ASX RELEASE 8 August 2022

Exceptional High-Grade Gold Continues at RPM North

Bonanza Grade Intercepts Continue at RPM from Surface

Highlights

- Exceptional high-grade gold intersections continue at RPM North and mineralization remains open. Significant results include:
 - **RPM-008**
 - 140m @ 6.5 g/t Au from 44m including;
 - 87m @ 10.1 g/t Au
 - 56m @ 15.0 g/t Au
 - 24m @ 24.7 g/t Au
 - RPM-010
 - 155m @ 2.4 g/t Au from 16m including;
 - 94m @ 3.8 g/t Au
 - 61m @ 5.6 g/t Au
 - 30m @ 10.0 g/t Au
- Holes are from infill drilling at RPM North with drilling ongoing
- Infill and step-out drilling continues to prove up the high grade (+2g/t) material within the existing 1.5Mozs @ 2.0g/t Inferred resource (ASX Announcement: 27 October 2021) to Indicated at the RPM North Deposit, to be incorporated into the Phase 2 Scoping Study.
- Drilling continues to test the RPM South zone
- Drilling is ongoing at RPM, with further drill results to be reported as assay results become available from the laboratory

Nova CEO, Mr Christopher Gerteisen commented: "The RPM Deposit continues to deliver more thick intercepts of exceptionally high-grade gold. These latest assay results confirm continuity and validates broad shallow zones of particularly high-grade gold mineralization from surface within the much larger and broader RPM gold system.

We will report further drill results as they are received from the lab for the ongoing 2022 Estelle Gold Project drilling programs and remain on track to deliver the Phase 2 Scoping Study in the near term, before moving into the PFS which aims to increase the gold production schedule and NPV significantly, as we continue on our path towards commercial production."

Nova Minerals Limited (Nova or the Company) (ASX: NVA, OTC: NVAAF, FSE: QM3) is pleased to again announce bonanza grade gold results at the RPM North Deposit, within the Company's flagship Estelle Gold Project, located in the prolific Tintina Gold Belt in Alaska.

RPM Drilling Summary

Infill and extensional resource drilling at RPM is currently ongoing with two rigs at RPM North and one rig at RPM South. The latest results at RPM continue to prove up areas of high-grade gold mineralization (+2g/t) within the existing RPM North resource area.

Drillholes RPM-008 and RPM-010 were completed to infill and test the continuity of high-grade mineralization around hole RPM-005 to prove up the resource within the RPM North Deposit to the higher confidence Indicated category. Results from both RPM-008 and RPM-010 support previous results from RPM-005 (ASX Announcement: 11 October 2021 - **132m @ 10.1 g/t Au**) which confirms continuity of the high-grade gold zone from surface to a depth of over 250m tested thus far, and remains open at depth (Figure 1). Visible gold was also observed in drill core from RPM-008 as previously reported (ASX Announcement: 28 June 2022). The ongoing drilling program continues to provide high quality geological data that is being collated and interpreted to provide greater deposit knowledge. The nature and geometry of the intrusive units and interplay with structures are key to controls on gold mineralization. These geological and interpretative insights are invaluable in developing further targets for the ongoing exploration programs within the RPM area as well as the greater Estelle Gold Trend.

