

SXG DRILLS 119.2 METRES @ 3.9 AuEq AT SUNDAY CREEK

30 May 2022

Melbourne, Australia — Southern Cross Gold Ltd ("SXG" or the "Company") (ASX:SXG) is pleased to announce a spectacularly wide intersection of gold-antimony mineralisation grading 119.2 m @ 3.9 g/t AuEq from 106.8 m in drill hole SDDSC033 at the 100%-owned Sunday Creek Project in Victoria. The drill hole also intersected 8 high-grade intersections >30 g/t Au with assays up to 119.5 g/t Au.

HIGHLIGHTS

- 119.2 m @ 3.2 g/t Au and 0.4% Sb (3.9 g/t AuEq) from 106.8 m in hole SDDSC033 (0.1 g/t AuEq over 3 m lower cut), including:
 - o 64.0 m @ 2.7 g/t Au and 0.2% Sb (3.0 g/t AuEq) from 110.7 m
 - o 39.0 m @ 5.2 g/t Au and 1.0% Sb (6.8 g/t AuEq) from 179.0 m
- Higher grade zones included
 - o 5.1 m @ 17.7 g/t Au and 1.6% Sb (20.3 g/t AuEq) from 160.5 m
 - 2.3 m @ 26.2 g/t Au and 3.7% Sb (32.0 g/t AuEq) from 184.0 m
 - o 5.2 m @ 14.7 g/t Au and 4.8% Sb (22.3 g/t AuEq) from 189.9 m
- SDDSC033 was drilled to test a 120 m gap between three mineralised shoots, located west of the Apollo shaft. The true thickness of the mineralised interval is interpreted to be approximately 60-70% of the sampled thickness.
- Priority drilling is now underway to target wide and high-grade extensions to mineralisation found in SDDSC033.
- With these new results, Sunday Creek now contains a total of thirteen 100 g/t AuEq x m intersections. A further four holes (SDD034-37) have been completed and assay results will be released after being received from the assay laboratory.
- A 10 km mineralised trend that extends beyond the drill area is defined by historic workings and soil sampling at Sunday Creek that has yet to receive any exploration drilling and offers potential future upside.

Southern Cross Gold's Managing Director, Michael Hudson says, "This result is unprecedented in terms of width of high-grade mineralisation rarely, if ever, seen in the Victorian goldfields. A result of 119.2m @ 3.9 g/t AuEq places the Sunday Creek project into a new realm, and builds on what was already a remarkably successful drill program. Continuity, with great width and grades, is now evident down to 335 m vertical depth in the Apollo Shoot that remains open to depth, while multiple adjacent shoots remain to be drilled out. With the freehold land secured, industry-leading drill results, strong local relationships, a team of ore discoverers in place and the drill rig continuing to target extensions to mineralisation found in SDDSC033, we highly anticipate further results."

The Sunday Creek epizonal-style gold project is located 60 km north of Melbourne within 19,365 hectares of granted exploration tenements. SXG is also the freehold landholder of 132.64 hectares that forms the key portion in and around the drilled area at the Sunday Creek Project.

Drill Hole Discussion

Drill SDDSC033 was drilled to test a 120 m gap between two mineralised shoots to the west of the Apollo shaft between drill hole VCRC007 (28 m @ 3.0 g/t Au and 0.2% Sb (3.3 g/t AuEq) from 62.0m)^ located 60 m up-plunge from SDDSC033 and MDDSC012 (10.4 m @ 5.4 g/t Au and 1.1% Sb (7.0 g/t AuEq) from 203.0m)^, located 40 m down-plunge.

Within SDDSC033, three mineralised shoots have joined to form a "blow out" of the mineralised zone within altered siltstones, dioritic dykes and dyke-related breccias. The host for mineralisation is a zone of intensely altered white mica-pyritic siltstones, and white mica-pyrite-carbonate altered dyke rocks. As is typical for epizonal deposits like Fosterville and Costerfield, gold (sometimes visible) at Sunday Creek is hosted in quartz and carbonate veins, with a later intense stibnite-bearing vein and breccia overprint. A large arsenic anomaly is associated with the gold mineralisation. The orientation of the Apollo Shoot(s) are approximately 80 degrees dip towards 020 degrees azimuth, correlating with the intersection of the sub-vertical 330 degree striking mineralised veins and the steep east-west striking, north dipping dioritic dyke and related intrusive breccia.

In summary SDDSC033 reported here intersected:

- 119.2 m @ 3.2 g/t Au and 0.4% Sb (3.9 g/t AuEq) from 106.8 m in hole SDDSC033 (0.1 g/t AuEq over 3 m lower cut), including:
 - 64.0 m @ 2.7 g/t Au and 0.2% Sb (3.0 g/t AuEq) from 110.7 m
 - o 39.0 m @ 5.2 g/t Au and 1.0% Sb (6.8 g/t AuEq) from 179.0 m
- Higher grade zones included:
 - 5.1 m @ 17.7 g/t Au and 1.6% Sb (20.3 g/t AuEq) from 160.5 m
 - o 2.3 m @ 26.2 g/t Au and 3.7% Sb (32.0 g/t AuEq) from 184.0 m
 - 5.2 m @ 14.7 g/t Au and 4.8% Sb (22.3 g/t AuEq) from 189.9 m

A total of 8 high-grade intersections >30 g/t Au were intersected, and these are:

- o 0.3 m @ 119.5 g/t Au and 0.7% Sb (120.6 g/t AuEq) from 161.0 m
- o 0.2 m @ 57.3 g/t Au and 0.6% Sb (58.2 g/t AuEq) from 161.5 m
- o 0.1 m @ 34.3 g/t Au and 7.0% Sb (45.4 g/t AuEq) from 161.9 m
- 0.3 m @ 51.6 g/t Au and 0.8% Sb (52.8 g/t AuEq) from 165.3 m
- o 0.9 m @ 35.4 g/t Au and 4.0% Sb (41.8 g/t AuEq) from 180.6 m
- 0.8 m @ 54.7 g/t Au and 7.0% Sb (65.8 g/t AuEq) from 184.0 m
- 0.8 m @ 39.7 g/t Au and 11.7% Sb (58.2g/t AuEq) from 192.2 m
- 0.8 m @ 38.4 g/t Au and 7.1% Sb (58.2 g/t AuEq) from 194.3 m

[^] Refer to the Independent Geologist's Report in the Company's prospectus dated 17 March 2022 which was released to ASX as an announcement on 12 May 2022. See further under the heading "Competent Person Statement" on page 4.

The Company considers Sunday Creek to be one of the better recent exploration discoveries to come out of Victoria with thirteen (13) >100 AuEq g/t x m holes now intersected (Figure 1). Mineralisation remains open at depth and along strike. A 10 km mineralised trend that extends beyond the drill area is defined by historic workings and soil sampling at Sunday Creek where exploration drilling has never been undertaken and offers potential future upside.

