

Excellent Leach Recoveries of Rare Earth Elements at Innouendy Confirms Economic Significance of Recent High-Grade Intersections

Exploration Update

- The economic significance of the previously reported Rare Earth Element (REE) intercepts has been confirmed by weak acid digest analysis:
 - Excellent leach recoveries, particularly from the high-grade samples
- Assays from an additional 95 samples are expected to be received shortly to establish the full thickness of each intercept downhole, as well continuity of mineralisation between holes
- A circa 20,000m program of Aircore and RC drilling is planned at Innouendy to follow-up the high-grade REE's and also the nickel and platinum-palladium (PGE) results. Aircore drilling is scheduled to commence in mid-July.
- REE expert Dr John Mair has been engaged as an advisor to the Company.
- Initial RC drilling at Dingo Pass has been completed:
 - Thick intercepts of mafic intrusive rocks in several holes, with traces of nickel-copper sulphides.
 - The targeted massive sulphide conductors were not intersected by the majority of holes, with downhole EM planned to guide follow-up drilling.
- Belele drilling assay results are still pending:
 - A Program of Work (POW) permit application for 12,000m of RC and RAB/Aircore drilling has been submitted for approval.

Table 1. Comparison of Lithium Borate Fusion Assays with Weak Acid Digest Assays.

\	-			1		ı	_			
Hole	Interval	TREO	MREO	Nd+Pr	TREO	Recovery	MREO	Recovery	Nd+Pr	Recovery
						%		%		%
						/0		70		/0
		Lithium Boı	rate Fusion /	Assays	weak acid	digest Ass	ays			
INAC027	4m from 20m	4376 ppm	1349 ppm	1095 ppm	3452 ppm	79%*	1219 ppm	90%	966 ppm	89%
INAC025	4m from 16m	2786 ppm	676 ppm	602 ppm	2155 ppm	77%*	566 ppm	84%	503 ppm	84%
INAC004	4m from 36m	2428 ppm	301 ppm	258 ppm	1025 ppm	42%*	197 ppm	66%	167 ppm	64%
INAC027	4m from 24m	2199 ppm	457 ppm	373 ppm	1225 ppm	56%	290 ppm	64%	227 ppm	60%
INAC005	4m from 32m	2185 ppm	484 ppm	419 ppm	1320 ppm	60%*	406 ppm	84%	344 ppm	80%
INAC0027	4m from 32m	2060 ppm	417 ppm	349 ppm	1235 ppm	60%	280 ppm	67%	226 ppm	64%
							ery exceede are higher		,	s TREO

Rare Earth Elements

The initial batch of 11 samples that were analysed by Lithium borate fusion, ICP-MS finish were re-analysed by weak acid (Aqua Regia) digest to test the level of REE's that can be easily leached. As shown in Table 1, the REE's at Innouendy are easily leached, with recoveries particularly good (>80%) for the high-grade zones of high value REE's. The Company views these results as a step change in the potential economic significance of the REE's at Innouendy as development scenarios would likely be lower capex given the ease of extracting the minerals via simple leach.

An additional 95 adjacent samples have now been re-submitted for full-suite REE analysis. These samples will help establish the full thickness of each intercept downhole, as well continuity of mineralisation between holes. Once these results have been received all significant intercepts will also be analysed by weak acid digest to confirm leachable recoveries.

An extensive program of Aircore drilling to test the extent of the shallow, clay hosted REE mineralisation is now planned to commence in mid-July. This program has been planned with sufficiently close hole spacings to allow, if consistent grades and widths are intercepted, for the Company to work towards defining an inferred resource.

Given the potential significance of the REE's encountered at Innouendy, the Company has engaged the services of Dr John Mair as an advisor. Dr Mair has deep knowledge of the REE landscape, having taken a complex REE project from discovery through various feasibility studies to development ready status while Managing Director of Greenland Minerals Ltd.

Desert Metals Managing Director, Rob Stuart, commented:

"We are delighted to have secured the services of John, whose experience, expertise and extensive network of technical and commercial contacts in the REE space will be invaluable as we seek to rapidly move this project forward."

Dingo Pass

The initial drilling program at Dingo Pass has been completed, with seven RC holes drilled for 1678m (Table 2, Figure 1).

Table 2. Drilling Summary

Hole ID	Easting	Northing	Dip	Azimuth	Total Depth (m)
DRC001	524156	7167170	-80	200	256
DRC002	524486	7166753	-80	220	226
DRC003	525040	7168245	-60	030	142
DRC004	522183	7167289	-60	360	250
DRC005	521647	7167647	-65	055	276
DRC006	521550	7167782	-65	020	300
DRC007	521309	7168166	-60	090	228

Figure 1: Dingo Pass Drill Hole Location Plan.

The drilling completed has in most cases not intersected sufficient quantities of sulphides to explain the conductors at Dingo Pass. This means the targets are untested and still "live". Downhole EM will now be used to more precisely define the conductor's location and guide follow-up drilling.

Several holes, particularly at the Dome and Komatiite prospects, did intersect metamorphosed mafic intrusions with traces of disseminated copper (Cu) and nickel (Ni) bearing sulphides, which provides encouragement that the conductors may be Ni-Cu massive sulphides.

Based on the drill results, the Company now infers that the targeted host intrusions have been deformed and metamorphosed. In other Ni provinces where this is the case, such as the Thomson Belt in Manitoba, Canada, the sulphides are often reworked into fold hinges and other structurally complex positions. This makes their associated conductance difficult to model and would explain the relative lack of success in intersecting the targeted conductors on the first pass. Desert Metals Managing Director, Rob Stuart, commented:

"Until we intersect mineralisation that explains these very conductive anomalies the Dingo Pass prospects remain very much alive. While we would have liked to have hit extensive massive Ni-Cu mineralisation with the first drill phase, to not do so is not unusual. The downhole EM will help to pinpoint targets for our next phase of drilling. The Dingo Pass conductors have been confirmed to lie in the right type of rocks and for now remain unexplained."

Authorised by the Board of Desert Metals Limited.

Rob Stuart

Tony Worth

Managing Director

Technical Director

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Dr Rob Stuart, a competent person who is a member of the Australasian Institute of Mining and Metallurgy. Dr Stuart has a minimum of five years' experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a competent person as defined in the 2012 Edition of the Joint Ore Reserves. Dr Stuart is a related party of the Company, being a Director, and holds securities in the Company. Dr Stuart has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Table 3: Rare Earth Oxide (ppm) Lithium Borate Fusion/ICP-MS results of all re-analysed samples (As reported previously: ASX release 23rd May 2022).