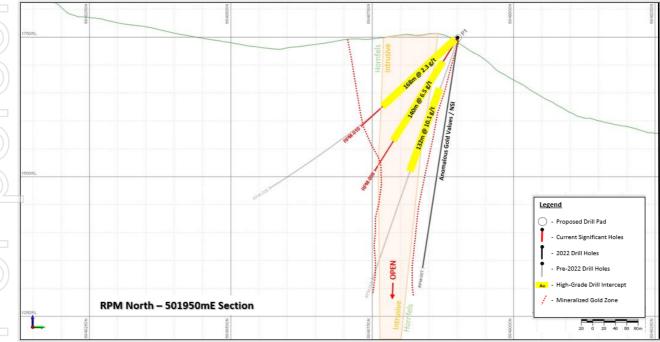


Figure 1. RPM North Section 501950mE showing continuity of mineralization

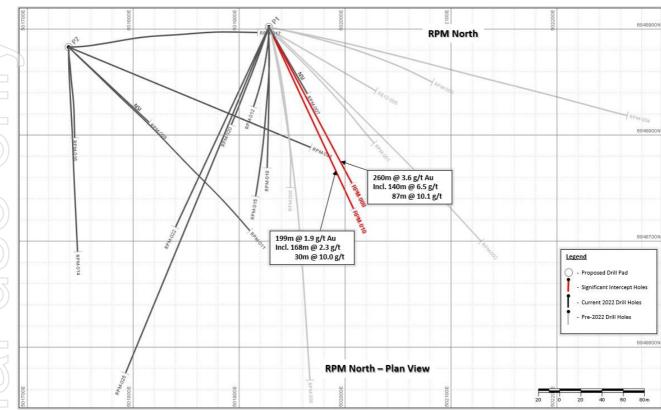
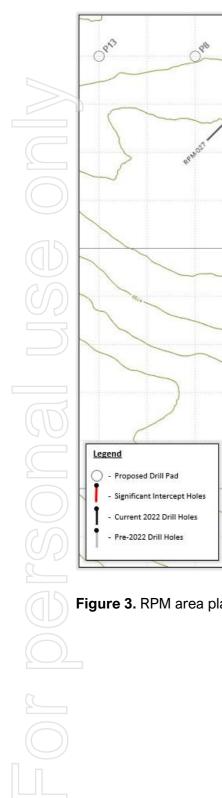



Figure 2. RPM North Deposit plan view with all drillholes to date

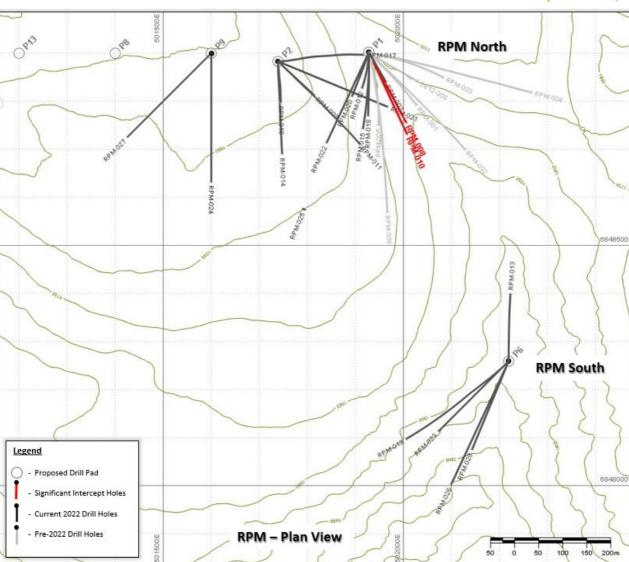


Figure 3. RPM area plan view showing all drillholes completed to date

Figure 4. RPM North looking East to Pad 1 drilling on the ridge, with completed Pad 2 below, and Pad 9 drilling in the foreground