Southern Cross continues to drill at Sunday Creek. A further four holes (SDD034-37) have been completed and assay results will be released as announcements to ASX after being received from the laboratory. Priority drilling is now underway to target wide and high-grade extensions to mineralisation found in SDDSC033.

Figures 1-4 show project location and plan, longitudinal and cross section views of drill results reported here and Tables 1–3 provide collar and assay data. The true thickness of the mineralised interval is interpreted to be approximately 60-70% of the sampled thickness. All drill results quoted have a lower cut of 0.3 g/t Au cut over a 2.0 m width, with higher grades reported with a 5 g/t Au cut over 1.0 m applied unless otherwise stated.

Further discussion and analysis of the Sunday Creek project is available as presentations and videos on the SXG website.

Critical Metal Epizonal Gold-Antimony Deposits

Sunday Creek is an epizonal gold-antimony deposit formed in the late Devonian period (similar to Fosterville, Costerfield, Redcastle and Whroo), 60 million years later than mesozonal gold systems formed in Victoria (ie Ballarat and Bendigo). Epizonal deposits are a form of orogenic gold deposit classified according to their depth of formation: epizonal (<6 km), mesozonal (6-12 km) and hypozonal (>12 km).

Epizonal deposits in Victoria often have associated high levels of the metal, antimony, and Sunday Creek is no exception. Geoscience Australia reported that as at 2019, antimony is a critical metal where China and Russia combined produce approximately 82% of the antimony raw material supply. Antimony features highly on the critical minerals lists of many countries including Australia, the United States of America, Canada, Japan and the European Union. Australia ranks seventh for antimony production despite all production coming from a single mine at Costerfield in Victoria, located nearby to all SXG projects. Antimony alloys with lead and tin which results in improved properties for solders, bullets, bearings and batteries. Antimony is a prominent additive for halogen-containing flame retardants. Adequate supplies of antimony are critical to the world's energy transition, and to the high-tech industry, especially the semi-conductor and defence sectors. For example, antimony is a critical element in the manufacture of lithium-ion batteries and to the next generation of liquid metal batteries that lead to scalable energy storage for wind and solar power.

Gold Equivalent Calculation

SXG considers that both gold and antimony that are included in the gold equivalent calculation ("AuEq") have reasonable potential to be recovered at Sunday Creek, given current geochemical understanding, historic production statistics and geologically analogous mining operations. Historically, ore from Sunday Creek was treated onsite or shipped to the Costerfield mine, located 54 km to the northwest of the project, for processing during WW1. The Costerfield mine corridor, now owned by Mandalay Resources Ltd contains 2 million ounces of equivalent gold (Mandalay Q3 2021 Results), and in 2020 was the sixth highest-grade global underground mine and a top 5 global producer of antimony.

SXG considers that it is appropriate to adopt the same gold equivalent variables as Mandalay Resources Ltd in its <u>Mandalay Technical Report, 2022</u> dated 25 March 2022. The gold equivalence formula used by Mandalay Resources was calculated using recoveries achieved at the Costerfield Property Brunswick Processing Plant during 2020, using a gold price of US\$1,700 per ounce, an antimony price of US\$8,500 per tonne and 2021 total year metal recoveries of 93% for gold and 95% for antimony, and is as follows: $AuEq = Au (g/t) + 1.58 \times Sb$ (%).

Based on the latest Costerfield calculation and given the similar geological styles and historic toll treatment of Sunday Creek mineralisation at Costerfield, SXG considers that a $AuEq = Au (g/t) + 1.58 \times Sb$ (%) is appropriate to use for the initial exploration targeting of gold-antimony mineralisation at Sunday Creek.

- Ends -

This announcement has been approved for release by the Board of Southern Cross Gold Ltd.

Competent Person Statement

Information in this report that relates to new exploration results contained in this report is based on information compiled by Michael Hudson, a Fellow of the Australasian Institute of Mining and Metallurgy. He is MD for Southern Cross Gold Ltd. He has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Michael Hudson has consented to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Certain information in this announcement that relates to prior exploration results is extracted from the Independent Geologist's Report dated 16 March 2022 which was issued with the consent of the Competent Person, Mr Terry C. Lees. The report is included the Company's prospectus dated 17 March 2022 which was released as an announcement to ASX on 12 May 2022 and is available at www2.asx.com.au under code "SXG". The Company confirms that it is not aware of any new information or data that materially affects the information related to exploration results included in the original market announcement. The Company confirms that the form and context of the Competent Persons' findings in relation to the report have not been materially modified from the original market announcement.

About Southern Cross Gold Ltd

The Southern Cross Gold corporate branding embodies important characteristics of the new entity. The blue lettering acknowledges the state colour of Victoria, and the gold colour recognises the Victorian goldfields. The Southern Cross is a constellation also represented on the Australian flag which provides a strong cultural significance to all Australians. The main 7-pointed star represents the unity of the six states and the territories of the Commonwealth of Australia and the

addition of a miner's pickaxe within the body of the star reflects the central place that mineral exploration has in Australia and, of course, to Southern Cross Gold.

For further information, please contact:

Justin Mouchacca, Company Secretary, <u>im@southerncrossgold.com.au</u>, +61 3 8630 3321 Nicholas Mead, Investor Relations, <u>nm@southercrossgold.com.au</u>, +61 415 153 122

Figure 1: Location of the Sunday Creek project, along with SXG's other Victoria projects.

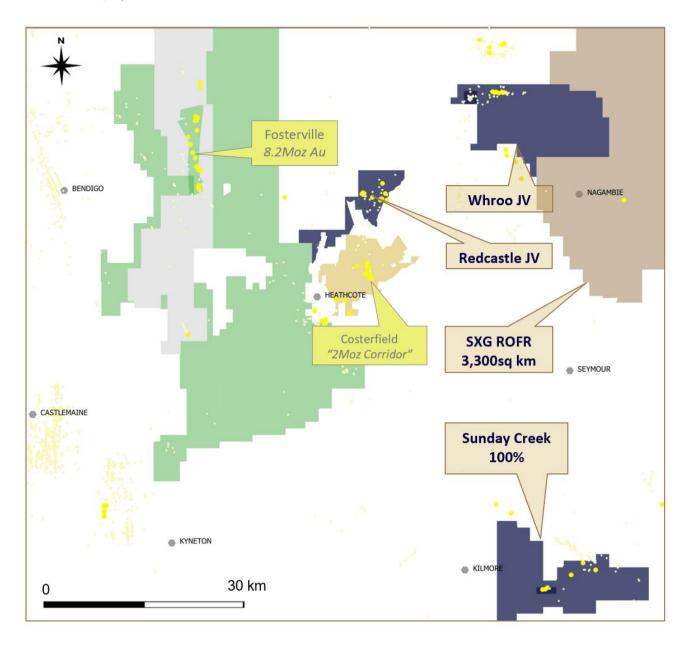


Figure 2: Sunday Creek plan view showing locations of drillholes for results reported in this announcement.