			(1)	,		,		,		,		,	,	,		,	,						
Hole_ID	From	То	TREO	TREO-Ce	LREO	HREO	CREO	MREO	CeO ₂	Dy 2 O 3	Er ₂ O ₃	Eu ₂ O ₃	<u>Gd 2O 3</u>	Ho ₂ O ₃	La ₂ O ₃	Lu ₂ O ₃	<u>Nd ₂ O ₃</u>	<u>Pr₆O₁₁</u>	<u>Sm ₂O ₃</u>	<u>Tb₄O</u> z	Tm_2O_3	Y_2O_3	Yb_2O_3
INAC004	36	40	2427.74	787.83	2371.82	55.93	231.09	301.27	1639.91	6.43	2.54	2.89	11.87	1.02	450.36	0.23	193.04	66.94	21.57	1.42	0.33	27.30	1.89
INAC004	40	44	1249.53	530.92	1188.96	60.57	189.03	226.92	718.61	6.12	2.96	2.56	10.71	1.09	261.53	0.27	145.80	45.67	17.34	1.28	0.35	33.27	1.96
INAC005	24	28	167.90	101.32	154.10	13.80	30.27	34.37	66.58	1.30	0.88	0.47	1.82	0.25	56.53	0.18	20.88	7.31	2.81	0.26	0.25	7.37	1.01
INAC005	28	32	636.99	345.86	612.01	24.98	98.89	127.81	291.13	2.59	1.35	1.30	4.33	0.49	200.55	0.23	82.00	29.85	8.49	0.55	0.25	12.45	1.43
INAC005	32	36	2184.90	1035.12	2110.38	74.51	371.12	484.31	1149.78	8.45	3.33	5.36	17.58	1.37	504.30	0.28	321.93	97.15	37.22	1.99	0.45	33.40	2.31
INAC008	12	16	1407.24	610.01	1358.51	48.73	208.10	270.07	797.23	5.44	2.40	3.02	10.56	0.90	308.45	0.24	175.54	56.19	21.10	1.24	0.37	22.86	1.71
INAC024	0	4	1105.04	178.82	1040.36	64.67	90.52	86.36	926.21	7.93	4.75	1.60	7.68	1.58	44.80	0.66	46.19	13.59	9.57	1.40	0.77	33.40	4.92
INAC025	16	20	2785.65	1861.89	2684.63	101.02	517.49	676.19	923.76	9.06	4.41	4.01	21.78	1.64	1117.68	0.56	449.06	152.85	41.28	2.15	0.57	53.21	3.63
INAC027	20	24	4376.04	3311.01	3929.29	446.75	1146.78	1349.46	1065.02	48.32	19.73	22.87	86.10	8.20	1659.51	1.80	831.64	263.41	109.70	10.29	2.24	233.66	13.55
INAC027	24	28	2198.70	1293.37	1977.27	221.43	448.01	456.54	905.33	18.13	10.54	5.52	29.16	3.79	666.15	1.18	279.94	92.92	32.93	3.46	1.32	140.96	7.36
INAC027	32	36	2060.24	1157.37	1904.18	156.06	377.99	417.30	902.87	13.49	7.08	4.92	22.71	2.55	622.76	0.81	261.27	87.24	30.03	2.56	0.89	95.75	5.31
INAC037	32	36	1017.31	184.45	989.16	28.15	72.17	88.45	832.86	3.80	1.96	0.81	4.54	0.64	76.94	0.31	54.12	17.10	8.15	0.74	0.39	12.70	2.27
INAC036	36	40	996.02	247.92	971.10	24.92	83.43	103.32	748.10	2.75	1.34	0.66	4.23	0.47	127.25	0.18	66.48	21.39	7.89	0.58	0.33	12.95	1.42
INAC035	36	37	1959.12	1386.69	1808.90	150.22	448.65	559.22	572.43	19.86	8.60	5.50	28.70	3.33	729.48	1.00	348.75	113.70	44.53	3.68	1.18	70.86	7.52
INAC033	24	28	1440.71	686.47	1319.07	121.64	262.12	288.09	754.24	14.12	6.60	4.89	17.40	2.43	310.79	0.65	173.79	54.74	25.51	2.53	0.89	66.80	5.34
INAC033	28	33	1770.83	897.44	1622.65	148.18	344.65	380.61	873.39	15.78	7.90	5.80	22.01	2.85	409.31	0.74	236.78	71.17	32.00	2.86	0.95	83.43	5.85

 $TREO \; (Total \; Rare \; Earth \; Oxide) = La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Yb_2O_3 + Lu_2O_3.$

• TREO-Ce = TREO – CeO₂

light • LREO (Light Rare Earth Oxide) = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3$

 $\textbf{heavy} \qquad \textbf{ HREO (Heavy Rare Earth Oxide)} = \text{Eu}_2\text{O}_3 + \text{Gd}_2\text{O}_3 + \text{Tb}_4\text{O}_7 + \text{Dy}_2\text{O}_3 + \text{Ho}_2\text{O}_3 + \text{Tm}_2\text{O}_3 + \text{Yb}_2\text{O}_3 + \text{Yb}_2\text{O}_$

Critical • CREO (Critical Rare Earth Oxide) = $Nd_2O_3 + Eu_2O_3 + Tb_4O_7 + Dy_2O_3 + Y_2O_3$

Magnetic • MREO (Magnetic Rare Earth Oxide) = Pr₆O₄₁ + Nd₂O₃ + Sm₂O₃ + Gd₂O₃ + Tb₄O₇ + Dy₂O₃.

Table 4: Rare Earth Element (ppm) results of Weak Acid Aqua Regia Digest/ICP-MS Analysis.