Figure 5. RPM South looking Northeast with drilling on Pad 6

Table 1. Drill Hole Locations

Hole_ID	UTM_E	UTM_N	ELEV (m)	EOH (m)	AZI	DIP	Zone	Assay Results
SE12-008	501928	6848900	1737	182	135	-70	North	Historic
RPM-001	501926	6848902	1736	379	135	-45	North	ASX : 9 September 202
RPM-002	501929	6848901	1738	369	100	-70	North	ASX : 9 September 202
RPM-003	501926	6848902	1736	465	100	-45	North	ASX : 18 October 2021
RPM-004	501928	6848902	1736	463	170	-70	North	ASX : 18 October 2021
RPM-005	501929	6848903	1738	459	170	-45	North	ASX : 11 October 2021
RPM-006	501929	6848901	1737	431	155	-80	North	ASX : 18 October 2021
RPM-007	501928	6848902	1749	419	155	-60	North	ASX : 8 August 2022
RPM-008	501928	6848902	1749	291	135	-70	North	ASX : 8 August 2022
RPM-009	501739	6848883	1628	305	155	-45	North	ASX : 8 August 2022
RPM-010	501928	6848902	1749	247	135	-45	North	ASX : 8 August 2022
RPM-011	501739	6848883	1628	340	180	-80	North	Results Pending
RPM-012	501928	6848902	1749	417	0	-45	North	Results Pending
RPM-013	502219	6848259	1932	197	180	-45	South	Results Pending
RPM-014	501739	6848883	1610	281	180	-60	North	Results Pending
RPM-015	501928	6848902	1740	309	180	-70	North	Results Pending
RPM-016	501739	6848883	1628	278	90	-45	North	Results Pending
RPM-017	501739	6848883	1628	244	180	-45	North	Results Pending
RPM-018	501928	6848902	1740	178	225	-45	North	Results Pending
RPM-019	502219	6848259	1932	362	203	-75	South	Results Pending
RPM-020	501928	6848902	1740	386	113	-45	North	Results Pending
RPM-021	502219	6848259	1932	316	203	-60	North	Results Pending
RPM-022	501928	6848902	1749	433	225	-60	North	In Transit
RPM-023	502219	6848259	1932	423	180	-45	South	In Transit
RPM-024	501600	6848900	1602	380	135	-70	North	In Transit
RPM-025	501928	6848902	1737	525	203	-45	North	Drilling
RPM-026	502219	6848259	1932	401	203	-45	South	In Transit
RPM-027	501600	6848900	1602	350	225	-45	North	Drilling
RPM-028	502219	6848259	1932	400	203	-60	South	Drilling

6

	Inferred		
Cut-off Au g/t	Tonnes	Grade Au g/t	Gold Ounces
0.00	61,871,933	0.801	1,593,397
0.05	47,922,893	1.029	1,585,463
0.10	38,560,690	1.262	1,564,595
0.15	32,002,128	1.495	1,538,218
0.20	28,738,640	1.646	1,520,876
0.25	24,993,693	1.859	1,493,852
0.30	23,077,163	1.991	1,477,241
0.35	20,927,883	2.162	1,454,718
0.40	19,034,960	2.340	1,432,074
0.45	17,466,558	2.512	1,410,668
0.50	15,461,915	2.775	1,379,507

Table 2. Inferred Resource Estimate, RPM Deposit, Various Cut Off Grades - 31 g/t Au Cap

For further information regarding Nova Minerals Ltd please visit the Company's website <u>www.novaminerals.com.au</u>

This announcement has been authorized for release by the Executive Directors.

Christopher Gerteisen CEO and Executive Director E: info@novaminerals.com.au Ian Pamensky Company Secretary E: info@novaminerals.com.au

About Nova Minerals

Nova Minerals Limited (ASX: NVA) vision is developing North America's next major gold trend, Estelle, to become a world-class, tier-one, global gold producer. The company is focused on exploration in Alaska's prolific Tintina Gold Belt, a province which hosts a 220 million ounce (Moz) documented gold endowment and some of the world's largest gold mines and discoveries including Victoria Gold's Eagle Mine and Kinross Gold Corporation's Fort Knox Gold Mine. The Company's Estelle Trend development is a 35km long corridor of 21 identified gold prospects bracketed by the Korbel Project in the north and the RPM Project in the south. Currently, these two flagship projects have a combined total estimated JORC gold resource of 9.6 Moz (3 Moz Indicated and 6.6 Moz Inferred) and are host to extensive resource development programs.

Additionally, Nova holds a substantial interest in NASDAQ-listed lithium explorer Snow Lake Resources Ltd (NASDAQ: LITM) and a holding in Asra Minerals Limited (ASX: ASR), a gold exploration company based in Western Australia.

