ASX Announcement

29 JULY 2022

5E PGM RESULTS CONFIRM HIGH VALUE RHODIUM AND IRIDIUM AND STAGE 10 RESULTS CONTINUE TO DELIVER

Podium Minerals Limited (ASX: POD, 'Podium' or 'the Company') is pleased to announce the first round of 5E PGM¹ assay results for the Stage 9 drilling programme as well as a further five reverse circulation ('RC') holes completed as part of the Stage 10 exploration drilling programme. The intercepts returned for Stage 10 continue to support delivery of the Parks Reef Exploration Target (70 to 75Mt at grade of 1.2 to 1.6g/t 3E PGM)².³.

HIGHLIGHTS

- **5E PGM results received for 7 holes from the Stage 9 programme.** This is the first assay batch received from the ongoing assaying of pulps from the previously reported 3E PGM intercepts and confirms the presence of significant high value rhodium (Rh) and iridium (Ir).
- Stage 9 intersection highlights (with Rh and Ir results for reference) include:
 - 15m at 2.04g/t 5E PGM (0.08g/t Rh and 0.03g/t Ir) from 11m (PRRC188)
 - including 3m at 2.48g/t 5E PGM (0.07g/t Rh and 0.02g/t Ir) from 12m; and
 4m at 2.92g/t 5E PGM (0.14g/t Rh and 0.05g/t Ir) from 18m
 - o 20m at 3.30g/t 5E PGM (0.12g/t Rh and 0.05g/t Ir) from 17m (PRRC191)
 - including 14m at 4.29g/t 5E PGM (0.16g/t Rh and 0.06g/t Ir) from 18m
 - including 7m at 6.11g/t 5E PGM (0.24g/t Rh and 0.09g/t Ir) from 22m (5g/t cut-off)
 - 27m at 2.34g/t 5E PGM (0.08g/t Rh and 0.03g/t Ir) from 9m (PRRC197)
 - including 2m at 3.48g/t 5E PGM (0.04g/t Rh and 0.02g/t Ir) from 11m; and
 4m at 3.39g/t 5E PGM (0.14g/t Rh and 0.06g/t Ir) from 29m
- Results received from an additional 5 holes from the Stage 10 programme. This is in addition to
 the 19 assays previously disclosed (see ASX announcement dated 22 July 2022), totalling 24 holes
 assayed to date.
- Recent Stage 10 intersection highlights include:
 - 11m at 1.49g/t 3E PGM (0.73g/t Pt, 0.65g/t Pd and 0.10g/t Au) from 138m (PRRC226)
 - including 2m at 2.21g/t 3E PGM (1.18g/t Pt, 0.81g/t Pd and 0.22g/t Au) from 139m
 - o 17m at 1.44g/t 3E PGM (0.79g/t Pt, 0.59g/t Pd and 0.06g/t Au) from 149m (PRRC230)
 - including 1m at 3.92g/t 3E PGM (2.32g/t Pt, 1.59g/t Pd and 0.01g/t Au) from 153m
- Stage 10 assays continue to show a 100% success rate intersecting the PGM reef with results indicating large PGM orebody widths and at the higher end of the expected grade.
- All Stage 10 intercepts continue to be tested for the presence of highly valuable rhodium (Rh), iridium
 (Ir) and base metals (copper and nickel) that will inform our 5E⁴ PGM resource upgrade.

¹ 5E PGM refers to platinum (Pt) plus palladium (Pd) plus gold (Au) plus rhodium (Rh) plus iridium (Ir) expressed in units of g/t.

² The potential quantity and grade of the Exploration Target is conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate further Mineral Resources and it is uncertain if further exploration will result in the determination of additional Mineral Resources. Refer to ASX announcement dated 3 March 2022 for full details of the Exploration Target.

 $^{^3}$ 3E PGM refers to platinum (Pt) plus palladium (Pd) plus gold (Au) expressed in units of g/t.

Managing Director and CEO - Sam Rodda commented,

"We are excited to start reporting our 5E PGM results from the Stage 9 programme. These updated assays now include results for the high value elements rhodium and iridium which are an important feature of our Parks Reef project. Global rhodium and iridium production are both less than 1Moz annually (less than 30 tonnes of metal) and ~80% of global production comes from the Bushveld complex in South Africa.

"Predominantly, rhodium is used alongside platinum and palladium in catalytic converters for its ability to reduce nitrogen oxides in exhaust gases. This is a critical component in the reduction of climate change related emissions, with the impact of nitrous oxide (N₂O) estimated to be over 200x greater than CO₂ over a 100-year timescale.

"Iridium is a critical component in the manufacturing process for many electronic components, due to its use in crucibles able to withstand the heat of crystal-making. Iridium used in PGM alloys with other PGM metals such as Ruthenium, Platinum and Palladium can also significantly improve melting points, hardness and corrosion resistance to different products.

"The market price of rhodium has been greater than US\$14,000 per ounce recently and Iridium greater than US\$4,500 per ounce. The inclusion of these rare and valuable elements has potential to add significant value to the project."

THE FIRST BATCH OF 5E ASSAYS FOR STAGE 9 RECEIVED CONFIRMING HIGH VALUE RHODIUM AND IRIDIUM

Stage 9 drilling was completed in March 2022. The preferred testing procedure for rhodium and iridium requires that the 3E PGM tests are performed prior to the tests for 5E PGM to identify the PGM zone.

Of the 11 drill holes (PRRC187 to PRRC197) from Stage 9 assessed for 5E PGM assay, (see Figure 1 and Appendix E below), 7 have returned significant 5E PGM results in line with expectation. These assay results are broadly consistent with the historical analysis of archived pulp samples as announced to the ASX on 9 June 2022. Encouragingly, a standout intercept occurs in hole **PRRC191**, **returning 7m of over 6g/t 5E PGM**.

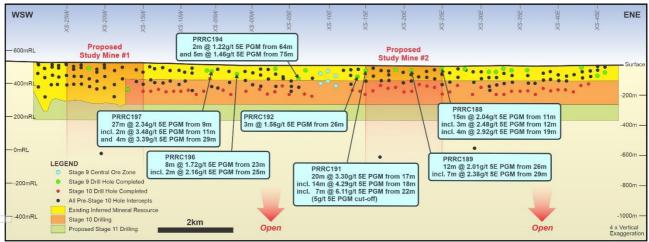


Figure 1: Longitudinal projection of Parks Reef intersections with Stage 9 holes and results highlighted

Intercepts ≥1.0g/t 5E PGM and ≥2m intersection thickness (with a maximum of 3m internal waste if carried) include:

- 15m at 2.04g/t 5E PGM (0.08g/t Rh and 0.03g/t Ir) from 11m (PRRC188) including 3m at 2.48g/t 5E PGM (0.07g/t Rh and 0.02g/t Ir) from 12m; and 4m at 2.92g/t 5E PGM (0.14g/t Rh and 0.05g/t Ir) from 19m
- 12m at 2.01g/t 5E PGM (0.07g/t Rh and 0.03g/t Ir) from 26m (PRRC189)
 including 7m at 2.38g/t 5E PGM (0.08g/t Rh and 0.04g/t Ir) from 29m
- 20m at 3.30g/t 5E PGM (0.12g/t Rh and 0.05g/t Ir) from 17m (PRRC191)
 including 14m at 4.29g/t 5E PGM (0.16g/t Rh and 0.06g/t Ir) from 18m
 including 7m at 6.11g/t 5E PGM (0.24g/t Rh and 0.09g/t Ir) from 22m (5g/t 5E PGM cut-off)
- 3m at 1.56g/t 5E PGM (0.04g/t Rh and 0.01g/t Ir) from 26m (PRRC192)

- 2m at 1.22g/t 5E PGM (0.04g/t Rh and 0.02g/t Ir) from 64m (PRRC194); and
 5m at 1.46g/t 5E PGM (0.08g/t Rh and 0.03g/t Ir) from 75m
- 8m at 1.72g/t 5E PGM (0.04g/t Rh and 0.01g/t Ir) from 23m (PRRC196)
 including 2m at 2.16g/t 5E PGM (0.05g/t Rh and 0.01g/t Ir) from 25m
- 27m at 2.34g/t 5E PGM (0.08g/t Rh and 0.03g/t Ir) from 9m (PRRC197) including 2m at 3.48g/t 5E PGM (0.04g/t Rh and 0.02g/t Ir) from 11m; and 4m at 3.39g/t 5E PGM (0.14g/t Rh and 0.06g/t Ir) from 29m

STAGE 10 ASSAYS PROVE GREAT PGM OREBODY WIDTHS AND GRADES AT TOP END OF TARGET

Stage 10 drilling (targeting 51 holes and extensions to 2 previously drilled holes) was completed on 8 July 2022. New 3E PGM assay results have been received for 5 additional RC holes (see Figure 2 and Appendix C below), which brings the total holes for assays received to 24 (see ASX announcements on 9 June 2022, 29 June 2022, 15 July 2022 and 22 July 2022 for further information).

