

23 June 2022 ASX | GT1

INTERIM SEYMOUR MINERAL RESOURCE DOUBLES TO 9.9MT

HIGHLIGHTS

- Total Mineral Resource tonnage up 105% to 9.9 Mt @ 1.04% $\text{Li}_2\text{O}.$
- Indicated Category Mineral Resource increased 2.5x to 5.2 Mt @ 1.29% Li_2O
- Approximately 53% of total Seymour Mineral Resource classified as Indicated.
- North Aubry deposit remains open along strike and at depth.
- Further step-out drilling of North Aubry set to continue over H2 2022.
- Very low discovery cost for new resources circa \$1.30 tonne.

Green Technology Metals Limited (**ASX: GT1**) (**GT1** or the **Company**) is pleased to advise of an interim Mineral Resource Estimate update for its Seymour Lithium Project in northwest Ontario, Canada.

Table 1: Global Seymour (Aubry) Mineral Resource Estimate

	Interim 202	2 MRE (0.2% l	_i₂0 cut-off)	2019	2019 MRE (no cut-o			
Deposit	Tonnes (Mt)	Li₂O (%)	Ta₂O₅ (ppm)	Tonnes (Mt)	Li₂O (%)	Ta₂O₅ (ppm)		
North Aubry								
Indicated	5.2	1.29	161	2.1	1.29	210		
Inferred	2.6	0.90	120	1.7	1.50	189		
North Aubry total	7.8	1.17	148	3.8	1.38	200		
South Aubry								
Inferred	2.1	0.5	90	1.0	0.80	186		
South Aubry total	2.1	0.5	90	1.0	0.80	186		
Global Seymour total	9.9	1.04	137	4.8	1.25	186		

1. MRE produced in accordance with the 2012 Edition of the Australasian Code for Reporting of Mineral Resources and Ore Reserves.

2. Figures constrained to US\$4,000/t SC6 open pit shell and reported above a 0.2% Li₂0 cut-off; numbers have been rounded.

"We are very pleased with the outcomes from the interim Mineral Resource update at Seymour following completion of the successful Phase 1 drilling program at North Aubry earlier this year. The result is a demonstration of the clear potential that exists at our flagship Seymour asset, and we remain focussed on delivering further high-grade resource growth over the second half of 2022." CEO, Luke Cox

Green Technology Metals

94 Rokeby Road, Subiaco, Western Australia 6008 +61 8 6557 6825 www.greentm.com.au

info@greentm.com.au ABN 99 648 657 649

Seymour Project interim Mineral Resource Estimate update snapshot

The updated Mineral Resource Estimate (**MRE**) for the Seymour Lithium Project builds on and extends the MRE undertaken by Mr Phillip Jones in 2019 on behalf of Ardiden Limited. It incorporates all historic drilling plus the recent Phase 1 drilling undertaken at North Aubry by GT1. This comprises a total of 199 diamond holes (predominantly NQ core diameter), of which 23 were from the GT1 Phase 1 campaign, for a total of 26,244 metres.

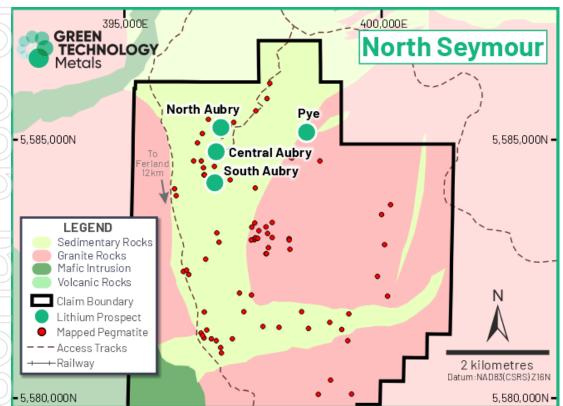


Figure 1: Location map of northern area of the Seymour Project showing North and South Aubry deposits, Central Aubry zone and Pye prospect

The updated MRE comprises two deposits within the Aubry complex at Seymour, North and South Aubry. It has been constrained to pit shells generated through the Micromine Pit Optimiser module. Pegmatite tonnes and grade are reported above a 0.2% Li₂O cut-off within the pit shell on a dry basis.

Table 2: Seymour 2022 MRE Grade-Tonnage Data

Interim 2022 MRE										
Grade cut-off (% Li₂0)	Tonnes (Mt)	Li ₂ 0 (%)								
0.0	10.2	1.01								
0.2	9.9	1.04								
0.4	8.6	1.15								
0.6	7.3	1.27								

The North and South Aubry deposits trend NE and N-NW respectively with approximately 400m separation towards 220 azimuth between them (an area known as the Central Aubry zone). Drilling in the southern half of the Central Aubry zone has yet to find any pegmatites that may link the two deposits. The northern half of the Central Aubry zone is yet to be extensively tested.

The North Aubry deposit has 8 stacked pegmatites interpreted of varying thicknesses and grades, with the North Upper (containing the North Upper HG – high grade domain) being the thickest, and most well-endowed with spodumene, of the 8 pegmatites. One of these pegmatites is poorly mineralised and has not been included in the MRE.

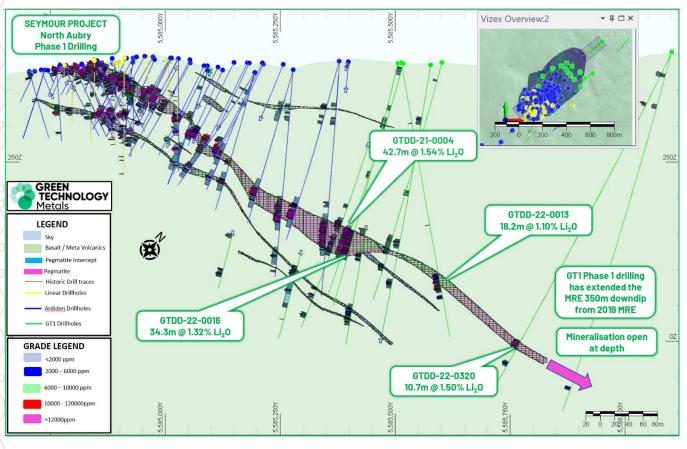


Figure 2: Cross section showing the impact of the Phase 1 drilling campaign – oblique section along 045 A-B

The North Aubry pegmatites have been interpreted to extend down dip up to 800m at shallow-to-moderate angles to the northeast with potential for further expansion down dip and to the north. GT1 drilling has already extended the North Aubry deposit over 350m from the deepest previous drill holes in this area.

Comparison with 2019 MRE

The previous Seymour MRE (**2019 MRE**) was undertaken by independent consultant, Mr Phillip Jones, on behalf of Ardiden Limited in 2019.

Subsequently, GT1 has undertaken its Phase 1 drilling campaign at Seymour from late 2021 into Q2 2022. This program of 23 holes has informed the 2022 MRE by extending the known mineralisation dimensions at North Aubry down dip and along strike, as well as improving confidence in some areas of mineralisation.

The 2019 MRE interpreted 4 pegmatite units, 2 at North Aubry and another 2 at South Aubry. The 2022 MRE includes these 4 pegmatites, but also incorporates a further 4 minor pegmatites within the Mineral Resource area. The 2019 MRE has four domains that did not attempt to capture these minor pegmatites as they were previously considered uneconomic due to the depressed SC6 values around that time.

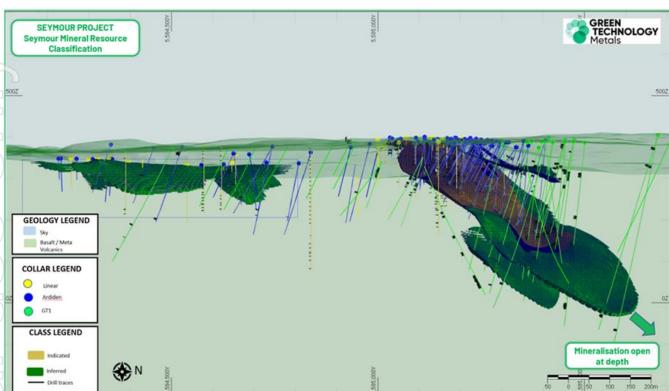
The 2022 MRE uses Ordinary Kriging to interpret pegmatite units whereas the 2019 MRE used an Inverse Distance Cubed methodology. The 2022 MRE incorporates a higher-grade envelope (0.3% Li₂O) within the principal pegmatite unit to better define the well mineralised areas from less mineralised areas within the pegmatite.

Bulk density values in the 2022 MRE are unchanged from the 2019 MRE (following review by GT1). However, the 2022 MRE has adopted a cut-off grade of 0.2% Li₂O and been constrained within pit shells, whereas the 2019 MRE had no cut-off grade or pit shell constraints applied.

As outlined in Table 1, North Aubry 2022 MRE tonnage more than doubled (to 7.8Mt) due to deposit extensions demonstrated by the recent Phase 1 drilling campaign, with the drop in average lithium grade attributable to the Inferred component (which was a function of due to the inclusion of lower grade adjacent pegmatites). Indicated 2022 MRE tonnage at North Aubry increased approximately 2.5 times (to 5.2 Mt) at the same average grade (1.29% Li_2O) as the Indicated 2019 MRE.

South Aubry MRE tonnage also increased significantly due to the reinterpretation and extension of the South Upper pegmatite. This is a lower grade pegmatite, and the additional tonnes here were responsible for the drop in average grade at South Aubry.

Further resource growth potential

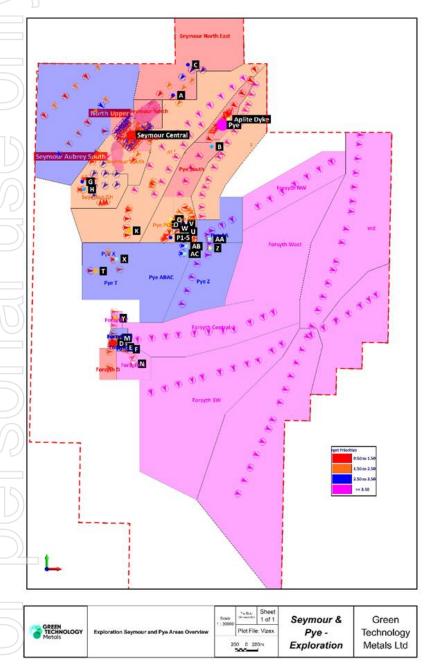

The **Exploration Target** of 22 – 26 Mt @ 0.8–1.5% Li₂0 which sits within the Aubry Complex still remains current with further drilling planned. Previous field mapping completed between 2016 and 2018 highlighted numerous pegmatites across the Aubry Complex and Seymour project (Figure 1). Now the snow has receded GT1 Geologists will return to the mapped pegmatites with the added advantage of field sampling via our pXRF loaded with LCT libraries and the Bravo Raman enabling us to determine if the pegmatites are LCT (Spodumene) or Barren. Once mapped and tested the pegmatites will be ranked and assigned a drill date.

The potential quantity and grade of Exploration Targets is conceptual in nature, there has been insufficient exploration to estimate a Mineral Resource in these areas and it is uncertain if further exploration will result in the estimation of a Mineral Resource in these areas.

The **North Aubry deposit** remains open to the north and down dip of the current MRE. Follow up extensional drilling has already commenced with significant initial success (see GT1 ASX release dated 19 May 2022) and is expected to continue through coming months.

The northern half of the **Central Aubry zone** is yet to be extensively tested. This area is also planned to be drilled in the next few months (further Phase 2 drilling).

Figure 3: North and South Aubry Mineral Resource "complex" - Coloured by Resource classification


Substantial further resource growth potential exists across the Aubry complex and the broader Seymour Project. Specific step-out and exploration drilling targets set to be tested in H2 2022 are outlined and tabled below.

Holes		Prie	ority				Meterag			
Area	1	2	3	4	Total	1	2	3	4	Total
Seymour Centra	5	17	52	-	74	590	2,720	7,585	-	10,89
South Ext	-	-	8	2	10	-	-	960	240	1,20
Pye	5	-	6	-	11 650		-	600	-	1,25
E	1	2	-	-	3	105	50	-	-	15
D	3	-	-	-	3	225	-	-	-	22
Pye West	-	-	-	17	17	-	-	-	2,040	2,04
East	-	-	-	28	28	-	-	-	3,360	3,36
Pye East	-	-	-	23	23	-	-	-	2,760	2,76
AC	-	-	-	5	5	-	-	-	600	60
AubreyNW	-	-	-	13	13	-	-	-	1,560	1,56
M	-	-	-	12	12	-	-	-	1,440	1,44
MSouth	-	-	-	11	11	-	-	-	1,320	1,32
M East	-	-	-	9	9	-	-	-	1,080	1,08
ΔA	-	-	-	11	11	-	-	-	1,320	1,32
Pye North	-	-	-	3	3	-	-	-	360	36
Pye Central	-	-	-	7	7	-	-	-	840	84
Pye South	-	-	-	7	7	-	-	-	840	84
Y	-	-	2	1	3	-	-	240	120	36
DSouth	-	-	1	1	2	-	-	120	120	24
FN	-	-	-	2	2	-	-	-	240	24
Total	14	19	69	152	254	1,570	2,770	9,505	18,240	32.0

Table 3. Seymour drill target priority and meterage

Scheduling and prioritising of the exploration drilling targets will also be informed by current field exploration activities as the geologists methodically validate and rank targets.

Figure 4. Preliminary drill collar (arrows) at Seymour, please note collars may move after site inspection.

Drilling at the **Pye prospect** (Phase 3 drilling) has also already commenced. Drilling through coming months here plans to test LCT-type pegmatites with geological continuity of over 250m identified in the initial few holes (see GT1 ASX release dated 19 May 2022) as well as an area up-strike (northeast) of the initial holes along the axial plane of a local synform.

Seymour Mineral Resource Estimate details

Regional Geology

The Seymour Lake Property occurs within the Superior Province of the Canadian Shield, proximal to the subprovincial boundary between the English River (north) and Wabigoon (south) subprovinces. Specifically, the Property is located within the Caribou Lake Greenstone Belt which trends east-northeast along the north shore of Lake Nipigon, extending eastward to the Onamon-Tashota Greenstone Belt (C. Jeffs 2018).

Property Geology

Ontario government mapping shows the western part of the Property is underlain by mostly Willet Assemblage mafic volcanic-dominated rocks, with lesser units of Toronto Assemblage mafic volcanics, and minor Marshall Assemblage dacite tuffs and related sediments. The eastern part of the Property is underlain by a tonalite to granite to granodiorite pluton, thought to be the parental intrusion to the rare metal pegmatite dikes and sills exposed at the North and South Aubry showings. All Assemblages have been crosscut by felsic to mafic dikes of various ages and rock types, including the target pegmatite sills and dikes. The most volumetrically significant post-mineralization intrusive rocks are Proterozoic Nipigon mafic sills, which form the caps of the prominent "mesa-like" hills in the Lake Nipigon area (C. Jeffs 2018).

Figure 5: Geology Map of Ontario

Bedrock Geology

The bedrock is best exposed along the flanks of steep-sided valleys scoured by glaciers during the recent ice ages. Glacial cover is patchy over the deposit and varies in thickness from zero to over 10m, but averages around 3m thickness.

There are four main lithologies within the Seymour Lake Project area. The eastern side of the project is dominated by Archean Granites. The southwest is mostly made up of a large elongate dolerite intrusions.