Tubic 4.	marc Lar	cii Liciii	ient (ppm) results of v	reakii	c, a , 190	ad riegi	9-	,		,							_								
					%		%		%		%		%		%		%		%		%		%		%
Hole_ID	From	То	Comment	TREO	recovery	TREO-Ce	recovery	LREO	recovery	HREO	recovery	CREO	recovery	MREO	recovery	Nd+Pr	recovery	CeO2	recovery	Dy2O3	recovery	Er203	recovery	Eu2O3	recovery
INAC004	36	40	Ce overlimit at 500ppm	1025.02	42%	410.82	52%	982.12	41%	42.91	77%	156.89	68%	197.48	66%	166.79	64%	614.2	37%	4.80886	75%	1.84675	73%	2.42001	84%
INAC004	40	44	Ce overlimit at 500ppm	1088.97	87%	474.77	90%	1029.73	87%	59.23	98%	181.64	96%	217.75	97%	181.94	96%	614.2	85%	6.24349	102%	2.60718	88%	2.58212	101%
INAC005	24	28	Zr overlimits (not REEs)	18.43	11%	10.49	10%	17.14	11%	1.29	9%	3.70	12%	4.49	13%	3.70	13%	7.93546	12%	0.13887	11%	0.05832	7%	0.06137	13%
INAC005	28	32	Zr overlimits (not REEs)	221.05	35%	106.32	31%	213.22	35%	7.84	31%	40.22	41%	52.44	41%	45.53	39%	114.733	39%	0.86192	33%	0.34877	26%	0.58474	45%
INAC005	32	36	Ce overlimit at 500ppm	1320.04	60%	705.84	68%	1252.59	59%	67.45	91%	316.00	85%	405.78	84%	344.19	80%	614.2	53%	7.8847	93%	2.77871	84%	5.17581	97%
INAC008	12	16	5	832.77	59%	379.49	62%	794.54	58%	38.23	78%	157.88	76%	202.32	75%	172.04	73%	453.28	57%	4.39569	81%	1.7324	72%	2.5358	84%
INAC024	0	4	1	294.63	27%	97.47	55%	261.54	25%	33.09	51%	48.60	54%	46.47	54%	32.65	54%	197.158	21%	3.95957	50%	2.24126	47%	0.89506	56%
INAC025	16	20	Ce overlimit at 500ppm	2154.53	77%	1540.33	83%	2080.03	77%	74.50	74%	423.43	82%	565.86	84%	503.14	84%	614.2	66%	6.78291	75%	2.75584	62%	3.83265	96%
INAC027	20	24	Ce overlimit at 500ppm	3451.76	79%	2837.56	86%	3050.86	78%	400.90	90%	1011.29	88%	1218.92	90%	967.56	89%	614.2	58%	48.3182	100%	16.981	86%	24.6633	108%
INAC027	24	28	3	1224.86	56%	787.55	61%	1075.12	54%	149.74	68%	284.70	64%	290.37	64%	226.90	60%	437.31	48%	14.5184	80%	6.87244	65%	5.26845	95%
INAC027	32	36	5	1234.71	60%	738.44	64%	1119.98	59%	114.73	74%	256.07	68%	280.50	67%	225.86	64%	496.274	55%	11.2819	84%	4.89418	69%	4.92108	100%
	_				<u>%</u>		%		%		%		<u>%</u>		<u>%</u>		<u>%</u>		<u>%</u>		%		%		%
Hole_ID	From	То	Comment	<u>Gd2O3</u>	<u>%</u> recovery	Ho2O3	% recovery	La2O3	% recovery	Lu2O3	% recovery	<u>Nd2O3</u>	<u>%</u> recovery	<u>Pr6011</u>	<u>%</u> recovery	<u>Sm2O3</u>	<u>%</u> recovery	<u>Tb407</u>	<u>%</u> recovery	Tm2O3	% recovery	Y2O3	% recovery	Yb2O3	% recovery
Hole_ID	From 36		Comment) Ce overlimit at 500ppm	<u>Gd2O3</u> 8.46008		Ho2O3 0.75718	, -	La2O3 184.716	, -	Lu2O3 0.13645	, -	Nd2O3 126.554		<u>Pr6011</u> 40.2364		<u>Sm2O3</u> 16.4083		<u>Tb407</u> 1.01036		Tm2O3 0.20558	, -	Y2O3 22.0963		Yb2O3 1.16717	% recovery 62%
		40			<u>recovery</u>		recovery		recovery		recovery		recovery		<u>recovery</u>		<u>recovery</u>		recovery		recovery		recovery		
INAC004	36	40	Ce overlimit at 500ppm	8.46008	<u>recovery</u> 71%	0.75718	recovery 74%	184.716	recovery 41%	0.13645	recovery 60%	126.554	recovery 66%	40.2364	recovery 62%	16.4083	recovery 76%	1.01036	recovery 71%	0.20558	recovery 62%	22.0963	recovery 81%	1.16717	62%
INAC004	36 40	40 44 28	Ce overlimit at 500ppm Ce overlimit at 500ppm	8.46008 10.5117	71% 98%	0.75718 1.03324	74% 95%	184.716 215.795	recovery 41% 83%	0.13645 0.22401	60% 82%	126.554 138.802	66% 95%	40.2364 43.1363	62% 98%	16.4083 17.7999	76% 103%	1.01036 1.25265	71% 98%	0.20558 0.30722	62% 87%	22.0963 32.7634	recovery 81%	1.16717 1.70805	62% 87%
INAC004 INAC004 INAC005	36 40 24	40 44 28 32	Ce overlimit at 500ppm Ce overlimit at 500ppm Zr overlimits (not REEs)	8.46008 10.5117 0.2432	71% 98% 13%	0.75718 1.03324 0.02062	74% 95% 8%	184.716 215.795 5.12514	41% 83% 9%	0.13645 0.22401 0.00682	60% 82% 4%	126.554 138.802 2.79936	66% 95% 13%	40.2364 43.1363 0.89898	62% 98% 13%	16.4083 17.7999 0.38151	76% 103% 14%	1.01036 1.25265 0.02823	71% 98% 11%	0.20558 0.30722 0.00685	62% 87% 3%	22.0963 32.7634 0.66797	81% 98% 9%	1.16717 1.70805 0.05466	62% 87% 5%
INAC004 INAC004 INAC005 INAC005	36 40 24 28	40 44 28 32	Ce overlimit at 500ppm Ce overlimit at 500ppm Zr overlimits (not REEs) Zr overlimits (not REEs)	8.46008 10.5117 0.2432 1.70009	71% 98% 13% 39%	0.75718 1.03324 0.02062 0.13746	74% 95% 8% 28%	184.716 215.795 5.12514 48.7885	41% 83% 9% 24%	0.13645 0.22401 0.00682 0.02956	60% 82% 4% 13%	126.554 138.802 2.79936 34.8754	66% 95% 13% 43%	40.2364 43.1363 0.89898 10.6572	62% 98% 13% 36%	16.4083 17.7999 0.38151 4.16296 36.1795	76% 103% 14% 49%	1.01036 1.25265 0.02823 0.18584	71% 98% 11% 34%	0.20558 0.30722 0.00685 0.04226	62% 87% 3% 17%	22.0963 32.7634 0.66797 3.70811	81% 98% 9% 30%	1.16717 1.70805 0.05466 0.23913	62% 87% 5% 17%
INAC004 INAC005 INAC005 INAC005	36 40 24 28 32	40 44 28 32	Ce overlimit at 500ppm Ce overlimit at 500ppm Zr overlimits (not REEs) Zr overlimits (not REEs)	8.46008 10.5117 0.2432 1.70009 15.7906	71% 98% 13% 39% 90%	0.75718 1.03324 0.02062 0.13746 1.15696	74% 95% 8% 28% 84%	184.716 215.795 5.12514 48.7885 258.016	41% 83% 9% 24% 51%	0.13645 0.22401 0.00682 0.02956 0.20354	60% 82% 4% 13% 72%	126.554 138.802 2.79936 34.8754 270.605	66% 95% 13% 43% 84%	40.2364 43.1363 0.89898 10.6572 73.5855	62% 98% 13% 36% 76%	16.4083 17.7999 0.38151 4.16296 36.1795	76% 103% 14% 49%	1.01036 1.25265 0.02823 0.18584 1.7349	71% 98% 11% 34% 87%	0.20558 0.30722 0.00685 0.04226 0.32321	62% 87% 3% 17% 73%	22.0963 32.7634 0.66797 3.70811 30.6046	81% 98% 9% 30% 92%	1.16717 1.70805 0.05466 0.23913 1.79915	62% 87% 5% 17% 78%