Of the 51 holes in Stage 10 drilling, 27 holes are still awaiting assays, with results expected across the remainder of this quarter. All holes achieved intersections of the reef, underscoring the reefs significant continuity and consistency over its full 15km strike length. Of the results received from the Stage 10 programme so far, 100% of them have intersecting the PGM reef with assay results in line with projected orebody widths and with a significant number on the higher side of the grade expectation.

The Stage 10 Programme is aimed at proving the enlarged **Exploration Target of 70Mt to 75Mt at 1.2 g/t to 1.6 g/t 3E PGM for 2.7Moz to 3.8Moz 3E PGM** (this is additional to the current 2.8Moz 3E PGM Inferred Mineral Resource Estimate ('MRE') reported to the ASX on 10 February 2022).

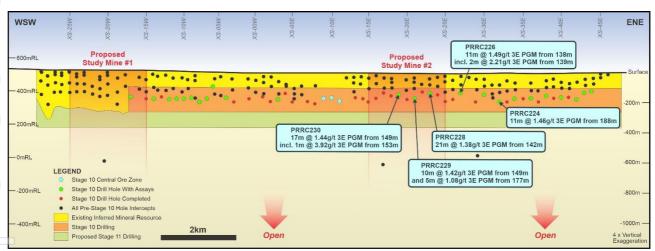


Figure 2: Longitudinal projection of Parks Reef intersections with Stage 10 holes and results highlighted

Intercepts ≥1.0g/t 3E PGM and ≥2m intersection thickness (with a maximum of 3m internal waste if carried) include:

- 8m at 1.46g/t 3E PGM (0.70g/t Pt, 0.69g/t Pd and 0.07g/t Au) from 188m (PRRC224)
- 11m at 1.49g/t 3E PGM (0.73g/t Pt, 0.65g/t Pd and 0.10g/t Au) from 138m (PRRC226)
 including 2m at 2.21g/t 3E PGM (1.18g/t Pt, 0.81g/t Pd and 0.22g/t Au) from 139m
- 21m at 1.38g/t 3E PGM (0.70g/t Pt, 0.65g/t Pd and 0.03g/t Au) from 142m (PRRC228)
- 10m at 1.42g/t 3E PGM (0.72g/t Pt, 0.65g/t Pd and 0.06g/t Au) from 149m (PRRC229); and
 5m at 1.08g/t 3E PGM (0.59g/t Pt, 0.47g/t Pd and 0.02g/t Au) from 177m
- 17m at 1.44g/t 3E PGM (0.79g/t Pt, 0.59g/t Pd and 0.06g/t Au) from 149m (PRRC230)
 including 1m at 3.92g/t 3E PGM (2.32g/t Pt, 1.59g/t Pd and 0.01g/t Au) from 153m

Processing of the 15 holes that were successful in drilling diamond core tails to achieve full reef intersections continues, with samples to be despatched to Bureau Veritas in Perth before the end of July 2022. A total of 668.6 metres of diamond core was drilled in the 15 core tails.

Podium continues to experience delays in assay turnaround times at the laboratory. Further drill results are expected to be received throughout July and August this year. All intersections are within fresh (sulphide) rock and selected samples are being re-assayed for 5E PGM and base metals.

Consequently, 5E PGM testing commences following identification of the PGM zone via 3E analyses. Due to the high volumes and laboratory delays, results from 5E assays will continue to be longer than the 3E and gold turnaround times.

This announcement has been approved for release by the Board of Podium Resources Limited

For further information, please contact:

Sam Rodda
Managing Director & Chief Executive Officer
samr@podiumminerals.com
+61 8 9218 8878

Skye Gilligan Media skye@gilligangroup.com.au +61 416 854 264

Jonathan van Hazel Investor Relations <u>jvanhazel@citadelmagnus.com</u> +61 411 456 969

ABOUT PODIUM MINERALS LIMITED

Podium Minerals Limited (ASX: POD) is planning to become Australia's first platinum group metals (PGM) producer. The significant scale and grade of the Parks Reef Resource provides Podium the opportunity to support an emerging and responsible Australian critical metals mining industry.

The Parks Reef 5E PGM Project is a 15km long platinum group metal deposit which also contains gold and base metal (Cu + Ni) mineralisation. The orebody commences near surface and to date has been proven to continue to approximately 500m vertical depth, which remains open and shows consistency with near surface geology.

The location of Parks Reef in a mining friendly jurisdiction in Western Australia provides a unique opportunity secure an alternative and reliable platinum group metals supply to meet increasing global demand for decarbonised technologies that require PGMs (autocatalysts and hydrogen energy/fuel cell catalysts).

A successful and highly motivated technical and development team is accelerating Podium's strategy to prove and develop a high-value, long-life Australian PGM asset.

Figure 3. Location of the Parks Reef PGM Project 80km West of Meekatharra in Western Australia.

COMPETENT PERSONS STATEMENT

The information in this announcement that relates to the Parks Reef Project (other than the MRE and Exploration Target) is based on and fairly represents information compiled by Mr. Mark Fleming (Head of Geology for Podium Minerals Limited).

Mr. Fleming is a member of the Australasian Institute of Mining and Metallurgy and a fellow of the Australia Institute of Geoscientists. Mr. Fleming has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Fleming consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

The information in this announcement that relates to previously reported exploration results for the Parks Reef Project and the Parks Reef Mineral Resource was first released by the Company to ASX on 10 February 2022, 3 March 2022, 20 April 2022, 19 May 2022, 9 June 2022, 29 June 2022 and 15 July 2022. The Company confirms that it is not aware of any new information or data that materially affects the information included in the abovementioned releases and that all material assumptions and technical parameters underpinning the Parks Reef Mineral Resource estimate continue to apply and have not materially changed.

The information in this announcement that relates to the Parks Reef Exploration Target is based on and fairly represents information compiled by Mr Doug Cook (Exploration Manager for Podium Minerals Limited) and Mr Lauritz Barnes, (Consultant with Trepanier Pty Ltd). Mr Cook and Mr Barnes are both members of the Australasian Institute of Mining and Metallurgy and Mr Barnes is also a member of the Australasian Institute of Geoscientists. Soth have sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Mineral Resources and Ore Reserves, Specifically, Mr Cook is the Competent Person for the database (including all drilling information), the geological and mineralisation models plus completed the site visits. Mr Barnes is the Competent Person for the construction of the 3-D geology / mineralisation model plus the estimation. Mr Cook and Mr Barnes consent to the inclusion in this report of the matters based on their information in the form and context in which they appear.

Appendix A - Resource Estimate and Exploration Target

Refer to tables below for full details of the total MRE which have been classified as Inferred in accordance with the JORC Code.

Table 1 - Inferred Mineral Resource Estimate for Parks Reef PGM Horizon

Horizon		Tonnes (Mt)	Pt (g/t)	Pd (g/t)	Au (g/t)	3E PGM (g/t)	Cu (%)	Ni (%)
PGM - Upper	Oxide	3.8	1.15	0.68	0.20	2.03	0.18	0.10
	Fresh	8.5	1.06	0.72	0.21	1.98	0.17	0.10
	Sub-total	12.3	1.08	0.71	0.21	2.00	0.17	0.10
PGM - Lower	Oxide	11.0	0.78	0.65	0.05	1.48	0.05	0.08
	Fresh	27.4	0.71	0.65	0.04	1.39	0.03	0.08
	Sub-total	38.3	0.73	0.65	0.04	1.42	0.04	0.08
Combined	Oxide	14.8	0.87	0.66	0.09	1.62	0.09	0.09
PGM - Total	Fresh	35.9	0.79	0.66	0.08	1.53	0.06	0.09
	Total	50.6	0.82	0.66	0.08	1.56	0.07	0.09

⁽i) Note small discrepancies may occur due to rounding

Table 2 - Inferred Mineral Resource Estimate for Parks Reef Base Metal - Gold Horizon

Horizon		Tonnes (Mt)	Pt (g/t)	Pd (g/t)	Au (g/t)	3E PGM (g/t)	Cu (%)	Ni (%)
Base Metal - Au	Oxide	8.1	0.10	0.09	0.09	0.28	0.24	0.10
	Fresh	19.7	0.10	0.07	0.15	0.31	0.25	0.10
	Total	27.8	0.10	0.07	0.13	0.30	0.24	0.10

⁽i) Note small discrepancies may occur due to rounding

The Exploration Target for Parks Reef, details of which initially released to ASX on 3 March 2022, is based on the results of the Inferred Mineral Resource estimate, announced 10 February 2022, which superseded parts of the previous Exploration Target reported in March 2019.