The central and northwest of the project area are dominated by a folded suite of meta-volcanics.

Based on geological mapping in the region the meta volcanics represent the metamorphosed amphibolite's and pillow basalt and intruded by dolerites and intercalated with volcanic-clastic sediments. Meta-sediments also occur in the far northwestern corner of the project area.

The Seymour Lake area is also crosscut by several north south trending dolerite dykes. These dykes likely follow preexisting lines of weakness which may indicate faults.

The exposed bedrock is commonly metamorphosed basaltic rock, of which some varieties have well-preserved pillows that have been intensely flattened in areas of high tectonic strain. The rocks have been metamorphosed from greenschist to amphibolite grade and can include garnet and hornblende. Intercalated between layers of basalt are lesser amounts of schists derived from sedimentary rocks and lesser rocks having felsic volcanic protoliths. "These rocks are typical of the Wabigoon Subprovince, host to most of the pegmatites in the region", (after Phil Jones et al 2019).

Ore Geology

Pegmatites are reasonably common in the region intruding the enclosing host rocks after metamorphism, evident from the manner in which the pegmatites cut across the well-developed foliation within the metamorphosed host rocks. This post-dating relationship is supported by radiometric dating; an age of 2666 + 6 Ma is given for the timing of intrusion of the pegmatites (Breaks, et al., 2006).

The pegmatites in North Aubry have a north eastly plunge direction with a dip varying from 10 to 35 degrees from horizontal, up to 800m downdip extent and 250-350m strike. The North Upper and North Upper high-grade component, higher grade portion within, appears to wedge towards the southeast but is still open down dip and to the northwest.

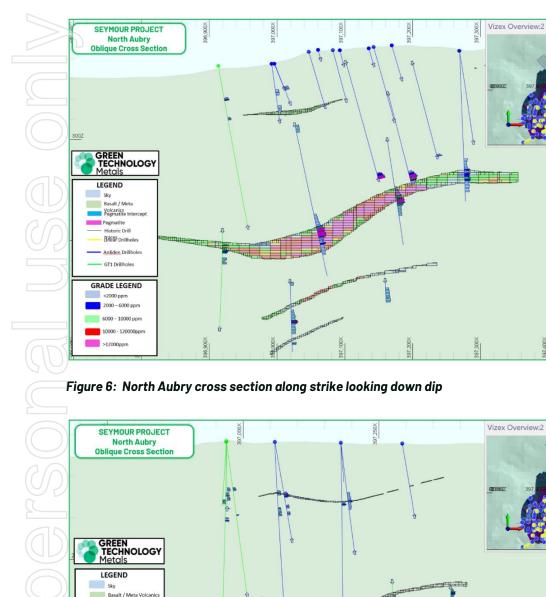
Southern pegmatites are thinner and less well developed with higher muscovite and albite content and north-westerly trend and dip moderately to the east. These pegmatites are also hosted in pillow basalts.

The pegmatites are zoned with better developed spodumene crystal appearing as clusters, with radiating spodumene crystals often radiating in from the country rock contact.

The main ore bearing mineral is Spodumene, followed by minor Petalite and Lepidolite.

Associated minerals include quartz, muscovite, microcline, hornblende, albite and other feldspars, tourmaline, with minor carbonate, chlorite, biotite and hematite. Sulphide species are predominantly minor disseminated pyrite and trace pyrrhotite usually hosted by the surrounding basalt.

The updated Seymour Mineral Resource estimate was compiled by John Winterbottom, a fulltime employee of Green Technology Metals and a member of the Australasian Institute of Geoscientists. Mr Winterbottom has extensive experience in Mineral Resource estimation techniques and their application and worked in a wide range of spheres within the mining industry.



- 4 🗆 ×

200Z

- 4 □ ×

466

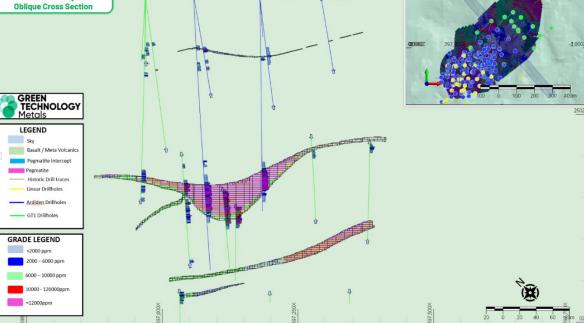
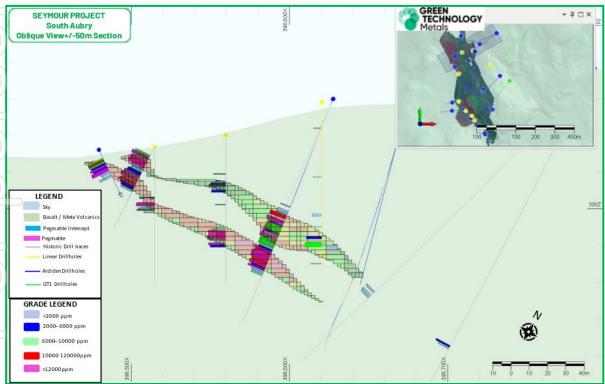



Figure 8: South Aubry cross section looking North

This ASX release has been approved for release by: Luke Cox, Chief Executive Officer

KEY CONTACTS

Investors Luke Cox Chief Executive Officer

info@greentm.com.au +61 8 6557 6825 Media Michael Vaughan Fivemark Partners michael.vaughan@fivemark.com.au +61 422 602 720



Green Technology Metals (ASX:GT1)

GT1 is a North American focussed lithium exploration and development business. The Company's Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of 9.9 Mt @ 1.04% Li₂0. Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

The Company currently holds an 80% interest in the Ontario Lithium Projects (Seymour, Root and Wisa) under a joint venture with Ardiden Limited (ASX: ADV). Refer to the Company's Prospectus (see GT1 ASX release dated 8 November 2021) for further details.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

Information in this report relating to Exploration Results is based on information reviewed by Mr Luke Cox (Fellow AusIMM). Mr Cox has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Cox consents to the inclusion of the data in the form and context in which it appears in this release. Mr Cox is the Chief Executive Officer of the Company and holds securities in the Company.

Information in this report relating to Mineral Resource Estimation is based on information reviewed by Mr John Winterbottom (Member AIG). Mr Winterbottom has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Winterbottom consents to the inclusion of the data in the form and context in which it appears in this release. Mr Winterbottom is the General Manager of Technical Service for the Company and holds securities in the Company.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GT1's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GTI's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

APPENDIX B: SEYMOUR MRE - SUMMARY OF MATERIAL INFORMATION

Geology and Geological Interpretation

The Seymour deposit is located in northwest Ontario, Canada and lies within the Archean aged Superior Province approximately 2.5 billion years old largest portion of 3 major geological regions of the Precambrian Canadian Shield.

The shield forms the core of the North American continent and is surrounded by provinces of Paleoproterozoic age on the west, north and east, and Mesoproterozoic age (Grenville Province) on the southeast.

Proterozoic and younger activity is limited to rifting of the margins, emplacement of several mafic dyke swarms, compressional reactivation and large-scale rotation at circa 1.9 Ga, as well as failed rifting at circa 1.1 Ga. except for the northwestern Superior margin that was pervasively deformed and metamorphosed at approximately 1.8 Ga, the craton has escaped later ductile deformation.

Sedimentary rocks as old as 2.48 Ga uncomfortably overlie Superior Province granites, indicating that most erosion had occurred prior to circa 2.5 Ga (Percival and Easton 2007).

The Seymour Lake Lithium Project is often covered by recent glacial deposits comprising shallow gravelly soils, boulder till and in places thick moraines obscuring the bedrock, referred to as overburden in the mineral resource model. The overburden is generally thin, averaging 3m locally but can be absent completely or up to 10 or more metres think. In low-lying areas the bedrock is also obscured by lakes and swamps.

The bedrock is best exposed along the flanks of steep-sided valleys scoured by glaciers during the recent ice-ages. The exposed bedrock is commonly metamorphosed basaltic rock, of which some varieties have well-preserved pillows that have been intensely flattened in areas of high tectonic strain. Intercalated between layers of basalt are lesser amounts of schists derived from sedimentary rocks and lesser rocks having felsic volcanic protoliths. These rocks are typical of the Wabigoon Subprovince hosting to most of the pegmatites in the region.

Pegmatites are reasonably common in the region intruding the enclosing host rocks after the host rocks were metamorphosed, evident from the manner in which the pegmatites cut across the well-developed foliation within the metamorphosed host rocks. This post-dating relationship is supported by radiometric dating; an age of 2666 + 6 Ma is given for the timing of intrusion of the pegmatites (Breaks, Selway & Tindle, 2006).

Sampling and Sub-Sampling Techniques

Available drill holes data were accumulated from multiple phases of drilling conducted by a number of operators from 2002 to 2009 by Linear, 2016-2018 by Ardiden Ltd and from 2021 by GT1 to the present.

Diamond drilling was used to obtain nominally 1m downhole samples of core.

Core samples were ½ cored using a diamond saw with ½ the core placed in numbered sample bags for assaying and the other half retained in sequence in the core tray. ½ core samples were approximately 2.5kg in weight with a minimum weight of 500grams. Core was cut down the apex of the core and the same a default side of the core selected for assaying to reduce potential sampling bias.

Drilling Techniques

Tri-cone drilling was undertaken through the thin overburden prior to NQ or BTW diamond drilling through the primary rock. 11 holes were drilled by Ardiden using HQ core.

199 diamond core samples were used in the Mineral Resource estimate for 26,244.19 metres including 22 holes drilled by GT1 for 8,291.69m.

18 holes were rejected from the estimate mainly from 2009 and 2002 due to missing lithology logging and assay data or re-drills or poor orientation to the pegmatite attitude. Some of the earlier (2002) North Aubry holes were drilled vertically until it was realised the pegmatites plunged to the northeast. Most holes were drilled to the southwest approximately perpendicular to the pegmatite orientation.

Sample Analysis Method and QAQC

All Ardiden and samples were analysed by AGAT for lithium and a suite of other elements, using Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish (method# 201-378). Sodium Peroxide Fusion oxidizes samples at high temperatures effectively in dissolving all the pegmatite minerals while the ICP-MS ionizes chemical species and sorts the ions based on their mass-to-charge ratio.

All GT1 drill samples were submitted to Actlabs Thunder Bay for analysis for sample preparation before forwarding the pulps to their Ancaster laboratory in Ontario Canada for analysis using Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish.

Prior to 2016 little QAQC was performed other than some duplicate core sampling and verification laboratory internal standards. Whilst the results appear acceptable the lack of QAQC was a concern.

A spatial sampling pairing review was undertaken comparing Ardiden and Linear samples located within 8m of each other within the pegmatite domains. The results were inconclusive but hinted at the Linear Li2O results being biased slightly lower than Ardidens results. It is unclear as to why this would be the case. As the Linear drilling makes up only 12% of the meterage included in the mineral resource the bias is not considered material to the estimate.

In 2016 Ardiden employed a single Li2O standard (CGL 128) certified by the Mongolian Central Geological Laboratory derived from the wolfram-lithium deposit located in the Arbayan area, Sukhbaatar province of Mongolia in April 2012. Ardiden used the standard from 2016 to 2018 until it was superseded by more reliable OREAS standards. The control charts produced over this time period for CGL 128 suggest occasional poor precision and a cluster of low grade assay returns. However, the OREAS standards, overlapping some of 2018 show no obvious bias and better precision from AGAT Laboratories

All the Ardiden drill samples were analysed by AGAT Laboratories who are accredited by The Standards Council of Canada (SCC), The Canadian Association for Laboratory Accreditation (CALA), SAI Global and have ISO/IEC 17025:2005 and ISO 9001:2015 accreditation.

All Ardiden samples were analysed by AGAT for lithium and a suite of other elements, using Sodium Peroxide Fusion – ICP-OES/ICP-MS Finish (method# 201-378). Sodium Peroxide Fusion oxidizes samples at high temperatures effectively in dissolving all the pegmatite minerals while the ICP-MS ionizes chemical species and sorts the ions based on their mass-to-charge ratio.

All GT1 drill samples were submitted to Actlabs, Thunder Bay for sample preparation before forwarding the pulps to their Ancaster laboratory in Ontario Canada for analysis using Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish.

GT1 inserted certified lithium standards of varying grade and blanks into each batch submitted to Actlabs to monitor precision and bias performance at a rate of 1:20. Actlabs also inserted internal standards, blanks and pulp duplicates within each sample batch as part of their own internal monitoring of quality control.

All GT1 results were within acceptable tolerances.

No significant bias or precision issues were observed in the control samples.

Estimation and Methodology

An Ordinary Kriging (OK) grade estimation methodology has been used for Li₂O and Ta₂O₅ in the Mineral Resource Estimate which is considered appropriate for the style of mineralisation under review.

Geological units were first interpreted in Leapfrog 2021.2 software from geological logs and core photography references.

Pegmatite and overburden wireframes were exported from Leapfrog and then imported into Micromine for estimation.

Data was composited to 1m length to geological contacts.

Top cut analysis was carried out to identify extreme outliers, using a combination of plots, and histograms and the effect of top cuts on cut mean and coefficient of variation. Variable top cuts have been applied by domain and element but all elements had a fairly low coefficient of variation.

Two models were produced, North and South. The Northern model used blocks 5mE x 10mN x 2.5mRL rotated 45 from north to align with the long axis of the deposit. The Southern model used 10mE x 10m N x 2.5m RL block sizes with no rotation applied. Geological features were assigned to the model using sub-blocks upto 1/5 of the parent blocks to preserve pegmatite volumes.

The model was validated visually by comparing block grade estimate to composites values with confirmation through swath plots and statistical comparisons.

Classification

The Mineral Resources have been classified as Indicated and Inferred based on drill spacing and geological continuity.

The Resource model uses a classification scheme based upon drill hole spacing plus block estimation parameters, number of composites, number of holes and average distance of data to block centroid in the respective search ellipsoid informing the block cell.

The results of the Mineral Resource Estimation reflect the views of the Competent Person.

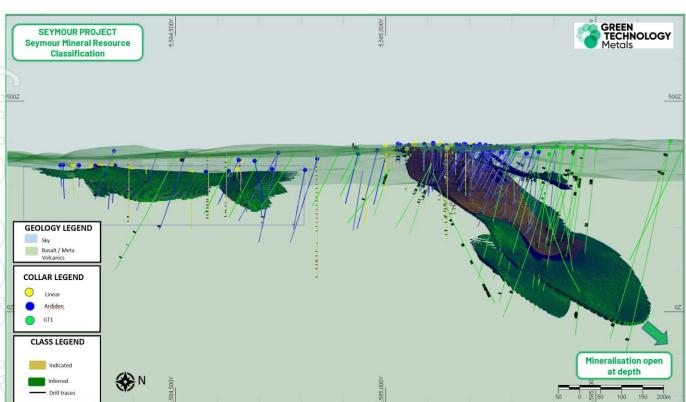


Figure 10: North and South Aubry Mineral Resource - Coloured by Resource classification

Cut-Off Grade and Other Parameters

The Seymour Mineral Resource is reported using open-pit mining constraints.

