17 June 2022 ASX RELEASE # <u>Lithium-Cesium-Tantalum Pegmatites Identified - West Spargoville Lithium Project</u> ### **HIGHLIGHTS:** - Results from aircore drilling confirm the presence of Lithium-Cesium-Tantalum (LCT) pegmatites as the source of surficial geochemical anomalism. - Large LCT halo (extending over 2km and up to 300m wide) identified in aircore drilling to be followed up with reverse-circulation drilling to test for bedrock mineralisation. - Follow-up mapping identifies outcropping, spodumene bearing pegmatite within an interpreted pegmatite dyke swarm. - 10 reverse-circulation drillholes of the 57-hole program completed with drilling initially targeting the interpreted pegmatite dyke swarm. Marquee Resources Limited ("Marquee" or "Company") (ASX:MQR) is pleased to update the market about the ongoing exploration activities at the West Spargoville Project ("WSP" or "Project"). The company has received results from a 93-hole, 5,470m aircore drilling program, which has confirmed the presence of highly fractionated LCT-type pegmatites as the source of surficial geochemical anomalism. Aircore drilling was completed in the eastern portion of the tenure, where the depth of weathering extends up to 60m deep, with elevated lithium-cesium-tantalum values in weathered material associated with elevated pathfinder elements (Table 1). A large geochemical halo (90<sup>th</sup> percentile Li > 64ppm) extending over 2 kilometres and up to 300m wide has been identified from the aircore drilling, with the bedrock source to be targeted in follow-up reverse-circulation (RC) drilling. Table 1: Best assay result from aircore drilling. | Hole_ID | mFrom | mTo | Be_ppm | Cs_ppm | Li_ppm | Nb_ppm | Rb_ppm | Sn_ppm | Ta_ppm | | |---------|-------|-----|--------|--------|--------|--------|--------|--------|--------|---| | MQAC80 | 44 | 48 | 8.04 | 97.5 | 69.7 | 65.7 | 1060 | 75.2 | 35.4 | ĺ | | MQAC80 | 48 | 52 | 10.4 | 295 | 102 | 24.8 | 1300 | 36.8 | 14.4 | | | MQAC80 | 52 | 56 | 16.1 | 313 | 119 | 26 | 1290 | 41 | 20.9 | | | MQAC80 | 56 | 57 | 23.3 | 169 | 63.3 | 58.9 | 1370 | 65.7 | 42.5 | | Note: median values (ppm) as follows Be = 0.96, Cs = 0.6, Li = 34.7, Nb = 7.2, Rb = 6.7, Sn = 1.5, Ta = 0.57 In preparation for RC drilling further mapping was completed which identified a NE-striking, spodumene bearing pegmatite (Figure 1) in an area considered highly prospective due to the results from auger geochemistry and deep ground-penetrating radar (DGPR) (Refer: MQR ASX Release 21st April 2022). RC drilling has begun to test the NE-striking corridor with multiple pegmatites intersected in drilling thus far. The first batch of samples have been delivered to the laboratory with results expected in 4-6 weeks. Figure 1: LEFT – Outcropping, spodumene bearing pegmatite. RIGHT – Grab sample collected from outcrop with abundant, elongate spodumene crystals. | Sample ID | Easting | Northing | Comments | |-----------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------| | MQRK101 | 353023 | 6523929 | <ul> <li>Outcropping quartz-plagioclase-muscovite pegmatite dyke</li> <li>Spodumene (~10 – 15%)</li> <li>Dipping ~80° to 320°</li> </ul> | In relation to the disclosure of visual mineralisation the Company cautions that visual estimates of spodumene abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and the grade of visual mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. ## **Executive Chairman Comment:** Marquee Executive Chairman, Mr Charles Thomas, commented: "To identify pegmatites with clear LCT geochemical signatures is highly encouraging and confirms the prospectivity of the West Spargoville Project. There had been no lithium exploration completed at the Project 12 months ago so we are making great progress and look forward to keeping the market updated as more results come to light. We are currently systematically exploring the Project with RC drilling continuing for the forseeable future and will begin another round of aircore drilling in the last week of June so it is a very exciting time for the Company." #### **Exploration Update & Forward Work Plan** Results have been received from a 93-hole, 5,470m aircore drilling program. The aircore program was completed in the eastern portion of the tenure where there is a well-developed weathering profile up to and beyond 60m deep. As