The revised Exploration Target of 70Mt to 75Mt at 1.2g/t to 1.6g/t 3E for 2.7Moz to 3.8Moz 3E PGM has been estimated by projecting the mineralised envelope currently within the Inferred Mineral Resource block model to 250m depth, or 150m below the base of the Inferred Mineral Resource, along approximately 12km of strike.

The Exploration Target is supplementary to the Inferred Mineral Resource of 50.6Mt at 1.56g/t 3E PGM for the PGM horizon and an additional 27.8Mt at 0.24% copper and 0.30g/t 3E PGM for the adjacent base metal and gold horizon. The Inferred Mineral Resource is based on 224 RC and diamond drill holes.

The Exploration Target has been estimated by independent consultancy Trepanier, reviewed by Podium's Exploration Manager and reported in accordance with the 2012 JORC Code. The Company is confident of the continuity of Parks Reef to 250m depth as drilling to 100m plus depth on 200m spaced sections to date has demonstrated very consistent PGM mineralisation along 15km of strike of the reef. In addition, deep diamond drilling completed in January 2022, intersected the reef more than 500m below surface indicating that the reef continues to at least to this depth. This continuous PGM mineralised magmatic horizon with very consistent grade and thickness is typical of PGM mineralised, layered maficultramafic intrusions.

The Company continues to drill test the Exploration Target block, with work commencing in March 2022, with the 10,000m Stage 10 RC drilling plan outlined in the original exploration target announcement.

⁽ii) Cut-off grade of 1g/t 3E PGM; ¹3E PGM refers to platinum (Pt) plus palladium (Pd) plus gold (Au) expressed in units of g/t

⁽ii) Cut-off grade of 0.1% Cu and excluding base-metal and gold mineralisation included within the Parks Reef PGM Horizon Mineral Resource

APPENDIX B - Stage 10 Hole Collar Details

Hole ID	Easting GDA94 Z50	Northing GDA94 Z50	RL (m)	Azimuth	Dip	EOH Depth (m)
PRRC131	576437	7030766	507	325	-60	195.8
PRRC142	573137	7030221	509	325	-60	223.0
PRRC201	572638	7029907	511	325	-60	140.0
PRRC202	570988	7028428	522	325	-60	210.0
PRRC203	571325	7028645	521	325	-60	215.6
PRRC204	571485	7028764	520	325	-60	217.0
PRRC205	572356	7029608	513	325	-60	215.0
PRRC206	572498	7029760	512	325	-60	228.0
PRRC208	574232	7030594	507	350	-60	238.4
PRRC209	571766	7029061	518	325	-60	271.0
PRRC212	571652	7028871	519	325	-60	201.5
PRRC213	572137	7029228	515	325	-60	181.0
PRRC214	571964	7029128	517	325	-60	247.0
PRRC215	572299	7029379	514	325	-60	205.0
PRRC216	582265	7032274	508	350	-60	184.0
PRRC217	582068	7032223	508	350	-60	178.0
PRRC218	572961	7030145	509	325	-60	208.0
PRRC219	581874	7032162	507	350	-60	189.0
PRRC220	581494	7032034	505	350	-60	180.8
PRRC221	581106	7031928	505	350	-60	178.0
PRRC222	580717	7031833	506	350	-60	190.0
PRRC223	580327	7031735	508	350	-60	202.0
PRRC224	579938	7031635	506	350	-60	196.0
PRRC225	579558	7031492	504	350	-60	180.0
PRRC226	578972	7031353	505	350	-60	168.0
PRRC227	578587	7031229	505	350	-60	198.8
PRRC228	578214	7031046	505	350	-60	184.0
PRRC229	577817	7030993	506	350	-60	196.0
PRRC230	577424	7030925	506	350	-60	185.0
PRRC231	577021	7030846	506	350	-60	171.7
PRRC232	576638	7030773	507	350	-60	216.7
PRRC233	576235	7030757	506	350	-60	196.0
PRRC234	575172	7030751	506	350	-60	228.8
PRRC235	573497	7030426	508	325	-60	264.9
PRRC236	573840	7030516	508	350	-60	219.8
PRRC237	574429	7030629	507	350	-60	196.0
PRRC238	576838	7030791	507	350	-60	192.4
PRRC239	581684	7032102	506	350	-60	187.0
PRRC240	577225	7030899	506	350	-60	198.8
PRRC241	581300 580013	7031973	505	350	-60 60	199.0
PRRC242 PRRC243	580913	7031862	505	350	-60 60	211.0
	577623 580521	7030948	506	350	-60 60	200.0
PRRC244 PRRC245	580521 580133	7031783 7031689	507 508	350 350	-60 -60	187.0 215.0
PRRC246	579362	7031452	504	350	-60	211.0

	Hole ID	Easting GDA94 Z50	Northing GDA94 Z50	RL (m)	Azimuth	Dip	EOH Depth (m)
	PRRC247	578776	7031301	505	350	-60	199.0
	PRRC248	578402	7031135	505	350	-60	187.0
	PRRC249	578016	7031016	505	350	-60	211.0
	PRRC257	575408	7030833	506	350	-66	175.0
	PRRC263	575619	7030856	506	342	-63	162.8
	PRRC265	575825	7030773	506	350	-67	211.0
TUO BSD IBUO							

APPENDIX C – Stage 10 Drilling Assays

Sample ID	Hole_ID	From	То	Au	Pt	Pd	3E PGM
	_	m	m	ppb	ppb	ppb	g/t
120106	PRRC224	184	185	41	9	9	0.06
120107	PRRC224	185	186	94	16	10	0.12
120108	PRRC224	186	187	126	56	21	0.20
120109	PRRC224	187	188	151	230	65	0.45
120110	PRRC224	188	189	68	1170	751	1.99
120111	PRRC224	189	190	62	697	669	1.43
120112	PRRC224	190	191	83	597	470	1.15
120113	PRRC224	191	192	104	406	288	0.80
120114	PRRC224	192	193	58	786	1040	1.88
120115	PRRC224	193	194	124	670	721	1.52
120116	PRRC224	194	195	23	586	767	1.38
120117	PRRC224	195	196	60	657	848	1.57
119974	PRRC226	134	135	118	10	11	0.14
119975	PRRC226	135	136	287	13	13	0.31
119976	PRRC226	136	137	213	12	13	0.24
119977	PRRC226	137	138	241	28	16	0.29
119978	PRRC226	138	139	312	669	196	1.18
119979	PRRC226	139	140	317	1430	635	2.38
119980	PRRC226	140	141	122	931	981	2.03
119981	PRRC226	141	142	79	556	821	1.46
119982	PRRC226	142	143	66	547	737	1.35
119984	PRRC226	143	144	58	578	780	1.42
119985	PRRC226	144	145	24	481	597	1.10
119986	PRRC226	145	146	27	522	441	0.99
119987	PRRC226	146	147	19	854	628	1.50
119989	PRRC226	147	148	31	909	760	1.70
119990	PRRC226	148	149	68	584	585	1.24
119991	PRRC226	149	150	33	293	419	0.75
119993	PRRC226	150	151	34	205	372	0.61
119994	PRRC226	151	152	44	64	156	0.26
119995	PRRC226	152	153	13	37	69	0.12
119996	PRRC226	153	154	10	28	38	0.08
119997	PRRC226	154	155	7	17	15	0.04
119998	PRRC226	155	156	8	22	17	0.05
119999	PRRC226	156	157	45	46	40	0.13
120000	PRRC226	157	158	8	46	48	0.10
120001	PRRC226	158	159	9	83	177	0.27
120002	PRRC226	159	160	5	274	186	0.47
120003	PRRC226	160	161	115	229	189	0.53
120004	PRRC226	161	162	24	373	173	0.57
120005	PRRC226	162	163	19	410	286	0.72
120006	PRRC226	163	164	64	645	375	1.08
120007	PRRC226	164	165	20	55	25	0.10
120008	PRRC226	165	166	3	26	15	0.04
120009	PRRC226	166	167	1	14	9	0.02
				_			_
120312	PRRC228	132	133	27	2	3	0.03
120313	PRRC228	133	134	76	4	4	0.08
120314	PRRC228	134	135	66	7	9	0.08
120315	PRRC228	135	136	79	12	11	0.10