The open-pit Mineral Resource is only the portion of the resource that is constrained within a US\$4,000/t SC6 optimised shell and above a 0.2% Li₂0 cut-off grade. The optimised open pit shell was generated using:

- \$4/t mining cost
- \$15.19/t processing costs
- Mining loss of 5% with no mining dilution
- 55-degree pit slope angles
- 75% Product Recovery

Mining and Metallurgical Assumptions

Mining and metallurgical factors are applied in determining the potential for economic extraction, however no mining or metallurgical factors have been applied to the resource estimate as reported.

Potential deleterious elements were estimated for North Aubry. The results show favourable downstream processing levels of low iron within the resource area as well as acceptable levels of other deleterious elements such as potassium.

Bi-product and Deleterious elements

Reported within \$US4000 pit shell above 0.2% Li2O

Tonnes (mt)	7.8
Li20%	1.17
Ta2O5ppm	148
Rb2O ppm	2,550
К ррт	17,800
Fe ppm	8,170
Mg ppm	2,120
Nb ppm	62
Cs ppm	400

APPENDIX B: JORC CODE, 2012 EDITION - Table 1 Report

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criter	a	JORC Code explanation	Commentary							
Samp	ing techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 	 Diamond Drilling Available drill holes data were accumulated from multiple phases of drilling conducted by a number of operators from 2002 to the present. Diamond drilling was used to obtain nominally 1m downhole samples of core. Core samples were ½ cored using a diamond saw with ½ the core placed in numbered sample bags for assaying and the other half retained in sequence in the core tray. ½ core samples were approximately 2.5kg in weight with a minimum weight of 500grams. Core was cut down the apex of the core and the same downhole side of the core selected for assaying to reduce potential sampling bias. 							

Green Technology Metals

94 Rokeby Road, Subiaco, Western Australia 6008 +61 8 6557 6825

www.greentm.com.au

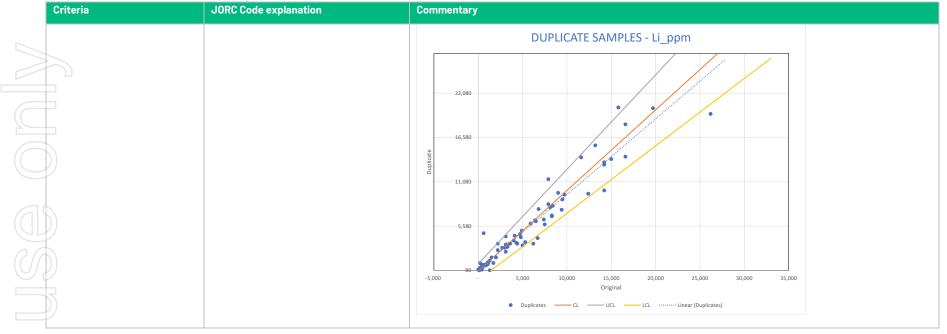
info@greentm.com.au ABN 99 648 657 649

Criteria	JORC Code explanation	Commentary									
	1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Drilling Used in Mineral Resource Compa Linear Ardide Green Total Linear Ardiden Green Tech Total All companies Metres Metres Year DDH DDH DDH DDH DDH DDH DDH DDH DDH BTW NQ HQ NR 2002 30 0 0 30 1,677.45 - - 1,677.45 - . 2002 30 0 0 30 1,677.45 - - - 1,677.45 . . . 1,573.50 . . 1,573.50 . . 1,573.50 . . 1,573.50 . . 1,573.50 . . 1,573.50 . . 1,573.50 . . 1,950.00 . 1,950.00 . 1,950.00 . </td									
		 Historic Grab Samples Grab samples were not used in the MRE 									
		 Historic Channel Samples Preparation prior to obtaining the channel samples including grid and geo-references and marking of the pegmatite structures. Samples were cut across the pegmatite with a diamond saw perpendicular to strike. Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance wit QAQC procedures. Sampling continued past the Spodumene -Pegmatite zone, even if it is truncated by Mafic Volcanic later intrusion. Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag. 									
		As recorded, procedures were consistent with normal industry practices Channel samples were used to aid the pegmatite interpretation but were not used in the estimate.									
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Tri-cone drilling was undertaken through the thin overburden prior to NQ2 or BTW diamond drilling throug the primary rock.11 holes were drilled by Ardiden using HQ core. 199 diamond core samples were used in the Mineral Resource estimate for 26,244.19 metres including 22 holes drilled by GT1 for 8,291.69m. 18 holes were rejected from the estimate mainly from 2009 and 2002 due to missing lithology logging and assay data or re-drills or poor orientation to the pegmatite attitude. Some of the earlier North Aubry holes were drilled vertically until it was released the pegmatite strike 045. The vast majority of holes were drilled to the southwest approximately perpendicular to the pegmatite orientation. 									
Drill sample recovery	Method of recording and assessing	No core was recovered through the overburden tri-coned section of the hole (top 5m of the hole)									

Criteria	JORC Code explanation	Commentary							
	 core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery through the primary rock and mineralised pegmatite zones was over 95% and considered satisfactory. Recovery was determined by measuring the recovered metres in the core trays against the drillers core block depths for each run. 							
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was undertaken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock. Logging is qualitative in nature based on visual estimates of mineral species and geological features. 							
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The bulk of the core is NQ diameter core with some BTK and HQ core drilled by Linear and Ardiden. All recent drilling has been NQ diameter core Each ½ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh)(includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. Ardiden field duplicates were taken at a rate of 1:20 taken immediately adjacent to the original sample. The sample preparation process is considered representative of the whole core sample. 							
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Prior to 2016 little QAQC was performed other than some duplicate core sampling and verification laboratory internal standards. Whilst the results appear acceptable the lack of QAQC was a concern. A spatial sampling pairing review was undertaken comparing Ardiden and Linear samples located within 8m of each other within the pegmatite domains. The results were inconclusive but hinted at the Linear Li₂O 							

Criteria	JORC Code explanation	Comment	ary									
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the 	results being biased slightly lower than Ardiden's results. It is unclear as to why this would be the case:										
	parameters used in determining the analysis including instrument make	Company	Field Name	Minimum	Maximum	No of Points	Mean	Variance	Std Dev	Coeff. of Variation		
	and model, reading times, calibrations factors applied and their derivation,	Ardiden	Li2O_ppm	105.4	53609.7	200	14,776	1.46E+08	12085.76	0.818		
	etc.	Linear	Li2O_ppm	53.81	59640	200	12,483	1.64E+08	12819.8	1.027		
	 Nature of quality control procedures 			Difference	-11%							
	adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 As the Linear drilling makes up only 12% of the meterage included in the mineral resource the bias is not considered material to the estimate. In 2016 Ardiden employed a single Li₂O standard (CGL 128) certified by the Mongolian Central Geological Laboratory derived from the wolfram-lithium deposit located in the Arbayan area, Sukhbaatar province of Mongolia in April 2012 Ardiden used the standard from 2016 to 2019 to 2019 to 2019 to 2019 to 2019. 										
		 Mongolia in April 2012. Ardiden used the standard from 2016 to 2018 until it was superseded by more reliable OREAS standards. The control charts produced over this time period for CGL 128 suggest occasional poor precision and a cluster of low grade assay returns. However, the OREAS standards, overlapping some of 2018 show no obvious bias and better precision from AGAT Laboratories. All the Ardiden drill samples were analysed by AGAT Laboratories who are accredited by The Standards Council of Canada (SCC), The Canadian Association for Laboratory Accreditation (CALA), SAI Global and have ISO/IEC 17025:2005 and ISO 9001:2015 accreditation. 										
		Fusio temp	n - ICP-OE eratures e	S/ICP-MS F ffectively ir	inish (meth	od# 201-3 all the peo	378). Sodiu gmatite m	ım Peroxic	le Fusion d	oxidizes sa	ng Sodium Peroxide mples at high s chemical species	

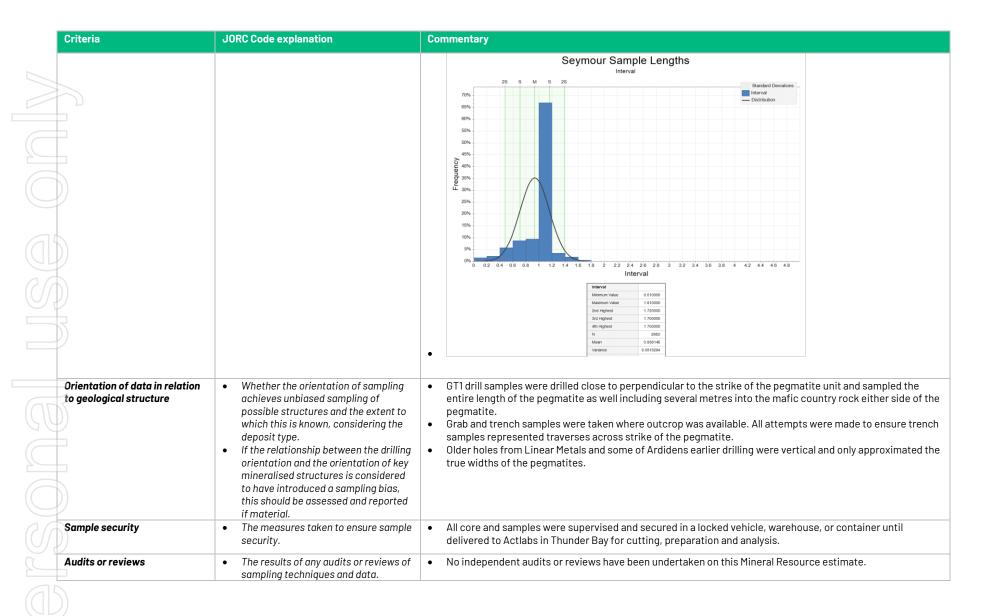
Criteria	JORC Code explanation	Commentary
		Control Chart for Mean and Range for CGL 128 - Li_ppm
		Project Seymour <mark>CGL128 </mark> From 01-Jan-16 To 31-Dec-18 Element Lippm
		Quality Characteristic Raw sample Standard Deviation vs Certified Tolerances
		Sample Size, n 33
		Control Chart for Mean and Range for CGL 128 - Li_ppm
		3200 -
))		2,300 - VV
		Sample#
6		3,500
2		≝ 3200 ·
6		
		8 2,600
2		Ē 2,300 ·
2		
2		985690 985690 98572 98572 98572 9856
		Sample #
5		
		Statistics from Raw Data Table Certified Values R-bar 2,725 See Below
2		Process Mean, µ-hat 2,725 Process St.Dev., σ-hat 151
		$\sigma_{\rm xear}$ 16
		Control Limits for X-bar Chart Control Limits for R Chart CL _{xtear} 2725 CL _R 2,685
		UCL _{Matr} 2,772 CL+kor _{ybar} UCL _R 2,894 LCL _{Matr} 2,678 CL+kor _{Matr} LCL _R 2,476
		α 0.0027 ARL 370.4 samples
		• All GT1 drill samples were submitted to Actlabs Thunder Bay for analysis for sample preparation before
		forwarding the pulps to their Ancaster laboratory in Ontario Canada for analysis using Sodium Peroxide Fusion - ICP-0ES/ICP-MS Finish.
		 GT1 inserted certified lithium standards of varying grade and blanks into each batch submitted to Actlabs
9		monitor precision and bias performance at a rate of 1:20. Actlabs also inserted internal standards, blanks
U		and pulp duplicates within each sample batch as part of their own internal monitoring of quality control.
k		 All GT1 results were within acceptable tolerances. No significant bias or precision issues were observed in the control samples.
		יש איז



Criteria	JORC Code explanation	Commentary
		Control Chart for Mean and Range for OREAS 751 - Li_ppm Project Seymour OREAS 751 From 01-Jan-16 To 31-Dec-22 Element Li_ppm Quality Characteristic Sample Size, n Raw sample Standard Deviation vs Certified Tolerances 3 3
		Control Chart for Mean and Range for OREAS 751 - Li_ppm
		3.300 5889820 588920 58920 5800 58920 5800 5800 5800 5800 5800 5800 5800 58
\mathcal{D}		6,000 5,460 4,920 4,380 5,460 4,380 5,460
		3,300 - 5888400 - 5888400 - 5888400 - 5888400 - 789402 - 789402 - 789402 - 789402 - 789402 - 789402 - 789202 - 78920 - 78920 - 78920
		Statistics from Raw Data Table Certified Values R-bar 4,671 Process Mean, µ-hat 4,671 Process St.Dev., σ-hat 155 σ _{xbar} 16
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Criteria	JORC Code explanation	Commentary
		Control Chart for Mean and Range for OREAS 753 - Li_ppm Project Seymour OREAS 753 From 01-Jan-16 To 31-Dec-22 Guality Characeristic Raw sample Standard Deviation vs Certified Tolerances Sample Size, n 3
		Control Chart for Mean and Range for OREAS 753 - Li_ppm
		Sample# 1,000
		7,500 500 500 66 66 66 66 66 66 66 66 66 66 66 66 66 77 78 77 78 66 66 66 66 66 66 77 78 66 66 77 78 66 66 77 78 66 66 66 66 77 78 66 66 78 78 77 78 77 78 77 78 66 66 66 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
		Control Limits for X-bar Chart Control Limits for R Chart CLxaw 10071 Class UCLxaw 10071 Class UCLxaw 100168 Cl-korxes UCLxaw 0.068 UCL LCLxaw 0.0168 UCL UC 9.974 UCL ARL 370.4 samples

	Criteria	JORC Code explanation	Commen	tary									
			Standar										
			Seym		Valid	Raw Mean	Cer	tified Valu	es		Fails	5	
			2022		Records	Li_ppm	Li_ppm	LCL	UCL	Min	Max	% Fails	
			OREAS 751	Li_ppm	35	4,673	4,675	4,165	5,185		0	0 0%	
			OREAS 753	Li_ppm	28	10,088	10,179	9,489	10,869		0	0 0%	
			Blank	Li_ppm	28	- 2	-	- 100	50		0	1 4%	
			Seym	our	Valid	Raw Mean	Cer	tified Valu	es		Fails		
			2021		Records	Li ppm			UCL	Min	Max	% Fails	
	D)		OREAS 751	Li ppm	1	4,630	4,675	4,165	5,185		0	0 0%	
	1)		OREAS 753		2	9,835	10,179	9,489	10,869		0	0 0%	
			Blank	Li ppm	0	-		- 100	50		0	0 0%	
											-		
					1								
	V)		Seym		Valid	Raw Mean		tified Valu			Fails		
	2		2018		Records	Li_ppm	Li_ppm	LCL	UCL	Min	Max	% Fails	
			OREAS 147		19	2,325	2,268	1,938	2,598		0	0 0%	
	D)		OREAS 149		20	10,209	10,282	9,382	11,182		0	0 0%	
	1)		CGL 128	Li_ppm	7	2,714	2,685	2,476	2,894		0	0 0%	
	Ĺ		Blank	Li_ppm	0	23	-	- 100	50		0	0 0%	
	D)		-			la							
	2		Seym 2017	our	Valid Records	Raw Mean Li ppm		tified Valu	es UCL	Min	Fails Max	s % Fails	
			OREAS 147	li nom	0	LI_ppin	Li_ppm 2,268	1,938	2,598	IVIIII	0	0 0%	
			OREAS 147 OREAS 149		0		10,282	9,382	11,182		0	0 0%	
			CGL 128	Li ppm	73	2,697	2,685	2,476	2,894		5	0 7%	
			Blank	Li ppm	0	- 100	- 2,005	- 100	2,854		0	0 0%	
			Dialik	Li_ppin	0	- 100	_	- 100	50			0 0/6	
))												
	\mathcal{P}		Seym	our	Valid	Raw Mean	Cer	tified Valu	es		Fails	;	
			2016		Records	Li_ppm	Li_ppm	LCL	UCL	Min	Max	% Fails	
			OREAS 147	Li_ppm	0		2,268	1,938	2,598		0	0 0%	
			OREAS 149	Li_ppm	0		10,282	9,382	11,182		0	0 0%	
			CGL 128	Li_ppm	24	2,804	2,685	2,476	2,894		0	0 0%	
			Blank	Li_ppm	0	- 100	-	- 100	50		0	0 0%	
			All in	depende	ent certifi	ed referer	nce data	returns	were wi	thin a	cceptab	le limits wit	th no discernible bias,
			exce	ot one b	lank samı	ole that ap	pears to	have be	en a fie	ld swa	ap.		
	D)											and Be wer	e analyzed by FUS-ICP and
	2)												orate tetraborate fusion
							siai) arialy			011 11 21	csandii	unnetabu	
10					by ICP an				1.6	10			
													GP analytical code
										iy GT1	submitt	ed 226 sam	ples for water immersion
			testv	vork by l	Actlabs p	rior to san	nples pre	paratior	ו.				
	<i>٧</i>												
	[



Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Ardiden drilled 17 diamond holes within 8m of hole drilled by the previous owner, Linear, in 2016 and 2017. The results were discussed in the previous section, <i>Quality of assay data and laboratory tests. Whilst the result was erratic Ardiden were able to confirm the presence of high grade LCT pegmatites.</i> Further drilling undertaken by GT1 has also confirmed the high grade nature of the main pegmatite (North Upper – HG). The majority of laboratory assay results have been sourced directly from the laboratory and the laboratory file directly imported into GT1's SQL database. All recent north seeking gyroscope surveys are uploaded directly from the survey tool output file and visually validated. Geological logs and supporting data are uploaded directly to the database using custom built importers to ensure no chance of typographical errors. No adjustment to laboratory assay data was made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A GPS reading was taken for each sample location using UTM NAD83 Zone16 (for Seymour); waypoint averaging or dGPS was performed when possible. Ardiden undertook a Lidar survey of the Seymour area in 2018 (+/- 0.15m) which underpins the local topographic surface. All drill collars have been draped onto the LIDAR surface to ensure accurate elevation data for the drillholes. GT1 employed a calibrated Reflex SprintIQ North Seeking Gyroscopic tool on all 2021 and 2022 drill holes and surveyed the holes in their entirety with readings downhole every 5m. North Seeking gyroscopes have a typical azimuth accuracy of +/-0.75 degrees and +/-0.15 degrees for dip.

Criteria	JORC Code explanation	Commentary
		All collars are picked up and stored in the database in North American Datum of 1983 (NAD83) Zone 16 horizonta and geometric control datum projection for the United States.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The Seymour pegmatites in the North and South areas of the deposit have variable drill spacing from 20Ex20Nm in the shallower areas (<150m) of the deposit to 50mEx50mN at lower depths (150-250m) and greater than 80m spacing below this depth. The drill spacing is sufficient to support the various levels of Mineral Resource classification applied to the estimate. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Joint Venture between Green Technology Metals (ASX:GT1)80% and Ardiden Ltd (ASX:ADV)20%. Seymour Lithium Asset consists of 744 Cell Claims (Exploration Licences) with a total claim area of 15,058 ha. All Cell Claims are in good standing An Active Exploration Permit exists over the Seymour Lithium Assets An Early Exploration Agreement is current with the Whitesand First Nation who are supportive of GT1 exploration activities.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Regional exploration for lithium deposits commenced in the 1950's. In 1957, local prospector, Mr Nelson Aubry, discovered the North Aubry and the South Aubry pegmatites. Geological mapping by the Ontario Department of Mines commenced in 1959 and was completed in 1962 (Pye, 1968), with the publication of "Map 2100 Crescent Lake Area" in 1965. From the late 1950's to 2002, exploration by the Ontario Department of Mines was generally restricted to geological mapping and surface sampling, although some minor drilling was completed to test the North Aubry pegmatite in late 1957 (Rees, 2011). In 2001, Linear Resources Inc. ("Linear Resources") obtained the Seymour Lake Project with an initial focus on the project's tantalum potential. In 2002, a 23-diamond drill-hole campaign was completed a regional soil-sampling program which resulted in the identification of a number soil geochemical anomalies. Based on these anomalies, another drilling campaign (completed in 2009), with 12 diamond drill-holes at North Aubry, 2 diamond drill-holes at South Aubry, 2 diamond drill-holes peripheral to the Aubry prospects designed to test the main 2008 soil geochemical

Criteria	JORC Code explanation	Commentary
		 anomalies. Little work was undertaken between 2010 and 2016 until Ardiden acquired the project from Linear Resources in 2016. Further drilling was carried out by Ardiden between 2017 and 2018 resulting in the completion of an updated mineral resource estimate of the Aubry pegmatites in 2018. Ground Penetrating Radar (GPR) was also undertaken by Ardiden in 2018 to test any further exploration potential beyond the current Aubry pegmatite delineating numerous targets.
Geology	Deposit type, geological setting and style of mineralisation.	 Regional Geology: The general geological setting of the Seymour Lithium Asset consists of the Precambrian Canadian Shield that underlies approximately 60% of Ontario. The Shield can be divided into three major geological and physiographic regions, from the oldest in the northwest to the youngest in the southeast. Local Geology: The Seymour Lithium Asset is located within the eastern part of the Wabigoon Subprovince, near the boundary with the English River Subprovince to the north. These subprovinces are part of the Superior Craton, comprised mainly of Archaean rocks but also containing some Mesoproterozoic rocks such as the Nipigon Diabase. Bedrock Geology: The bedrock is best exposed along the flanks of steep-sided valleys scoured by glaciers during the recent ice ages. The exposed bedrock is commonly metamorphosed basaltic rock, of which some varieties have well-preserved pillows that have been intensely flattened in areas of high tectonic strain. Intercalated between layers of basalt are lesser amounts of schists derived from sedimentary rocks and lesser rocks having felsic volcanic protoliths. These rocks are typical of the Wabigoon Subprovince, host to most of the pegmatites in the region. Ore Geology: Pegmatites are reasonably common in the region intruding the enclosing host rocks. This post-dating relationship is supported by radiometric dating; an age of 2666 + 6 Ma is given for the timing of intrusion of the pegmatites (Breaks, et al., 2006). The pegmatites in North Aubry have a northeast plunge direction varying from 10 to 35 degrees from horizontal some 800m downdip extent and 250-300m strike. The North Upper and North Upper high grade component

Criteria	JORC Code explanation	Commentary
		 within, appears to wedge towards the south east and is still open down dip and to the north west. Southern pegmatites are thinner and less well developed with higher muscovite content and appear to have a more north to north-westerly trend and dip more shallowly to the east. These pegmatites are also hosted in pillow basalts. The pegmatites are zoned with better developed spodumene crystal appearing as bands, often at an acute angle to the general trend of the pegmatite. The dominant economic minerals are spodumene with varying proportions of muscovite, microcline, and minor petalite and lepidolite. The adjacent pillow basalts contain minor disseminated pyite and pyrrhotite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A total of 199 diamond holes, on a nominal 20m x 20m grid, have been used in the resource modelling at North Aubry and South Aubry. A total of 130 holes were drilled by Ardiden, with the previous owners Linear drilling 42 holes, some of which were excluded from this estimate due to missing logging, assay reliability or re-drills. The 2018 Ardiden drilling was completed by Rugged Aviation Inc. using BTW coring equipment producing 4.20 cm diameter core.
		 towards the west. Once the pegmatite was determined to be dipping towards the north-east, the later drill holes were inclined towards the south-west Green Technology Metals Ltd has completed 34 NQ diamond holes since December 2021, of which 22 holes are included in the current Mineral Resource estimate, with the following collar coordinates:

Criteria	JORC Code explanation	Commentary
		Hole Easting Northing Dip Azi Depth GTDD-21-0004 5,585,452 397,241 - 74 213 341 GTDD-21-0005 5,585,396 397,280 - 80 221 372 GTDD-22-0001 5,585,389 397,013 - 78 276 201 GTDD-22-0002 5,585,361 397,313 - 69 219 341 GTDD-22-0005 5,585,361 397,313 - 69 227 336 GTDD-22-0006 5,585,361 397,3767 - 69 226 345 GTDD-22-0007 5,585,473 397,204 - 76 226 345 GTDD-22-0008 5,585,472 397,400 - 69 224 395 GTDD-22-0011 5,585,475 397,203 - 81 217 401 GTDD-22-0012 5,585,475 397,203 - 81 217 401 GTDD-22-0013 5,585,475 397,203 - 81 219 450 GTDD-22-0014 5,585,475
Data aggregation methods Relationship between mineralisation widths and intercept lengths	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the 	 length weighted averages and all resource estimates are tonnage weighted averages Grade cut-offs have not been incorporated. No metal equivalent values are quoted. The historic reported results are stated as down hole lengths. The historic pierce angle of the drilling with the
	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The historic pierce angle of the drilling with the pegmatite varies hole by hole so all intersection widths are longer than true widths. The resource modelling considers the intersections in 3D and adjusts accordingly. Holes drilled by GT1 attempt to pierce the mineralised pegmatite approximately perpendicular to strike, and therefore, the downhole intercepts reported are approximately equivalent to the true width of the

Criteria	JORC Code explanation	Commentary
		 mineralisation. Trenches are representative widths of the exposed pegmatite outcrop. Some exposure may not be a complete representation of the total pegmatite width due to recent glacial deposit cover limiting the available material to be sampled.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• The appropriate maps are included in the announcement.

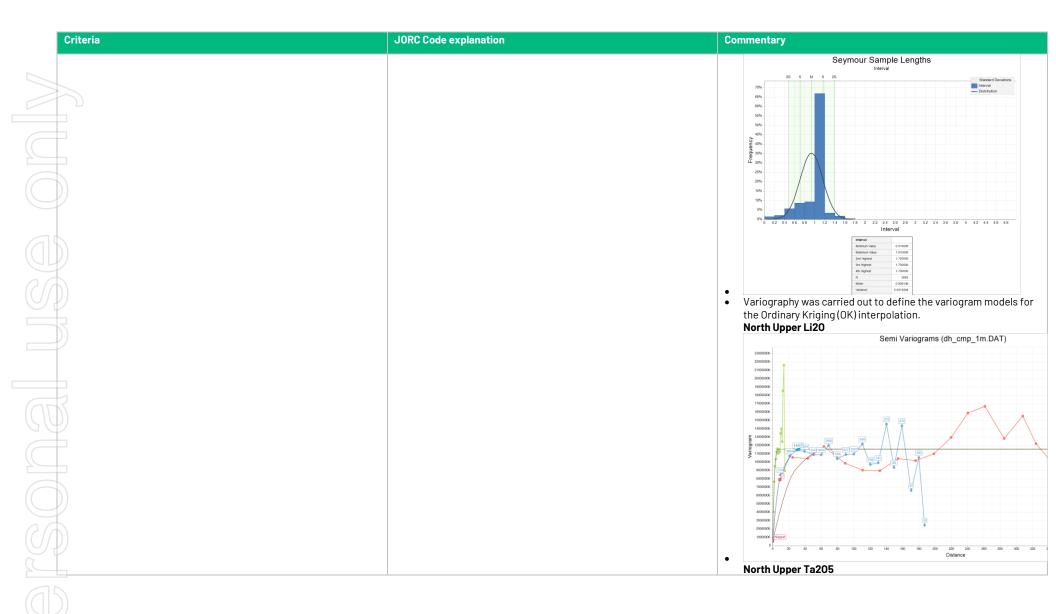
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Pegmatite downhole interval summary with associated assay results are listed in Appendix A

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 GT1 completed a fixed wing single sensor magnetic/radiometric/VLF airborne geophysical survey. Survey details, 1191 line-km, 75m line spacing, direction 90 degrees to cross cut pegmatite strike, 70m altitude. Preliminary images have been received for Total Count Radiometric, Total Magnetics and VLF. Raw data currently being processed by MPX Geophysics. Interpretation will be completed by Southern Geoscience
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Test further potential downdip extensions and pegmatite stacking at North Aubry. Drilling program commencement at Root and Morssion prospects. Geological field mapping of anomalies and associated pegmatites at Seymour and regional claims. Sampling pegmatites for spodumene Drill targeting and followed by diamond drilling over the next 24 months. Commencement of detailed mining studies

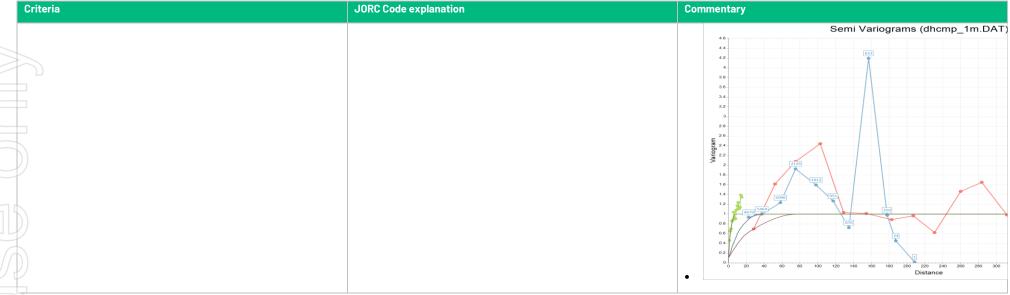
Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

	Criteria	JORC Code explanation	Commentary
N	Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data was imported into the database directly from source geology logs and laboratory csv files. Was then passed through a series of validation checks before final acceptance of the data for downstream use.
	Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• A site visit was undertaken by the Competent Person (John Winterbottom) between 8th and 9th June 2022; general site layout, drilling sites, diamond drilling operations were viewed, plus diamond core in the storage facility Thunder Bay.
	Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 There is good confidence in the geological interpretation of the deposit in most areas; there are some areas of uncertainty at the outer limits of the deposit where drill spacing is sparse. Interpretation was made directly from pegmatites noted in geological logs and confirmation through core photographs. Alternative geological interpretation would have a minimal effect on the resource estimate. Pegmatite intrusions were used to constrain the mineral resource estimation. Continuity of grade and geology is strongly tied to pegmatite



Criteria	JORC Code explanation	Commentary
		thickness that varies considerably throughout the deposit due to structural elongation and dilation dynamics.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The deposit consists of a number of stacked pegmatite units of varying thicknesses. The deposit consists of two principal areas North and South The Northern area of the deposit has a maximum horizontal extent of 800m, 390m wide and varies from 2m up to 43m in thickness. 5 mineralised pegmatites that have been interpreted down to a depth of 350m below surface and is still open at depth. Pegmatites dip approximately 30-35 degrees to the northeast. The Southern area consists of an Upper and a Lower pegmatite. The Upper pegmatite is continuous over the entire extent of the Southern and southern half. The Southern area extends upto 740m along a 330 strike direction, upto 170m across with thickness varying from 0 to 22m, with a maximum depth of 130m below surface.
0)		



Criteria	JORC Code explanation	Commentary
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 An Ordinary Kriging (OK) grade estimation methodology has been used for Li₂O in the Mineral Resource Estimate which is considered appropriate for the style of mineralisation under review. OK was also applied to important potential bi-product or deleterious elements (Ta2O5, Rb2O, Cs, K, Fe, Mg, Nb). Secondary elements were not exhaustively assayed for in the historic areas of the resource and therefore are only approximations at this stage and have not been included in the Mineral Resource figures. Micromine 2022.4 software was used for estimation, statistical and geostatistical data analysis. A previous estimate of the deposit was made by Phillip Jones, an independent consultant employed by Ardiden Ltd in April 2019. The previous mineral resource was constrained within the pegmatite units and reported above a zero cut-off Li₂O grade. Area Category Mt Li₂O(%) North Aubry Inferred 1.7 1.50 South Aubry Inferred 1.0 0.80 TOTAL 4.8 1.25 Geological units were first interpreted in Leapfrog 2021.2 software from geological logs and core photography references. South Upper: 742,546 South Lower: 150,664 North HW: 73,568 North HW: 73,566 North HW: 10,955 Total 4,076,420 Pegmatite and overburden wireframes were exported from Leapfrog and then imported into Micromine for estimation. Data was composited to Im length to geological contacts.