INAC004 INAC005 INAC005 INAC005 INAC005 INAC008	36 40 24 28 32	40 44 28 32 36 16	Ce overlimit at 500ppm Ce overlimit at 500ppm Zr overlimits (not REEs) Zr overlimits (not REEs)	8.46008 10.5117 0.2432 1.70009 15.7906 8.20651	71% 98% 13% 39% 90% 78%	0.75718 1.03324 0.02062 0.13746 1.15696 0.67355	74% 95% 8% 28% 84% 74%	184.716 215.795 5.12514 48.7885 258.016 152.464	41% 83% 9% 24% 51% 49%	0.13645 0.22401 0.00682 0.02956 0.20354 0.14896	recovery 60% 82% 4% 13% 72% 62%	126.554 138.802 2.79936 34.8754 270.605 131.803	66% 95% 13% 43% 84% 75%	40.2364 43.1363 0.89898 10.6572 73.5855 40.2364	62% 98% 13% 36% 76%	16.4083 17.7999 0.38151 4.16296 36.1795 16.7562	76% 103% 14% 49% 97%	1.01036 1.25265 0.02823 0.18584 1.7349 0.92567	71% 98% 11% 34% 87% 75%	0.20558 0.30722 0.00685 0.04226 0.32321 0.20215	62% 87% 3% 17% 73% 55%	22.0963 32.7634 0.66797 3.70811 30.6046 18.2231	81% 98% 9% 30% 92% 80%	1.16717 1.70805 0.05466 0.23913 1.79915 1.18425	62% 87% 5% 17% 78% 69%
INAC004 INAC004 INAC005 INAC005 INAC005 INAC008 INAC008	36 40 24 28 32 12	40 44 28 32 36 16 4 20	Ce overlimit at 500ppm Ce overlimit at 500ppm Zr overlimits (not REEs) Zr overlimits (not REEs) Ce overlimit at 500ppm	8.46008 10.5117 0.2432 1.70009 15.7906 8.20651 3.97647	71% 98% 13% 39% 90% 78% 52%	0.75718 1.03324 0.02062 0.13746 1.15696 0.67355 0.7251	74% 95% 8% 28% 84% 74%	184.716 215.795 5.12514 48.7885 258.016 152.464 26.5053	9% 24% 51% 49%	0.13645 0.22401 0.00682 0.02956 0.20354 0.14896 0.31498	60% 82% 4% 13% 72% 62% 48%	126.554 138.802 2.79936 34.8754 270.605 131.803 25.3109	66% 95% 13% 43% 84% 75%	40.2364 43.1363 0.89898 10.6572 73.5855 40.2364 7.33438	62% 98% 13% 36% 76% 72%	16.4083 17.7999 0.38151 4.16296 36.1795 16.7562 5.2298	76% 103% 14% 49% 97% 79%	1.01036 1.25265 0.02823 0.18584 1.7349 0.92567 0.65985	71% 98% 11% 34% 87% 75% 47%	0.20558 0.30722 0.00685 0.04226 0.32321 0.20215 0.32093	62% 87% 3% 17% 73% 55%	22.0963 32.7634 0.66797 3.70811 30.6046 18.2231 17.7786	81% 98% 9% 30% 92% 80% 53%	1.16717 1.70805 0.05466 0.23913 1.79915 1.18425 2.22047	62% 87% 5% 17% 78% 69% 45%
INAC004 INAC004 INAC005 INAC005 INAC005 INAC008 INAC024 INAC025	36 40 24 28 32 12 0	40 44 28 32 36 16 4 20	Ce overlimit at 500ppm Ce overlimit at 500ppm Zr overlimits (not REEs) Zr overlimits (not REEs) Ce overlimit at 500ppm Country Countr	8.46008 10.5117 0.2432 1.70009 15.7906 8.20651 3.97647 18.1535	71% 98% 13% 39% 90% 78% 52% 83%	0.75718 1.03324 0.02062 0.13746 1.15696 0.67355 0.7251 1.09395 7.46866	74% 95% 8% 28% 84% 74% 46%	184.716 215.795 5.12514 48.7885 258.016 152.464 26.5053 926.512	41% 83% 9% 24% 51% 49% 59%	0.13645 0.22401 0.00682 0.02956 0.20354 0.14896 0.31498	60% 82% 4% 13% 72% 62% 48% 45%	126.554 138.802 2.79936 34.8754 270.605 131.803 25.3109 373.248	66% 95% 13% 43% 84% 75% 55%	40.2364 43.1363 0.89898 10.6572 73.5855 40.2364 7.33438 129.892 236.223	762% 98% 13% 36% 76% 72% 54%	16.4083 17.7999 0.38151 4.16296 36.1795 16.7562 5.2298 36.1795	76% 103% 14% 49% 97% 79% 55%	1.01036 1.25265 0.02823 0.18584 1.7349 0.92567 0.65985 1.59963	71% 98% 11% 34% 87% 75% 47%	0.20558 0.30722 0.00685 0.04226 0.32321 0.20215 0.32093 0.30837	62% 87% 3% 17% 73% 55% 42%	22.0963 32.7634 0.66797 3.70811 30.6046 18.2231 17.7786 37.97	81% 98% 9% 30% 92% 80% 53% 71%	1.16717 1.70805 0.05466 0.23913 1.79915 1.18425 2.22047 1.7536	62% 87% 5% 17% 78% 69% 45%
INAC004 INAC004 INAC005 INAC005 INAC005 INAC005 INAC008 INAC024 INAC025 INAC027	36 40 24 28 32 12 0	40 44 28 32 36 16 4 20	Ce overlimit at 500ppm Ce overlimit at 500ppm Zr overlimits (not REEs) Zr overlimits (not REEs) Ce overlimit at 500ppm Ce overlimit at 500ppm Ce overlimit at 500ppm Ce overlimit at 500ppm	8.46008 10.5117 0.2432 1.70009 15.7906 8.20651 3.97647 18.1535 84.2551	71% 98% 13% 39% 90% 78% 52% 83%	0.75718 1.03324 0.02062 0.13746 1.15696 0.67355 0.7251 1.09395 7.46866	74% 95% 8% 28% 84% 74% 46% 67%	184.716 215.795 5.12514 48.7885 258.016 152.464 26.5053 926.512 1360.45	11% 83% 9% 24% 51% 49% 59% 83%	0.13645 0.22401 0.00682 0.02956 0.20354 0.14896 0.31498 0.25244 1.19964	recovery 60% 82% 49% 13% 729 62% 48% 45% 67%	126.554 138.802 2.79936 34.8754 270.605 131.803 25.3109 373.248 731.333	66% 95% 13% 43% 84% 75% 55% 83%	40.2364 43.1363 0.89898 10.6572 73.5855 40.2364 7.33438 129.892 236.223	762% 98% 13% 36% 76% 72% 54% 85%	16.4083 17.7999 0.38151 4.16296 36.1795 16.7562 5.2298 36.1795 108.655 23.8878	76% 103% 14% 49% 97% 79% 55% 88%	1.01036 1.25265 0.02823 0.18584 1.7349 0.92567 0.65985 1.59963 10.1388	71% 98% 11% 34% 87% 75% 47% 74%	0.20558 0.30722 0.00685 0.04226 0.32321 0.20215 0.32093 0.30837 1.77597	79% recovery 62% 87% 3% 17% 73% 55% 42% 54% 79%	22.0963 32.7634 0.66797 3.70811 30.6046 18.2231 17.7786 37.97 196.835	81% 98% 9% 30% 92% 80% 53% 71%	1.16717 1.70805 0.05466 0.23913 1.79915 1.18425 2.22047 1.7536 9.26902	62% 87% 5% 17% 78% 69% 45% 48%