such, the aircore results are from highly weathered material where geochemical dispersion is prevalent. The assay results show a clear LCT-pegmatite association with tantalum concentrated preferentially in the upper saprolite and lithium concentrated in the lower saprolite (Figure 2). Follow-up RC drilling is required to test for the bedrock source of the geochemical dispersion halo. The geological setting is analogous to the Cade Pegmatite at the Dome North Project where mineralised pegmatite is hosted within the Black Flag Beds beneath a well-developed weathering profile (Refer ESS ASX Release 14<sup>th</sup> January 2022). RC drilling has begun to test multiple geochemical anomalies detected during the auger program (Refer: MQR ASX Release 21<sup>st</sup> April 2022). The first drillholes of the program have targeted an interpreted dyke swarm in the vicinity of recently mapped outcropping spodumene-bearing pegmatite dyke (Figure 3). Multiple pegmatitic dykes have been intersected of varying thicknesses (Figure 2), with the first batch of assays at the lab for analysis. Results are expected within 4-6 weeks. Figure 2: Selected sections from aircore drilling highlighting the observed geochemical dispersion halos. Lithium values displayed on the left of the drillhole trace, tantalum values on the right. Figure 3: Completed and planned drilling at the West Spargoville Project ## The West Spargoville Project The WSP is located in the core of the Southern Yilgarn Lithium Belt, an area that is well known for spodumene deposits that include; the Bald Hill Mine, the Mt Marion Mine, the Buldania Project and Essential Metals Pioneer Dome Project. The world-class Earl Grey deposit and the Mt Cattlin Mine are located further west and south respectively (Figure 5). Marquee entered into an Option Agreement to acquire The Project (refer ASX Release dated 7<sup>th</sup> July 2020 and 23<sup>rd</sup> August 2021) which consists of 80km<sup>2</sup> of highly prospective tenure with very limited drilling historically completed. Northeast trending structures are the primary structural control on the location of pegmatites at the West Spargoville Project with high-grade lithium bearing pegmatites (Refer MXR ASX Release dated 15 Sept 2016) and recently mapped pegmatites situated along these structures, as observed in magnetics data. This structural trend is analogous to the orientation of spodumene bearing pegmatites at the Dome North Project 40km to the south (Refer ESS ASX Release dated 19 July 2021). In the Yilgarn Craton, pegmatites are located within 10 kilometres of a common granitic source with proximal pegmatites the least evolved and poorly mineralized, containing only the general rock-forming minerals. More distal and evolved pegmatites may include beryl, beryl and columbite, tantalite and Li aluminosilicates, and pollucite in the most evolved pegmatites. The spatial zonation of pegmatites around a common granitic source is a fundamental starting point for exploration models (London, 2018). In these Archean settings, regional-scale structures control the distribution of pegmatites, being responsible for focusing and transporting fluids and magmas. Figure 4: Location of the West Spargoville Project Table 2: Drillhole collar information | | F | | <b>-1</b> . | D | D: . | | | F | N | EL. | D | D: . | | | F | N. aller | EL. | D | D: . | | |---------|--------|----------|-------------|----|------|----|--------|--------|----------|-----|----|------|----|--------|--------|----------|-----|----|------|----| | Hole ID | | Northing | | | - | | | _ | Northing | | | | | | | Northing | | | - | | | MQAC01 | | 6525833 | 349 | 60 | | | MQAC32 | 354866 | 6526645 | 385 | 60 | | | MQAC63 | | | | 60 | | | | MQAC02 | 355258 | 6525831 | 350 | 60 | | | MQAC33 | 354846 | 6526639 | 389 | 60 | -60 | | MQAC64 | 354531 | 6527456 | | 60 | | | | MQAC03 | 355226 | 6525836 | 367 | 60 | -60 | | MQAC34 | 354821 | 6526638 | 392 | 60 | -60 | | MQAC65 | 354508 | 6527448 | 371 | 60 | | | | MQAC04 | 355199 | 6525852 | 367 | 60 | -60 | 90 | MQAC35 | 354791 | 6526640 | 395 | 60 | -60 | 90 | MQAC66 | 354488 | 6527432 | 361 | 60 | | | | MQAC05 | 355178 | 6525849 | 368 | 60 | -60 | 90 | MQAC36 | 354761 | 6526639 | 360 | 60 | -60 | 90 | MQAC67 | 354460 | 6527420 | 361 | 60 | -60 | 90 | | MQAC06 | 355151 | 6525845 | 355 | 60 | -60 | 90 | MQAC37 | 354742 | 6526646 | 361 | 60 | -60 | 90 | MQAC68 | 354434 | 6527437 | 362 | 60 | -60 | 90 | | MQAC07 | 355125 | 6525844 | 360 | 60 | -60 | 90 | MQAC38 | 354718 | 6526629 | 361 | 60 | -60 | 90 | MQAC69 | 354413 | 6527452 | 361 | 60 | -60 | 90 | | MQAC08 | 355103 | 6525848 | 361 | 60 | -60 | 90 | MQAC39 | 354693 | 6526642 | 363 | 60 | -60 | 90 | MQAC70 | 354381 | 6527458 | 362 | 60 | -60 | 90 | | MQAC09 | 355077 | 6525855 | 369 | 60 | -60 | 90 | MQAC40 | 354667 | 6526645 | 362 | 60 | -60 | 90 | MQAC71 | 354356 | 6527446 | 361 | 24 | -60 | 90 | | MQAC10 | 355052 | 6525861 | 371 | 60 | -60 | 90 | MQAC41 | 354640 | 6526633 | 364 | 60 | -60 | 90 | MQAC72 | 354334 | 6527448 | 361 | 60 | -60 | 90 | | MQAC11 | 355025 | 6525857 | 372 | 60 | -60 | 90 | MQAC42 | 354613 | 6526639 | 365 | 60 | -60 | 90 | MQAC73 | 354306 | 6527447 | 361 | 60 | -60 | 90 | | MQAC12 | 355006 | 6525850 | 373 | 60 | -60 | 90 | MQAC43 | 354593 | 6526646 | 370 | 60 | -60 | 90 | MQAC74 | 354281 | 6527439 | 360 | 60 | -60 | 90 | | MQAC13 | 354977 | 6525848 | 376 | 60 | -60 | 90 | MQAC44 | 354568 | 6526647 | 374 | 60 | -60 | 90 | MQAC75 | 354253 | 6527441 | 362 | 60 | -60 | 90 | | MQAC14 | 354950 | 6525833 | 379 | 60 | -60 | 90 | MQAC45 | 354539 | 6526646 | 377 | 60 | -60 | 90 | MQAC76 | 354234 | 6527447 | 362 | 60 | -60 | 90 | | MQAC15 | 354926 | 6525828 | 380 | 60 | -60 | 90 | MQAC46 | 354634 | 6527041 | 361 | 60 | -60 | 90 | MQAC77 | 354418 | 6527843 | 355 | 60 | -60 | 90 | | MQAC16 | 354899 | 6525824 | 379 | 60 | -60 | 90 | MQAC47 | 354615 | 6527040 | 359 | 51 | -60 | 90 | MQAC78 | 354391 | 6527840 | 350 | 60 | -60 | 90 | | MQAC17 | 354873 | 6525812 | 382 | 60 | -60 | 90 | MQAC48 | 354587 | 6527034 | 356 | 60 | -60 | 90 | MQAC79 | 354366 | 6527843 | 349 | 60 | -60 | 90 | | MQAC18 | 355281 | 6526250 | 352 | 60 | -60 | 90 | MQAC49 | 354563 | 6527049 | 357 | 60 | -60 | 90 | MQAC80 | 354343 | 6527846 | 347 | 57 | -60 | 90 | | MQAC19 | 355253 | 6526257 | 352 | 60 | -60 | 90 | MQAC50 | 354537 | 6527061 | 356 | 60 | -60 | 90 | MQAC81 | 354315 | 6527852 | 349 | 60 | -60 | 90 | | MQAC20 | 355228 | 6526238 | 354 | 60 | -60 | 90 | MQAC51 | 354513 | 6527047 | 354 | 60 | -60 | 90 | MQAC82 | 354290 | 6527854 | 352 | 60 | -60 | 90 | | MQAC21 | 355201 | 6526237 | 355 | 60 | -60 | 90 | MQAC52 | 354491 | 6527041 | 355 | 60 | -60 | 90 | MQAC83 | 354268 | 6527852 | 357 | 60 | -60 | 90 | | MQAC22 | 355179 | 6526236 | 358 | 60 | -60 | 90 | MQAC53 | 354461 | 6527045 | 355 | 60 | -60 | 90 | MQAC84 | 354244 | 6527853 | 362 | 50 | -60 | 90 | | MQAC23 | 355152 | 6526242 | 358 | 60 | -60 | 90 | MQAC54 | 354440 | 6527055 | 355 | 60 | -60 | 90 | MQAC85 | 354215 | 6527845 | 368 | 60 | -60 | 90 | | MQAC24 | 355125 | 6526242 | 359 | 60 | -60 | 90 | MQAC55 | 354412 | 6527062 | 356 | 60 | -60 | 90 | MQAC86 | 354196 | 6527840 | 377 | 60 | -60 | 90 | | MQAC25 | 355103 | 6526245 | 363 | 60 | -60 | 90 | MQAC56 | 354386 | 6527045 | 357 | 60 | -60 | 90 | MQAC87 | 354169 | 6527848 | 377 | 60 | -60 | 90 | | MQAC26 | 355076 | 6526242 | 363 | 60 | -60 | 90 | MQAC57 | 354359 | 6527027 | 357 | 60 | -60 | 90 | MQAC88 | 354138 | 6527849 | 379 | 60 | -60 | 90 | | MQAC27 | 355046 | 6526244 | 367 | 60 | -60 | 90 | MQAC58 | 354332 | 6527026 | 359 | 60 | -60 | 90 | MQAC89 | 354114 | 6527835 | 379 | 60 | -60 | 90 | | MQAC28 | 355027 | 6526245 | 367 | 60 | -60 | 90 | MQAC59 | 354309 | 6527029 | 360 | 60 | -60 | 90 | MQAC90 | 354085 | 6527825 | 367 | 60 | -60 | 90 | | MQAC29 | 354940 | 6526645 | 380 | 60 | -60 | 90 | MQAC60 | 354631 | 6527435 | 360 | 60 | -60 | 90 | MQAC91 | 354058 | 6527829 | 368 | 60 | -60 | 90 | | MQAC30 | 354922 | 6526646 | 383 | 14 | -60 | 90 | MQAC61 | 354607 | 6527441 | 367 | 60 | -60 | 90 | MQAC92 | 354043 | 6527839 | 369 | 60 | -60 | 90 | | MQAC31 | 354896 | 6526653 | 384 | 60 | -60 | 90 | MQAC62 | 354581 | 6527458 | 363 | 60 | -60 | 90 | MQAC93 | 354022 | 6527840 | 371 | 54 | -60 | 90 | Figure 6: Schematic model that shows regional zoning patterns in a pegmatite field (from Bradley et al., 2017) #### References Bradley, DC, McCauley, AD and Stillings, LL 2017, Mineral-deposit model for lithium-cesium-tantalum pegmatites: United States Geological Survey, Reston, VA, Scientific Investigations Report 2010-5070, 58p. London, D 2018, Ore-forming processes within granitic pegmatites: Ore Geology Reviews, v. 101, p. 