Sample ID	Hole_ID	From m	To m	Au ppb	Pt ppb	Pd ppb	3E PGN g/t
120316	PRRC228	136	137	76	12	12	0.10
120317	PRRC228	137	138	66	13	12	0.09
120318	PRRC228	138	139	119	15	12	0.15
120319	PRRC228	139	140	122	15	10	0.15
120320	PRRC228	140	141	72	35	15	0.12
120321	PRRC228	141	142	45	204	58	0.31
120322	PRRC228	142	143	78	1140	345	1.56
120323	PRRC228	143	144	56	1230	741	2.03
120324	PRRC228	144	145	50	599	707	1.36
120325	PRRC228	145	146	54	573	902	1.53
120326	PRRC228	146	147	64	574	854	1.49
120327	PRRC228	147	148	51	626	837	1.51
120328	PRRC228	148	149	50	822	956	1.83
120329	PRRC228	149	150	24	534	744	1.30
120330	PRRC228	150	151	24	539	733	1.30
120331	PRRC228	151	152	20	480	645	1.15
120332	PRRC228	152	153	17	472	584	1.07
120333	PRRC228	153	154	14	593	563	1.17
120334	PRRC228	154	155	19	554	577	1.15
120335	PRRC228	155	156	10	583	446	1.04
120336	PRRC228	156	157	10	629	465	1.10
120337	PRRC228	157	158	13	812	604	1.43
120338	PRRC228	158	159	13	738	541	1.29
120339	PRRC228	159	160	12	738	551	1.30
120340	PRRC228	160	161	11	682	506	1.20
120341	PRRC228	161	162	16	1120	727	1.86
120342	PRRC228	162	163	18	692	605	1.32
120343	PRRC228	163	164	12	349	381	0.74
120344	PRRC228	164	165	10	182	281	0.47
120345	PRRC228	165	166	12	128	261	0.40
120346	PRRC228	166	167	14	410	423	0.85
120347	PRRC228	167	168	3	40	121	0.16
120399	PRRC229	140	143	28	4	5	0.04
120400	PRRC229	143	144	110	14	12	0.14
120401	PRRC229	144	145	193	13	13	0.22
120402	PRRC229	145	146	150	15	13	0.18
120403	PRRC229	146	147	113	15	14	0.14
120404	PRRC229	147	148	174	17	9	0.20
120405	PRRC229	148	149	154	99	30	0.28
120407	PRRC229	149	150	127	1240	372	1.74
120409	PRRC229	150	151	110	1350	708	2.17
120411	PRRC229	151	152	100	779	752	1.63
120412	PRRC229	152	153	77	680	986	1.74
120413	PRRC229	153	154	25	245	395	0.67
120414	PRRC229	154	155	42	806	997	1.85
120415	PRRC229	155	156	30	514	654	1.20
120416	PRRC229	156	157	20	485	638	1.14
120417	PRRC229	157	158	14	451	490	0.96
120417	PRRC229	158	159	12	602	488	1.10
120410	PRRC229	159	160	4	122	104	0.23
120419	PRRC229	160	161	10	456	394	0.23
120420	PRRC229	161	162	10	19	19	0.04

Sample ID	Hole_ID	From m	To m	Au ppb	Pt ppb	Pd ppb	3E PGM g/t
120422	PRRC229	162	163	1	29	25	0.06
120423	PRRC229	163	164	5	13	12	0.03
120424	PRRC229	164	165	0.5	6	7	0.01
120425	PRRC229	165	166	2	22	22	0.05
120426	PRRC229	166	167	1	51	41	0.09
120427	PRRC229	167	168	0.5	5	6	0.01
120428	PRRC229	168	169	7	29	27	0.06
120429	PRRC229	169	170	2	3	3	0.01
120430	PRRC229	170	171	1	5	5	0.01
120431	PRRC229	171	172	4	7	7	0.02
120432	PRRC229	172	173	0.5	1	2	0.00
120433	PRRC229	173	174	0.5	0.5	1	0.00
120434	PRRC229	174	175	0.5	38	19	0.06
120435	PRRC229	175	176	8	397	355	0.76
120436	PRRC229	176	177	7	402	393	0.80
120437	PRRC229	177	178	29	601	485	1.12
120438	PRRC229	178	179	17	452	328	0.80
120439	PRRC229	179	180	25	550	426	1.00
120440	PRRC229	180	181	17	423	337	0.78
120441	PRRC229	181	182	33	902	792	1.73
120442	PRRC229	182	183	19	295	339	0.65
120443	PRRC229	183	184	9	166	214	0.39
120479	PRRC230	139	140	26	7	7	0.04
120480	PRRC230	140	141	86	11	10	0.11
120481	PRRC230	141	142	108	12	10	0.13
120482	PRRC230	142	143	149	13	11	0.17
120484	PRRC230	143	144	168	16	11	0.20
120485	PRRC230	144	145	112	7	6	0.13
120487	PRRC230	145	146	130	15	10	0.16
120488	PRRC230	146	147	159	38	15	0.21
120489	PRRC230	147	148	250	90	29	0.37
120491	PRRC230	148	149	328	484	122	0.93
120492	PRRC230	149	150	362	856	236	1.45
120500	PRRC230	150	151	266	1260	468	1.99
120499	PRRC230	151	152	64	1010	747	1.82
120498	PRRC230	152	153	69	879	713	1.66
120497	PRRC230	153	154	197	392	348	0.94
120496	PRRC230	154	155	9	2320	1590	3.92
120493	PRRC230	155	156	12	834	849	1.70
120495	PRRC230	156	157	13	569	592	1.17
120494	PRRC230	157	158	9	494	609	1.11
120501	PRRC230	158	159	10	475	557	1.04
120502	PRRC230	159	160	11	565	534	1.11
120503	PRRC230	160	161	27	773	597	1.40
120504	PRRC230	161	162	8	659	487	1.15
120505	PRRC230	162	163	7	504	379	0.89
120506	PRRC230	163	164	5	558	398	0.96
120507	PRRC230	164	165	7	597	445	1.05
120508	PRRC230	165	166	5	599	546	1.15
120509	PRRC230	166	167	7	162	235	0.40
120510	PRRC230	167	168	3	79	247	0.33
120511	PRRC230	168	169	7	86	294	0.39

Sample ID	Hole_ID	From m	To m	Au ppb	Pt ppb	Pd ppb	3E PGM g/t
120512	PRRC230	169	170	11	76	273	0.36
120513	PRRC230	170	171	14	36	155	0.21

APPENDIX D - Stage 9 Hole Collar Details

Ho	ole ID	Easting GDA94 Z50	Northing GDA94 Z50	RL (m)	Azimuth	Dip	EOH Depth (m)
PRI	RC179	582663	7032311	508	350	-60	100
PRI	RC180	582462	7032304	508	350	-60	120
PRI	RC181	581852	7032284	507	350	-60	60
PRI	RC182	580695	7031958	506	350	-60	60
PRI	RC183	580305	7031858	508	350	-60	70
PRI	RC184	580112	7031808	508	350	-60	70
PRI	RC185	579913	7031774	507	350	-60	60
PRI	RC186	579724	7031650	506	350	-60	80
PRI	RC187	579142	7031540	504	350	-60	60
PRI	RC188	578567	7031345	505	350	-60	60
PRI	RC189	577797	7031109	505	350	-60	61
PRI	RC190	577400	7031062	505	350	-60	70
PRI	RC191	576618	7030888	506	350	-60	70
PRI	RC192	576420	7030863	506	350	-60	80
PRI	RC193	575001	7030842	505	350	-60	100
PRI	RC194	574808	7030782	506	350	-60	80
PRI	RC195	574212	7030707	507	350	-60	70
PRI	RC196	573231	7030456	508	325	-60	90
PRI	RC197	572611	7029946	511	325	-60	60
PRI	RC198	572430	7029858	512	325	-60	70
PRI	RC199	570081	7028049	524	325	-60	70
PRI	RC200	568609	7025812	530	310	-60	150
PRI	RC255	575395	7030908	506	350	-60	61
PRI	RC256	575403	7030864	506	350	-60	111
PRI	RC259	575594	7030934	506	350	-60	67
PRI	RC262	575599	7030904	506	350	-71	115
PRI	RC264	575819	7030849	506	345	-60	163
PRI	RD266	575820	7030804	506	350	-60	210.4