% Recovery = Weak acid digest value/Lithium borate fusion value X 100

Table 5: Rare Earth Element (ppm) results of all re-analysed samples by Weak Acid Aqua Regia Digest/ICP-MS Analysis.

Hole ID	From	То	Au	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	К	La	Li	Mg	Mn	Mo	Na	Nb	Ni	Р	Pb	Pd
	m	m	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm
INAC004	36.00	40.00	0.0002	0.022	0.59	0.21	-10	59.5	0.3	0.0082	0.06	0.004	>500	1.895	127.5	0.983	5.93	1.06	2.56	0.258	0.385	0.008	0.01	0.2	157.5	1.4	0.14	58.1	0.27	0.013	0.016	5.77	0.024	25.8	-0.001
INAC004	40.00	44.00	-0.0002	0.022	0.92	-0.01	-10	105.5	0.45	0.0093	0.05	0.002	500	4.29	68.9	0.799	14.3	1.53	3.83	0.31	0.399	0.01	0.011	0.52	184	2.6	0.33	132	0.37	0.018	0.031	8.72	0.024	14.45	0.004
INAC005	24.00	28.00	0.0006	0.006	0.81	0.21	-10	34.4	0.08	0.0082	0.02	0.013	6.46	1.215	124.5	0.076	2.33	0.81	2.25	0.033	0.891	0.007	0.012	0.01	4.37	1.3	0.02	34.8	0.32	0.011	0.026	7.1	0.001	4.4	-0.001
INAC005	28.00	32.00	0.0007	0.01	0.47	0.12	-10	32.9	0.08	0.0093	0.03	0.001	93.4	1.49	131.5	0.077	2.57	0.76	1.495	0.093	1.34	-0.004	0.008	0.02	41.6	1.2	0.02	28.7	0.38	0.009	0.02	5.92	0.005	7.75	-0.001
INAC005	32.00	36.00	-0.0002	0.011	0.55	0.42	-10	56.1	0.34	0.0148	0.05	0.004	>500	4.24	179.5	0.701	9.29	2.73	3.63	0.554	0.318	-0.004	0.022	0.1	220	1.3	0.09	65.1	0.87	0.011	0.033	18.65	0.042	15.2	0.002
INAC008	12.00	16.00	0.0002	0.004	0.95	0.2	-10	148	0.48	0.0069	0.04	0.006	369	8.51	46.6	0.771	10.75	2.28	3.71	0.312	0.303	0.012	0.029	0.48	130	3	0.33	119.5	0.43	0.017	0.024	16.15	0.022	6.41	-0.001
INAC024	0.00	4.00	0.0018	0.014	0.7	0.54	10	169.5	1.94	0.0401	0.41	0.09	160.5	99.2	883	0.143	59.8	9.29	2.68	0.163	0.135	0.016	0.023	0.07	22.6	1.7	0.55	817	0.9	0.098	0.017	434	0.003	15.8	0.032
INAC025	16.00	20.00	0.0004	0.025	1.4	0.55	-10	173	0.63	0.0215	0.28	0.036	>500	387	2080	0.13	20.9	6.07	6.22	0.832	0.926	0.009	0.034	0.04	790	7.2	1.17	1155	2.45	0.099	0.025	2430	0.022	22.2	0.015
INAC027	20.00	24.00	0.0003	0.034	0.97	1.19	10	18	2.07	0.0145	0.12	0.003	>500	28.4	317	0.12	16.75	5.38	9.45	1.595	0.434	-0.004	0.018	0.02	1160	1.5	0.26	64.3	1.84	0.032	0.064	235	0.047	24	0.021
INAC027	24.00	28.00	0.0003	0.033	0.77	0.75	-10	35.5	1.57	0.0136	0.1	0.005	356	20.9	138	0.135	28.1	3.56	5.02	0.414	0.747	-0.004	0.009	0.03	330	1.9	0.24	65.8	3.14	0.024	0.074	144	0.025	18.15	0.012
INAC027	32.00	36.00	-0.0002	0.075	0.85	0.36	-10	44.7	1	0.0352	0.14	0.008	404	19.05	77.1	0.403	32.4	2.11	2.84	0.374	0.442	-0.004	0.013	0.08	320	2.2	0.3	94.8	2.67	0.028	0.02	126.5	0.024	23.9	-0.001
Hole ID	From	То	Pt	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	v	w	Y	Zn	Zr	Dy	Er	Eu	Gd	Но	Lu	Nd	Pr	Sm	Tb	Tm	Yb	
Hole ID	From m	To m	Pt ppm	Rb ppm	Re ppm	s %	Sb ppm	Sc ppm	Se ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W	Y ppm	Zn ppm	Zr ppm	Dy ppm	Er ppm	Eu ppm	Gd ppm	Ho ppm	Lu ppm	Nd ppm	Pr ppm	Sm ppm	Tb ppm	Tm ppm	Yb ppm	
Hole ID		-			-												U ppm 4.07			Y ppm 17.4			′				-	-				-			
	m	m	ppm		ppm	%	ppm	ppm	ppm		ppm	ppm	ppm	ppm	%	ppm		ppm	ppm				ppm	ppm			ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
INAC004	m 36.00	m 40.00	ppm -0.002	ppm 63	ppm -0.0002	% 0.01	ppm 0.014	ppm 11.6	ppm 0.081	ppm 0.5	ppm 27.8	ppm -0.005	ppm 0.004	ppm 76.4	% 0.022	ppm 0.415	4.07	ppm 15.4	ppm 0.352	17.4	ppm 10.6	ppm 15	ppm 4.19	ppm 1.615	ppm 2.09	ppm 7.34	ppm 0.661	ppm 0.12	ppm	ppm 33.3	ppm 14.15	ppm 0.859	ppm 0.18	ppm 1.025	
INAC004 INAC004	m 36.00 40.00	m 40.00 44.00	ppm -0.002 -0.002	ppm 63 108.5	ppm -0.0002 -0.0002	% 0.01 0.01	ppm 0.014 0.013	ppm 11.6 6.94	ppm 0.081 0.091	ppm 0.5 0.71	ppm 27.8 16.45	ppm -0.005	ppm 0.004 0.003	ppm 76.4 67.6	% 0.022 0.057	ppm 0.415 0.674	4.07 2.83	ppm 15.4	ppm 0.352 0.567	17.4 25.8	ppm 10.6	ppm 15 15.4	ppm 4.19 5.44	ppm 1.615 2.28	ppm 2.09 2.23	ppm 7.34 9.12	ppm 0.661 0.902	ppm 0.12 0.197	ppm	ppm 33.3 35.7	ppm 14.15 15.35	ppm 0.859 1.065	ppm 0.18 0.269	ppm 1.025 1.5	
INAC004 INAC004 INAC005	m 36.00 40.00 24.00	m 40.00 44.00 28.00	-0.002 -0.002 -0.002	ppm 63 108.5 1.135	ppm -0.0002 -0.0002 -0.0002	% 0.01 0.01 0.01	ppm 0.014 0.013 0.032	ppm 11.6 6.94 1.375	0.081 0.091 0.013	ppm 0.5 0.71 0.37	ppm 27.8 16.45 3.49	-0.005 -0.005 -0.005	ppm 0.004 0.003 -0.003	76.4 67.6 11.35	% 0.022 0.057 0.004	ppm 0.415 0.674 0.014	4.07 2.83 0.292	ppm 15.4 16.8 9.9	ppm 0.352 0.567 0.349	17.4 25.8 0.526	ppm 10.6	ppm 15 15.4 32.1	ppm 4.19 5.44 0.121	ppm 1.615 2.28 0.051	ppm 2.09 2.23 0.053	ppm 7.34 9.12 0.211	ppm 0.661 0.902 0.018	0.12 0.197 0.006	ppm 108.5 119 2.4	9pm 33.3 35.7 0.744	ppm 14.15 15.35 0.329	ppm 0.859 1.065 0.024	0.18 0.269 0.006	1.025 1.5 0.048	
INAC004 INAC004 INAC005 INAC005	m 36.00 40.00 24.00 28.00	m 40.00 44.00 28.00 32.00	-0.002 -0.002 -0.002 -0.002	63 108.5 1.135 1.31	ppm -0.0002 -0.0002 -0.0002 -0.0002	% 0.01 0.01 0.01 -0.01	ppm 0.014 0.013 0.032 0.017	ppm 11.6 6.94 1.375 1.765	ppm 0.081 0.091 0.013 0.033	0.5 0.71 0.37 0.31	27.8 16.45 3.49 5.74	-0.005 -0.005 -0.005 -0.005	ppm 0.004 0.003 -0.003 0.004	76.4 67.6 11.35 23.8	% 0.022 0.057 0.004 0.003	ppm 0.415 0.674 0.014 0.014	4.07 2.83 0.292 1.12	ppm 15.4 16.8 9.9 10.8	ppm 0.352 0.567 0.349 0.449	17.4 25.8 0.526 2.92	ppm 10.6 27.4 2.7 3	ppm 15 15.4 32.1 47.1	ppm 4.19 5.44 0.121 0.751	ppm 1.615 2.28 0.051 0.305	2.09 2.23 0.053 0.505	7.34 9.12 0.211 1.475	ppm 0.661 0.902 0.018 0.12	0.12 0.197 0.006 0.026	ppm 108.5 119 2.4 29.9	9pm 33.3 35.7 0.744 8.82	ppm 14.15 15.35 0.329 3.59	ppm 0.859 1.065 0.024 0.158	0.18 0.269 0.006 0.037	ppm 1.025 1.5 0.048 0.21	