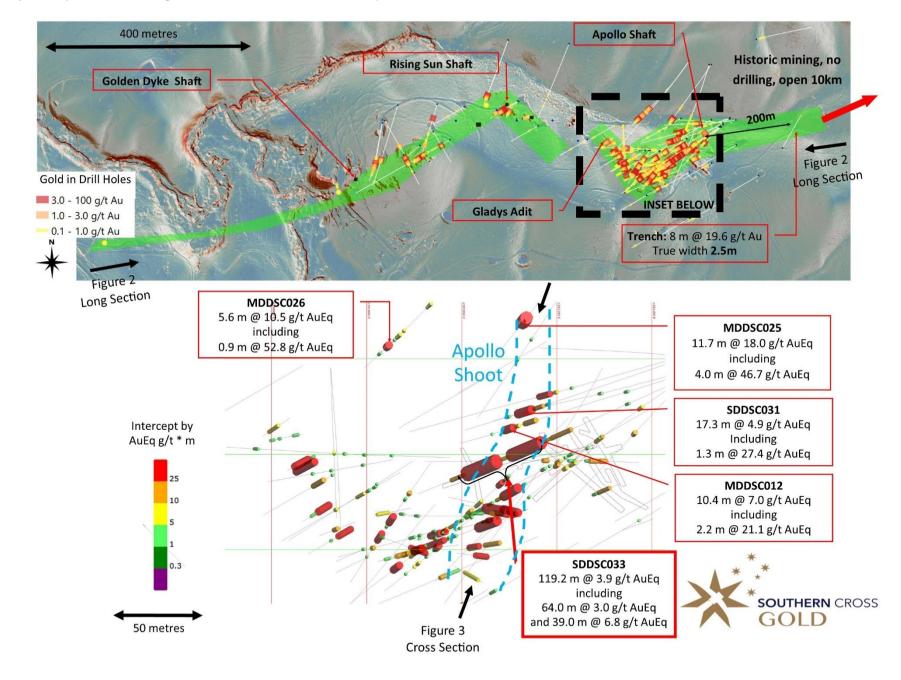


Figure 3: Sunday Creek cross section along the Apollo shoot looking towards 020 degrees showing continuity of wide and high-grade mineralisation down to 335 metres vertically below surface.

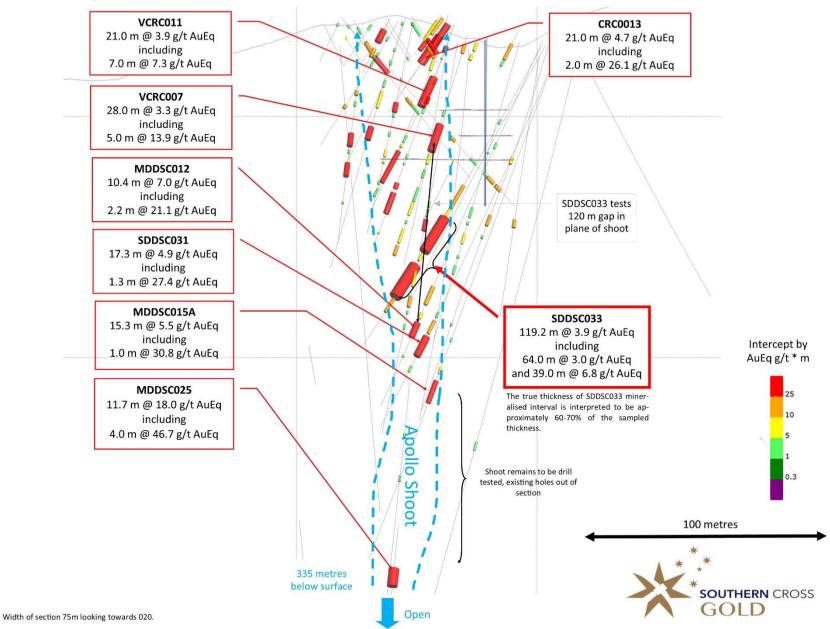


Figure 4: Sunday Creek longitudinal section showing individual shoots defined to date and grad x width pierce points of drillholes. Broad arrows show indicative mineralised shoots. Greater than 100g/t AuEq * m intersections shown by red circles.

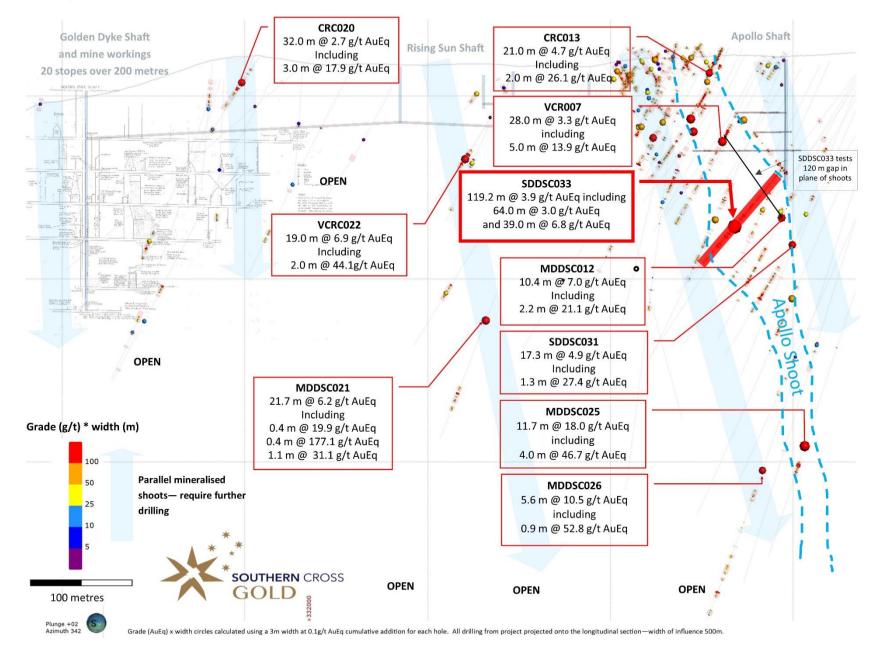


Table 1: Drill collar summary table for drillholes reported in this announcement.