APPENDIX E - Stage 9 5E PGM Assays

	Sample ID	Hole_ID	From m	To m	Au ppb	Pt ppb	Pd ppb	Rh ppb	lr ppb	5E PGM g/t	Ni %	Cu %
	114647	PRRC187	2	3	3	5	5	ppo	ppb	9/1	0.01	0.02
	114648	PRRC187	3	4	2	5	5				0.01	0.02
	114649	PRRC187	4	5	3	8	7				0.01	0.01
	114650	PRRC187	5	6	4	11	8				0.01	0.02
	114651	PRRC187	6	7	2	18	15				0.02	0.02
	114652	PRRC187	7	8	13	19	17				0.02	0.03
	114653	PRRC187	8	9	1	22	24				0.02	0.01
-	114654	PRRC187	9	10	6	58	41				0.02	0.02
	114655	PRRC187	10	11	1	170	70				0.02	0.03
	114656	PRRC187	11	12	2	231	72				0.03	0.06
	114657	PRRC187	12	13	25	258	62				0.04	0.06
\												
	114716	PRRC188	8	9	5	71	25	5	2.5	0.11	0.12	0.03
	114717	PRRC188	9	10	28	540	45	20	10	0.64	0.11	0.03
)	114718	PRRC188	10	11	26	366	79	20	10	0.50	0.11	0.04
7	114719	PRRC188	11	12	39	667	648	25	10	1.39	0.08	0.09
5	114720	PRRC188	12	13	25	1040	990	35	15	2.11	0.07	0.12
	114721	PRRC188	13	14	27	1110	1120	55	15	2.33	0.07	0.14
	114722	PRRC188	14	15	25	1470	1380	105	35	3.02	0.08	0.17
1	114723	PRRC188	15	16	48	824	979	75	35	1.96	0.06	0.16
1	114724	PRRC188	16	17	225	461	624	50	25	1.39	0.05	0.13
)	114725	PRRC188	17	18	123	398	693	60	30	1.30	0.06	0.10
	114727	PRRC188	18	19	137	792	967	80	40	2.02	0.04	0.10
	114728	PRRC188	19	20	91	2000	1580	190	75	3.94	0.04	0.19
	114729	PRRC188	20	21	44	1720	1210	140	50	3.16	0.04	0.12
	114730	PRRC188	21	22	82	1080	1230	130	50	2.57	0.06	0.20
/	114732	PRRC188	22	23	30	683	514	115	40	1.38	0.08	0.25
\	114733	PRRC188	23	24	13	393	387	65	25	0.88	0.15	0.22
	114734	PRRC188	24	25	77	549	938	45	15	1.62	0.05	0.13
	114736	PRRC188	25	26	58	439	933	45	10	1.49	0.04	0.09
_	114737	PRRC188	26	27	24	347	517	45	15	0.95	0.10	0.17
	114738	PRRC188	27	28	49	164	312	25	10	0.56	0.09	0.20
\	114789	PRRC189	18	19	3	14	9				0.12	0.03
_	114790	PRRC189	19	20	1	48	19				0.12	0.03
	114791	PRRC189	20	21	2	56	27	0.5	6.5	0.45	0.11	0.03
	114792	PRRC189	21	22	3	98	53	2.5	2.5	0.16	0.20	0.05
	114794	PRRC189	22	23	13	788	135	10	5	0.95	0.41	0.14
	114795	PRRC189	23	24	15	968	166	10	2.5	1.16	0.44	0.13
/	114796	PRRC189	24	25	2	221	57	2.5	2.5	0.29	0.07	0.02
	114798	PRRC189	25	26	2	278	73	2.5	2.5	0.36	0.07	0.04
	114799	PRRC189	26	27	1090	218	169	2.5	2.5	1.48	0.11	0.07
	114800	PRRC189	27	28	18	808 700	371 575	10	2.5	1.21	0.10	0.07
	114803	PRRC189	28	29	288	799 1700	575	20	2.5	1.68	0.07	0.08
	114804 114805	PRRC189 PRRC189	29 30	30 31	35 9	1700 797	2060 1260	70 65	35 35	3.90 2.17	0.14	0.15
	114805	PRRC189	30 31	32	21	397	1180	90	45	1.73	0.13 0.11	0.10 0.07
	114807	PRRC189	32	33	13	601	1100	120	50	1.73	0.11	0.07
	114807	PRRC189	33	34	9	801	1220	120	55	2.21	0.14	0.09
	114809	PRRC189	34	35	10	354	1800	70	35	2.27	0.13	0.12
	114810	PRRC189	35	36	2	1640	762	55	10	2.47	0.10	0.14
	114010	1 1/1/0109	30	30		1040	102	JJ	10	4.41	0.10	0.10

Si	ample ID	Hole_ID	From m	To m	Au ppb	Pt ppb	Pd ppb	Rh ppb	lr ppb	5E PGM g/t	Ni %	Cu %
	114811	PRRC189	36	37	27	758	779	95	45	1.70	0.06	0.11
	114812	PRRC189	37	38	81	318	951	70	25	1.45	0.08	0.13
	114813	PRRC189	38	39	60	257	463	40	15	0.84	0.06	0.14
	114814	PRRC189	39	40	44	138	269	20	5	0.48	0.04	0.11
	114846	PRRC190	10	11	2	48	12				0.02	0.03
	114847	PRRC190	11	12	3	66	22				0.02	0.03
	114848	PRRC190	12	13	14	70	29				0.03	0.02
	114850	PRRC190	13	14	5	89	39				0.02	0.03
	114851	PRRC190	14	15	3	72	44				0.02	0.03
	114852	PRRC190	15	16	5	92	29				0.03	0.02
	114853	PRRC190	16	17	3	119	29				0.04	0.02
	114854	PRRC190	17	18	3	54	25				0.02	0.02
	114856	PRRC190	18	19	3	98	30				0.03	0.01
	114920	PRRC191	11	12	5	145	32				0.13	0.02
	114921	PRRC191	12	13	4	387	48				0.13	0.03
	114922	PRRC191	13	14	4	108	53				0.05	0.02
	114923	PRRC191	14	15	48	221	154				0.07	0.01
	114924	PRRC191	15	16	66	238	178	2.5	2.5	0.49	0.08	0.02
	114925	PRRC191	16	17	77	152	231	2.5	2.5	0.47	0.07	0.02
	114926	PRRC191	17	18	142	534	546	15	2.5	1.24	0.14	0.05
	114927	PRRC191	18	19	22	1810	803	35	15	2.69	0.24	0.13
	114928	PRRC191	19	20	4	1430	322	25	5	1.79	0.15	0.09
	114929	PRRC191	20	21	16	1540	742	30	10	2.34	0.14	0.12
	114930	PRRC191	21	22	26	959	1060	25	10	2.08	0.10	0.11
	114932	PRRC191	22	23	10	6550	977	315	110	7.96	0.14	0.16
	114933	PRRC191	23	24	13	7490	1630	405	180	9.72	0.12	0.18
	114934	PRRC191	24	25	24	2260	2220	155	60	4.72	0.12	0.22
	114936	PRRC191	25	26	10	2070	1220	145	55	3.50	0.08	0.27
	114937	PRRC191	26	27	13	2750	2530	185	75	5.55	0.10	0.27
	114938	PRRC191	27	28	19	3550	2090	225	75	5.96	0.11	0.26
	114939	PRRC191	28	29	58	3170	1810	215	75	5.33	0.08	0.20
	114940	PRRC191	29	30	5	423	341	15	2.5	0.79	0.02	0.05
	114942	PRRC191	30	31	9	2900	1770	320	140	5.14	0.04	0.18
	114943	PRRC191	31	32	11	1410	850	125	45	2.44	0.05	0.19
	114944	PRRC191	32	33	2	383	305	60	20	0.77	0.03	0.25
	114945	PRRC191	33	34	4	296	329	35	15	0.68	0.04	0.17
	114946	PRRC191	34	35	2	559	662	25	2.5	1.25	0.06	0.17
	114947	PRRC191	35	36	2	261	470	35	10	0.78	0.04	0.13
	114948	PRRC191	36	37	3	274	876	35	10	1.20	0.04	0.16
	114949	PRRC191	37	38	207	139	367	20	5	0.74	0.03	0.14
	114950	PRRC191	38	39	73	127	217	20	2.5	0.44	0.03	0.12
	114996	PRRC192	14	15	31	102	447				0.03	0.01
	114997	PRRC192	15	16	19	120	375				0.02	0.01
	114998	PRRC192	16	17	6	163	449				0.02	0.01
	114999	PRRC192	17	18	8	196	338				0.03	0.01
	115000	PRRC192	18	19	3	239	289				0.02	0.01
	115001	PRRC192	19	20	13	202	505				0.03	0.01
	115002	PRRC192	20	21	3	131	236				0.01	0.00
	115003	PRRC192	21	22	3	215	284				0.01	0.00
	115004	PRRC192	22	23	2	298	249				0.00	0.00