Criteria	JORC Code explanation	Com	mentary				
			Parameter	North I	Jpper	South	Upper
			Parameter				
				Li2O	Ta2O5	Li2O	Ta2O5
				Rota	tion Directi		
		-	Z	315.19			330.22°
		÷	X	0.12 -32.67			0.14° -30.51°
			Geostatistica		-52.07	-50.51	-50.51
		E E	Axis 1		Ta2O5	Li2O	Ta2O5
		H	Azimuth	315.19			330.22°
			Plunge	0.12	0.12	0.14°	0.14°
			Axis 2 Azimuth	45.27	45.27	60.2°	60.3°
		E E	Azimuth Plunge	45.27 32.67			30.51°
			Axis 3	52.07	52.07		
7		-	Azimuth	225			239.99°
			Plunge	57.33	57.33	59.49°	59.49°
		-	Geological	215	215	220.00%	220.00%
			Strike Dip directior	315 45			329.99° 59.99°
2			Dip direction	32.67			30.51°
			Pitch (lineati	0.22	0.22	0.27°	0.27°
			Sense				North
			Plunge	0.12	0.12	0.14°	0.14°
		ŀ	Modelling C Nugget 1	5699197	2246	300000	50
			Component		2240	500000	50
			Component				
				SPHERICAL			Spherical
			Sill 1	47924816	5289	5.35E+06	7465.54
			Component Type	2 SPHERICAL	SPHERICAL	Spherical	Spherical
			Sill 1	62022195	13851		4662.25
			Axis 1				
		-	Component				
			Range	9.1	14	81.8	230.38
			Component Range	2 32.2	35	335.8	310.55
			Axis 2	0212		00010	010.00
<i>y</i>			Component				
			Range	27.9	22.1	36.49	86.81
			Component		76.0	70.5	210.55
			Range Axis 3	66.1	76.8	72.5	310.55
		-	Component	1			
			Range	2.93	1.32	3	3
			Component				
			Range	6.1	7.54	50	47.93

	Criteria	JORC Code explanation	Commentary
			 Block size is generally one half of the closer spaced drilling and optimised further using Quantitative Kriging Neighbourhood Analysis (QKNA) techniques. Two models were produced, North and South. The Northern model used blocks 5mE x 10mN x 2.5mRL rotated 45 from north to align with the long axis of the deposit. The Southern model used 10mE x 10m N x 2.5m RL block sizes with no rotation applied. Geological features were assigned to the model using sub-blocks upto 1/5 of the parent blocks to preserve pegmatite volumes. Model dimensions are shown below:
			Model minX maxX minY MaxY minZ maxZ bm_seymour_north_May22 396555.00 397805.00 5584902.50 5586002.50 61.25 418.75 bm_seymour_south_May22 396295.00 397005.00 5584005.00 558495.00 151.25 400.00
			 Recovery of by-products will be determined following detailed metallurgical testwork. Estimated averages for bi product and deleterious elements for North Aubry are tabulated below but are not available for South Aubry as testwork was limited to Li₂O and Ta₂O₅.:
9			Bi-product and Deleterious elements
			Reported within \$US4000 pit shell above 0.2% Li2O
			Tonnes (mt) 7.8 Li2O% 1.17
70			Ta2O5ppm 1.17 148 148
79			Rb2O ppm 2,550
_			К ррт 17,800
			Fe ppm 8,170 Max many 2,120
			Mg ppm 2,120 Nb ppm 62
			• Cs ppm 400
16			 Acid mine drainage estimates will be made on the return of
			waste rock samples for multi-elemental analysis, including
			 sulphur. Locally Varying Trend (LVA) models were produced for each
			 Locally Varying Trend (LVA) models were produced for each pegmatite from Leapfrog footwall surfaces. Multiple passes were used to ensure blocks are filled in areas with sparser drilling. Searches of 50m, 100 and 150m with applied anisotropy and
			 Searches of som, loo and isom with applied anisotropy and orientation to the search ellipsoid based on the trend model
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Criteria	JORC Code explanation	Commentary
	JORC Code explanation	 Commentary were made. Sample data was composited to Im down-hole composites, while honouring geological contacts. Top cut analysis was carried out to identify extreme outliers, using a combination plots, and histograms and the effect of top cuts on cut mean and coefficient of variation. Variable top cuts have been applied by domain and element, as follows:. North Upper HG Li20_ppm Histogram Histogram Gov vs. Top Cut CoV vs. Top Cut Gov vs. Top Cut
		8 0.5 8 0.4 0.3 0.2 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

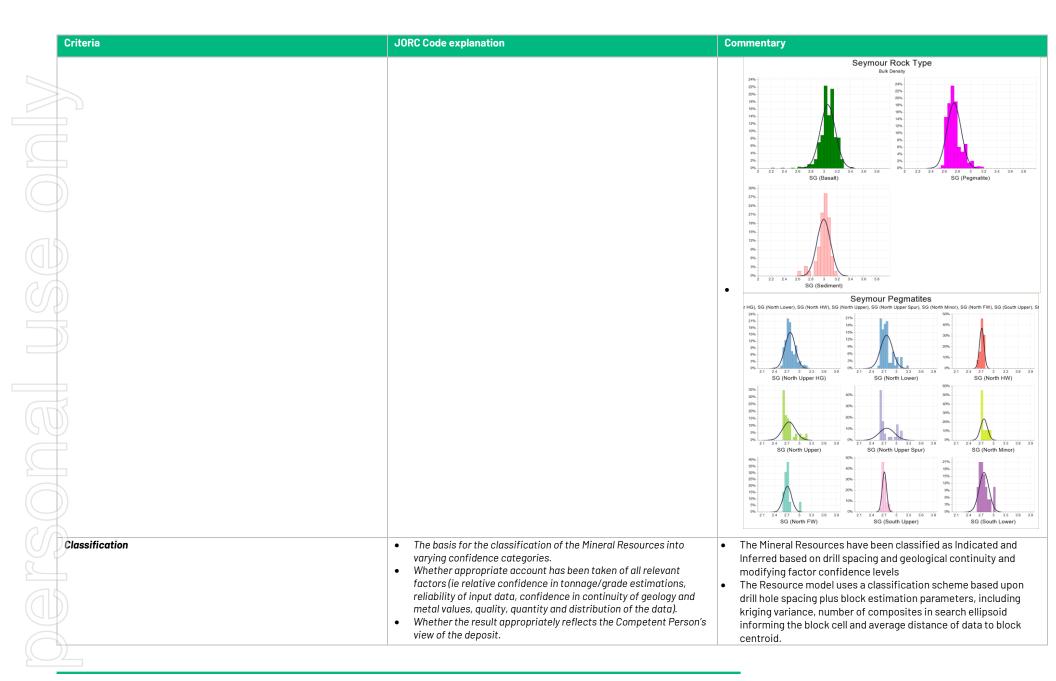
Coeff. of
Field Name Key Top Cut Mean Variation Mean
Li2O_ppm North FW 17,749 4,224 1.2 4,21
Ta2O5_ppm North FW 817 156 1.1 15
Rb2O_ppm North FW 4,980 2,113 0.5 2,10
K_ppm North FW 44,230 21,587 0.5 21,38
Fe_ppm North FW 20,091 5,876 0.7 5,76
Mg_ppm North FW 4,984 1,091 1.1 1,05
Nb_ppm North FW 122 57 0.5 50
Cs_ppm North FW 1,352 254 1.4 23
Li2O_ppm North HW 4,895 736 1.9 69
Ta2O5_ppm North HW 551 187 0.8 18
Rb2O_ppm North HW 5,238 1,705 0.9 1,69
K_ppm North HW 33,566 13,372 0.7 13,33
Fe_ppm North HW 79,473 11,162 1.7 10,94
Mg_ppm North HW 34,420 3,620 2.6 3,17
Nb_ppm North HW 143 58 0.7 5
Cs_ppm North HW 535 137 1.1 13
Li2O_ppm North Lower 36,955 8,423 1.2 8,35
Ta2O5_ppm North Lower 710 195 1.1 18
Rb20_ppm North Lower 8,137 2,390 0.8 2,360
K_ppm North Lower 60,479 19,204 0.7 19,01
Fe_ppm North Lower 82,207 12,216 1.5 12,10
Mg_ppm North Lower 39,912 4,179 2.1 4,110
Nb_ppm North Lower 159 59 0.7 5
Cs_ppm North Lower 1,250 355 0.9 34
Li2O_ppm North Minor 14,246 4,260 1.2 4,25
Ta2O5_ppm North Minor 241 132 0.4 133
Rb2O_ppm North Minor 5,693 2,211 0.7 2,19
K_ppm North Minor 57,145 19,282 0.8 19,21
Fe_ppm North Minor 27,068 8,547 0.7 8,54
Mg_ppm North Minor 15,018 2,644 1.5 2,64
Nb_ppm North Minor 104 60 0.3 60
Cs_ppm North Minor 612 266 0.7 26
Li2O_ppm North Upper 6,572 1,284 1.2 1,24
Ta2O5_ppm North Upper 553 168 0.9 16
Rb2O_ppm North Upper 11,621 3,021 1.0 3,00
K_ppm North Upper 87,187 25,278 1.0 25,20
Fe_ppm North Upper 91,781 16,587 1.6 16,49
Mg_ppm North Upper 43,706 6,073 2.0 6,04
Nb_ppm North Upper 294 64 1.0 65
Cs_ppm North Upper 2,984 453 1.6 41
Li2O_ppm North Upper HG 44,654 13,208 0.9 13,102
Ta2O5_ppm North Upper HG 747 175 2.5 14
Rb2O_ppm North Upper HG 8,862 3,057 0.7 3,03
K_ppm North Upper HG 79,228 23,400 0.7 23,24
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,520
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,521 Mg_ppm North Upper HG 17,630 1,575 2.9 1,322
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,32 Nb_ppm North Upper HG 243 63 0.9 6
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,521 Mg_ppm North Upper HG 17,630 1,575 2.9 1,322
K ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,32 Nb_ppm North Upper HG 243 63 0.9 6 Cs_ppm North Upper HG 1,535 432 0.8 42
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,32 Nb_ppm North Upper HG 1243 63 0.9 6 Cs_ppm North Upper HG 1,535 432 0.8 421 Li20_ppm North Upper Spur 15,609 3,374 1.2 3,277
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,32 Nb_ppm North Upper HG 243 63 0.9 6. Cs_ppm North Upper HG 1,535 432 0.8 422 U2O_ppm North Upper Spur 15,609 3,374 1.2 3,277 Ta2O5_ppm North Upper Spur 256 112 0.7 111
K ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,32 Nb_ppm North Upper HG 12,535 432 0.8 421 L20_ppm North Upper FG 1,535 432 0.8 421 L20_ppm North Upper Spur 15,609 3,374 1.2 3,277 Ta205_ppm North Upper Spur 2,162 875 0.6 86
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,322 Nb_ppm North Upper HG 1,535 432 0.8 421 H2
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,32 Nb_ppm North Upper HG 243 63 0.9 6 Cs_ppm North Upper HG 1,535 432 0.8 422 Li20_ppm North Upper Spur 15,609 3,374 1.2 3,27. Ta205_ppm North Upper Spur 2.56 112 0.7 111 Rb20_ppm North Upper Spur 2.162 875 0.6 86 K_ppm North Upper Spur 2.410 7,370 0.7 7.27 Fe_ppm North Upper Spur 24,100 7,390 0.7 7.27
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,322 Nb_ppm North Upper HG 1,535 432 0.8 421 H2
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,322 Nb_ppm North Upper HG 1,533 432 0.8 421
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,322 Nb_ppm North Upper HG 1,533 432 0.8 421
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,32 Nb_ppm North Upper HG 12,630 1,575 2.9 1,32 Nb_ppm North Upper HG 1,535 432 0.8 42 U20_ppm North Upper Spur 256 112 0.7 111 Rb20_ppm North Upper Spur 256 112 0.7 111 Rb20_ppm North Upper Spur 24,100 7,390 0.7 7,271 Fe_ppm North Upper Spur 8,7991 24,697 1.4 24,555 Mg_ppm North Upper Spur 80,577 10,319 1.5 10,29 Mb_ppm North Upper Spur 40,577 112 49 0.7 44
K_ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 1,630 1,575 2.9 1,32 Nb <ppm< td=""> North Upper HG 1,535 432 0.8 42 IL2O_ppm North Upper Spur 15,609 3,374 1.2 3,277 Ta2OS_ppm North Upper Spur 256 112 0.7 111 Rb2O_ppm North Upper Spur 2,162 875 0.6 86 K_ppm North Upper Spur 24,100 7,390 0.7 7,277 Fe_ppm North Upper Spur 40,677 10,319 1.5 10,29 Nb_ppm North Upper Spur 40,577 10,319 1.5 10,29 Nb_ppm North Upper Spur 112 49 0.7 44,655 Ms_ppm North Upper Spur 422 163 0.7 16 </ppm<>
K.ppm North Upper HG 79,228 23,400 0.7 23,24 Fe_ppm North Upper HG 46,838 8,990 1.1 8,52 Mg_ppm North Upper HG 17,630 1,575 2.9 1,32 Nb_ppm North Upper HG 17,630 1,575 2.9 1,32 Nb_ppm North Upper HG 1,535 432 0.8 421 L20_ppm North Upper Spur 15,609 3,374 1.2 3,77 Ta205_ppm North Upper Spur 2,162 875 0.6 86 K_ppm North Upper Spur 2,4100 7,390 0.7 7,277 Fe_ppm North Upper Spur 2,4102 7,390 0.7 7,277 Fe_ppm North Upper Spur 24,100 7,390 0.7 7,277 Fe_ppm North Upper Spur 24,010 7,390 0.7 7,277 Fe_ppm North Upper Spur 40,577 10,319 1.5 10,29 Np_pm North

Criteria	JORC Code explanation	Со	mmentary	
		Val	idation was carried out in several v	vays, including
		•	Visual inspection section, plan ar Swath plot validation	d 3D
				North Upper HG
			22000	dh_sey_cm — dh_sey_cm — bm_seymo
			20000 19000 18000 17000 16000	
			15000 14000 13000	
			12000 11000 9000	
			8000	
			5000	V
		•	Model vs composite statistics	Direction (45.00°, 0.00°, 0.00°)
		•	Model vs composite statistics Noth Upper HO. Block Model	North Upper
				The second se
))		•		

Green Technology Metals

www.greentm.com.au

Criteria	JORC Code explanation	Commentary
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	Tonnages are estimated on a dry basis
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	The Seymour Mineral Resource is reported using open-pit mining constraints. The open-pit Mineral Resource is only the portion of the resource that is constrained within a US\$4,000 / t SC6 optimised shell and above a 0.2% Li ₂ O cut-off grade. The optimised open pit shell was generated using:
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 The 2022 Mineral Resource Estimate is reported above 0.2% Li₂O cut-off. The cut-off is based on lowest potential grade at which a saleable product might be extracted using a conventional DMS and / or flotation plant and employing a TOMRA Xray sorter (or equivalent) on the plant feed. A number of pegmatites outcrop at surface thus the mineral resource is likely to be extracted using a conventional drill and blast, haul and dump mining fleet.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 Metallurgical Dense Media Cyclone Separation (DMCS) work was carried out by Ardiden as follows: Ardiden's Chinese strategic partner, Yantai Jinyuan Mining Machinery Co. Ltd., carried out metallurgical test work on a 2,500 kg bulk sample collected using a large rock breaker and excavator from a trench at Aubry North. Using this equipment to collect the bulk sample avoided problems associated with natural particle size distribution (PSD) as a result of drilling and blasting. After mining, the large rocks were hand broken and homogenised, then using a number of highly controlled staged crushing and sample preparation procedures Yantai generated a 500 kg sample of <6 mm particles, which is a typical size range for lithium chemical plants. The crushed head sample size distribution of the particles achieved was 86.5% ranging from 0.5 mm to 6.0 mm at an average head grade of 1.37% Li20 and 13.5% of the particles <0.5mm at an average head grade was 1.29% Li20.