Hole_ID	Hole Size	Depth (m)	Prospect	East GDA94_Z55	North GDA94_Z55	Elevation	Azimuth	Plunge
SDDSC033	HQ	246.1	Apollo	331172	5867842	306.3	245	-51.5

Table 2: Tables of mineralised drill hole intersections reported in this announcement using three intersection criteria

5.0 g/t AuEq cutoff over a maximum of 1 m

hole_id	from (m)	to (m)	width (m)	Au g/t	Sb %	AuEq g/t
SDDSC033	118.5	119.0	0.5	9.3	0.6	10.2
SDDSC033	148.9	149.4	0.5	16.4	0.0	16.5
SDDSC033	151.0	153.5	2.5	5.8	0.2	6.2
SDDSC033	154.7	154.9	0.2	24.0	0.1	24.0
SDDSC033	160.5	165.6	5.1	17.7	1.6	20.3
SDDSC033	180.6	181.5	0.9	35.4	4.0	41.8
SDDSC033	184.0	186.3	2.3	26.2	3.7	32.0
SDDSC033	189.9	195.1	5.2	14.7	4.8	22.3

0.3 g/t lower cutoff over a maximum of 2 m

hole_id	from (m)	to (m)	width (m)	Au g/t	Sb %	AuEq g/t
SDDSC033	110.7	174.7	64.0	2.7	0.2	3.0
SDDSC033	179.0	218.0	39.0	5.2	1.0	6.8

0.1 g/t lower cutoff over a maximum of 3 m

hole_id	from (m)	to (m)	width (m)	Au g/t	Sb %	AuEq g/t
SDDSC033	106.8	226.0	119.2	3.2	0.4	3.9

Table 3: All individual assays reported from SDDSC033 in this announcement.

hole_id	from (m)	to (m)	width (m)	Au g/t	Sb%
SDDSC033	5	6.0	1.0	0.02	0.00
SDDSC033	16	17.0	1.0	0.03	0.00
SDDSC033	17	18.0	1.0	0.04	0.04
SDDSC033	18	19.0	1.0	-0.01	0.00
SDDSC033	19	20.0	1.0	0.01	0.00
SDDSC033	20	21.0	1.0	-0.01	0.00
SDDSC033	21	22.0	1.0	-0.01	0.00
SDDSC033	28.8	29.8	1.0	0.01	0.00
SDDSC033	29.8	30.5	0.7	-0.01	0.00
SDDSC033	30.5	31.3	0.8	-0.01	0.00
SDDSC033	31.3	32.0	0.7	-0.01	0.00
SDDSC033	32	33.0	1.0	-0.01	0.00
SDDSC033	33	34.0	1.0	-0.01	0.00
SDDSC033	34	35.0	1.0	-0.01	0.00
SDDSC033	35	36.0	1.0	-0.01	0.00
SDDSC033	36	37.0	1.0	-0.01	0.00
SDDSC033	37	38.0	1.0	0.01	0.00
SDDSC033	38	39.0	1.0	-0.01	0.00
SDDSC033	39	40.0	1.0	-0.01	0.00
SDDSC033	40	41.0	1.0	-0.01	0.00
SDDSC033	41	42.5	1.5	-0.01	0.00
SDDSC033	42.5	43.1	0.6	-0.01	0.00
SDDSC033	43.1	44.1	1.0	-0.01	0.00
SDDSC033	47.5	49.0	1.5	0.01	0.00
SDDSC033	55	56.0	1.0	0.02	0.00
SDDSC033	56	57.0	1.0	0.01	0.00
SDDSC033	57	58.0	1.0	0.01	0.00
SDDSC033	58	59.0	1.0	0.03	0.00
SDDSC033	59	59.7	0.7	0.03	0.00
SDDSC033	59.7	60.6	0.9	0.36	0.01
SDDSC033	60.6	61.4	0.8	0.02	0.00
SDDSC033	61.4	62.1	0.7	0.83	0.02
SDDSC033	62.1	63.1	1.0	0.49	0.01
SDDSC033	63.1	64.0	0.9	0.01	0.00
SDDSC033	64	64.6	0.6	0.05	0.00
SDDSC033	64.6	65.5	0.9	0.01	0.01
SDDSC033	65.5	66.5	1.0	-0.01	0.00
SDDSC033	66.5	67.0	0.5	-0.01	0.00
SDDSC033	67	68.0	1.0	-0.01	0.00
SDDSC033	68	69.0	1.0	-0.01	0.00

SDDSC033	83	84.0	1.0	0.06	0.00
SDDSC033	84	85.0	1.0	0.06	0.00
SDDSC033	85	86.0	1.0	0.06	0.00
SDDSC033	86	87.0	1.0	0.04	0.00
SDDSC033	87	88.0	1.0	0.03	0.00
SDDSC033	88	89.0	1.0	0.01	0.00
SDDSC033	89	90.0	1.0	0.01	0.00
SDDSC033	90	91.0	1.0	0.01	0.00
SDDSC033	91	91.7	0.7	0.17	0.00
SDDSC033	91.7	92.6	0.9	0.01	0.00
SDDSC033	92.6	93.2	0.6	-0.01	0.00
SDDSC033	93.2	94.3	1.1	-0.01	0.00
SDDSC033	94.3	95.1	0.8	0.11	0.00
SDDSC033	95.1	95.5	0.4	-0.01	0.00
SDDSC033	95.5	96.3	0.8	-0.01	0.00
SDDSC033	96.3	97.0	0.7	-0.01	0.00
SDDSC033	97	98.0	1.0	-0.01	0.00
SDDSC033	98	98.9	0.9	-0.01	0.00
SDDSC033	98.9	99.3	0.4	0.04	0.00
SDDSC033	99.3	100.3	1.0	0.03	0.00
SDDSC033	100.3	101.0	0.7	0.08	0.00
SDDSC033	101	102.0	1.0	0.04	0.00
SDDSC033	102	102.8	0.8	0.09	0.00
SDDSC033	102.8	103.5	0.7	0.04	0.00
SDDSC033	103.5	104.5	1.0	0.09	0.00
SDDSC033	104.5	105.4	0.9	0.04	0.00
SDDSC033	105.4	106.1	0.7	0.03	0.00
SDDSC033	106.1	106.8	0.7	0.07	0.00
SDDSC033	106.8	107.8	1.0	0.19	0.00
SDDSC033	107.8	108.7	0.9	0.17	0.00
SDDSC033	108.7	109.7	1.0	0.19	0.00
SDDSC033	109.7	110.7	1.0	0.16	0.00
SDDSC033	110.7	111.1	0.4	0.38	0.00
SDDSC033	111.1	112.0	0.9	0.16	0.00
SDDSC033	112	113.0	1.0	0.07	0.00
SDDSC033	113	114.0	1.0	0.50	0.00
SDDSC033	114	115.0	1.0	0.29	0.17
SDDSC033	115	115.5	0.5	1.70	1.04
SDDSC033	115.5	116.5	1.0	0.38	0.02
SDDSC033	116.5	117.5	1.0	0.39	0.00
SDDSC033	117.5	118.5	1.0	1.00	0.05
SDDSC033	118.5	119.0	0.5	9.27	0.56
SDDSC033	119	120.0	1.0	0.79	0.01
SDDSC033	120	120.4	0.4	0.63	0.00