Sample ID	Hole_ID	From m	To m	Au ppb	Pt ppb	Pd ppb	Rh ppb	lr ppb	5E PGM g/t	Ni %	Cu %
115005	PRRC192	23	24	4	423	244				0.00	0.01
115006	PRRC192	24	25	4	458	234	10	2.5	0.71	0.00	0.00
115007	PRRC192	25	26	4	406	186	10	2.5	0.61	0.00	0.01
115008	PRRC192	26	27	3	885	225	35	2.5	1.15	0.00	0.01
115009	PRRC192	27	28	7	1870	379	65	15	2.34	0.00	0.02
115010	PRRC192	28	29	4	940	218	25	2.5	1.19	0.00	0.01
115011	PRRC192	29	30	2	663	171	20	2.5	0.86	0.00	0.01
115012	PRRC192	30	31	8	416	119	10	2.5	0.56	0.00	0.01
115099	PRRC193	34	35	1	80	345				0.02	0.17
115101	PRRC193	35	36	1	104	415				0.02	0.17
115102	PRRC193	36	37	5	59	417				0.04	0.17
115103	PRRC193	37	38	7	38	208				0.03	0.15
115104	PRRC193	38	39	1	8	97				0.02	0.10
115232	PRRC194	61	62	2	34	86				0.01	0.08
115233	PRRC194	62	63	5	36	106	2.5	2.5	0.15	0.01	0.10
115234	PRRC194	63	64	48	309	308	20	5	0.69	0.01	0.08
115235	PRRC194	64	65	16	550	553	45	20	1.18	0.01	0.10
115236	PRRC194	65	66	27	536	641	40	15	1.26	0.02	0.09
115237	PRRC194	66	67	62	203	376	15	2.5	0.66	0.00	0.03
115239	PRRC194	67	68	6	11	21	2.5	2.5	0.04	0.00	0.01
115240	PRRC194	68	69	4	3	13	2.5	2.5	0.03	0.00	0.01
115241	PRRC194	69	70	2	39	54	2.5	2.5	0.10	0.00	0.01
115242	PRRC194	70	71	15	462	379	45	20	0.92	0.01	0.07
115243	PRRC194	71	72	7	503	362	55	20	0.95	0.01	0.08
115244	PRRC194	72	73	5	366	278	45	20	0.71	0.01	0.07
115245	PRRC194	73	74	9	379	302	50	20	0.76	0.01	0.10
115246	PRRC194	74	75	5	455	341	55	20	0.88	0.01	0.09
115247	PRRC194	75	76	5	606	441	65	25	1.14	0.00	0.10
115248	PRRC194	76	77	6	830	605	105	40	1.59	0.01	0.11
115249	PRRC194	77	78	7	1030	737	105	45	1.92	0.01	0.07
115250	PRRC194	78	79	13	628	579	70	25	1.32	0.02	0.10
115251	PRRC194	79	80	13	650	589	70	30	1.35	0.02	0.10
115275	PRRC195	22	23	2	434	62	125	45	0.67	0.02	0.04
115276	PRRC195	23	24	33	350	117	125	55	0.68	0.03	0.08
115277	PRRC195	24	25	14	1530	441	160	45	2.19	0.04	0.06
115279	PRRC195	25	26	3	81	44	15	2.5	0.15	0.00	0.01
115280	PRRC195	26	27	1	31	50	10	2.5	0.09	0.00	0.02
115337	PRRC196	12	13	4	338	129				0.04	0.03
115338	PRRC196	13	14	3	329	179				0.04	0.02
115339	PRRC196	14	15	6	331	217				0.04	0.03
115340	PRRC196	15	16	8	209	204				0.04	0.02
115341	PRRC196	16	17	8	511	173				0.04	0.03
115342	PRRC196	17	18	53	623	249				0.04	0.05
115343	PRRC196	18	19	48	264	521				0.03	0.09
115344	PRRC196	19	20	17	309	499				0.02	0.10
115345	PRRC196	20	21	28	263	515				0.02	0.10
115346	PRRC196	21	22	21	168	399	10	10	0.61	0.02	0.09
115347	PRRC196	22	23	22	231	497	20	15	0.79	0.02	0.10
115348	PRRC196	23	24	14	373	668	25	15	1.10	0.02	0.13

Sample ID	Hole_ID	From m	To m	Au ppb	Pt ppb	Pd ppb	Rh ppb	lr ppb	5E PGM g/t	Ni %	Cu %
115349	PRRC196	24	25	9	768	925	40	15	1.76	0.03	0.18
115350	PRRC196	25	26	5	1170	908	45	10	2.14	0.03	0.17
115351	PRRC196	26	27	7	1190	926	50	15	2.19	0.03	0.15
115352	PRRC196	27	28	7	674	739	30	5	1.46	0.03	0.14
115353	PRRC196	28	29	10	553	998	30	10	1.60	0.03	0.15
115354	PRRC196	29	30	5	1150	1250	40	10	2.46	0.02	0.15
115355	PRRC196	30	31	91	451	502	20	2.5	1.07	0.02	0.12
115356	PRRC196	31	32	31	472	368	20	2.5	0.89	0.01	0.12
115357	PRRC196	32	33	15	187	168	10	2.5	0.38	0.01	0.07
115426	PRRC197	7	8	14	120	39	2.5	2.5	0.18	0.07	0.04
115427	PRRC197	8	9	123	253	55	10	2.5	0.44	0.21	0.06
115428	PRRC197	9	10	500	601	120	25	5	1.25	0.22	0.07
115430	PRRC197	10	11	293	998	199	30	10	1.53	0.16	0.04
115431	PRRC197	11	12	60	2300	1190	50	20	3.62	0.11	0.06
115432	PRRC197	12	13	47	2010	1360	30	10	3.46	0.14	0.10
115433	PRRC197	13	14	95	913	1920	20	5	2.95	0.21	0.16
115434	PRRC197	14	15	62	824	1290	30	15	2.22	0.11	0.12
115436	PRRC197	15	16	46	1050	1440	55	25	2.62	0.07	0.13
115437	PRRC197	16	17	73	1060	1340	40	20	2.53	0.06	0.14
115438	PRRC197	17	18	52	855	888	30	15	1.84	0.03	0.11
115439	PRRC197	18	19	37	910	745	45	20	1.76	0.02	0.09
115440	PRRC197	19	20	29	845	763	50	20	1.71	0.01	0.08
115441	PRRC197	20	21	42	871	806	55	20	1.79	0.01	0.09
115442	PRRC197	21	22	55	840	693	60	25	1.67	0.01	0.09
115443	PRRC197	22	23	47	786	593	60	20	1.51	0.01	0.09
115444	PRRC197	23	24	23	936	790	65	25	1.84	0.01	0.09
115445	PRRC197	24	25	24	896	595	70	30	1.62	0.01	0.11
115446	PRRC197	25	26	68	1260	951	90	35	2.40	0.01	0.13
115447	PRRC197	26	27	81	1190	952	95	35	2.35	0.01	0.14
115448	PRRC197	27	28	61	1260	658	115	45	2.14	0.01	0.16
115449	PRRC197	28	29	32	849	665	80	30	1.66	0.01	0.20
115450	PRRC197	29	30	78	1340	2140	110	50	3.72	0.01	0.15
115451	PRRC197	30	31	431	1340	2160	105	40	4.08	0.02	0.13
115452	PRRC197	31	32	64	1680	1170	145	60	3.12	0.01	0.17
115453	PRRC197	32	33	23	1960	1170	180	80	3.41	0.01	0.15
115454	PRRC197	33	34	14	1760	977	175	70	3.00	0.02	0.13
115455	PRRC197	34	35	12	1030	750	95	40	1.93	0.02	0.08
115456	PRRC197	35	36	32	669	513	120	40	1.37	0.03	0.10
115457	PRRC197	36	37	26	347	374	55	20	0.82	0.03	0.10
115458	PRRC197	37	38	25	263	338	50	15	0.69	0.02	0.10