Competent Person Statement

Mr Dale Schultz P.Geo., Principle of DjS Consulting, who is an independent consulting geologist of a number of mineral exploration and development companies, reviewed and approves the technical information in this release and is a member of the Association of Professional Engineers and Geoscientists of Saskatchewan (APEGS), which is ROPO accepted for the purpose of reporting in accordance with ASX listing rules. Mr Schultz has sufficient experience relevant to the gold deposits under evaluation to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Schultz is also a Qualified Person as defined by S-K 1300 rules for mineral deposit disclosure. Mr Schultz consents to the inclusion in the report of the matters based on information in the form and context in which it appears.

Forward-looking Statements and Disclaimers

This ASX announcement ("**Announcement**") has been prepared by Nova Minerals Limited ("**Nova**" or the "**Company**") and contains summary information about Nova holding in Snow Lake Resources Ltd and their activities, which is current as at the date of this Announcement. The information in this Announcement is of a general nature and does not purport to be complete nor does it contain all the information, which a prospective investor may require in evaluating a possible investment in Nova.

By its very nature exploration for minerals is a high-risk business and is not suitable for certain investors. Nova's securities are speculative. Potential investors should consult their stockbroker or financial advisor. There are a number of risks, both specific to Nova and of a general nature which may affect the future operating and financial performance of Nova and the value of an investment in Nova including but not limited to economic conditions, stock market fluctuations, gold provide

movements, regional infrastructure constraints, timing of approvals from relevant authorities, regulatory risks, operational risks and reliance on key personnel and foreign currency fluctuations.

Except for statutory liability which cannot be excluded, each of Nova's, its officers, employees and advisors expressly disclaim any responsibility for the accuracy or completeness of the material contained in this Announcement and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in this Announcement or any error or omission here from. The Company is under no obligation to update any person regarding any inaccuracy, omission or change in information in this Announcement or any other information made available to a person nor any obligation to furnish the person with any further information. Recipients of this Announcement should make their own independent assessment and determination as to the Company's prospects, its business, assets and liabilities as well as the matters covered in this Announcement.

This Announcement is for information purposes only and does not constitute or form any part of any offer or invitation to sell or issue, or any solicitation of any offer to purchase or subscribe for, any securities in the Company in any jurisdiction. It is not intended to be and is not a prospectus, product disclosure statement, offering memorandum or private placement memorandum for the purpose of Chapter 6D of the Corporation Act 2001. This Announcement and its contents must not be distributed, transmitted or viewed by any person in any jurisdiction where the distribution, transmission or viewing of this Announcement would be unlawful under the securities or other laws of that or any other jurisdiction. The Company or any of its affiliates, directors or officers that any recipients invest in the Company, does not consider this Announcement a recommendation nor does it constitute as any investment, accounting financial, legal or tax advice.

This Announcement does not contain all information which may be material to the making of a decision in relation to the Company. Recipients of this document should carefully consider whether the securities issued by the Company are an appropriate investment for them in light of their personal circumstances, including their financial and taxation position. No account has been taken of the objectives, financial situation or needs of any recipient of this document. Any investor should seek independent financial and taxation advice independent assessment and determination as to the Company's prospects prior to making any investment decision, and should not rely on the information in this Announcement for that purpose. Neither the Company's securities or any financial products. This Announcement does not involve or imply a recommendation or a statement of opinion in respect of whether to buy, sell or hold securities in the Company. The securities issued by the Company are considered speculative and there is no guarantee that they will make a return on the capital invested, that dividends will be paid on the shares or that there will be an increase in the value of the shares in the future.