349–383, doi:10.1016/j.oregeorev.2018.04.020. #### **COMPETENT PERSON STATEMENT** The information in this report which relates to Exploration Results is based on information compiled by Dr James Warren, a Competent Person who is a member of the Australian Institute of Geoscientists. Dr Warren is the Chief Technical Officer of Marquee Resources Limited. Dr Warren has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Warren consents to the inclusion in this report of the matters based on the information in the form and context in which it appears. ## **Forward Looking Statements** Statements contained in this release, particularly those regarding possible or assumed future performance, costs, dividends, production levels or rates, prices, resources, reserves or potential growth of Marquee Resources Limited, are, or may be, forward looking statements. Such statements relate to future events and expectations and, as such, involve known and unknown risks and uncertainties. Actual results and developments may differ materially from those expressed or implied by these forward-looking statements depending on a variety of factors. This ASX Release has been approved by the Board of Directors. Charles Thomas Charles Thomas – Executive Chairman Marquee Resources info@marqueeresources.com.au # JORC Code, 2012 Edition – Table 1 report template # Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.) | | JORC Code explanation | Commentary | |------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>The sampling was carried out using aircore drilling. 93 holes were drilled as part of the program.</li> <li>Drill spoils were collected via the onboard cyclone at intervals of every 1m and placed in piles for sampling by MQR geologists.</li> <li>Sampling involved collecting ~2kg of sample material via scoop sampling of the drill spoils and placing the material into numbered calico bags.</li> <li>4m composite samples were collected during this program.</li> <li>Sampling was carried out under the Company's protocols and QAQC procedures as per industry best practice. See further details below.</li> <li>Aircore holes were drilled with a 60mm blade bit to obtain 1m samples from which a 2-3kg composite sample was collected and sent to the laboratory for 64 element geochemical analysis and gold assays.</li> <li>Assaying was completed by Labwest Minerals Analysis Pty Ltd, 10 Hod Way, Malaga WA 6090.</li> <li>Samples were dried, crushed (~2mm) and rotary divided where required. Pulverisation is undertaken by LM1 mill, and bowls are barrenwashed after each sample.</li> <li>For gold analysis (WAR-25); A 25g portion of pulverised sample is analysed for gold content using aqua-regia digestion, with determination by ICP-MS to achieve high recovery and low detection limits (0.5ppb).</li> <li>For 64 element geochemical analysis (MMA-04); the MMA technique is a microwave-assisted, HF-based digestion that effectively offers total recovery for all but the most refractory of minerals. A portion of sample is digested in an HF-based acid mixture under high pressure and temperature in microwave apparatus for analysis, with determination of 64 elements including Rare-Earths by a combination of ICP-MS and ICP-OES.</li> </ul> | | Drilling<br>techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, don'th of diamend toils, force). | <ul> <li>A slim-line RC drill rig, owned and operated by K-Drill, was used to collect the samples.</li> <li>The blade aircore bit has a diameter of 60mm</li> </ul> | depth of diamond tails, face- | | Criteria | JORC Code explanation | Commentary | |---|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | \ | sampling bit or other type, whether core is oriented and if so, by what method, etc). | | | | Drill sample recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul> | <ul> <li>All samples collected were dry.</li> <li>No Significant groundwater was encountered</li> <li>Samples recoveries were generally &gt;90%.</li> <li>Aircore samples are collected through a cyclone and deposited in spoil piles with lab samples up to 3kg collected to enable a full sample pulverisation.</li> <li>No sample bias or material loss was observed to have taken place during drilling activities. There was no discernable change in the sample recoveries between mineralised, and unmineralised samples.