7.65	270
Y1798	480	1.52	26	1.45	7.74	250
Y1799	270	1.43	15	1.31	5.72	200
Y1800	270	1.74	11	1.49	4.94	200
Y1501	470	1.83	17	1.48	7.88	210
Y1515	81	1.75	4	1.15	1.49	140
Y1516	430	1.66	13	1.22	6.56	150
Y1503	410	1.54	26	1.78	5.88	300
Y1504	580	1.35	31	1.48	7.56	260
Y1505	540	1.48	27	1.46	7.5	260
Y1506	480	1.43	30	1.34	7.42	230
Y1507	290	1.64	17	1.4	4.06	230
Y1508	143	1.54	9	1.51	2.98	220
Y1509	380	1.3	23	1.18	7.63	180
Y1510	380	1.66	15	1.41	6.63	200
Y1511	620	1.42	23	1.16	9.5	180
Y1512	158	1.87	6	1.25	2.41	150
Y1513	580	1.47	21	1.3	8.95	180

	Li	K	As	Fe	Mg	Mn
SAMPLE ID	ppm	%	ppm	%	%	ppm
Y1514	610	1.96	10	1.41	7.95	200
Y1521	370	1.02	20	1.12	5.43	220
Y1522	300	1.2	15	1.72	4.48	260
Y1519	200	1.18	16	1.42	3.5	220
Y1520	310	1.4	19	1.72	4.58	260
Y1523	350	1.22	16	1.69	5.44	270
Y1524	470	1.21	22	1.32	7.17	220
Y1525	310	1.04	17	0.83	5.94	170
Y1526	400	1.37	20	1.53	7.92	230
Y1527	350	1.24	20	1.36	7.58	210
Y1528	310	1.3	11	1.33	7.51	180
Y1529	270	1.52	8	1.47	6.75	190
Y1530	420	1.4	20	1.99	6.42	320
Y1531	520	1.27	25	1.62	7.44	280
Y1532	440	1.44	18	1.32	8	210
Y1533	460	1.32	14	1.26	8.93	210
Y1534	460	1.32	23	1.4	9.12	210
Y1535	430	1.16	17	0.92	8.79	170
Y1536	370	1.35	12	0.92	7.53	170
Y1537	480	1.53	9	1.76	7.29	230
Y1538	320	1.24	20	1.64	4.98	260
Y1539	460	1.1	26	1.45	7.12	240
Y1540	420	1.01	22	0.99	8.35	210
Y1541	310	1.01	17	0.93	8.44	180
Y1542	250	1.02	10	0.77	8.87	150
Y1546	190	1.02	6	0.86	7.76	140
Y1543	162	1.06	15	1.42	3.3	200
Y1550	230	1.4	15	1.56	3.37	220
Y1551	182	1.4	10	1.32	3.09	160
Y1552	47	1.34	5	1.68	1.5	160
Y1553	310	1.33	13	1.52	4.98	250
Y1554	410	1.25	19	1.42	6.62	230
Y1555	420	1.26	25	1.5	7.22	240
Y1556	360	1.36	20	1.77	6.02	280
Y1557	450	1.31	24	1.65	7.2	270
Y1558	480	1.2	21	1.32	7.46	240
Y1559	410	1.26	13	1.28	7.26	220
Y1560	300	1.16	9	1.06	6.85	160
Y1561	280	1.36	10	1.64	4.26	260
Y1562	440	1.44	18	1.6	6.87	260
Y1563	490	1.3	23	1.29	7.45	230