Certain statements in this document are or may be "forward-looking statements" and represent Nova's 37% held Snow Lake's intentions, projections, expectations or beliefs concerning among other things, future exploration activities. The projections, estimates and beliefs contained in such forward-looking statements necessarily involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of Snow Lake and Nova, and which may cause Nova's and Snow Lake's actual performance in future periods to differ materially from any express or implied estimates or projections. Nothing in this document is a promise or representation as to the future. Statements or assumptions in this document as to future matters may prove to be incorrect and differences may be material. Nova does not make any representation or warranty as to the accuracy of such statements or assumptions.

Although all reasonable care has been undertaken to ensure that the facts and opinions given in this Announcement are accurate, the information provided in this Announcement (including information derived from publicly available sources) may not been independently verified.

Table 3. List of Results (>0.3g/t) - RPM

HOLE_ID	FROM_m	TO_m	SAMPLE_ID	Au_ppm
RPM-007	6	9	E395003	0.32
RPM-007	18	20	E395008	0.35
RPM-007	23	26	E395011	0.31
RPM-007	66	69	E395026	0.41
RPM-007	69	72	E395027	0.32
RPM-007	90	93	E395036	0.60
RPM-008	11	14	E395182	0.57
RPM-008	45	48	E395194	0.67
RPM-008	48	51	E395195	0.49
RPM-008	51	54	E395196	0.51
RPM-008	54	57	E395197	0.88
RPM-008	57	60	E395198	1.24
RPM-008	60	63	E395199	2.08
RPM-008	63	66	E395201	0.72
RPM-008	66	69	E395202	0.75
RPM-008	69	72	E395203	1.51
RPM-008	72	75	E395204	0.56
RPM-008	75	78	E395205	0.42
RPM-008	78	81	E395206	0.30
RPM-008	81	84	E395207	0.41
RPM-008	86	88	E395209	8.17
RPM-008	88	90	E395211	4.99
RPM-008	90	93	E395212	1.76
RPM-008	93	96	E395213	51.90
RPM-008	96	98	E395214	43.20
RPM-008	98	99	E395216	91.30
RPM-008	99	99	E395217	3.47
RPM-008	99	102	E395218	22.40
RPM-008	102	105	E395219	10.10
RPM-008	105	109	E395221	1.80
RPM-008	109	112	E395222	11.30
RPM-008	112	115	E395223	3.76
RPM-008	115	118	E395224	52.30
RPM-008	118	121	E395225	2.27

HOLE ID	FROM m	TO_m	SAMPLE ID	Au_ppm
RPM-008	121	122	E395226	0.83
RPM-008	122	124	E395227	2.63
RPM-008	124	127	E395228	1.75
RPM-008	127	130	E395229	7.59
RPM-008	130	131	E395231	3.51
RPM-008	131	133	E395232	53.40
RPM-008	133	136	E395233	3.91
RPM-008	136	139	E395234	6.66
RPM-008	139	142	E395235	11.50
RPM-008	142	145	E395236	0.41
RPM-008	145	148	E395237	0.56
RPM-008	148	151	E395238	0.84
RPM-008	151	154	E395239	2.80
RPM-008	154	157	E395241	0.39
RPM-008	157	160	E395242	0.52
RPM-008	169	171	E395246	0.31
RPM-008	171	173	E395247	9.91
RPM-008	173	176	E395248	0.32
RPM-008	179	182	E395251	0.67
RPM-008	182	185	E395252	0.67
RPM-008	233	237	E395272	0.50
RPM-008	237	240	E395273	0.75
RPM-008	240	243	E395274	0.72
RPM-010	16	20	E395301	0.42
RPM-010	20	23	E395302	0.64
RPM-010	23	26	E395303	0.77
RPM-010	26	29	E395304	0.34
RPM-010	34	35	E395307	0.31
RPM-010	41	44	E395311	0.37
RPM-010	44	47	E395312	0.38
RPM-010	47	50	E395313	0.34
RPM-010	50	53	E395314	0.39
RPM-010	53	56	E395315	0.69
RPM-010	56	58	E395316	1.21
RPM-010	58	59	E395317	1.29
RPM-010	59	62	E395318	25.10
RPM-010	62	65	E395319	20.20
RPM-010	65	68	E395321	3.12
RPM-010	68	71	E395322	46.40
RPM-010	71	73	E395323	1.46
RPM-010	73	75	E395324	2.55
RPM-010	75	77	E395326	1.17