Criteria	JORC Code explanation	Commentary
		 The coarse particle size used for the testing showed that crushed ore, without using a roller crusher, reduces the crushing and processing times and costs while still producing a high quality marketable lithium concentrate. Heavy Liquid Separation (HLS) The HLS tests on the North Aubry pegmatite material showed that, with a heavy liquid density of 2.95g/ml, a very impressive spodumene concentrate of up to 7.04% Li20 at a recovery of 91.6% is produced. Detailed metallurgical studies have only just begun but preliminary metallurgical test work undertaken by IMO in Perth Western Australia on behalf of Ardiden Ltd inApril and again in December 2017 suggest a 2 phase Dense Media Separation processing plant may be sufficient to achieve acceptable spodumene recoveries.
		Dense Media Cyclone Separation (DMCS)
		 Dense Media Cyclone mineral separation tests were conducted under a number of different operating conditions on the 0.5mm to 6mm size fraction only. This testwork indicated that a lithium concentrate grade of 6.05% Li20 can be achieved at a recovery rate of 85.6%. It was noted that should it be needed, the lithium concentrate grades can be improved with an increase in feed pressure but at the cost of recovery rate. Different medium densities were also tested with one lithium concentrate producing a grade of 6.92% Li20 with a strong recovery rate of 81.7%. The most encouraging results occurred when using: Feeding density of 2400kg/m; Ore feeding pressure 0.045Mpa; Ratio of ore and medium at 1:6; and Feed size of 0.5mm to 6.0mm.
		Metallurgical Testwork Conclusions
		 Ardiden concluded the following from their testwork: It was concluded from this initial metallurgical testwork that gravity separation is a viable method of producing a high grade commercial lithium concentrate from Seymour Lake pegmatites. The North Aubry spodumene concentrate quality appears to contain only traces amounts of deleterious minerals. The North Aubry spodumene appears to have a low iron content which will positively impact down-stream processing hence enhancing the commercial value of the lithium concentrate produced.

Criteria	JORC Code explanation	Commentary
		 HLS tests produced high-grade lithium concentrates up to 7.04% Li20 at a recovery rate of 91.6%. GT1 intends to undertake further, more exhaustive testwor has now commenced with fresh samples taken from histor and recent diamond core samples for HLS variability testw HMS, flotation and pilot testwork.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Waste rock characterization work has begun but was not far enough advanced for inclusion in this report at the time of writing. Some sulphur results are available from assaying of diamond core with low level Sulphur haloing observed several metres adjacent to the pegmatite contacts. More exhaustive waste rock testing is currently underway in order to be able to characterise all the waste rock types and their likely environmental impacts. Diamond core samples over the entire North Aubry deposit of semi regular grid have been selected and submitted for multi elemental, including Nickel and Sulphur, testwork to Actlabs Thunder Bay Ontario.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 1, 518 density measurements exist in the database of which 2 are from recent water immersion testwork undertaken by Actlabs Thunder Bay Ontario on ½ NQ core samples with intervals consistent with the assay intervals submitted to the laboratory (nominally 1m). 1181 results are from laboratory pycnometer tests and the remainder are unrecorded. No obvious bias was noted between the measurements based of method, however samples whose test method was not record were excluded from the data analysis process. These were typically older samples with unknown test conditions applied. Previous mineral resource estimates have determined pegmatite bulk densities of 2.78 and country rock, mainly me basalts, to be approximately 3.0. 698 density measurement a within the interpreted pegmatite boundaries the bulk within North Upper HG domain. This domain confirmed previous bud density values of 2.78. Fresh waste rocks averaged 3.0 consistent with basalt and sediment averages. No bulk density data is available for the largely glacial cover the deposit due to the difficulty in recovering this material in drilling process. This material is volumetrically negligible ranging in depths from 0 to 14m and averaging around 3m. An assumed bulk density of 2.2 was used for overburden.

Criteria	JORC Code explanation	Commentary
		• The results of the Mineral Resource Estimation reflect the views of the Competent Person.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No audits or reviews have been undertaken by GT1
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy of the Mineral Resource is reflected in the reporting of the Mineral Resource as being in line with the guidelines of the 2012 JORC Code. The statement relates to local estimates of tonnes and grade, with reference made to resources above a certain cut-off that are intended to assist mining studies.

Appendix A

Interpreted Pegmatite Downhole Intercepts

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
	ASD001	397034	5585210	- 89	89	158	78.8	85.7	6.9	1.18	4.1m @ 1.70 % Li2O from 81.6m
	ASD001	397034	5585210	- 89	89	158	101.6	104.5	2.9	0.50	
IJ,	ASD001	397034	5585210	- 89	89	158	123.5	129.1	5.6	0.89	2.1m @ 1.97 % Li2O from 126.0m
	ASD001	397034	5585210	- 89	89	158	148.4	150.2	1.7	0.29	
	ASD002	397017	5585294	- 70	200	156	27.0	27.3	0.3	0.01	
	ASD002	397017	5585294	- 70	200	156	66.3	71.2	5.0	0.06	
	ASD002	397017	5585294	- 70	200	156	118.5	120.3	1.8	1.04	
	ASD002	397017	5585294	- 70	200	156	136.4	140.6	4.2	0.31	
11	ASD003	397067	5585336	- 73	202	201	46.5	47.1	0.6	0.02	
20	ASD003	397067	5585336	- 73	202	201	130.7	132.9	2.2	0.91	
	ASD003	397067	5585336	- 73	202	201	157.5	163.4	5.9	1.88	4.0m @ 2.73 % Li2O from 159.4m
74	ASD004	397114	5585364	- 71	195	228	55.5	64.5	9.1	0.02	
	ASD004	397114	5585364	- 71	195	228	173.6	190.6	16.9	1.47	9.3m @ 2.38 % Li2O from 177.4m
	ASD004	397114	5585364	- 71	195	228	190.6	195.5	4.9	0.19	

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
	ASD004	397114	5585364	- 71	195	228	218.0	220.0	2.0	0.01	
	ASD005	397114	5585364	- 85	202	291	50.2	50.8	0.5	0.05	
	ASD005	397114	5585364	- 85	202	291	188.0	214.9	26.9	1.46	9.1m @ 2.86 % Li2O from 204.0m
\square	ASD005	397114	5585364	- 85	202	291	259.5	262.7	3.2	0.74	
	ASD005	397114	5585364	- 85	202	291	282.4	282.8	0.4	0.02	
\square	ASD006	397174	5585298	- 75	201	200	53.0	54.1	1.1	0.40	
	ASD006	397174	5585298	- 75	201	200	150.6	159.7	9.0	1.89	5.4m @ 2.71 % Li2O from 152.8m
	ASD007	397173	5585297	- 85	201	251	55.9	57.4	1.4	0.10	
<u>a</u>	ASD007	397173	5585297	- 85	201	251	164.4	179.3	14.9	0.92	5.4m @ 2.01 % Li2O from 165.9m
(IL	ASD007	397173	5585297	- 85	201	251	246.4	247.4	1.1	0.02	
à	ASD008A	397224	5585353	- 72	206	240	73.6	74.1	0.5	0.02	
\bigcup_{n}	ASD008A	397224	5585353	- 72	206	240	189.0	195.5	6.5	0.13	
	ASD008A	397224	5585353	- 72	206	240	195.5	202.0	6.5	0.72	3.3m @ 1.27 % Li2O from 195.9m
	ASD009	397225	5585353	- 85	219	258	73.8	74.2	0.5	0.02	
	ASD009	397225	5585353	- 85	219	258	208.8	236.2	27.5	2.12	22.1m @ 2.57 % Li2O from 210.5m
	ASD010	397164	5585405	- 72	196	264	66.9	69.0	2.1	0.47	
	ASD010	397164		- 72	196	264	212.1	236.1	24.0	1.80	3.9m @ 2.80 % Li2O from 214.1m
	ASD011	397164	5585405	- 86	196	330	61.3	62.3	1.1	0.04	
90	ASD011	397164	5585405	- 86	196	330	224.9	262.5	37.6	2.28	34.1m @ 2.48 % Li2O from 224.9m
	ASD011	397164	5585405	- 86	196	330	326.0	329.0	3.0	0.01	
	ASD012	397069	5585334	- 54	197	201	53.4	53.8	0.4	0.01	
\square	ASD012	397069	5585334	- 54	197	201	127.0	144.9	17.9	0.85	9.0m @ 1.27 % Li2O from 132.0m
\subseteq	ASD012	397069		- 54	197	201	164.0	178.2	14.2	0.37	
217	ASD013	397069	5585334	- 61	185	189	51.1	51.5	0.4	0.02	
\bigcup_{I}	ASD013	397069	5585334	- 61	185	189	126.2	138.5	12.3	0.95	6.3m @ 1.20 % Li2O from 126.2m
	ASD013	397069	5585334	- 61	185	189	168.1	171.4	3.3	0.90	
	ASD014	397016	5585295	- 65	186	177	27.0	27.3	0.3	0.08	
	ASD014	397016	5585295	- 65	186	177	66.8	72.0	5.2	0.25	
\geq	ASD014	397016	5585295	- 65	186	177	119.4	120.9	1.6	0.14	
	ASD014	397016	5585295	- 65	186	177	141.5	144.8	3.3	0.54	

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
	ASD015	397116	5585111	- 85	52	96	80.2	84.8	4.7	0.63	
	ASD015	397116	5585111	- 85	52	96	84.8	87.8	3.0	0.14	
	ASD016	397176	5585135	- 70	201	135	116.4	117.5	1.1	0.09	
	ASD017	397199	5585211	- 69	203	159	112.9	128.0	15.1	1.40	4.9m @ 2.54 % Li2O from 120.6m
	ASD018	397200	5585211	- 85	203	150	117.7	130.2	12.4	0.25	
	ASD019	397261	5585287	- 70	201	201	52.8	52.8	0.1	0.01	
=	ASD019	397261	5585287	- 70	201	201	168.6	173.6	5.0	0.80	
	ASD020	396662	5584688	- 65	296	110	97.8	98.5	0.6	0.01	
76	ASD021	396662	5584689	- 66	292	150	94.7	102.9	8.2	0.01	
	ASD021	396662	5584689	- 66	292	150	137.7	140.1	2.4	0.01	
	GTDD-21-0004	397241	5585452	- 74	213	341	91.7	92.3	0.6	0.01	
][]	GTDD-21-0004	397241	5585452	- 74	213	341	243.5	286.2	42.7	1.45	5.0m @ 2.75 % Li2O from 245.0m
	GTDD-21-0004	397241	5585452	- 74	213	341	338.0	341.0	3.0	0.01	
	GTDD-21-0005	397280	5585396	- 80	221	372	75.1	75.5	0.4	0.04	
	GTDD-21-0005	397280	5585396	- 80	221	372	242.9	251.8	8.9	1.46	6 m @ 2.06% Li2O from 245.0m
	GTDD-21-0005	397280	5585396	- 80	221	372	251.8	273.6	21.8	0.18	
	GTDD-21-0005	397280	5585396	- 80	221	372	340.0	342.7	2.7	0.73	
17	GTDD-22-0001	397013	5585304	- 78	276	201	123.2	134.4	11.2	1.68	7.0m @ 2.11 % Li2O from 124.0m
Y	GTDD-22-0002	397050	5585389	- 75	191	312	173.2	183.7	10.5	0.60	
	GTDD-22-0002	397050	5585389	- 75	191	312	233.8	236.0	2.2	0.35	
	GTDD-22-0002	397050	5585389	- 75	191	312	286.1	293.8	7.6	0.28	
	GTDD-22-0003	397130	5585453	- 77	194	403	230.9	251.9	21.0	2.03	9.7m @ 2.95% Li2O from 253.3m
	GTDD-22-0003	397130	5585453	- 77	194	403	308.5	310.8	2.3	1.58	
A	GTDD-22-0003	397130	5585453	- 77	194	403	332.7	335.6	2.9	1.48	2.0m @ 1.86 % Li2O from 332.7m
IJŁ	GTDD-22-0006	397313	5585361	- 69	219	341	69.7	70.5	0.8	0.02	
	GTDD-22-0006	397313	5585361	- 69	219	341	201.2	203.4	2.2	0.04	
31	GTDD-22-0006	397313	5585361	- 69	219	341	309.6	322.4	12.8	0.34	
	GTDD-22-0006	397313	5585361	- 69	219	341	310.0	313.1	3.1	0.79	1.58% @ 1.11% Li2O from 310.0m
	GTDD-22-0007	397367	5585301	- 69	227	336	191.9	196.4	4.5	0.30	
	GTDD-22-0007	397367	5585301	- 69	227	336	282.7	292.7	10.0	0.01	