	Li	K	As	Fe	Mg	Mn
SAMPLE ID	ppm	%	ppm	%	%	ppm
Y1564	370	1.63	11	1.5	6.1	210
Y1565	280	1.41	9	1.24	5.57	180
Y1566	240	1.35	7	1.08	6.29	150
Y1567	130	1.52	<4	1.28	3.16	160
Y1568	270	1.48	9	1.16	6.03	170
Y1571	230	1.33	10	1.55	3.39	230
Y1572	460	1.36	24	1.5	6.5	250
Y1573	610	1.12	27	1.24	8.22	220
Y1574	580	1.17	25	1.18	8.29	220
Y1575	390	1.24	14	1.24	7.51	190
Y1576	109	1.24	<4	1.25	3.41	150
Y1577	144	1.54	6	1.42	3.62	160
Y1578	202	1.37	8	1.28	6.43	160
Y1579	148	1.51	5	1.3	3.79	140
Y1580	420	1.4	22	1.66	6.45	260
Y1581	520	1.5	22	1.36	7.75	250
Y1582	600	1.55	22	1.39	8.84	260
Y1583	560	1.57	35	1.44	8.82	250
Y1584	740	1.66	36	1.46	9.53	260
Y1585	860	1.5	28	1.25	9.3	190
Y1586	300	2.04	10	1.66	2.88	210
Y1587	840	2.75	15	2.03	6.38	290
Y1588	230	1.1	10	1.42	4.24	230
Y1589	290	1.1	13	1.28	6.5	210
Y1592	430	1.48	18	1.78	6.21	270
Y1593	520	1.44	29	1.51	7.38	280
Y1594	540	1.52	24	1.42	7.92	260
Y1595	530	1.53	20	1.58	7.57	280
Y1596	730	1.54	34	1.43	9.99	250
Y1597	670	1.56	17	1.22	7.44	190
Y1598	178	1.94	8	1.58	1.98	180
Y1599	470	1.37	24	1.44	6.43	260
Y1600	500	1.64	21	1.48	7.67	270
Y1301	430	1.6	18	1.32	8.35	210
Y1313	390	1.46	16	1.22	9.37	200
Y1305	211	0.95	17	1.13	4.52	180
Y1306	300	0.96	11	0.99	6.89	180
Y1307	470	1.33	15	1.28	8.37	230
Y1317	530	1.42	24	1.47	7.77	200
Y1318	260	1.35	9	1.28	4.97	160
Y1319	430	1.94	9	1.6	5.34	220

041451	Li	K	As	Fe	Mg	Mn
SAMPLE ID	ppm	%	ppm	%	%	ppm
Y1320	640	2.28	11	1.98	5.78	290
Y1308	174	1.11	13	1.36	3.37	200
Y1309	73	1.06	<4	1.02	4.53	140
Y1310	350	1.2	18	1.39	5.81	250
Y1311	430	1.48	18	1.34	7.1	250
Y1312	570	1.76	27	1.54	8.15	260
Y1314	680	1.63	18	1.36	8.79	240
Y1315	280	1.78	9	1.6	2.45	210
Y1316	450	2.02	9	1.67	4.74	230
Y1321	530	1.66	24	1.65	7	290
Y1322	540	1.69	24	1.68	6.97	300
Y1323	620	1.88	30	1.62	7.93	280
Y1324	520	2.38	24	2	6.88	300
Y1325	250	2.61	8	2.22	5.88	410
Y1326	400	1.51	23	1.74	6.35	280
Y1327	520	1.48	25	1.55	7.6	270
Y1328	510	1.54	22	1.39	7.9	230
Y1329	630	1.58	35	1.44	8.33	260
Y1330	770	1.7	32	1.46	8.98	260
Y1331	810	1.54	29	1.46	9.57	260
Y1345	800	1.56	25	1.22	8.21	190
Y1346	67	1.82	<4	1.8	0.95	220
Y1347	610	2.18	6	1.44	5.14	190
Y1332	430	1.4	23	1.65	6.01	300
Y1333	530	1.54	28	1.46	7.55	270
Y1334	610	1.65	30	1.48	8.17	260
Y1335	680	1.75	34	1.48	8.43	250
Y1336	850	1.61	31	1.48	9.07	250
Y1348	920	1.7	35	1.37	9.36	210
Y1349	810	2.49	18	1.7	6.63	230
Y1350	770	2.59	10	2	5.21	280
Y1339	260	1.34	10	1.68	3.94	250
Y1340	340	1.37	22	1.6	5.1	260
Y1341	22	1.46	<4	1.28	1.23	150
Y1342	360	1.96	15	1.6	6.17	200
Y1343	60	1.77	<4	1.62	1.38	200
Y1344	29	1.48	<4	1.35	1.35	170
Y1351	460	1.55	14	1.58	6.3	260
Y1352	390	1.34	15	1.44	6.26	230
Y1353	320	1.53	20	1.6	5.26	270
Y1356	580	1.6	21	1.55	7.83	270