HOLE_ID	FROM_m	TO_m	SAMPLE_ID	Au_ppm
RPM-010	77	80	E395327	0.55
RPM-010	80	84	E395328	1.62
RPM-010	84	87	E395329	0.95
RPM-010	87	90	E395331	0.56
RPM-010	90	93	E395332	0.39
RPM-010	93	96	E395333	1.49
RPM-010	99	102	E395335	0.75
RPM-010	102	105	E395336	1.95
RPM-010	105	108	E395337	1.59
RPM-010	108	111	E395338	0.44
RPM-010	111	114	E395339	0.62
RPM-010	123	126	E395344	0.82
RPM-010	138	141	E395349	1.31
RPM-010	147	150	E395353	1.23
RPM-010	151	154	E395355	0.37
RPM-010	155	158	E395357	0.31
RPM-010	158	160	E395358	0.56
RPM-010	166	169	E395362	0.59
RPM-010	169	172	E395363	0.42
RPM-010	187	190	E395371	0.41
RPM-010	193	196	E395373	0.32
RPM-010	227	230	E395385	0.32

NSI = No Significant Interval

Appendix 1: JORC Code, 2012 Edition – Table 1 Estelle Gold Project - Alaska

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling	Nature and quality of sampling (eg cut	 Core is systematically logged
techniques	channels, random chips, or specific	from collar to EOH
	specialised industry standard measurement	characterizing rock type,
	tools appropriate to the minerals under	mineralization, and alteration
	investigation, such as down hole gamma	Oriented core measurements
	sondes, or handheld XRF instruments, etc.).	of structural features are
	These examples should not be taken as	taken where appropriate.
	limiting the broad meaning of sampling.	Geotechnical measurements
	 Include reference to measures taken to 	such as recoveries and
	ensure sample representivity and the	RQDs are taken at 10-foot
	appropriate calibration of any measurement	(3.05 m) intervals. Samples
	tools or systems used.	are taken each 10 feet
	Aspects of the determination of	(3.05m) unless there is a
	mineralisation that are Material to the Public	change in lithology, whereby
	Report.	<3.05m selective samples
	 In cases where 'industry standard' work has 	may be taken. In these cases
	been done this would be relatively simple (e.g.	samples are broken to
	'reverse circulation drilling was used to obtain	lithologic boundaries.
	1 m samples from which 3 kg was pulverised	Samples are then half cut
	to produce a 30 g charge for fire assay'). In	with one of the half cuts
	other cases more explanation may be	being sent to the ALS lab in
	required, such as where there is coarse Au	Fairbanks Alaska for
	that has inherent sampling problems. Unusual	processing. The remaining
	commodities or mineralisation types (e.g.	half core is returned to the
	submarine nodules) may warrant disclosure of	box and safely stored as
	detailed information.	reference material.
Drilling	• Drill type (e.g. core, reverse circulation,	• HQ diamond core triple tube
techniques	open-hole hammer, rotary air blast, auger,	down hole surveys every 15
coninques	Bangka, sonic, etc.) and details (e.g. core	feet (~50m), using a Reflex
	diameter, triple or standard tube, depth of	ACT-III tool.
	diamond tails, face-sampling bit or other type,	
	whether core is oriented and if so, by what	
	method, etc.).	