	SDDSC033	120.4	120.8	0.4	0.77	0.00
	SDDSC033	120.8	121.2	0.4	0.23	0.00
	SDDSC033	121.2	121.9	0.7	0.50	0.00
	SDDSC033	121.9	122.4	0.5	0.61	0.13
	SDDSC033	122.4	122.8	0.4	0.89	0.78
	SDDSC033	122.8	123.5	0.7	0.36	0.00
	SDDSC033	123.5	124.5	1.0	0.66	0.00
	SDDSC033	124.5	125.5	1.0	0.74	0.00
	SDDSC033	125.5	126.4	0.9	0.46	0.01
	SDDSC033	126.4	126.7	0.3	0.29	0.39
	SDDSC033	126.7	128.7	2.0	0.60	0.01
a 5	SDDSC033	128.7	129.2	0.5	1.07	0.01
	SDDSC033	129.2	129.5	0.3	0.51	0.00
20	SDDSC033	129.5	130.4	0.9	0.45	0.00
	SDDSC033	130.4	131.3	0.9	0.77	0.01
	SDDSC033	131.3	131.7	0.4	0.16	0.00
	SDDSC033	131.7	132.6	0.9	0.60	0.00
	SDDSC033	132.6	133.6	1.0	1.82	0.26
	SDDSC033	133.6	134.5	0.9	0.80	0.01
	SDDSC033	134.5	135.5	1.0	0.87	0.01
40	SDDSC033	135.5	136.5	1.0	0.62	0.00
	SDDSC033	136.5	137.0	0.5	1.13	0.00
	SDDSC033	137	137.5	0.5	0.13	0.00
	SDDSC033	137.5	137.9	0.4	0.20	0.00
	SDDSC033	137.9	138.3	0.4	1.46	0.00
20	SDDSC033	138.3	139.0	0.7	0.06	0.00
	SDDSC033	139	139.6	0.6	0.29	0.01
	SDDSC033	139.6	139.9	0.3	1.30	0.20
as	SDDSC033	139.9	140.2	0.3	0.30	0.00
	SDDSC033	140.2	140.8	0.6	0.58	0.01
	SDDSC033	140.8	141.5	0.7	0.60	0.01
	SDDSC033	141.5	142.0	0.5	1.92	0.16
	SDDSC033	142	143.0	1.0	0.57	0.00
	SDDSC033	143	143.5	0.5	0.72	0.13
	SDDSC033	143.5	144.0	0.5	1.41	0.12
	SDDSC033	144	145.0	1.0	0.65	0.01
1 п	SDDSC033	145	146.0	1.0	0.69	0.01
	SDDSC033	146	147.0	1.0	0.06	0.01
	SDDSC033	147	148.0	1.0	0.18	0.01
	SDDSC033	148	148.9	0.9	1.24	0.03
	SDDSC033	148.9	149.4	0.5	16.40	0.04
	SDDSC033	149.4	151.0	1.6	3.77	0.09
	SDDSC033	151	151.2	0.2	7.09	0.04
-						

151.2

151.4

0.2

0.79

0.06

SDDSC033

SDDSC033	151.35	152.0	0.7	2.22	0.51
SDDSC033	152	152.3	0.3	18.25	0.18
SDDSC033	152.3	152.9	0.6	1.95	0.09
SDDSC033	152.9	153.1	0.2	13.85	0.42
SDDSC033	153.05	153.5	0.5	6.38	0.01
SDDSC033	153.5	154.0	0.5	2.64	0.08
SDDSC033	154	154.4	0.4	2.26	0.20
SDDSC033	154.4	154.7	0.3	3.41	0.02
SDDSC033	154.7	154.9	0.2	23.95	0.06
SDDSC033	154.85	155.6	0.8	1.03	0.01
SDDSC033	155.6	155.9	0.3	1.25	0.01
SDDSC033	155.9	156.2	0.3	0.83	1.29
SDDSC033	156.2	157.0	0.8	1.04	0.03
SDDSC033	157	157.9	0.9	0.69	0.01
SDDSC033	157.9	158.5	0.6	2.40	0.27
SDDSC033	158.5	159.0	0.5	0.43	0.02
SDDSC033	159	159.5	0.5	3.49	0.03
SDDSC033	159.5	160.0	0.5	2.64	0.28
SDDSC033	160	160.5	0.5	2.40	0.14
SDDSC033	160.5	160.9	0.4	8.53	7.18
SDDSC033	160.85	161.0	0.2	16.90	0.03
SDDSC033	161	161.3	0.3	119.48	0.71
SDDSC033	161.3	161.5	0.2	13.90	0.92
SDDSC033	161.5	161.7	0.2	57.25	0.62
SDDSC033	161.7	161.9	0.2	10.22	1.96
SDDSC033	161.9	162.0	0.1	34.30	7.02
SDDSC033	162	162.7	0.7	2.15	0.50
SDDSC033	162.7	163.0	0.3	3.81	0.41
SDDSC033	163	163.5	0.5	13.00	2.06
SDDSC033	163.5	164.5	1.0	4.18	2.31
SDDSC033	164.5	165.3	0.8	0.63	0.01
SDDSC033	165.3	165.6	0.3	51.55	0.76
SDDSC033	165.6	166.5	0.9	1.15	0.20
SDDSC033	166.5	167.0	0.5	3.32	0.25
SDDSC033	167	167.8	0.8	0.26	0.00
SDDSC033	167.8	168.2	0.4	0.01	0.02
SDDSC033	168.2	169.0	0.8	0.24	0.01
SDDSC033	169	169.5	0.5	4.34	0.01
SDDSC033	169.5	170.6	1.1	0.41	0.02
SDDSC033	170.6	171.3	0.7	0.53	0.03
SDDSC033	171.3	171.9	0.6	0.47	0.01
SDDSC033	171.9	172.7	0.8	1.44	0.38
SDDSC033	172.7	173.2	0.5	3.80	0.08
SDDSC033	173.2	173.6	0.4	1.10	0.01