JORC (2012) TABLE 1 – SECTION 1 SAMPLING TECHNIQUES AND DATA

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
SAMPLING TECHNIQUES	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Exploration results are based on 1m samples from reverse circulation (RC) drilling, with 4m to 6m composite samples used outside the mineralisation. An average sample size of 2 to 4kg was collected from RC drilling and sent for PGM analysis by lead collection fire assay with a 40g charge. Selected samples were re-submitted full PGM analysis (Nisulphide collection fire assay) with a 25g charge and base metals by x-ray fluorescence (XRF). A certified blank sample, a certified reference material (standard) sample and a field duplicate sample were inserted into the sample sequence for each hole, within or close to the interpreted mineralised interval. All diamond drill holes were drilled in NQ diameter standard 6m tube drill core. Core recovery was very high. Half core was submitted to the laboratory for analysis and whole core used for bulk density measurements. For diamond core a certified blank, certified reference material (standard) and duplicate sample were inserted into the sample every 20th sample. The duplicate sample is a second split of the coarse fraction after crushing at the laboratory.
DRILLING TECHNIQUES	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling was completed using RC percussion of nominally 140mm (5.5 inches) diameter utilising a face sampling hammer with button bits for the holes prefixed PRRC. Holes prefixed PRCD were drilled as tails to RC pre-collars with NQ diameter standard tube. Moderate to high ground water flows were encountered in the deeper holes in the central and eastern sectors but the majority of samples were collected dry.
DRILL SAMPLE RECOVERY	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample quality and recovery of both RC and DD drilling was continuously monitored during drilling to ensure that samples were representative and recoveries maximised. For the 2018 drilling in the western and central sectors RC samples within the ultramafic wehrlite were weighed at the drill rig, including the 1 m calico sample along with the bulk reject which was collected in a green plastic sample bag. RC sample recovery was then estimated based on the combined sample weight and assumed values for the hole diameter, moisture and bulk density. Based on these assumptions the average sample recovery is considered acceptable. Poorer recoveries are noted in the oxidised zone; however, this may be due to incorrect bulk density and moisture assumptions. Samples were not weighed in the 2022 drilling programme. Diamond core recoveries are routinely logged and recorded in the database as a measure of length of core recovered versus the depth drilled. Core recoveries have been excellent and average > 95% through the mineralised intervals. There is no known relationship between sample recovery and grade. Results of two diamond twin holes drilled as part of the western sector drilling campaign indicate that there is no bias in the RC assays compared to the diamond core assays.
LOGGING	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 Detailed geological logging of all RC and DD holes captured various qualitative parameters such as rock type, mineralogy, colour, texture and oxidation. RC holes were logged at 1 m intervals. All diamond core has been photographed. All intervals were logged.

	JORC CODE EXPLANATION	COMMENTARY
	The total length and percentage of the relevant intersections logged.	
SUB-SAMPLING TECHNIQUES AND SAMPLE	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether 	RC drilling samples are collected in pre-labelled bags via a cone splitter mounted directly below the cyclone. A butterfly-style valve is used to dump the sample from the cyclone into the splitter.
PREPARATION	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Almost all samples were collected from the rig as dry samples. Composite samples of 4 to 6m in length within the unmineralised hanging wall were created be scooping from the spoil piles. Where the composite sample returned an anomalous value, the 1m samples are re-submitted for analysis. Diamond core was half core sampled. At the laboratory the samples are sorted, dried at 105°C and weighed. They are crushed and a 2.5 ke split taken using a riffle splitter, then pulverised in either a LM2 or LM5 to P80 75µm. Typically, one field duplicate was collected per hole, within the mineralised interval for RC. Diamondore duplicates are a second split of the coarse crushing and taken every 20th sample. 1 standard (commercial pulp CRMs sourced from Ore Research and Exploration Pty Ltd) was included in each RC hole, within the mineralised interval in most cases. For diamond core, standard are submitted every 20th sample. 1 blank (commercial pulp CRMs sourced from Ore Research and Exploration Pty Ltd) is typicall included in each RC hole, within the mineralised interval in most cases. For diamond core, blank are submitted every 20th sample. Internal laboratory duplicates and standards were also used as quality control measures at different subsampling stages. No significant issues have been identified.
QUALITY OF ASSAY DATA AND LABORATORY TESTS	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 No formal analysis of sample size vs. grain size has been undertaken; however, the samplin techniques employed are standard industry practice. Samples from Podium's drilling were forwarded to the Bureau Veritas Minerals Pty Ltd laboratory Perth, Western Australia for sample preparation and analysis. The Bureau Veritas laboratory is NAT accredited for ISO17025. All samples are initially analysed via lead collection fire assay with a 40g charge. The Pt, Pd and A grade was determined by ICP-MS with a detection limit of 1ppb. Pulps are then selected from all holes with intervals of ≥1g/t Pt+Pd+Au and re-submitted for a 25 Ni-sulphide collection fire assay for Pt, Pd, Rh, Ru, Os and Ir, and multi-element analysis by lithius borate fusion with x-ray florescence spectrometry for Ni, Cu, Co, Fe, S, As, Mg, Ca, Si, Al, Mn, Zi, Cr, Cl and LOI. All assay methods used are considered total assay techniques. No independent QAQC was completed. For the Podium RC drilling, field duplicates were taken at a rate of between 1:26 and 1:30 sample The samples were collected in the same manner as the original sample, directly from the rig-mounte splitter. For diamond core drilling, duplicates are a second sample split for pulverising from the coars crushed reject for the sample being duplicated. Standards were inserted by Podium into the RC and diamond core sample batches at a nominal rat of 1:28 samples (typically within the mineralised interval) and 1:20 respectively.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		Commercial pulp standards were sourced from Ore Research and Exploration Pty Ltd (OREAS series standards), with a range of grades from approximately 0.20 g/t Pt up to 1.76 g/t Pt, 0.13 g/t Pd up to 0.85 g/t Pd, and 0.16 g/t Au up to 0.2 g/t Au.
		 The assay results of the pulp standards show most of results fall within acceptable tolerance limits and no material bias is evident. Field duplicates show a high level of precision has been achieved for Pt, Pd and Au.
VERIFICATION OF SAMPLING AND ASSAYING	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have not been independently verified. Prior to 2022, two diamond core holes were drilled within the western sector as twins of RC drillholes, with the twinned holes estimated to be approximately 1.5 m apart at the mineralised intersections. Visual analysis of twinned holes (RC vs. DD) demonstrated a high degree of compatibility between the two sample types with no evidence of any grade bias due to drilling method. The geological logging of the RC holes was also verified by the diamond drillholes. The same assumptions are made for the central and eastern sectors. No adjustments were made to the data, other than converting ppb to ppm (g/t) by dividing by 1,000 and converting ppm to % by dividing by 10,000.
LOCATION OF DATA POINTS	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The grid system used is GDA94 Zone 50. Drill hole collar locations have been surveyed by a licenced surveyor using a TopCon Hiper V GNSS system using Real Time Kinematic global positioning system (RTKGPS). Due to magnetic interference, downhole directional survey information was collected using a gyroscope, with measurements taken at approximately 25 m to 30 m intervals downhole. The topographic surface is based on a GeoTEM survey conducted in 2004. The precision of the topographic surface is not known but matches the surveyed drillhole collar points well. Given the flat nature of the terrain and early stage of the project, the topographic surface is considered to be reasonable.
DATA SPACING AND DISTRIBUTION	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes were drilled based on sections of 200 m spacing along strike, with holes drilled to infill previous drilling with down dip spacing varying from 30 m to 50 m on section. The sections are oriented approximately north-northwest to south-southeast. This level of drill spacing is sufficient for this style of mineralisation to establish the degree of geological and grade continuity to support Mineral Resource classification. 1 m samples were collected.
ORIENTATION OF DATA IN RELATION TO GEOLOGICAL STRUCTURE	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Holes were drilled at approximately -60° towards the north-northwest. The location and orientation of the Parks Reef drilling is appropriate given the strike and morphology of the reef, which strikes between azimuth 050° and 080° and dips approximately 80° to the south. The central sector, and to a lesser extent the eastern sector, is structurally disturbed with faults displacing mineralisation and significant felsic intrusions disrupting the mineralisation. In some zones as a result of the structural complexity, drill holes terminate within the Parks Reef mineralisation. A closer drill spacing may be required than the less disrupted western sector to increase confidence in the distribution of Parks Reef.
		 Drilling is oriented approximately orthogonal to the mineralisation and as such, the relationship between the drilling orientation and the orientation of the mineralisation is not considered to have introduced any sampling bias.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
SAMPLE SECURITY	The measures taken to ensure sample security.	 Samples to be submitted to the laboratory were bagged into white polyweave bags (five samples/bag) with sample number range clearly marked and the tops wire tied. These samples were driven to the Toll Ipec depot in Cue by the project manager or the local landowner and loaded into bulka bags for transport to Bureau Veritas lab in Perth. Bulka bags were closed and tied at the top and the lifting points wire tied together. Photos of the dispatch sheet and consignment note were emailed to the laboratory and the original dispatch sheet included in the consignment. The samples were transported overnight to Perth. Diamond drill core has been cut and sampled at onsite. Podium has no reason to believe that sample security poses a material risk to the integrity of the assay data.
AUDITS OR REVIEWS	The results of any audits or reviews of sampling techniques and data.	No formal audits or reviews have been undertaken.