	Criteria	JORC Code Explanation	Commentary
Sonal use only	Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	Core logging is carried out by qualified geologists using a project specific logging procedure. Data recorded includes, but is not limited to, lithology, structure, RQD, recovery, alteration, sulphide mineralogy and presence of visible gold. This is supervised by senior geologists familiar with the mineralisation style and nature. Inspection of the drill core by the site Chief Geologist is monitored remotely using photographs and logs. Rock codes have been set up specifically for the project. Logging is to a sufficient level of detail to support appropriate Mineral Resource estimation and mining studies. • Drill logging is both qualitative by geological features and quantitative by geotechnical parameters in nature. Photographs are taken of all cores trays, (wet) of whole core prior to cutting.
	Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled 	• Samples are taken each 10 feet (3.05m) unless there is a change in lithology. In these cases samples are broken to lithologic boundaries. Samples are then half cut with one of the half cuts being sent to the ALS lab in Fairbanks Alaska for processing. Three different types of SRM are inserted each 20 samples. Duplicates of the reject are taken each 20 samples. One blank is inserted each 40 samples. Data is plotted and evaluated to see if the samples plot within accepted tolerance. If any "out of control" samples are note, the laboratory is notified.

	Criteria	
	Quality of assay data and laboratory tests	 The natulative assayi and wheth partial or the assayi and wheth partial or the partial or the partial or the parameter including the parameter including times, called derivation, Nature of (eg standate laboratory levels of a precision to precision to parameter or precision to precision to parameter or precision to parameter or precision to parameter or precision to parameter or p
51 201 [GI	<i>Verification of sampling and assaying</i>	•The verifi either inde personnel •The use o primary da verification electronic • Discuss
	<i>Location of data points</i>	•Accuracy locate dril surveys), i locations u • Specifica • Quality a
	Data spacing and distribution	Data spa Results. Whether sufficient to and grade

Critoria	IOPC Code Explanation	Commonton
Criteria	JORC Code Explanation	Commentary
Quality of	• The nature, quality and appropriateness of	• Samples are tested for gold
assay data	the assaying and laboratory procedures used	using ALS Fire Assay Au-
and	and whether the technique is considered	ICP21 technique. This
laboratory	partial or total.	technique has a lower
tests	For geophysical tools, spectrometers,	detection limit of 0.001 g/t with
	handheld XRF instruments, etc., the	an upper detection limit of 10
	parameters used in determining the analysis	g/t. If samples have grades in
	including instrument make and model, reading	excess of 10 g/t then Au-AA25
	times, calibrations factors applied and their	is used to determine the over
	derivation, etc.	detect limit. Au-AA25 has a
	Nature of quality control procedures adopted	detection limit of 0.01 g/t and
	(eg standards, blanks, duplicates, external	an upper limit of 100 g/t. Three
	laboratory checks) and whether acceptable	different types of SRM are
	levels of accuracy (ie lack of bias) and	inserted each 20 samples.
	precision have been established.	Duplicates of the reject are
		taken each 20 samples. One
		blank is inserted each 40
		samples. Data is plotted and
		evaluated to see if the samples
		plot within accepted tolerance.
		If any "out of control" samples
		are note, the laboratory is notified.
		nounea.
Verification	•The verification of significant intersections by	Assay data intercepts are
of sampling	either independent or alternative company	compiled and calculated by the
and assaying	personnel.	CP and then verified by
und doodynig	•The use of twinned holes. Documentation of	corporate management prior
	primary data, data entryprocedures, data	to the release to the public.
	verification, data storage (physical and	
	electronic) protocols.	
	• Discuss any adjustment to assay data.	
Location of	 Accuracy and quality of surveys used to 	• All maps and locations are in
data points	locate drill holes (collar and down-hole	UTM grid (NAD83 Z5N) and
	surveys), trenches, mine workings and other	have been measured by a
	locations used in Mineral Resource estimation.	digital Trimble GNSS sytem
	 Specification of the grid system used. 	with a lateral accuracy of
	• Quality and adequacy of topographic control.	<30cm and a vertical accuracy
		of <50cm.
Data spacing	 Data spacing for reporting of Exploration 	 Drill holes have been spaced
and	Results.	in a radial pattern such that all
distribution	 Whether the data spacing and distribution is 	dimensions of the resource
	sufficient to establish the degree of geological	model is tested. Future geo-
	and grade continuity appropriate for the	stats will be run on the data to
	Mineral Resource and Ore Reserve estimation	determine if addition infill
	procedure(s) and classifications applied.	drilling will be required to
	Whether sample compositing has been	confirm continuity.
	applied.	