SDDSC033	173.6	174.7	1.1	
SDDSC033	174.7	175.0	0.3	
SDDSC033	175	175.5	0.5	
SDDSC033	175.5	176.0	0.5	
SDDSC033	176	177.0	1.0	
SDDSC033	177	178.0	1.0	
SDDSC033	178	179.0	1.0	
SDDSC033	179	179.9	0.9	
SDDSC033	179.9	180.6	0.7	
SDDSC033	180.6	181.5	0.9	
SDDSC033	181.5	182.4	0.9	
SDDSC033	182.4	183.1	0.7	
SDDSC033	183.1	183.5	0.4	
SDDSC033	183.5	184.0	0.5	
SDDSC033	184	184.8	0.8	
SDDSC033	184.8	185.5	0.7	
SDDSC033	185.5	186.3	0.8	
SDDSC033	186.3	186.9	0.6	
SDDSC033	186.9	187.9	1.0	
SDDSC033	187.9	188.9	1.0	
SDDSC033	188.9	189.9	1.0	
SDDSC033	189.9	190.9	1.0	
SDDSC033	190.9	191.5	0.6	
SDDSC033	191.5	192.2	0.7	
SDDSC033	192.2	193.0	0.8	
SDDSC033	193.0	194.0	1.0	
SDDSC033	194.0	194.3	0.3	
SDDSC033	194.3	195.1	0.8	
SDDSC033	195.1	196.0	0.9	
SDDSC033	196.0	196.4	0.4	
SDDSC033	196.4	196.7	0.3	
SDDSC033	196.7	197.4	0.7	
SDDSC033	197.4	198.0	0.6	
SDDSC033	198.0	199.0	1.0	
SDDSC033	199.0	200.0	1.0	
SDDSC033	200.0	201.0	1.0	
SDDSC033	201.0	201.9	0.9	
SDDSC033	201.9	202.9	1.0	
SDDSC033	202.9	203.9	1.0	
SDDSC033	203.9	205.2	1.3	
SDDSC033	205.2	205.5	0.3	
SDDSC033	205.5	206.0	0.5	
SDDSC033	206.0	206.7	0.7	