	Li	K	As	Fe	Mg	Mn
SAMPLE ID	ppm	%	ppm	%	%	ppm
Y1357	470	1.7	29	1.63	6.41	270
Y1358	520	1.82	27	1.8	6.99	300
Y1359	450	1.84	22	1.61	6.1	240
Y1360	340	1.38	23	1.75	5.01	310
Y1361	450	1.49	28	1.34	6.81	260
Y1362	560	1.68	37	1.69	7.66	310
Y1363	750	1.73	40	1.63	8.44	270
Y1364	740	1.8	27	1.41	8.67	240
Y1365	430	2.35	12	1.42	3.72	230
Y1366	143	1.12	14	1.16	2.53	180
Y1367	117	1.41	13	1.46	2	160
Y1368	121	1.24	7	1.55	2.86	160
Y1369	400	1.43	18	1.94	5.7	330
Y1370	540	1.42	25	1.54	8.04	260
Y1371	540	1.6	29	1.79	7.55	310
Y1372	520	1.68	27	1.72	7.84	280
Y1373	550	1.74	30	1.66	9.04	270
Y1374	540	1.55	25	1.5	9.26	240
Y1375	500	1.19	23	1.21	9.65	190
Y1376	380	1.48	10	1.11	6.4	150
Y1377	149	1.18	12	1.29	3.69	270
Y1378	400	1.62	30	1.87	5.11	320
Y1379	330	1.56	22	1.32	4.55	240
Y1380	400	1.54	27	1.85	5.46	310
Y1381	560	1.68	32	1.68	7.55	290
Y1382	560	1.82	28	1.71	6.86	290
Y1383	350	1.81	16	1.48	5.5	220
Y1384	520	1.8	22	1.83	6.62	300
Y1385	450	1.58	15	1.47	6.85	220
Y1386	310	1.55	16	1.68	4.43	280
Y1387	460	1.62	20	1.7	6.58	290
Y1388	380	1.61	16	1.52	6.36	250
Y1389	300	1.36	17	1.62	4.45	280
Y1390	530	1.4	25	1.53	6.98	270
Y1391	500	1.54	17	1.48	6.91	270
Y1392	420	1.43	14	1.4	6.94	240
Y1393	190	1.56	8	1.76	5.03	360
Y1394	270	1.35	19	1.74	4.21	290
Y1395	360	1.26	19	1.51	5.97	250
Y1396	460	1.72	19	1.61	6.74	270
Y1397	510	1.89	16	1.56	7.24	330

_	Li	К	As	Fe	Mg	Mn
SAMPLE ID	ppm	%	ppm	%	%	ppm
Y1398	550	2.04	17	1.76	6.82	310
Y1399	550	1.98	14	1.62	7.24	270
Y1400	220	1.2	16	1.48	3.62	240
Y1401A	174	0.91	10	1.18	5.1	170

ANNEXURE 3

JORC 2012 Tables

The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results and Mineral Resources at the Bitterwasser Lithium-in-Clays Project.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling probles. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling was undertaken using industry standard practices and consist of hand-auger drilling by Bitterwasser Lithium Exploration (Pty) Ltd. conducted during 2 phases. Phase I during 2019 and Phase II from 2021 to 2022. All drill holes are vertical During Phase I, a total of 89 samples were taken from the core of the drilling campaign, of these 74 where for chemical/metallurgical analysis and 15 for QAQC purposes. Samples ranged from 1012 g to 42 g. An additional 15 density samples were collected. During Phase II a total of 397 samples were taken from the core of the drilling campaign, of these 352 where for chemical analysis and 45 for QAQC purposes. An additional 138 density samples were collected To minimize sample contamination, the collected sediment samples were placed on a canvas cloth, while the clay-bit was cleaned with a wet cloth and water after every sample. All drill hole and sample locations are mapped in WGS84 UTM zone 33S During 2010 sampling was undertaken using industry standard

Criteria	JORC Code explanation	Commentary
		 practices and consisted of surface sampling by Botha & Hattingh (2017). 24 soil samples were taken from pits of 1.5 m depth. Two (2), 500 ml groundwater samples were taken from taps attached to the wind pumps. Measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used are not known, because this information is not recorded in available documents.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 During Phase I, sixteen (16) vertical hand-auger drillholes were drilled perpendicular to the long axis of the Eden Pan. The holes were drilled on a 500 m x 500 m grid and have a total core length of 93.10 m. A 250 mm long auger clay-bit with a 90 mm outer diameter was used. The depth of the holes ranged from 0.8 m to 12.20 m. During Phase II, a total of 64 vertical hand-auger drillholes were drilled, which comprise of 52 normal drillholes and 12 drillholes for geostatistical reasons. The normal holes were drilled on a 500 m x 500 m grid and have a total core length of 273.20 m. The geostatistical holes surround drillhole BMB03 (Phase I), with each drill line comprising of 3 holes spaced at 62.5 x 62.5 x 125 m from BMB03. The total drilling depth is 139.40 m
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery was almost 100% due to the cohesive nature of the clay. Core loss was recorded as part of the operational procedures where the core loss was calculated from the difference between actual length of core recovered and penetration depth measured as the total length of the drill string after subtracting the stick-up length. Measures taken to maximise sample recovery and ensure representative nature of the samples is not recorded in available documents.