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The relationship between the drilling orientation and the orientation of key mineralised structures is confirmed by drill hole data driven ongoing detailed structural analysis by OTS structural consultants.
Sample security	• The measures taken to ensure sample security	 A secure chain of custody protocol has been established with the site geologist locking samples in secure shipping container at site until loaded on to aircraft and shipped to the secure restricted access area for processing by Nova Minerals staff geologists. Secure shipping container at site until loaded and shipped to the secure restricted access room at TOMRA who forwarded to bureau veritas Metallurgical facility Adelaide.
Audits or Reviews	• The results of any audits or reviews of sampling techniques and data.	• Detailed QA/QC analysis is undertaken on an ongoing basic by Qualitica Consulting.

Section 2 Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Commentary The Estelle project is comprised of 450km2 State of Alaska mining claims The mining claims are wholly owned by AKCM (AUST) Pty Ltd. (an incorporated Joint venture (JV Company between Nova Minerals Ltd and AK Minerals Pty Ltd) via 100% ownership of Alaskan incorporate company AK Custom Mining LLC. AKCM (AUST) Pty Ltd is owned 85% by Nova Minerals Ltd, 15% by AK Minerals Pty Ltd. AK Minerals Pty Ltd holds a 2% NSR (ASX Announcement: 20 November 2017) Nova owns 85% of the project through the joint venture agreement. The Company is not aware of any other impediments that would prevent an exploration or mining activity.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Geophysical, Soil testing, and drilling was completed by previous operators in the past. Nova Minerals has no access to this data.
Geology	• Deposit type, geological setting and style of mineralisation.	Nova Mineral is primarily exploring for Intrusion Related Gold System (IRGS) type deposit within the Estelle Gold Project

• • •		
Criteria	JORC Code Explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• See Appendix 1 summary table of drill hole results.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Widths are report as core length. Future true widths will be calculated by measuring the distance perpendicular to the dip of the mineralized zone on any given cross section that the intercept appears on. Two holes per section are required to calculate true thickness. No "Top Cap" has been applied to calculation of any intercepts. A "Top Cap" analysis will be completed during a future Resources Study and applied if applicable. Widths of intersection are calculated by applying a weighted average (Sum [G x W] / Sum [W]) to the gold values and reported widths within any given intercepts. The CP will visually select the intercept according to natural grouping of higher- grade assays. Zones of internal dilution my vary depending on the CP discretion as to what is geologically significant. Sub intersection of higher grades within any given intercepts may be broken out if present.

0.11		
Criteria	JORC Code Explanation	Commentary
		• RPM-008 and RPM-010 used an overall average grade cut- off of 0.1g/t and a maximum of 6 meters of internal dilution.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	See above
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Plan view Map in Figure 2 shows the hole traces of the PAD1 drilling. Holes completed and / or in progress are also marked. Cross Section in Figure 1 showing trace of Hole outlined in this announcement Figure 2 Regional Map of the RPM Gold Project
Balanced Reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Does not apply. All Nova results have been disclosed the ASX via news releases. 	
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other substantive exploration data has been collected

Commentary

• Diamond drilling is ongoing. Project planned is for up to

30,000 metres in 2022 and

ongoing into 2023

Criteria	JORC Code Explanation
Further work	The nature and scale of planned further
	work (eg tests for lateral extensions or depth
	extensions or large-scale step-out drilling).
	• Diagrams clearly highlighting the areas of
	possible extensions, including the main
	geological interpretations and future drilling
	areas, provided this information is not
	commercially sensitive.
$(\Box D)$	
02	
(2)	
(())	
20	
\bigcirc	

21