SDDSC033

206.7

207.7

1.0

0.47

0.06

0.03

0.11

-0.01

0.18

0.75

0.60

35.40

3.41

2.24

1.47

1.55

54.70

18.00

4.99

1.64

1.72 0.54

1.65

4.72

4.51

4.40

39.70

1.814.95

38.35

2.88

2.82

1.76

1.10

0.45

0.17

0.26

0.76

1.97

1.34 0.31

0.32

0.20

0.23

0.24

1.48

0.01

0.01

0.01

0.01

0.00

0.06

0.03

0.11

4.03

0.17

0.05

0.20

0.11

7.04

0.50

3.02

0.24

0.01

0.03

3.07

1.43

8.40 11.70

0.06

0.46

7.12

0.06

0.11

0.05

0.01

0.01

0.00

0.01

0.00

0.01

0.00

0.01

0.02

0.01

0.00

0.00

SDDSC033 208.6 209.6 1.0 2.93 0.01 SDDSC033 209.6 210.4 0.8 1.03 0.01 SDDSC033 210.4 211.5 1.1 1.73 0.01 SDDSC033 211.5 212.0 0.5 1.93 0.03 SDDSC033 212.0 213.0 1.0 0.72 0.03 SDDSC033 213.0 213.6 0.6 1.61 1.44 SDDSC033 213.6 214.0 0.4 0.01 0.01 SDDSC033 214.0 214.8 0.8 0.33 0.04 SDDSC033 214.8 215.4 0.6 0.05 0.03 SDDSC033 216.1 217.0 0.9 0.11 0.01 SDDSC033 216.1 217.0 0.9 0.11 0.01 SDDSC033 219.0 210.0 1.0 0.02 1.36 SDDSC033 219.0 220.0 1.0 0.01 0.06	SDDSC033	207.7	208.6	0.9	0.65	0.01
SDDSC033 210.4 211.5 1.1 1.73 0.01 SDDSC033 211.5 212.0 0.5 1.93 0.03 SDDSC033 212.0 213.0 1.0 0.72 0.03 SDDSC033 213.0 213.6 0.6 1.61 1.44 SDDSC033 213.6 214.0 0.4 0.01 0.01 SDDSC033 214.0 214.8 0.8 0.33 0.04 SDDSC033 214.8 215.4 0.6 0.05 0.03 SDDSC033 215.4 216.1 0.7 0.48 0.02 SDDSC033 216.1 217.0 0.9 0.11 0.01 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 221.0 220.0 1.0 0.01 0.06 SDDSC033 221.0 220.0 1.0 0.01 0.01	SDDSC033	208.6	209.6	1.0	2.93	0.01
SDDSC033 211.5 212.0 0.5 1.93 0.03 SDDSC033 212.0 213.0 1.0 0.72 0.03 SDDSC033 213.0 213.6 0.6 1.61 1.44 SDDSC033 213.6 214.0 0.4 0.01 0.01 SDDSC033 214.0 214.8 0.8 0.33 0.04 SDDSC033 214.8 215.4 0.6 0.05 0.03 SDDSC033 215.4 216.1 0.7 0.48 0.02 SDDSC033 217.0 218.0 1.0 0.32 1.36 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 219.0 220.0 1.0 0.01 0.06 SDDSC033 221.0 222.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 221.0 222.0 1.0 -0.01 0.01	SDDSC033	209.6	210.4	0.8	1.03	0.01
SDDSC033 212.0 213.0 1.0 0.72 0.03 SDDSC033 213.0 213.6 0.6 1.61 1.44 SDDSC033 213.6 214.0 0.4 0.01 0.01 SDDSC033 214.0 214.8 0.8 0.33 0.04 SDDSC033 214.8 215.4 0.6 0.05 0.03 SDDSC033 215.4 216.1 0.7 0.48 0.02 SDDSC033 216.1 217.0 0.9 0.11 0.01 SDDSC033 217.0 218.0 1.0 0.32 1.36 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 221.0 220.0 1.0 0.25 0.01 SDDSC033 221.0 222.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01	SDDSC033	210.4	211.5	1.1	1.73	0.01
SDDSC033 213.0 213.6 0.6 1.61 1.44 SDDSC033 213.6 214.0 0.4 0.01 0.01 SDDSC033 214.0 214.8 0.8 0.33 0.04 SDDSC033 214.8 215.4 0.6 0.05 0.03 SDDSC033 215.4 216.1 0.7 0.48 0.02 SDDSC033 216.1 217.0 0.9 0.11 0.01 SDDSC033 217.0 218.0 1.0 0.32 1.36 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 221.0 220.0 1.0 0.25 0.01 SDDSC033 221.0 222.0 1.0 -0.01 0.00 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.14 0.02	SDDSC033	211.5	212.0	0.5	1.93	0.03
SDDSC033 213.6 214.0 0.4 0.01 0.01 SDDSC033 214.0 214.8 0.8 0.33 0.04 SDDSC033 214.8 215.4 0.6 0.05 0.03 SDDSC033 215.4 216.1 0.7 0.48 0.02 SDDSC033 216.1 217.0 0.9 0.11 0.01 SDDSC033 217.0 218.0 1.0 0.32 1.36 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 219.0 220.0 1.0 0.25 0.01 SDDSC033 221.0 222.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11	SDDSC033	212.0	213.0	1.0	0.72	0.03
SDDSC033 214.0 214.8 0.8 0.33 0.04 SDDSC033 214.8 215.4 0.6 0.05 0.03 SDDSC033 215.4 216.1 0.7 0.48 0.02 SDDSC033 216.1 217.0 0.9 0.11 0.01 SDDSC033 217.0 218.0 1.0 0.32 1.36 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 219.0 220.0 1.0 0.25 0.01 SDDSC033 221.0 222.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02	SDDSC033	213.0	213.6	0.6	1.61	1.44
SDDSC033 214.8 215.4 0.6 0.05 0.03 SDDSC033 215.4 216.1 0.7 0.48 0.02 SDDSC033 216.1 217.0 0.9 0.11 0.01 SDDSC033 217.0 218.0 1.0 0.32 1.36 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 219.0 220.0 1.0 0.25 0.01 SDDSC033 220.0 221.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 226.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01	SDDSC033	213.6	214.0	0.4	0.01	0.01
SDDSC033 215.4 216.1 0.7 0.48 0.02 SDDSC033 216.1 217.0 0.9 0.11 0.01 SDDSC033 217.0 218.0 1.0 0.32 1.36 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 219.0 220.0 1.0 0.25 0.01 SDDSC033 220.0 221.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 227.0 227.0 1.0 0.02 0.01 SDDSC033 227.9 228.7 0.8 0.01 0.00	SDDSC033	214.0	214.8	0.8	0.33	0.04
SDDSC033 216.1 217.0 0.9 0.11 0.01 SDDSC033 217.0 218.0 1.0 0.32 1.36 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 219.0 220.0 1.0 0.25 0.01 SDDSC033 220.0 221.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 227.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 228.7 229.5 0.8 0.04 0.01	SDDSC033	214.8	215.4	0.6	0.05	0.03
SDDSC033 217.0 218.0 1.0 0.32 1.36 SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 219.0 220.0 1.0 0.25 0.01 SDDSC033 220.0 221.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 226.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01	SDDSC033	215.4	216.1	0.7	0.48	0.02
SDDSC033 218.0 219.0 1.0 0.01 0.06 SDDSC033 219.0 220.0 1.0 0.25 0.01 SDDSC033 220.0 221.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 227.0 227.0 1.0 0.02 0.01 SDDSC033 227.9 228.7 0.8 0.01 0.00 SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 231.0 232.0 1.0 0.20 0.00	SDDSC033	216.1	217.0	0.9	0.11	0.01
SDDSC033 219.0 220.0 1.0 0.25 0.01 SDDSC033 220.0 221.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 226.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00	SDDSC033	217.0	218.0	1.0	0.32	1.36
SDDSC033 220.0 221.0 1.0 -0.01 0.00 SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 226.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 227.9 228.7 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00	SDDSC033	218.0	219.0	1.0	0.01	0.06
SDDSC033 221.0 222.0 1.0 -0.01 0.01 SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 226.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	219.0	220.0	1.0	0.25	0.01
SDDSC033 222.0 223.0 1.0 -0.01 0.01 SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 226.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 227.9 228.7 0.8 0.01 0.00 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	220.0	221.0	1.0	-0.01	0.00
SDDSC033 223.0 224.0 1.0 0.26 0.00 SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 226.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 227.9 228.7 0.8 0.04 0.01 SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	221.0	222.0	1.0	-0.01	0.01
SDDSC033 224.0 225.0 1.0 0.13 0.11 SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 226.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 227.9 228.7 0.8 0.01 0.00 SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	222.0	223.0	1.0	-0.01	0.01
SDDSC033 225.0 226.0 1.0 0.14 0.02 SDDSC033 226.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 227.9 228.7 0.8 0.01 0.00 SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	223.0	224.0	1.0	0.26	0.00
SDDSC033 226.0 227.0 1.0 0.02 0.01 SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 227.9 228.7 0.8 0.01 0.00 SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	224.0	225.0	1.0	0.13	0.11
SDDSC033 227.0 227.9 0.9 -0.01 0.01 SDDSC033 227.9 228.7 0.8 0.01 0.00 SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	225.0	226.0	1.0	0.14	0.02
SDDSC033 227.9 228.7 0.8 0.01 0.00 SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	226.0	227.0	1.0	0.02	0.01
SDDSC033 228.7 229.5 0.8 0.04 0.01 SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	227.0	227.9	0.9	-0.01	0.01
SDDSC033 229.5 230.4 0.9 0.03 0.01 SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	227.9	228.7	0.8	0.01	0.00
SDDSC033 230.4 231.0 0.6 0.52 0.00 SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	228.7	229.5	0.8	0.04	0.01
SDDSC033 231.0 232.0 1.0 0.20 0.00 SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	229.5	230.4	0.9	0.03	0.01
SDDSC033 232.0 232.9 0.9 0.03 0.00	SDDSC033	230.4	231.0	0.6	0.52	0.00
	SDDSC033	231.0	232.0	1.0	0.20	0.00
SDDSC033 232.9 233.7 0.8 0.01 0.01	SDDSC033	232.0	232.9	0.9	0.03	0.00
	SDDSC033	232.9	233.7	0.8	0.01	0.01

JORC Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections).