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
G	TDD-22-0008	397294	5585473	- 76	226	345	270.9	276.5	5.6	0.14	
G	TDD-22-0008	397294	5585473	- 76	226	345	296.3	298.4	2.1	0.23	
G	TDD-22-0009	397360	5585423	- 81	219	342	285.0	294.0	9.0	0.31	
G	TDD-22-0009	397360	5585423	- 81	219	342	291.0	293.0	2.0	0.50	
G	TDD-22-0009	397360	5585423	- 81	219	342	294.0	294.9	0.9	0.03	
G	TDD-22-0010	397400	5585372	- 69	224	395	72.3	73.8	1.5	0.01	
G	TDD-22-0010	397400	5585372	- 69	224	395	268.4	269.4	1.1	0.02	
G	TDD-22-0010	397400	5585372	- 69	224	395	313.7	321.9	8.2	2.22	5.3m @ 2.85 % Li2O from 316.6m
G	TDD-22-0010	397400	5585372	- 69	224	395	372.8	373.4	0.6	0.04	
G	TDD-22-0011	397461	5585413	- 69	224	453	321.7	322.9	1.2	0.03	
G	TDD-22-0011	397461	5585413	- 69	224	453	384.8	386.4	1.6	0.03	
/] G	TDD-22-0012	397203	5585475	- 81	217	401	234.6	240.3	5.7	0.68	2.3m @ 1.21% Li2O from 238.0m
G	TDD-22-0012	397203	5585475	- 81	217	401	275.0	278.0	3.0	0.56	
G	TDD-22-0012	397203	5585475	- 81	217	401	350.5	356.5	6.0	0.47	
G	TDD-22-0012	397203	5585475	- 81	217	401	365.0	370.4	5.4	0.36	
G	TDD-22-0013	397278	5585404	- 80	37	389	85.6	100.0	14.4	0.01	
G	TDD-22-0013	397278	5585404	- 80	37	389	299.2	323.7	24.5	0.91	3.1m @ 2.05 % Li2O from 309.4m
G	TDD-22-0013	397278	5585404	- 80	37	389	331.3	332.8	1.5	0.45	
G	TDD-22-0014	397250	5585501	- 81	229	450	250.7	255.2	4.5	0.61	
G	TDD-22-0014	397250	5585501	- 81	229	450	309.1	311.5	2.4	0.23	
	TDD-22-0015	397203	5585475	- 75	217	395	237.0	247.0	10.0	1.24	9.0m @ 1.34 % Li2O from 238.0m
	TDD-22-0015	397203	5585475	- 75	217	395	260.7	263.8	3.2	1.35	2.4m @ 1.57 % Li2O from 260.7m
	TDD-22-0015	397203	5585475	- 75	217	395	346.7	348.0	1.3	0.83	
// 11	TDD-22-0015	397203	5585475	- 75	217	395	375.9	378.7	2.8	0.51	
G	TDD-22-0016	397256	5585422	- 77	224	350	82.6	83.5	0.9	0.01	
G	TDD-22-0016	397256	5585422	- 77	224	350	243.0	280.6	37.6	1.22	34.3m @ 1.32% Li2O from 244.0m & 3.6m @ 2.40 % Li2O from 271.9m
G	TDD-22-0016	397256	5585422	- 77	224	350	337.1	340.1	3.0	0.01	
G	TDD-22-0317	397130	5585453	- 81	234	396	214.1	222.9	8.8	0.24	

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
	GTDD-22-0317	397130	5585453	- 81	234	396	248.9	251.1	2.2	0.07	
	GTDD-22-0318	397130	5585453	- 64	227	372	219.6	225.4	5.8	0.21	
	GTDD-22-0320	397542	5585678	- 65	230	531	458.2	468.9	10.7	1.49	7.0m @ 1.65 % Li2O from 461.0m
	SA-17-05	396583	5584356	- 62	263	101	1.5	14.7	13.2	0.71	2.5m @ 1.63 % Li2O from 1.5m
	SA-17-05	396583	5584356	- 62	263	101	48.8	50.2	1.3	0.55	
\square	SA-17-07	396615	5584309	- 57	89	69	6.2	16.0	9.8	0.41	
	SA-17-07	396615	5584309	- 57	89	69	54.0	60.2	6.2	1.10	3.0m @ 1.83 % Li2O from 56.0m
	SA-17-08	396615	5584309	- 60	265	60	4.0	11.0	7.0	0.01	
21	SA-17-08	396615	5584309	- 60	265	60	31.3	38.1	6.8	0.84	2.0m @ 2.36 % Li2O from 35.0m
(JL	SA-17-11	396658	5584270	- 58	89	60	11.0	30.0	19.0	0.50	
10	SA-17-12	396658	5584270	- 59	271	60	14.5	20.1	5.6	0.06	
$\left(\right) \right)$	SA-17-15	396582	5584357	- 59	93	60	2.0	23.4	21.4	0.92	4.0m @ 1.91 % Li2O from 2.0m
	SA-17-16	396690	5584226	- 60	85	60	14.5	19.3	4.8	0.47	
	SA-18-01	396681	5584457	- 63	225	150	76.2	97.9	21.7	0.24	
	SA-18-02	396727	5584354	- 62	224	132	85.9	86.2	0.3	0.48	
	SA-18-02	396727	5584354	- 62	224	132	121.4	122.1	0.7	0.01	
	SA-18-05	396637	5584650	- 63	209	120	83.6	84.3	0.7	0.02	
$(\Pi \cap$	SA-18-07	396636	5584652	- 62	282	141	73.0	92.4	19.4	1.02	2.7m @ 1.87 % Li2O from 76.4m
30	SA-18-07	396636	5584652	- 62	282	141	95.5	108.8	13.3	1.71	12.3m @ 1.84 % Li2O from 95.5m
	SA-18-08	396566	5584730	- 70	242	141	6.0	7.7	1.7	0.36	
	SA-18-08	396566	5584730	- 70	242	141	72.5	73.1	0.6	0.02	
\square	SA-18-11	396748	5584744	- 64	243	240	157.1	158.4	1.3	0.01	
	SA-18-11	396748	5584744	- 64	243	240	171.0	172.0	1.0	0.54	
217	SA-18-13	396846	5585110	- 70	91	99	41.0	42.7	1.7	0.01	
$\mathbb{Y}_{\mathfrak{l}}$	SA-18-15	396748	5584744	- 47	232	228	173.1	174.8	1.7	0.01	
\subset	SL02-02	396981	5585206	- 90	0	72	45.8	60.0	14.3	1.74	11.7m @ 2.06 % Li2O from 45.8m
21	SL02-03	396978	5585159	- 90	0	54	25.7	40.7	15.1	1.11	5.4m @ 1.78 % Li2O from 33.5m
	SL02-04	396981	5585093	- 90	0	47	25.0	34.2	9.2	2.39	9.2m @ 2.39 % Li2O from 25.0m
	SL02-05	396977	5585068	- 90	0	39	18.0	21.6	3.6	0.94	2.9m @ 1.16 % Li2O from 18.0m
\square	SL02-08	396932	5585201	- 90	0	30	16.6	30.0	13.4	0.91	8.0m @ 1.35 % Li2O from 17.7m

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
\square	SL02-09	396914	5585162	- 90	0	30	1.5	22.1	20.7	0.96	4.8m @ 1.50 % Li2O from 3.2m
	SL02-10	396886	5585155	- 90	0	72	15.0	15.4	0.4	0.09	
	SL02-10	396886	5585155	- 90	0	72	51.9	62.6	10.7	0.82	3.2m @ 2.40 % Li2O from 52.9m
$(\square$	SL02-11	396885	5585201	- 90	0	54	24.1	24.2	0.1	0.01	
	SL02-14	396919	5585099	- 90	0	18	2.6	8.4	5.7	2.21	5.2m @ 2.44 % Li2O from 2.6m
\square	SL02-15	396941	5585101	- 90	0	24	4.7	14.0	9.3	0.83	0.9m @ 4.65 % Li2O from 6.4m
C	SL02-16	396914	5585162	- 90	0	40	1.7	22.0	20.3	0.44	4.0m @ 1.68 % Li2O from 2.7m
	SL02-17	396538	5584626	- 90	0	75	15.5	16.6	1.1	0.01	
61	SL02-17	396538	5584626	- 90	0	75	30.7	36.2	5.5	1.16	4.4m @ 1.46 % Li2O from 30.7m
$(\Box L$	SL02-18	396572	5584646	- 90	0	81	25.0	31.3	6.3	0.34	
aG	SL02-18	396572	5584646	- 90	0	81	50.3	61.2	10.9	1.06	4.9m @ 1.80 % Li2O from 52.1m
$\left(\bigcup \right) _{n}$	SL02-19	396554	5584395	- 90	0	27	2.3	18.1	15.9	0.28	
	SL02-20	396590	5584349	- 90	0	81	3.0	18.1	15.1	0.67	2.4m @ 1.66 % Li2O from 9.0m
	SL02-20	396590	5584349	- 90	0	81	58.1	62.0	3.9	0.22	
	SL02-21	396622	5584321	- 90	0	75	2.4	18.6	16.3	0.65	4.2m @ 1.17 % Li2O from 2.4m
	SL02-21	396622	5584321	- 90	0	75	50.8	52.0	1.2	0.29	
	SL02-22	396636	5584299	- 90	0	75	8.1	15.2	7.1	0.39	
$(\Pi \Gamma)$	SL02-22	396636	5584299	- 90	0	75	38.7	43.4	4.7	0.93	2.9m @ 1.40 % Li2O from 39.2m
90	SL02-23	396555	5584537	- 90	0	138	2.0	5.2	3.3	0.54	
$(\square$	SL02-24	396676	5584257	- 90	0	75	13.9	18.0	4.1	0.31	
	SL02-25	396911	5585023	- 90	0	50	1.4	1.6	0.2	0.83	
\square	SL02-26	396909	5585066	- 90	0	50	1.7	5.1	3.4	2.48	3.4m @ 2.48 % Li2O from 1.7m
	SL02-27	396964	5585126	- 90	0	50	1.9	26.9	25.0	1.26	9.0m @ 2.06 % Li2O from 3.0m
RA	SL02-28	396950	5585127	- 90	0	50	2.3	14.1	11.8	1.84	9.7m @ 2.17 % Li2O from 2.3m
U	SL02-29	396916	5585124	- 90	0	42	1.8	13.8	12.0	1.70	7.4m @ 2.19 % Li2O from 4.9m
<u></u>	SL02-30	396950	5585097	- 90	0	42	2.0	29.1	27.1	1.56	6.0m @ 3.36 % Li2O from 2.0m
a	SL02-31	396964	5585063	- 90	0	42	1.6	19.3	17.7	1.47	13.0m @ 1.94 % Li2O from 6.4m
	SL-09-27A	396964	5585126	- 90	0	95	62.0	67.6	5.6	1.88	2.4m @ 4.11 % Li2O from 64.3m
	SL-09-33	396924	5585203	- 90	0	114	14.4	40.5	26.1	1.58	7.2m @ 2.86 % Li2O from 15.9m
$(\Box$	SL-09-33	396924	5585203	- 90	0	114	90.2	93.5	3.3	0.94	

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li2O%	Including
\square	SL-09-33	396924	5585203	- 90	0	114	106.3	107.4	1.1	0.12	
	SL-09-34	397130	5585143	- 90	0	164	86.3	97.5	11.2	0.55	
	SL-09-36	397039	5585050	- 90	0	104	33.0	36.0	3.0	0.01	
$(\square$	SL-09-43	397023	5585168	- 90	0	122	51.6	59.3	7.8	0.86	4.0m @ 1.32 % Li2O from 53.0m
	SL-09-43	397023	5585168	- 90	0	122	66.0	67.1	1.1	0.02	
\square	SL-09-43	397023	5585168	- 90	0	122	97.3	99.0	1.7	0.14	
	SL-09-44	397000	5585132	- 90	0	98	32.8	39.6	6.8	2.09	6.8m @ 2.09 % Li2O from 32.8m
	SL-09-44	397000	5585132	- 90	0	98	72.7	75.8	3.1	2.46	2.3m @ 3.25 % Li2O from 72.7m
a	SL-09-45	397049	5585130	- 90	0	126	48.0	60.9	12.9	1.68	7.2m @ 2.58 % Li2O from 48.0m
	SL-09-46	397083	5585167	- 90	0	152	60.8	78.5	17.6	0.71	7.3m @ 1.06 % Li2O from 69.7m
aG	SL-09-47	397064	5585091	- 90	0	131	51.2	62.0	10.8	0.65	3.9m @ 1.51 % Li2O from 51.5m
$\left(\bigcup \right)$	SL-09-48	396627	5584655	- 90	0	89	73.4	79.0	5.6	0.45	
	SL-16-49	396997	5585113	- 60	271	52	33.6	43.3	9.7	1.44	8.2m @ 1.66 % Li2O from 33.7m
	SL-16-50	396970	5585113	- 61	278	50	16.9	35.1	18.2	1.62	3.0m @ 2.57 % Li2O from 16.9m
	SL-16-51	397013	5585092	- 60	272	50	32.0	36.3	4.3	0.65	
	SL-16-52	397023	5585113	- 61	278	48	36.0	42.1	6.0	1.88	6.0m @ 1.88 % Li2O from 36.0m
	SL-16-53	396971	5585029	- 61	257	50	16.9	17.1	0.2	0.03	
$(\cap \Gamma)$	SL-16-54	396960	5585050	- 59	267	51	2.5	20.7	18.2	2.29	17.5m @ 2.37 % Li2O from 2.5m
90	SL-16-55	396929	5585049	- 61	272	50	15.3	16.1	0.8	0.05	
(SL-16-56	396939	5585102	- 60	260	51	5.9	16.5	10.6	1.16	6.2m @ 1.84 % Li2O from 5.9m
	SL-16-57	396912	5585111	- 60	267	50	0.5	9.2	8.7	1.82	7.3m @ 2.15 % Li2O from 0.5m
$(\ $	SL-16-58	396937	5585115	- 59	263	51	2.8	14.1	11.2	2.15	11.2m @ 2.15 % Li2O from 2.8m
	SL-16-59	396915	5585095	- 61	275	49	4.0	11.0	7.0	2.29	6.0m @ 2.59 % Li2O from 4.0m
RA	SL-16-60	396941	5585144	- 60	274	50	3.0	25.5	22.5	1.26	12.0m @ 1.67 % Li2O from 3.0m
U	SL-16-61	396968	5585145	- 60	266	51	12.1	28.9	16.7	1.16	6.0m @ 2.11 % Li2O from 21.4m
\sum	SL-16-62	396967	5585177	- 60	260	105	28.5	40.6	12.1	1.95	11.1m @ 2.10 % Li2O from 29.6m
	SL-16-62	396967	5585177	- 60	260	105	93.2	97.1	3.9	1.62	3.0m @ 2.03 % Li2O from 93.2m
	SL-16-63	396994	5585167	- 62	266	105	36.4	46.8	10.4	1.37	6.0m @ 2.23 % Li2O from 37.6m
	SL-16-63	396994	5585167	- 62	266	105	88.5	103.3	14.8	1.50	12.3m @ 1.71 % Li2O from 91.0m
$(\Box$	SL-16-64	396998	5585238	- 59	263	102	8.2	8.6	0.3	0.01	