Page 42

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 No apparent bias was noted between sample recovery and grade. All drill holes were fully logged and are qualitative. The core has been logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Phase I: The total length of the mineralized clay logged is 85.80 m and the percentage is 92%. Phase II: The total length of the mineralized clay logged for the normal holes is 258.80 m and the percentage is 95%. For the geostatistical holes total length of the mineralized clay logged is 136.80 m and the percentage is 98%. The soil samples of Botha & Hattingh, (2017) have been logged according to industry standards.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Phase I: Each of the 74 samples was split into two. One split was for chemical analysis and the other split for initial sequential leach (metallurgical) test work. The Upper Unit was composite sampled at an interval of 0.90 m and 478 g/composite sample (45 % of total sample material collected), while the Middle Unit was sampled at an average interval of 1.45 m and 643 g/composite sample. Phase II: Each 20 cm (sample tube length) sample were split into smaller sub-samples (A-samples and B-samples). A-samples were shipped to the lab for analysis, while the B-samples were stored and used for duplicates and bulk sampling. A composite sample were collected according to lithology units. Samples didn't cross over lithological boundaries. A representative sample were taken of each 20 cm run, taking in account the sample weight and size. i.e., one composite sample contain a weighted sample of each run. No information is available on sub-sampling techniques and sample preparation of Botha & Hattingh (2017), because such procedures are

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 not documented in available documents. It is assumed that sampling was undertaken using industry standard practices. Phase I: The samples were analysed at SGS laboratory in Randfontein, South Africa. Sodium peroxide fusion ICP-OES with an ICP-MS finish for analysis of Li (ppm), K (%), AI (%), Cr (%), Si (%), Ti (%), As (ppm), Cd (ppm), Fe (%), Mg (%), Mn (%), P (%), Co (%) and Y (%) was done. Sequential leach (metallurgical) test work (Acid leach). The QAQC samples consisted of African Minerals Standards (Pty) Ltd's (AMIS) certified reference materials AMIS0339 (standard), AMIS0341 (standard), AMIS0342 (standard), AMIS0355 (standard) and AMIS0439 (blank) and were inserted on average every 6 – 7 m within the sampling stream. Phase II: The samples were analysed at ALS Laboratories in Okahandja Namibia. Sodium peroxide fusion with ICP-MS finish major element analysis were conducted. For every 34 samples analysed, 2 Blanks, 2 CRMs and 2 duplicates were added. QC testing of the crushing (CRU-QC) and pulverizing
		 The Botha & Hattingh (2017) samples were submitted to the University of Stellenbosch Central Analytical Facility in Stellenbosch South Africa for analysis, between 20 April and 13 July 2010 The samples were analysed of lithium, boron and the cations Ca, Mg, K and Na. Lithium and boron analysis was conducted using ICP analysis, while the cations were analysed using AAS.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Only samples which yielded Li values above 300 ppm were included in the cation analysis. Sample preparation for Li, B and cation analysis was by acid digestion. It is assumed that industry best practices were used by the laboratories to ensure sample representivity and acceptable Bitterwasser Lithium assay data accuracy, however the specific QAQC procedures used are not recorded in available documents All samples and data were verified by the project geologist. Creo reviewed all available sample and assay reports and is of the opinion that the electronic database supports the field data in almost all aspects and suggests that the database can be used for resource estimation. All sample material was bagged and tagged on site as per the specific drill hole it was located in. The sample intersections were logged in the field and were weighed at the sampling site. All hard copy data-capturing was completed at the sampling locality. All sample material was stored at a secure storage site. The original assay data has not been adjusted. Recording of field observations and that of samples collected was done in field notes and transferred to and electronic data base following the Standard Operational Procedures. No twin holes were drilled.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The locations of all the samples were recorded. The sample locations are GPS captured using WGS84 UTM zone 33S. The quality and accuracy of the GPS and its measurements is not known, because it is not stated in available documents.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Phase I The drill holes are spaced on a 500 m x 500 m grid. The Upper Unit was composite sampled at an interval of 0.90 m and 478 g/composite sample (45 % of total sample material collected), while the Middle Unit was sampled at an average interval of 1.45 m and 643 g/composite sample Phase II: The normal holes were drilled on a 500 m x 500 m grid and the geostatistical holes surround drillhole BMB03 (Phase I), with each drill line comprising of 3 holes spaced at 62.5 x 62.5 x 125 m from BMB03. The samples collected are a composite sample that represents each 20 cm run (sample tube length) as best as possible and do not extend over lithological boundaries. The composite sample contain between 33-50% of each 20 cm sample depending on the size. Composite samples contain as close to equal amount as possible from top to bottom of each lithological unit sampled The data spacing and distribution of the drill holes and samples is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied For the Botha & Hattingh (2017) samples, the P02 pits were spaced at 900 m and the P03 pits were spaced at 2500 m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 During Phase I and 2, the holes were all drilled vertical and perpendicular to the sediment horizons and all the sediment horizons were sampled equally and representative. The lithium is not visible; therefore, no bias could take place when selecting the sample position. The orientation of the Botha & Hattingh (2017) sample pits is vertical and sampling occurred perpendicular to the soil horizons and all the soil horizons were sampled equally and representative. The orientation of the sampling is unbiased.