INAC004 INAC004 INAC005 INAC005	m 36.00 40.00 24.00 28.00 32.00	m 40.00 44.00 28.00 32.00 36.00	-0.002 -0.002 -0.002 -0.002 -0.002	63 108.5 1.135 1.31	ppm -0.0002 -0.0002 -0.0002 -0.0002	% 0.01 0.01 0.01 -0.01 -0.01	0.014 0.013 0.032 0.017 0.03	ppm 11.6 6.94 1.375 1.765 10.55	0.081 0.091 0.013 0.033 0.135	0.5 0.71 0.37 0.31 1.38	27.8 16.45 3.49 5.74 12.3	-0.005 -0.005 -0.005 -0.005 -0.005	ppm 0.004 0.003 -0.003 0.004 0.007	76.4 67.6 11.35 23.8 63.4	% 0.022 0.057 0.004 0.003 0.021	ppm 0.415 0.674 0.014 0.014 0.114	4.07 2.83 0.292 1.12	15.4 16.8 9.9 10.8 52.4	0.352 0.567 0.349 0.449 0.24	17.4 25.8 0.526 2.92 24.1	ppm 10.6 27.4 2.7 3 9.8	ppm 15 15.4 32.1 47.1 13.25	ppm 4.19 5.44 0.121 0.751 6.87	ppm 1.615 2.28 0.051 0.305 2.43	2.09 2.23 0.053 0.505 4.47	7.34 9.12 0.211 1.475 13.7	0.661 0.902 0.018 0.12	0.12 0.197 0.006 0.026 0.179	ppm 108.5 119 2.4 29.9	9pm 33.3 35.7 0.744 8.82 60.9	ppm 14.15 15.35 0.329 3.59 31.2	0.859 1.065 0.024 0.158 1.475	0.18 0.269 0.006 0.037 0.283	1.025 1.5 0.048 0.21 1.58	
INAC004 INAC004 INAC005 INAC005 INAC005 INAC008	m 36.00 40.00 24.00 28.00 32.00 12.00	m 40.00 44.00 28.00 32.00 36.00 16.00	-0.002 -0.002 -0.002 -0.002 -0.002 -0.002	ppm 63 108.5 1.135 1.31 26.1 73	ppm -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002	% 0.01 0.01 0.01 -0.01 -0.01 0.01	ppm 0.014 0.013 0.032 0.017 0.03 0.013	11.6 6.94 1.375 1.765 10.55 7.55	0.081 0.091 0.013 0.033 0.135 0.095	0.5 0.71 0.37 0.31 1.38 0.89	27.8 16.45 3.49 5.74 12.3 11.8	-0.005 -0.005 -0.005 -0.005 -0.005	ppm 0.004 0.003 -0.003 0.004 0.007	76.4 67.6 11.35 23.8 63.4 30.8	% 0.022 0.057 0.004 0.003 0.021 0.056	ppm 0.415 0.674 0.014 0.014 0.114 0.323	4.07 2.83 0.292 1.12 6.09 2.4	ppm 15.4 16.8 9.9 10.8 52.4 35.1	0.352 0.567 0.349 0.449 0.24 0.131	17.4 25.8 0.526 2.92 24.1	ppm 10.6 27.4 2.7 3 9.8 16.4	ppm 15 15.4 32.1 47.1 13.25 11.1	ppm 4.19 5.44 0.121 0.751 6.87	ppm 1.615 2.28 0.051 0.305 2.43 1.515	2.09 2.23 0.053 0.505 4.47 2.19	7.34 9.12 0.211 1.475 13.7 7.12	0.661 0.902 0.018 0.12 1.01 0.588	0.12 0.197 0.006 0.026 0.179 0.131	ppm 108.5 119 2.4 29.9 232 113	9pm 33.3 35.7 0.744 8.82 60.9 33.3	ppm 14.15 15.35 0.329 3.59 31.2	ppm 0.859 1.065 0.024 0.158 1.475 0.787	0.18 0.269 0.006 0.037 0.283 0.177	1.025 1.5 0.048 0.21 1.58 1.04	
INAC004 INAC004 INAC005 INAC005 INAC005 INAC008 INAC024	m 36.00 40.00 24.00 28.00 32.00 12.00 0.00	m 40.00 44.00 28.00 32.00 36.00 16.00 4.00	ppm -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 0.065	ppm 63 108.5 1.135 1.31 26.1 73 3.78	ppm -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002	% 0.01 0.01 0.01 -0.01 -0.01 0.01	0.014 0.013 0.032 0.017 0.03 0.013 0.036	11.6 6.94 1.375 1.765 10.55 7.55 23.2	0.081 0.091 0.013 0.033 0.135 0.095 0.028	0.5 0.71 0.37 0.31 1.38 0.89 0.62	27.8 16.45 3.49 5.74 12.3 11.8 32.1	-0.005 -0.005 -0.005 -0.005 -0.005 -0.005	ppm 0.004 0.003 -0.003 0.004 0.007 0.005 0.014	76.4 67.6 11.35 23.8 63.4 30.8 1.77	% 0.022 0.057 0.004 0.003 0.021 0.056 0.013	ppm 0.415 0.674 0.014 0.014 0.114 0.323 0.187	4.07 2.83 0.292 1.12 6.09 2.4 0.928	15.4 16.8 9.9 10.8 52.4 35.1 86.2	0.352 0.567 0.349 0.449 0.24 0.131 0.076	17.4 25.8 0.526 2.92 24.1 14.35 14	ppm 10.6 27.4 2.7 3 9.8 16.4 85.7	15 15.4 32.1 47.1 13.25 11.1 4.42	ppm 4.19 5.44 0.121 0.751 6.87 3.83 3.45	ppm 1.615 2.28 0.051 0.305 2.43 1.515 1.96	2.09 2.23 0.053 0.505 4.47 2.19	7.34 9.12 0.211 1.475 13.7 7.12 3.45	0.661 0.902 0.018 0.12 1.01 0.588 0.633	0.12 0.197 0.006 0.026 0.179 0.131	ppm 108.5 119 2.4 29.9 232 113 21.7	9pm 33.3 35.7 0.744 8.82 60.9 33.3 6.07	ppm 14.15 15.35 0.329 3.59 31.2 14.45 4.51	0.859 1.065 0.024 0.158 1.475 0.787 0.561	0.18 0.269 0.006 0.037 0.283 0.177 0.281	1.025 1.5 0.048 0.21 1.58 1.04 1.95	
INAC004 INAC004 INAC005 INAC005 INAC005 INAC008 INAC024 INAC025	m 36.00 40.00 24.00 28.00 32.00 12.00 0.00 16.00	m 40.00 44.00 28.00 32.00 36.00 16.00 4.00 20.00	-0.002 -0.002 -0.002 -0.002 -0.002 -0.002 0.065 0.028	9pm 63 108.5 1.135 1.31 26.1 73 3.78 2.15	-0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002	% 0.01 0.01 0.01 -0.01 -0.01 0.01 0.01	0.014 0.013 0.032 0.017 0.03 0.013 0.036 0.015	ppm 11.6 6.94 1.375 1.765 10.55 7.55 23.2 10.3	0.081 0.091 0.013 0.033 0.135 0.095 0.028 0.192	0.5 0.71 0.37 0.31 1.38 0.89 0.62 0.95	ppm 27.8 16.45 3.49 5.74 12.3 11.8 32.1 38.2	-0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005	ppm 0.004 0.003 -0.003 0.004 0.007 0.005 0.014 0.006	76.4 67.6 11.35 23.8 63.4 30.8 1.77 97.7	% 0.022 0.057 0.004 0.003 0.021 0.056 0.013 0.023	0.415 0.674 0.014 0.014 0.114 0.323 0.187 0.082	4.07 2.83 0.292 1.12 6.09 2.4 0.928 1.78	ppm 15.4 16.8 9.9 10.8 52.4 35.1 86.2 54.7	0.352 0.567 0.349 0.449 0.24 0.131 0.076	17.4 25.8 0.526 2.92 24.1 14.35 14 29.9	ppm 10.6 27.4 2.7 3 9.8 16.4 85.7 227	15 15.4 32.1 47.1 13.25 11.1 4.42 36.4	ppm 4.19 5.44 0.121 0.751 6.87 3.83 3.45 5.91	1.615 2.28 0.051 0.305 2.43 1.515 1.96 2.41	2.09 2.23 0.053 0.505 4.47 2.19 0.773 3.31	7.34 9.12 0.211 1.475 13.7 7.12 3.45 15.75	0.661 0.902 0.018 0.12 1.01 0.588 0.633 0.955	0.12 0.197 0.006 0.026 0.179 0.131 0.277	ppm 108.5 119 2.4 29.9 232 113 21.7 320	9pm 33.3 35.7 0.744 8.82 60.9 33.3 6.07	14.15 15.35 0.329 3.59 31.2 14.45 4.51 31.2	0.859 1.065 0.024 0.158 1.475 0.787 0.561 1.36	0.18 0.269 0.006 0.037 0.283 0.177 0.281 0.27	1.025 1.5 0.048 0.21 1.58 1.04 1.95	