</li> <li>All chips were geologically logged by Company geologists using the Marquee logging scheme. No geotechnical logging was undertaken.</li> <li>Logging of aircore chips records lithology, mineralogy, mineralisation, weathering, colour and other features of the samples.</li> <li>Representative samples, not for assay samples, are wet-sieved and stored in a chip trays for geological reference.</li> </ul> | | ) | Logging | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul> | Samples were qualitatively logged with colour, and lithology of end of hole material. | | | Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for</li> </ul> | <ul> <li>All company samples submitted for analysis underwent drying and were pulverized to 85 % passing 75 microns each, from which a 0.25 g charge was taken for four-acid digest and ICP analysis.</li> <li>This sample preparation technique is considered appropriate for the type and tenor of mineralisation.</li> <li>The laboratory inserted certified reference material and blanks into the analytical sequence and analysed lab duplicates. These appear to confirm accuracy and precision of the sample assays.</li> </ul> | | Criteria | JORC Code explanation | Commentary | |--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | <ul> <li>instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | | | Quality of assay data and laboratory tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>Assaying was completed by Labwest Minerals Analysis Pty Ltd, 10 Hod Way, Malaga WA 6090.</li> <li>For gold analysis (WAR-25); A 25g portion of pulverised sample is analysed for gold content using aqua-regia digestion, with determination by ICP-MS to achieve high recovery and low detection limits (0.5ppb).</li> <li>For 64 element geochemical analysis (MMA-04); the MMA technique is a microwave-assisted, HF-based digestion that effectively offers total recovery for all but the most refractory of minerals. A portion of sample is digested in an HF-based acid mixture under high pressure and temperature in microwave apparatus for analysis, with determination of 64 elements including Rare-Earths by a combination of ICP-MS and ICP-OES from the historical reports.</li> </ul> | | Verification of sampling and assaying | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul> | <ul> <li>This release refers results from a recently completed 93-hole, 5,470m aircore program.</li> <li>Data was recorded digitally and in hard copy by on-site Company field staff.</li> <li>All field data is directly recorded in hard copy, then sent electronically to the Chief Technical Officer in the office. Assay files are received electronically from the Laboratory. All data is stored in an Access database system, and maintained by the Database Manager</li> <li>All results have been collated and checked by the Company's Chief Technical Officer.</li> </ul> | | Location of data points | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul> | <ul> <li>The coordinate system used is MGA_94 Zone 51.</li> <li>A handheld GPS was used to record the position of the auger holes. Horizontal accuracy was +/- 3 metres.</li> <li>Location accuracy at collars is considered adequate for this stage of exploration.</li> </ul> | | Data spacing<br>and<br>distribution | <ul> <li>Data spacing for reporting of<br/>Exploration Results.</li> <li>Whether the data spacing and<br/>distribution is sufficient to establish<br/>the degree of geological and grade<br/>continuity appropriate for the<br/>Mineral Resource and Ore Reserve</li> </ul> | <ul> <li>Company aircore hole spacing was approximately 25 metres along 400 metrespaced lines.</li> <li>The spacing is appropriate for this stage of exploration.</li> <li>The samples are not appropriate for Mineral</li> </ul> | | Criteria | JORC Code explanation | Commentary | |---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | <ul><li>estimation procedure(s) and classifications applied.</li><li>Whether sample compositing has been applied.</li></ul> | Resource estimation. | | Orientation of<br>data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>The stratigraphy within the Project area strikes NNW while interpreted pegmatite dykes strike NE and NW.