Criteria	JORC Code explanation	Commentary
		The relationship between the sampling orientation and the orientation of key mineralized structures is not considered to have introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	 Bitterwasser Lithium Exploration (Pty) Ltd. maintained strict chain-of-custody procedures during all segments of sample handling, transport and samples prepared for transport to the laboratory are bagged and labelled in a manner which prevents tampering. Samples also remain in Bitterwasser Lithium Exploration (Pty) Ltd control until they are delivered and released to the laboratory. An export permit was obtained from the Namibian Mining Department to transport the samples across the border. Measures taken by Botha & Hattingh, (2017) to ensure sample security have not been recorded in available documents.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Audits and reviews were limited to the Standard Operational Procedures in as far as data capturing was concerned during the sampling. Creo considers that given the general sampling programme, geological investigations and check assaying, the procedures reflect an appropriate level of confidence.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any 	 The Bitterwasser Project area is east of Kalkrand in south central Namibia, some 190 km south of Windhoek in the Hardap Region. The Bitterwasser Lithium Project comprise of three exclusive exploration licences, EPLs 5353, 5354 and 5358, all held by Bitterwasser Lithium Exploration (Pty) Ltd. The project covers a total area of 59 323.09 hectares.

Criteria	JORC Code explanation	Commentary
	known impediments to obtaining a licence to operate in the area.	 Environmental Clearance Certificates was obtained by Bitterwasser Lithium for all three EPLs. A land-use agreement, including access to the property for exploration has been obtained through the Ministry of Agriculture, Water and Forestry of Namibia.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	A regional reconnaissance investigation in the form of a systematic field survey covering the entire southern Namibia and some parts of the Northern Cape Province of South Africa was done during 2009 and 2010. The reconnaissance investigation was aimed at establishing the prospectiveness of the area that could potentially sustain economic exploitation of soda ash and lithium (Botha & Hattingh, 2017).
Geology	Deposit type, geological setting and style of mineralisation.	 The Eden Pan forms part of the Cenozoic aged Kalahari Group and comprises a lithium, potassium and boron enriched sulphate-, chlorite- and carbonate- saltpan. Post-Cretaceous Brukkaros alkaline volcanics and sub-volcanics in the area and are potential source rocks for the lithium. The presence of an active deep-seated connate/hydrothermal water circulation network is suggested, which acts as a transport mechanism for lithium bearing brines into the overlying Gordonia Formation pan sediments. High evaporation rates (>3200 mm/year) occurring in the area are favourable for brine formation and salt-concentration.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth	 Drill results have been described in section 7.3 of this report. All relevant data is included in the report.

Criteria	JORC Code explanation	Commentary
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	A lower cut-off grade of 500 ppm Li was used. The estimated volumes and grades are based on this cut-off grade.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The drill holes were all drilled vertical, with the clay units being horizontal. The mineralized clay thickness intercepted range from 0.40 m to 10.20 m.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The appropriate diagrams and tabulations are supplied in the main report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 This report has been prepared to present the prospectivity of the project and results of historical and recent exploration activities. All the available reconnaissance work results have been reported.
Other substantive	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical	The Namibian Government conducted a regional magnetic survey in the area.