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Aircore (AC) drilling samples were collected as 1-m samples from the rig cyclone and placed on the ground in separate piles. These 1-m sample piles were then sampled using a plastic PVC tube ("spear") to collect a composite sample in the ratio of one sample for every four metres. One 1-m spear sample was collected as the last sample from INAC034. The 4-m composite samples and the one 1-m sample were then sent for analysis. The Competent Person considers the quality of the sampling to be fit for the purpose of early/reconnaissance exploration. Reverse Circulation (RC) drilling samples were collected as 1m samples split from the rig cyclone using a cone splitter. These samples were then stored securely on site. Approximately 1kg of sample was also collected from each metre interval and composited into one sample for every 4m. The 4m composite samples were then sent for analysis.
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary airblast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 INAC001-INAC0048 Aircore to blade refusal at EOH with a face sampling bit. DRC001-DRC007 Reverse circulation to end of hole

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Chip recoveries were monitored for consistent sample size for each metre. Appropriate measures were taken to maximise recovery and ensure representative nature of the samples, including efforts to keep the drill holes as dry as possible. No relationship between recovery and grade has been observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	All drill holes are logged in their entirety. Qualitative descriptions of mineralogy, mineralisation, weathering, lithology, colour and other features are recorded. A sample of every metre is permanently retained in chip trays for any follow-up logging. Logging is sufficient to support early exploration studies.
Sub-sampling and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Chips were sampled with a "spear" (PVC tube) from the 1m sample piles and composited to make roughly 4-kg, 4-m composite samples. The single 1-m spear sample was approximately 2 kg in size. Where a sample was wet, it was dried in the sun before composite samples were collected. Samples underwent sample preparation at ALS Perth following method PREP31: Dry, Crush, Split and Pulverize – samples were first weighed, then crushed to >70% of the sample passing 2 mm, then split using riffle splitter. A sample split of up to 250 g was then pulverized to >85 % of the sample passing -75 microns. Duplicates were submitted for analysis at a rate of approximately 1 per 20 samples, for quality control. The variability observed in duplicate sample results are considered appropriate by the Competent Person. The quality of the sub-sampling is considered fit for the purpose of early/reconnaissance exploration. The Competent Person considers drill sample sizes to be appropriate for the style of mineralisation and the nature of the drilling program.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make model, reading times, calibration factors applied and their derivation etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Samples underwent sample preparation and geochemical analysis by ALS Perth. Rare Earth Elements were analysed by weak aqua regia digest with an ICP-MS finish (ALS Method code MS41W-REE,). Standards and blanks were submitted in the sample stream at a rate of approximately 1 per 20 samples. The laboratory conducted its own checks which were also monitored. No contamination was detected. The Competent Person considers the accuracy and precision of the geochemical data to be fit for purpose.
Verification of assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The Desert Metals Exploration Manager has personally inspected all core and chips. No twin holes have been completed. Primary drill data were collected manually on paper and digitally using Excel software before being transferred to the master database in mining software package Micromine. Conversion of elemental analysis (REE parts per million, Table 2) to oxide (REO parts per million, Table 1) was using the below element to oxide conversion factors.
		Element - Conversion Factor - Oxide Form
		Ce 1.2284 CeO ₂
		Dy 1.1477 Dy ₂ O ₃
		Er 1.1435 Er₂O₃
		Eu 1.1579 Eu₂O₃
		Gd 1.1526 Gd₂O₃
		Ho 1.1455 Ho₂O₃
		La 1.1728 La₂O₃
		Lu 1.1371 Lu₂O₃
		Nd 1.1664 Nd₂O₃