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling has been conducted on drill core (half core for >90 % and quarter core for check samples), grab samples (field samples of in-situ bedrock and boulders; including duplicate samples), trench samples (rock chips, including duplicates) and soil samples (including duplicate samples). Locations of field samples were obtained by using a GPS, generally to an accuracy of within 5 metres. Drill hole and trench locations have been confirmed to <1 metre using a differential GPS. Samples locations have also been verified by plotting locations on the high-resolution Lidar maps Drill core is marked for cutting at the Nagambie core shed and sent by commercial transport to an automated diamond saw used by Company staff in Bendigo. Samples are bagged at the core saw and transported to the nearby OnSite Laboratory for assay. At OnSite samples are crushed using a jaw crusher combined with a rotary splitter and a 1 kg split is separated for pulverizing (LM5) and assay. Standard fire assay techniques are used for gold assay on a 30 g charge by experienced staff (used to dealing with high sulphide and stibnite-rich charges). OnSite gold method by fire assay code PE01S. Screen fire assay is used to understand gold grain-size distribution where coarse gold is evident. ICP-OES is used to analyse the aqua regia digested pulp for an additional 12 elements (method BM011) and over-range antimony is measured using flame AAS (method known as B050). Soil samples were sieved in the field and an 80 mesh sample bagged and transported to ALS Global laboratories in Brisbane for super-low level gold analysis on a 50 g samples by method ST44 (using aqua regia and ICP-MS). Grab and rock chip samples are generally submitted to OnSite Laboratories for standard fire assay and 12 element ICP-OES as described above.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 HQ diameter diamond drill core, oriented using Boart Longyear TruCore orientation tool with the orientation line marked on the base of the drill core by the driller/offsider. A standard 3 metre core barrel has been found to be most effective in both the hard and soft rocks in the project.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries were maximised using HQ diamond drill core with careful control over water pressure to maintain soft-rock integrity and prevent loss of fines from soft drill core. Recoveries are determined on a metre-by-metre basis in the core shed using a tape measure against marked up drill core checking against driller's core blocks. Plots of grade versus recovery and RQD (described below) show no trends relating to loss of drill core, or fines.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geotechnical logging of the drill core takes place on racks in the the company core shed. Core orientations marked at the drill rig are checked for consistency, and base of core orientation lines are marked on core where two or more orientations match within 10 degrees. Core recoveries are measured for each metre RQD measurements (cumulative quantity of core sticks > 10 cm in a metre) are made on a metre by metre basis. Each tray of drill core is photographed (wet and dry) after it is fully marked up for sampling and cutting. The ½ core cutting line is placed approximately 10 degrees above the orientation line so the orientation line is retained in the core tray for future work. Geological logging of drill core includes the following parameters: Rock types, lithology Alteration Structural information (orientations of veins, bedding, fractures using standard alpha-beta measurements from orientation line; or, in the case of un-oriented parts of the core, the alpha angles are measured) Veining (quartz, carbonate, stibnite) Key minerals (visible under hand lens, e.g. gold, stibnite) 100 % of drill core is logged for all components described above into the company MX logging database. Logging is fully quantitative, although the description of lithology and alteration relies on visible observations by trained geologists. Each tray of drill core is photographed (wet and dry) after it is fully marked up for sampling and cutting. Logging is considered to be at an appropriate quantitative standard to use in future studies.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Drill core is typically sampled using half of the HD diameter. The drill core orientation line is retained. Quarter core is used when taking sampling duplicates (termed FDUP in the database).

Criteria	JORC Code explanation	Commentary
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sampling representivity is maximised by always taking the same side of the drill core (whenever oriented), and consistently drawing a cut line on the core where orientation is not possible. The field technician draws these lines. Sample sizes are maximised for coarse gold by using half core, and using quarter core and half core splits (laboratory duplicates) allows an estimation of nugget effect. In mineralised rock the company uses approximately 10% of ¼ core duplicates, certified reference materials (suitable OREAS materials), laboratory sample duplicates and instrument repeats. In the soil sampling program duplicates were obtained every 20th sample and the laboratory inserted low-level gold standards regularly into the sample flow.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The fire assay technique for gold used by OnSite is a globally recognised method, and over-range follow-ups including gravimetric finish and screen fire assay are standard. Of significance at the OnSite laboratory is the presence of fire assay personnel who are experienced in dealing with high sulphide charges (especially those with high stibnite contents) – this substantially reduces the risk of in accurate reporting in complex sulphide-gold charges. The ICP-OES technique is a standard analytical technique for assessing elemental concentrations. The digest used (aqua regia) is excellent for the dissolution of sulphides (in this case generally stibnite, pyrite and trace arsenopyrite), but other silicate-hosted elements, in particular vanadium (V), may only be partially dissolved. These silicate-hosted elements are not important in the determination of the quantity of gold, antimony, arsenic or sulphur. A portable XRF has been used in a qualitative manner on drill core to ensure appropriate core samples have been taken (no pXRF data are reported or included in the MX database). Acceptable levels of accuracy and precision have been established using the following methods '/ duplicates – half core is split into quarters and given separate sample numbers (commonly in mineralised core) – low to medium gold grades indicate strong correlation, dropping as the gold grade increases over 40 g/t Au. Blanks – blanks are inserted after visible gold and in strongly mineralised rocks to confirm that the crushing and pulping are not affected by gold smearing onto the crusher and LM5 swing mill surfaces. Results are excellent, generally below detection limit and a single sample at 0.03 g/t Au. Certified Reference Materials – OREAS CRMs have been used throughout the project including blanks, low (<1 g/t Au), medium (up to 5 g/t Au) and high-grade gold samples (> 5 g/t Au). Results are automatically checked on

Criteria	JORC Code explanation	Commentary
		data import into the MX database to fall within 2 standard deviations of the expected value. Laboratory splits – OnSite conducts splits of both coarse crush and pulp duplicates as quality control and reports all data. In particular, high Au samples have the most repeats. Laboratory CRMs – OnSite regularly inserts their own CRM materials into the process flow and reports all data Laboratory precision – duplicate measurements of solutions (both Au from fire assay and other elements from the aqua regia digests) are made regularly by the laboratory and reported. • Accuracy and precision have been determined carefully by using the sampling and measurement techniques described above during the sampling (accuracy) and laboratory (accuracy and precision) stages of the analysis. • Soil sample company duplicates and laboratory certified reference materials all fall within expected ranges.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The Independent Geologist has visited Sunday Creek drill sites and inspected drill core held at the Nagambie core shed. Visual inspection of drill intersections matches the both the geological
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 Differential GPS used to locate drill collars, trenches and some workings Standard GPS for some field locations (grab and soils samples), verified against Lidar data. The grid system used throughout is Geocentric datum of Australia 1994; Map
	Quality and adequacy of topographic control.	Grid Zone 55 (GDA94_Z55), also referred to as ELSG 28355.

Criteria	JORC Code explanation	Commentary
		 Topographic control is excellent owing to sub 10 cm accuracy from Lidar data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The data spacing is suitable for reporting of exploration results – evidence for this is based on the improving predictability of high grade gold-antimony intersections. At this time the data spacing and distribution are not sufficient for the reporting of Mineral Resource Estimates. This however may change as knowledge of grade controls increase with future drill programs. Sample compositing has not been applied to the reporting of any drill results.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The true thickness of the mineralised interval reported is interpreted to be approximately 60-70% of the sampled thickness. Drilling is oriented in an optimum direction when considering the combination of host rock orientation and apparent vein control on gold and antimony grade. The steep nature of some of the veins may give increases in apparent thickness of some intersections, but more drilling is required to quantify. A sampling bias is not evident from the data collected to date (drill holes cut across mineralised structures at a moderate angle).
Sample security	The measures taken to ensure sample security.	 Drill core is delivered to the Nagambie core logging shed by either the drill contractor or company field staff. Samples are marked up by company staff at the Nagambie core shed, loaded onto strapped secured pallets and trucked by commercial transport to Bendigo where they are cut by company staff in an automated diamond saw and bagged before submission to the laboratory. There is no evidence in any stage of the process, or in the data for any sample security issues.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Continuous monitoring of CRM results, blanks and duplicates is undertaken by geologists and the company data geologist. Dr Nick Cook, Technical Advisor for SXG has the orientation, logging and assay data.