Criteria	JORC Code explanation	Commentary
exploration data	survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The Namibian Government conducted a radiometric survey of potassium in the area. An electromagnetic (EM) survey was done by the groundwater consultancy Geoss during October 2019.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The next exploration phase should focus on the further exploration of the Eden Pan, while also conducting exploration on some of the other pans in the region. See section 13 for detailed recommended and planned further exploration activities.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Creo has independently verified the underlying sampling and assay data. Creo is of the opinion that the electronic database supports the field data in almost all aspects and suggests that the database can be used for resource estimation.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Johan Hattingh the competent person conducted several site inspections visits since 2010 to the Bitterwasser area. During these visits, first hand field surveys were performed.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Creo considers that the quantity and quality of the, sampling, sample preparation and handling is sufficient to declare the Mineral Resource to the level of confidence implied by the classification used in the report. The inclusive approach adopted in the declaration of mineral resources and mineral reserves is a consequence of the ability to predict even over long distances the extent and grade of the deposit due to the simple lithological composition and mineralisation style and

Criteria	JORC Code explanation	Commentary
Dimensions Estimation and modelling	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade 	 the correct interpretations thereof. The resource has a total area of 15 557 804 m². The depth bellow surface of the upper limit of the resource ranges from 0.2 m to 4.8 m and the lower limit range from 6.2 m to 12 m. The drilling data was used to generate a block model of the drilled portion of the pan sediment from which volume estimations were
techniques	 values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. 	 The drillhole data was composited within Leapfrog Geo® (Version 2021.2.4) on a 460 m composite length. Grade estimation was undertaken using Ordinary Kriging and the estimation approach was considered appropriate based on review of a number of factors, including the quantity and spacing of available data, the interpreted controls on mineralisation, and the style and geometry of mineralization.
	 Estimation of deleterious elements or other non-grade variable of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variable. 	 Indicator Kriging was chosen to delineate the areas with continuous grades and was used later as a start model to adequately define the mineralisation. Based on grade information and geological logging and observations, Upper Unit, Middle Unit and Lower Units, mineralised domain boundaries have been interpreted and formulated into wireframes to permit the resource estimation.
	 Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 The interpretation and wireframe models were developed using Leapfrog Geo® geological modelling software package. A 50 m x 50 m x 10 m block size provided the best results for delineating the mineralised zones using the Indicator Kriging methodology and a 5 m x 5 m x variable block size provided the best results for geo-statistical estimation and hence the estimation was conducted on a 10 m x 10 m x 10 m (X, Y & Z respectively) block model size. The resource was estimated at a lower cut-off grade of 500 ppm Li.

Criteria	JORC Code explanation	Commentary
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Moisture was not considered during tonnage estimation.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	A lower cut-off grade of 500 ppm Li has been applied during estimations.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	No assumptions have been made.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	No assumptions have been made.
Environmenta I factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No assumptions have been made.

Criteria	JORC Code explanation	Commentary
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density determinations have been undertaken over all the lithologies and oxidation states except the Lower Unit (LT). Bitterwasser Lithium Exploration (Pty) Ltd during phase I, collected 15 samples and during phase II, 38 samples to determine the specific gravity (SG) of the clay units. It was found that the 15 phase I samples have an average SG of 1.143 g/cm³ but was rendered inaccurate and not considered reliable The phase II density measurements of the Middle Unit range between 1.673 – 1.929 g/cm³, with an average of 1.820 g/cm³, and the density of Upper Unit ranges between 1.850 – 2.321 g/cm³, with an average of 2.003 g/cm³. These clay density measurements were considered accurate and truly representative of the Eden Pan clays. The density values determined during the Phase II measurements were used by Bitterwasser Lithium in subsequent resource estimation work.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Bitterwasser Lithium Exploration (Pty) Ltd exploration area in the Eden Pan is classified as an Inferred Mineral Resource. Where blocks bounded by sampling on at least one side, or where the down dip continuation of a block has been demonstrated by augerhole intersections. Inferred Resource blocks are limited to the drilled area where more data sets are available and are normally the blocks with the highest density of samples. Here geological interpretation suggests that continued mineralisation is likely even where no drilling information is available. These blocks are open ended in depth. Wide spaced auger sample data is available as the only data source. The results reflect the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Creo has independently verified the underlying sampling and assay data as well as the resource modelling and where possible also the resource calculations. Creo considers that given the general sampling programme, geological investigations, independent check assaying and, in certain instances, independent audits, the estimates reflect an

Criteria	JORC Code explanation	Commentary
		appropriate level of confidence.
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	Creo considers that the quantity and quality of the, sampling, sample preparation and handling is sufficient to declare the Mineral Resource to the level of confidence implied by the classification used in the audited Mineral Resource estimate given in this report.