Criteria	JORC Code explanation	Commentary
		Pr 1.2083 Pr ₆ O ₁₁
		Sm 1.1596 Sm ₂ O ₃
		Tb 1.1762 Tb ₄ O ₇
		Tm 1.1421 Tm ₂ O ₃
		Y 1.2699 Y₂O₃
Location of data	Accuracy and quality of surveys used to locate drill holes (collar)	 Yb 1.1387 Yb₂O₃ Rare earth oxide is the industry-accepted form for reporting rare earth analytical results. The following calculations are used for compiling REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La₂O₃ + CeO₂ + Pr₀O₁₁ + Nd₂O₃ + Sm₂O₃ + Eu₂O₃ + Gd₂O₃ + Tb₄Oγ + Dy₂O₃ + Ho₂O₃ + Er₂O₃ + Tm₂O₃ + Yb₂O₃ + Y₂O₃ + Lu₂O₃ TREO-Ce = TREO - CeO₂ LREO (Light Rare Earth Oxide) = La₂O₃ + CeO₂ + Pr₀O₁₁ + Nd₂O₃ + Sm₂O₃ HREO (Heavy Rare Earth Oxide) = Eu₂O₃ + Gd₂O₃ + Tb₄Oγ + Dy₂O₃ + Ho₂O₃ + Er₂O₃ + Tm₂O₃ + Yb₂O₃ + Y₂O₃ + Lu₂O₃ CREO (Critical Rare Earth Oxide) = Nd₂O₃ + Eu₂O₃ + Tb₄Oγ + Dy₂O₃ + Y₂O₃ MREO (Magnetic Rare Earth Oxide) = Pr₀O₁₁ + Nd₂O₃ + Sm₂O₃ + Gd₂O₃ + Tb₄Oγ + Dy₂O₃ + Tb₄Oγ + Dy₂O₃. Drill hole collar locations were surveyed using handheld
Location of data points	and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 GPS. Expected accuracy for collar surveys is ± 3 m.
	Specification of the grid system used.Quality and adequacy of topographic control	 Down-hole surveys were taken by north-seeking gyro with readings at the surface and then approximately every 3 m downhole.
		 The grid system is MGA GDA94 (zone 50), local easting and northing are MGA.
		 Topographic surface uses handheld GPS elevation data, which is adequate for the current stage of the project.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample composting has been applied. 	 Drilling to date has been reconnaissance in nature; the spacing is insufficient to make any conclusions as to the context, size, or extent of the mineralisation. Data spacing and distribution is not sufficient to allow the estimation of mineral resources. Drill samples were composted on site to create 4-m composite samples, with 1-m samples taken near end of hole.
Orientation of data in relation to geological structure	 Whether the orientation of the sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 It is not known whether the orientation of the sampling achieved unbiased sampling of possible structures; however, it is considered unlikely by the Competent Person. It is not known if the relationship between the drilling orientation and the orientation of key mineralised structures has introduced a sampling bias; however, it is considered unlikely by the Competent Person.
Sample security	The measures taken to ensure sample security.	Samples were sealed in polyweave bags that were cable- tied closed and stored securely on site until transported by company personnel to the lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been conducted at this stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Surveys were conducted within DM1 100%-owned Exploration Licenses E9/2330 and E52/3665 All tenements are in good standing with DMIRS. DM1 is unaware of any impediments for exploration on these licenses.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties	 The tenements have had very limited published or open file exploration work for magmatic nickel type deposits. Limited exploration undertaken to date by past explorers was mostly focused on iron ore, and, to a lesser extent, gold. The main exploration that is relevant to Desert Metals is described in the prospectus downloadable from the Company's website.
Geology	Deposit type, geological setting and style of mineralisation.	 The project covers regions of the Narryer Terrane in the Yilgarn Craton, said to represent reworked remnants of greenstone sequences that are prospective for intrusion-hosted Ni-Cu-(Co)-(PGEs) and orogenic gold mineralisation. Nickel-sulphide mineralisation is anticipated to be related to mantle-derived (mafic and ultramafic) intrusives intersected by deep structures. The REE mineralisation is considered to occur in deeply weathered lateritic and saprolitic clay layers of the Narryer terrane.

Criteria	JORC Code explanation	Commentary
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collars elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to table in body of the report.
Data aggregation methods	 In reporting Exploration Results, weighting average techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporated short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation shown in detail. The assumption used for any reporting of metal equivalent values should be clearly stated. 	 Results from sample intervals (mostly 4-m composites) are reported in Tables. Assay results of REE are reported in ppm and the conversion of elemental analysis (REE parts per million) to stoichiometric oxide (REO parts per million) was undertaken using stoichiometric oxide conversion factors.
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	The relationship between drill hole orientations and mineralisation is unknown at this stage. All results are reported as downhole intervals/widths.
widths and intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to Figure in body of text. All drillhole assay results are summarised in tables in the report.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are reported transparently in the report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All new and relevant data have been reported.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Adjacent samples have been re-submitted for REE analyses with results pending. A full review of the results to date will be undertaken prior to any future programs being executed. An extensive follow-up drill program is being planned to define the extent of the mineralisation