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
	SL-16-64	396998	5585238	- 59	263	102	73.0	83.9	11.0	2.05	6.8m @ 3.13 % Li2O from 74.0m
	SL-16-65	396963	5585242	- 60	270	101	63.1	63.5	0.4	0.10	
	SL-16-65	396963	5585242	- 60	270	101	63.5	65.4	1.9	0.18	
$(\square$	SL-16-66	396923	5585237	- 60	274	52	7.6	7.7	0.1	0.01	
	SL-16-66	396923	5585237	- 60	274	52	15.5	20.9	5.4	0.16	
\square	SL-16-67	396894	5585231	- 59	261	51	3.3	6.3	3.0	0.11	
	SL-16-68	396538	5584626	- 59	274	52	6.8	13.9	7.1	1.78	7.1m @ 1.78 % Li2O from 6.8m
	SL-16-68	396538	5584626	- 59	274	52	17.7	26.7	9.1	1.33	7.0m @ 1.59 % Li2O from 18.7m
a	SL-16-69	396534	5584572	- 61	87	52	5.0	15.7	10.7	0.79	4.0m @ 1.34 % Li2O from 9.0m
	SL-16-71	397028	5585169	- 60	258	102	43.8	52.5	8.8	1.03	5.3m @ 1.53 % Li2O from 44.8m
ale	SL-16-71	397028	5585169	- 60	258	102	87.0	97.5	10.6	0.62	
$\left(\bigcup \right)$)SL-16-72	396858	5585154	- 80	116	101	49.7	63.3	13.6	0.60	2.0m @ 2.46 % Li2O from 58.9m
	SL-16-72	396858	5585154	- 80	116	101	88.6	89.2	0.7	0.02	
	SL-16-73	397110	5585130	- 59	268	102	62.1	77.2	15.1	1.16	3.0m @ 2.67 % Li2O from 72.9m
	SL-17-01	396922	5585202	- 59	92	111	16.9	42.0	25.1	1.20	13.6m @ 1.56 % Li2O from 18.0m
	SL-17-01	396922	5585202		92	111	42.0	49.0	7.0	0.04	
	SL-17-01	396922	5585202	- 59	92	111	95.2	96.0	0.8	0.03	
$(\cap [$	SL-17-02	396916	5585182	- 59	86	110	0.6	5.8	5.2	0.00	
90	SL-17-02	396916	5585182	- 59	86	110	5.8	24.9	19.2	1.24	6.7m @ 1.81 % Li2O from 5.8m
$(\square$	SL-17-02	396916		- 59	86	110	81.8	83.8	2.0	0.01	
	SL-17-02	396916	5585182	- 59	86	110	103.0	105.6	2.6	1.48	2.6m @ 1.48 % Li2O from 103.0m
$(\square$	SL-17-03	396914	5585165	- 60	87	111	3.2	23.6	20.4	1.71	19.8m @ 1.75 % Li2O from 3.2m
	SL-17-03	396914		- 60	87	111	80.8	85.4	4.7	0.58	
RA	SL-17-04	396917	5585141	- 59	90	111	3.6	19.1	15.5	1.59	9.5m @ 2.22 % Li2O from 3.6m
y l	SL-17-04	396917	5585141		90	111	44.7	45.2	0.5	0.20	
	SL-17-04	396917	5585141		90	111	70.3	78.2	8.0	2.46	7.0m @ 2.79 % Li2O from 70.3m
a	SL-17-05	396913		- 61	94	131	-	8.6	8.6	1.69	7.0m @ 1.99 % Li2O from 0.0m
	SL-17-05	396913	5585107	- 61	94	131	68.8	71.2	2.4	0.10	
	SL-17-06	396915	5585094	- 59	99	111	3.0	9.8	6.8	2.55	6.8m @ 2.55 % Li2O from 3.0m
	SL-17-06	396915	5585094	- 59	99	111	71.0	73.0	2.0	0.01	

Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
SL-17-06	396915	5585094	- 59	99	111	91.1	93.6	2.5	0.01	
SL-17-07	396886	5585103	- 60	86	19	2.0	4.8	2.8	0.01	
SL-17-08	396886	5585088	- 60	96	111	1.5	4.5	3.0	0.01	
SL-17-08	396886	5585088	- 60	96	111	73.0	75.3	2.3	0.18	
SL-17-10	396885	5585142	- 59	83	108	6.1	6.5	0.4	0.01	
SL-17-10	396885	5585142	- 59	83	108	64.2	70.4	6.2	0.22	
SL-17-11	396885	5585165	- 60	89	107	11.8	18.1	6.3	0.09	
SL-17-11	396885	5585165	- 60	89	107	70.1	77.0	6.9	0.78	3.0m @ 1.55 % Li2O from 72.0m
SL-17-12	396884	5585185	- 61	93	110	16.1	18.5	2.4	0.01	
SL-17-12	396884	5585185	- 61	93	110	63.3	64.8	1.5	0.01	
SL-17-12	396884	5585185	- 61	93	110	80.2	98.1	17.9	0.07	
)\$L-17-13	396887	5585208	- 61	88	121	33.5	38.2	4.7	0.14	
SL-17-13	396887	5585208	- 61	88	121	95.0	111.1	16.1	0.84	3.0m @ 3.04 % Li2O from 102.0m
SL-17-14	396954	5585206	- 59	203	118	26.8	46.6	19.8	1.60	16.6m @ 1.89 % Li2O from 30.0m
SL-17-14	396954	5585206	- 59	203	118	95.6	99.0	3.4	1.82	3.4m @ 1.82 % Li2O from 95.6m
SL-17-16	396992	5585187	- 59	205	120	41.5	52.7	11.2	1.46	8.0m @ 1.95 % Li2O from 43.5m
SL-17-16	396992	5585187	- 59	205	120	78.4	78.6	0.1	0.01	
SL-17-16	396992	5585187	- 59	205	120	88.1	94.1	6.0	1.83	4.0m @ 2.44 % Li2O from 90.1m
SL-17-19	396976	5585224	- 59	209	132	45.0	61.0	16.0	0.86	7.0m @ 1.56 % Li2O from 52.0m
SL-17-19	396976	5585224	- 59	209	132	61.0	62.9	1.9	0.12	
SL-17-19	396976	5585224	- 59	209	132	105.2	112.7	7.5	1.28	5.2m @ 1.67 % Li2O from 105.2m
SL-17-21	397019	5585211	- 59	199	144	5.8	7.1	1.3	0.01	
SL-17-21	397019	5585211	- 59	199	144	49.2	65.4	16.2	1.04	7.0m @ 2.14 % Li2O from 51.2m
SL-17-21	397019	5585211	- 59	199	144	87.3	88.7	1.4	0.02	
SL-17-22	396938	5585225	- 58	153	123	35.9	47.9	12.0	1.87	7.4m @ 3.01 % Li2O from 35.9m
SL-17-22	396938	5585225	- 58	153	123	47.9	54.0	6.1	0.12	
SL-17-22	396938	5585225	- 58	153	123	92.2	93.0	0.8	0.04	
SL-17-22	396938	5585225	- 58	153	123	106.8	109.8	3.1	0.88	
SL-17-23	396922	5585245	- 60	139	114	7.1	7.3	0.2	0.01	
SL-17-23	396922	5585245	- 60	139	114	47.0	57.0	10.0	0.63	

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
	SL-17-23	396922	5585245	- 60	139	114	92.3	92.7	0.4	0.01	
	SL-17-23	396922	5585245	- 60	139	114	109.7	114.0	4.3	0.01	
	SL-17-24	396897	5585275	- 60	142	140	105.5	113.3	7.7	0.36	
$(\square$	SL-17-24	396897	5585275	- 60	142	140	117.4	121.6	4.2	0.48	
	SL-17-33	397010	5585237	- 60	204	111	51.8	71.6	19.8	1.99	6.2m @ 2.48 % Li2O from 51.8m
\square	SL-17-33	397010	5585237	- 60	204	111	100.3	100.5	0.2	0.01	
C	SL-17-35	396974	5585260	- 58	204	111	22.8	23.0	0.2	0.01	
	SL-17-35	396974	5585260	- 58	204	111	65.5	71.0	5.5	1.37	5.5m @ 1.37 % Li2O from 65.5m
a	SL-17-35	396974	5585260	- 58	204	111	102.7	103.7	1.0	0.01	
	SL-17-36	397040	5585259	- 61	199	144	11.9	12.2	0.3	0.01	
aG	SL-17-36	397040	5585259	- 61	199	144	79.7	83.7	4.0	1.98	3.0m @ 2.45 % Li2O from 79.7m
$\left(\bigcup \right)$	SL-17-36	397040	5585259	- 61	199	144	125.8	126.4	0.5	0.01	
	SL-17-36	397040	5585259	- 61	199	144	136.0	136.9	0.9	0.01	
	SL-17-37	397008	5585267	- 60	211	140	21.1	21.3	0.2	0.01	
	SL-17-37	397008	5585267	- 60	211	140	65.5	83.6	18.1	0.72	2.0m @ 1.81 % Li2O from 65.5m
	SL-17-37	397008	5585267	- 60	211	140	83.6	85.0	1.4	0.02	
	SL-17-37	397008	5585267	- 60	211	140	125.0	129.0	4.0	0.01	
$(\cap \Gamma)$	SL-17-39	396979	5585279	- 61	207	153	29.4	29.7	0.3	0.01	
90	SL-17-39	396979	5585279	- 61	207	153	69.7	80.3	10.6	1.59	4.0m @ 3.49 % Li2O from 72.0m
	SL-17-39	396979	5585279	- 61	207	153	123.8	131.3	7.6	0.39	
	SL-17-40	397032	5585190	- 61	197	126	53.5	65.4	11.9	0.85	6.0m @ 1.43 % Li2O from 56.5m
$(\ $	SL-17-40	397032	5585190	- 61	197	126	105.9	111.7	5.7	0.01	
	SL-17-41	397059	5585196	- 62	209	126	53.5	72.0	18.5	1.60	7.4m @ 2.99 % Li2O from 54.5m
RA	SL-17-41	397059	5585196	- 62	209	126	105.8	107.7	1.8	0.98	
y r	SL-17-42	397076	5585179	- 61	219	123	55.1	68.3	13.2	2.07	12.3m @ 2.22 % Li2O from 56.0m
	SL-17-43	397047	5585219	- 60	203	125	54.8	68.3	13.6	0.82	6.3m @ 1.48 % Li2O from 62.0m
a	SL-17-43	397047	5585219	- 60	203	125	76.9	78.3	1.4	1.40	
	SL-17-43	397047	5585219	- 60	203	125	106.4	111.1	4.8	1.07	1.8m @ 2.35 % Li2O from 108.4m
\sim	SL-17-44	397080	5585209	- 60	202	126	62.2	78.4	16.3	1.73	11.0m @ 2.33 % Li2O from 63.2m
$(\bigcirc$	SL-17-45	397105	5585214	- 59	197	125	76.3	92.5	16.2	1.29	7.0m @ 2.12 % Li2O from 83.3m

Green Technology Metals

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
	SL-17-46	397122	5585216	- 58	202	117	91.5	104.9	13.4	1.07	7.9m @ 1.63 % Li2O from 97.0m
	SL-17-47	397097	5585186	- 61	200	126	68.2	81.7	13.6	0.90	3.7m @ 1.41 % Li2O from 78.0m
	SL-17-48	397119	5585184	- 60	194	114	84.4	97.9	13.5	0.88	9.0m @ 1.17 % Li2O from 88.0m
$(\square$	SL-17-49	397137	5585196	- 58	201	120	98.5	109.8	11.3	0.98	3.3m @ 2.22 % Li2O from 106.5m
	SL-17-50	397128	5585167	- 61	198	114	87.9	99.1	11.2	0.85	3.0m @ 1.88 % Li2O from 92.0m
\square	SL-17-51	397153	5585176	- 58	200	123	102.4	107.2	4.8	0.02	
	SL-17-53	397091	5585230	- 59	207	114	70.8	88.5	17.7	2.22	15.0m @ 2.55 % Li2O from 72.0m
	SL-17-54	397075	5585247	- 60	200	126	75.0	87.6	12.6	0.01	
	SL-17-54	397075	5585247	- 60	200	126	114.3	118.0	3.8	0.37	
	SL-17-56	397115	5585241	- 61	203	124	88.5	102.9	14.4	1.34	3.3m @ 2.07 % Li2O from 88.7m
ale	SL-17-57	397133	5585230	- 62	191	120	99.4	109.0	9.6	0.74	4.0m @ 1.35 % Li2O from 105.0m
$\left(\bigcup \right)$	SL-17-58	397148	5585215	- 60	204	126	105.6	115.3	9.7	0.56	
	SL-17-59	397082	5585274	- 60	200	132	107.1	122.9	15.8	1.17	7.9m @ 1.65 % Li2O from 115.0m
	SL-17-60	397123	5585261	- 60	199	129	103.1	118.8	15.7	0.91	7.8m @ 1.65 % Li2O from 111.0m
	SL-17-61	397104	5585281	- 62	200	141	112.6	133.9	21.3	1.40	5.0m @ 2.95 % Li2O from 127.6m
	SL-17-62	397145	5585250	- 59	201	129	105.1	122.3	17.2	1.02	4.0m @ 2.64 % Li2O from 117.0m
	SL-17-63	397058	5585277	- 62	199	120	17.6	24.1	6.5	0.01	
	SL-17-63	397058	5585277	- 62	199	120	36.5	44.1	7.6	0.01	
90	SL-17-63	397058	5585277	- 62	199	120	95.8	110.1	14.3	1.71	9.0m @ 2.44 % Li2O from 99.0m
	SL-17-64	397052	5585252	- 60	197	132	27.8	28.5	0.8	0.01	
	SL-17-64	397052	5585252	- 60	197	132	83.4	89.4	6.0	1.18	3.0m @ 1.71 % Li2O from 86.4m
$(\ $	SL-17-64	397052	5585252	- 60	197	132	102.5	103.0	0.5	0.15	
	SL-17-64	397052	5585252	- 60	197	132	120.0	123.4	3.4	0.64	
RA	SL-17-65	397186	5585265	- 60	203	150	127.4	139.6	12.3	1.24	4.0m @ 2.68 % Li2O from 129.4m
y I	SL-17-66	397147	5585275	- 61	200	141	121.2	134.4	13.2	1.00	3.0m @ 1.96 % Li2O from 123.0m
	SL-17-67	397113	5585298	- 61	202	153	44.6	44.9	0.3	0.01	
	SL-17-67	397113	5585298	- 61	202	153	123.9	144.9	21.1	1.32	17.9m @ 1.43 % Li2O from 127.0m
	SL-17-68	397088	5585295	- 61	201	141	42.1	42.5	0.4	0.01	
	SL-17-68	397088	5585295	- 61	201	141	119.8	133.4	13.7	1.10	12.2m @ 1.20 % Li2O from 119.8m
	SL-17-69	397100	5585317	- 61	199	156	77.8	81.1	3.3	0.01	

	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Including
	SL-17-69	397100	5585317	- 61	199	156	133.9	147.3	13.4	1.24	11.1m @ 1.41 % Li2O from 133.9m
	SL-17-70	397175	5585296	- 62	200	156	52.1	52.6	0.5	0.01	
	SL-17-70	397175	5585296	- 62	200	156	138.8	149.6	10.8	1.20	6.0m @ 1.90 % Li2O from 141.0m
	SL-17-71	397142	5585309	- 64	196	165	136.2	155.6	19.4	1.32	15.0m @ 1.57 % Li2O from 138.0m
	SL-17-72	397110	5585110	- 61	263	120	68.5	75.2	6.7	0.92	6.7m @ 0.92 % Li2O from 68.5m
\square	SL-17-73	397128	5585098	- 62	268	102	77.0	82.1	5.1	0.01	
_	SL-17-74	397098	5585088	- 64	271	102	59.4	68.3	8.9	0.56	
	SL-17-75	397130	5585125	- 63	264	108	71.3	86.8	15.5	0.97	8.0m @ 1.25 % Li2O from 71.3m
24	SL-17-76	397088	5585143	- 64	261	81	55.7	67.6	11.9	1.45	10.6m @ 1.60 % Li2O from 55.7m
	SL-17-77	397066	5585147	- 62	241	75	48.8	56.8	8.0	2.04	5.0m @ 3.00 % Li2O from 49.8m