JORC (2012) TABLE 1 – SECTION 2 REPORTING OF EXPLORATION RESULTS

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
MINERAL TENEMENT AND LAND TENURE STATUS	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All the tenements covering the Weld Range Complex (WRC) have been granted. Podium has an access agreement with Beebyn Station which covers the eastern portion of the Company's WRC Mining Leases and informal working arrangements with other pastoralists an landowners regarding the western portion of the WRC and other Exploration Licenses. In respect of Podium's Western Australian tenements, Podium has divested the Oxide Mining Right pursuant to a Mining Rights Deed to EV Metals Australia Pty Ltd (EV Metals). The Oxide Minin Rights allows EV Metals to explore for and mine Oxide Minerals with Oxide Minerals summarised a minerals in the oxide zone (from surface to a depth of 50 m or the base of weathering or oxidatio of fresh rock, whichever is the greater) and all minerals in an oxide form wherever occurring but which excludes all sulphide minerals and PGM where the definition of PGM includes all platinur group metals and all gold, silver and base metals contained in, associated with or within 10 m or minerals containing any PGMs but excludes chromium and all metals other than PGMs in the currently defined oxide resources. Podium retains the Sulphide Mining Rights, which gives Podium the right to explore for and min Sulphide Minerals pursuant to the Mining Rights Deed with EV Metals. Sulphide Minerals are thos minerals that are not Oxide Minerals and includes all sulphide minerals and all PGMs irrespective of depth and oxidation state where the definition of PGM includes all platinum group metals and a gold, silver and base metals contained in, associated with or within 10 m of minerals containing an PGMs but excludes chromium and all metals other than PGMs in the currently defined oxide.
7		 resources. For further information see the Solicitor's Report in Podium's prospectus released to the Australia Securities Exchange (ASX) on 27 February 2018 and the amendments described in Podium's AS announcement dated 19 June 2018.
EXPLORATION DONE BY OTHER PARTIES	Acknowledgment and appraisal of exploration by other parties.	• The WRC was initially prospected by International Nickel Australia Ltd in 1969–1970. Australia Consolidated Minerals NL drilled in the area in 1970–1971 and subsequently entered a joint ventul with Dampier Mining Company Ltd to investigate the area in 1972–1973. Approximately 4,500 m rotary air blast (RAB) and percussion drilling was completed during this early phase, together with ground and airborne magnetics, line clearing, geological mapping and petrological studies. Conzir Riotinto Australia Limited (CRA) briefly investigated the area during 1976–1977, taking an intere in elevated chromium values in the nickel laterite, but concluding at the time that it was no recoverable as chromite.
		 In 1990, geologists recognised gabbroic rocks in the upper levels of the WRC, allowing for mod comparisons with other ultramafic-mafic intrusive bodies. Weak copper mineralisation identified to BHP in the 1970s was revisited and vertical RAB drilling intersected significant supergene an primary PGM mineralisation within Parks Reef.
		 Extensive RAB, RC and diamond drilling was completed between 1990 and 1995 to examin supergene Pt-Pd-Au mineralisation. Little attention was given to primary sulphide mineralisation, wit 25 holes testing the Parks Reef below 40 m depth, to a maximum depth of 200 m. Pilbara Nickel (1999–2000) focus was the nickel laterite and it carried out a program of approximately 17,000 m of shallow RC drilling to infill previous drilling and to estimate nickel-cobalt resources.
		 In 2009, Snowden completed an independent technical review of the WRC and updated estimate of laterite Mineral Resources. A compilation of historical metallurgical data was completed Snowden's work involved a validation of 60,040 m of historical drilling and 23,779 assays with QAQ checks, where possible.

CRITERIA	JORC CODE EXPLANATION	COI	MMENTARY
GEOLOGY	Deposit type, geological setting and style of mineralisation.	•	The WRC corresponds to the basal part of the Gnanagooragoo Igneous Complex and forms discordant, steeply dipping lopolith, up to 7 km thick, confined by an overlying succession of jaspi and dolerite sills of the Madoonga Formation to the south. The WRC is divided into ultramafic a mafic endmembers.
		•	Parks Reef is situated 5–15 m below the upper or southern contact with the upper mafic member the vicinity of the Parks Reef PGM mineralisation, the magmatic stratigraphy comprises a sequer of olivine–pyroxene bearing cumulates terminating very abruptly at the ultramafic-mafic contact with the cessation of olivine crystallisation and the first appearance of cumulus plagioclase in leucocratic gabbronorite. The mafic-ultramafic contact in the western and central portions of Parks ef dips consistently at approximately 80° to the south-southeast. This boundary effectively defir the upper limit of the hanging wall Cu-Au zone of Parks Reef.
		•	The Parks Reef mineralisation displays a generalised pattern that can be described from the maultramafic contact downwards as follows:
			Manging wall Cu-Au zone. An olivine dominant, high MgO wehrlite, with minimal clinopyroxe 1–3% disseminated chalcopyrite-pyrrhotite-pentlandite. Up to 14 m true thickness. Bounded the top by very sharp contact to gabbronorite and lower boundary defined analytically >1.0g/t 3E5. Cu content up to 0.5% and Au content increasing downward to maximum on near the lower boundary.
			Upper-reef high-grade PGM-Au zone. A 1-5m true thickness higher grade (typically >2g/t zone. The upper boundary commonly coincides with the highest Au grades in the reef, in pla exceeding 1g/t, and may overlap with the lower limit of elevated Cu values from the Hang wall Cu-Au Zone. Sulphide concentrations are low, except at the very top of the zone. Pt ratio is >1.
			 Lower-reef medium-grade PGM zone. A 3-14m true thickness zone of intermediate P concentrations, typically slightly greater than 1g/t 3E. Cu-Au grades are insignificant and Pratio is generally <1.
			Footwall high-grade PGM zone. A 0-3m true thickness wehrlite hosted sub-layer at the bas the reef, with elevated PGM grades, including Rh, Ru, Os and Ir, and Pt:Pd ratio >1. No vis sulphides or Cu-Au mineralisation. The lower contact is defined by a 0.5g/t 3E threshold. ⁻ zone is relatively discontinuous and is not always present.
			<u>Low-grade (~0.5g/t 3E) PGM mineralisation</u> occurs below the Parks Reef as described ab but is only recognised in some drillholes. Pt+Pd mineralisation at grades of 0.2g/t to 0. frequently continues from the base of the footwall high-grade PGM zone for up to 20m or occur as an isolated zone of weakly elevated Pt+Pd, located 10–15m below the footwall h grade PGM zone.
			The Lower-reef and footwall high-grade zones have not been delineated in the resource modelli
		•	Oxidation extends from the surface to a vertical depth of approximately 30m to 50m in the wes sector and up to 70m in the central and eastern sectors. The ultramafic lithologies show consistently deeper oxidation than the mafic hanging wall rocks.
DRILL HOLE INFORMATION	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	•	Drillhole locations and diagrams are presented above in this announcement and are also detaile the relevant previous ASX announcements related to the exploration results.
	easting and northing of the drill hole collar		

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
DATA AGGREGATION METHODS	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 A simple arithmetic mean has been applied as all samples are 1m in length. No metal equivalent values have been reported. The Company typically reports 3E PG concentrations. 3E PGM is calculated as the sum of Pt (g/t) + Pd (g/t) + Au (g/t) and expressed units of g/t. The Company reports 5E PGM concentrations calculated as the sum of Pt (g/t) + Pd (g/t) + Au (g + Rh (g/t) + Ir (g/t) and expressed in units of g/t.
RELATIONSHIP BETWEEN MINERALISATION WIDTHS AND INTERCEPT LENGTHS	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	The true width of mineralisation is estimated to be approximately 65% of the reported downh intercept lengths, assuming the Reef dips 80° south-southeast and the drilling is inclined 60° nor northwest.
DIAGRAMS	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Drillhole locations and diagrams are presented above in this announcement and are also detailed the relevant previous ASX announcements related to the exploration results.
BALANCED REPORTING	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reporting of the 1m assay results for the significant and anomalous intercepts for each hole reported in the Appendices of this announcement.
OTHER SUBSTANTIVE EXPLORATION DATA	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Outcropping hanging wall gabbronorites, while limited, supports the geological interpretation in the areas. Aeromagnetic data strongly supports the interpreted location and geometry of Parks Reef.
FURTHER WORK	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further infill drilling, including both along strike and at depth, across the defined Mineral Resour for Parks Reef will be required in future to improve confidence and for additional metallurgical to work. The current Parks Reef Mineral Resource area comprises approximately 15km of strike length, whis interpreted to cover the full length of the reef, except for approximately 1.4km in a faulted fragment of the western flank of the intrusive complex.