</li> <li>Sampling was completed on east-west oriented lines, roughly perpendicular to the stratigraphy and the interpreted orientation of pegmatites</li> </ul> | | Sample<br>security | The measures taken to ensure sample security. | <ul> <li>Company samples were kept by the company<br/>representatives and submitted directly to the<br/>laboratory.</li> </ul> | | Audits or reviews | <ul> <li>The results of any audits or reviews<br/>of sampling techniques and data.</li> </ul> | <ul> <li>No audits or reviews beyond consultant<br/>geologists have been conducted on the<br/>exploration data.</li> </ul> | # Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | ) | Criteria | JORC Code explanation | Commentary | |---|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The aircore drilling occurred on granted tenement E15/1743.</li> <li>Marquee entered into an Option Agreement to acquire the tenement (refer ASX Release dated 7 July 2020) and undertake exploration on the project.</li> <li>The tenement is in good standing.</li> </ul> | | ) | Exploration<br>done by other<br>parties | Acknowledgment and appraisal of exploration by other parties. | <ul> <li>The area has been subject to historical gold prospecting with several deposits located and mined within the region.</li> <li>The extensive publicly available surface geochemistry database consists of approximately five-thousand data points, within the Project area, made up of predominantly auger soil samples, however less than 10% of the samples were assayed for lithium. By contrast, historical drilling completed within the Project area consists of only 123 wide-spaced</li> </ul> | | Criteria | JORC Code explanation | Commentary | |---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | RAB holes, with an average depth of 43m, and 16 reverse-circulation drill holes, with an average depth of 78m. | | Geology | <ul> <li>Deposit type, geological setting and<br/>style of mineralisation.</li> </ul> | <ul> <li>Regionally the geology is dominated by Archean<br/>mafic/ultramafic and sedimentary lithologies<br/>intruded by granites and pegmatite dykes.<br/>Lithium mineralisation associated with LCT<br/>Pegmatites is being targeted by the exploration.</li> </ul> | | Drill hole<br>Information | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>Locations of drillhole coordinates have been provided in the body of the text.</li> <li>No significant intercepts have been presented due to the early-stage nature of the sampling, with no economic mineralisation encountered, and the requirement for further drill testing.</li> </ul> | | Data aggregation methods | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | No data aggregation methods have been used. | | Relationship<br>between<br>mineralisation<br>widths and | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be</li> </ul> | <ul> <li>No economic mineralisation was encountered during the drilling.</li> <li>The results require further drill testing to determine if economic mineralisation exists at depth.</li> <li>Due to the nature of the sample media and</li> </ul> | | Criteria | JORC Code explanation | Commentary | |---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | intercept<br>lengths | reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | sampling technique, further drilling is required to determine the relationship between mineralisation and widths. | | Diagrams | <ul> <li>Appropriate maps and sections (with<br/>scales) and tabulations of intercepts<br/>should be included for any<br/>significant discovery being reported<br/>These should include, but not be<br/>limited to a plan view of drill hole<br/>collar locations and appropriate<br/>sectional views.</li> </ul> | Refer to the body of the release. | | Balanced<br>reporting | <ul> <li>Where comprehensive reporting of<br/>all Exploration Results is not<br/>practicable, representative reporting<br/>of both low and high grades and/or<br/>widths should be practiced to avoid<br/>misleading reporting of Exploration<br/>Results.</li> </ul> | <ul> <li>Due to the nature of the sampling, the results are to be considered indicative only and not material.</li> <li>The ASX release is considered to represent balanced reporting. Further evaluation of these results is ongoing.</li> </ul> | | Other<br>substantive<br>exploration<br>data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | All available geological, geophysical and<br>geochemical data has been integrated and<br>interpreted by company geologists. |