

26 May 2022

Drilling Delivers Further High Grade Zinc, Lead and Copper Results at Gibsons

Critical Resources Limited (ASX:CRR) ("Critical Resources" or the "Company") is pleased to advise that it has received assay results from its 10th and 11th drill holes at its 100% owned Gibsons prospect. Diamond drill holes CRR21DD_04 ("Hole 04") and CRR21DD_02 ("Hole 02") have intersected further zinc, lead, copper, and silver bearing zones of sulphide mineralisation. Both Hole 04 and Hole 02 are step out holes that continue to demonstrate the potential of the mineralised extent of the Halls Peak system.

Highlights

Hole 04

- 6.91m @ 9.41% Zn, 2.45% Pb, 1.56% Cu, 34.6g/t Ag from 98.04-104.95m downhole
 - Including 1.69m @ 13.82% Zn, 2.08% Pb, 4.26% Cu, 64.37g/t Ag from 103.26 104.95m downhole
- 5.6m @ 8.20% Zn, 4.33% Pb, 1.81% Cu, 393.23g/t Ag, from 75.1-80.7m downhole
 - Including 1.65m @ 14.79% Zn, 7.61% Pb, 3.17% Cu, 807.55g/t Ag from 77.05 78.7m downhole
- 4.9m @ 3.91% Zn, 1.24% Pb, 0.15% Cu, 8.55g/t Ag, from 58.60-63.5m downhole

Hole 02

- 17.75m @ 2.20% Zn, 1.28% Pb, 0.18% Cu, 19.34g/t Ag from 87.8-105.55m downhole
- Including 1.1m @ 7.45% Zn, 4.36% Pb, 0.67% Cu, 43g/t Ag from 90.3-91.4m downhole and
- Including 1.4m @ 10.4% Zn, 7.53% Pb, 0.48% Cu, 33.8g/t Ag from 99.6-101m downhole
- Previously untested areas continue to provide consistent mineralisation at depth
- Cores from completed holes 14, 15 and 16 are currently being assayed at the ALS laboratory in Brisbane with results expected progressively

The Company is pleased to receive further assays from Hole 02 and Hole 04 at its 100% owned Halls Peak project in New South Wales. Results continue to demonstrate the scale potential of the Halls Peak system, particularly at depth. Results continue to provide strong support for an expanded drill program.

Critical Resources Managing Director Alex Biggs said: "We're continuing to see some fantastic intersections at Gibsons that are demonstrating the potential of the Halls Peak system. Drilling is ongoing across multiple targets as we look to start to further define the potential scale at Halls Peak. The asset is shaping up as potentially transformational for the Company and we look forward to updating the market with more exciting results".

Summary of Key Polymetallic Intersections

Hole 04

- 4.9m @ 3.91% Zn, 1.24% Pb, 0.15% Cu, 8.55g/t Ag, 0.04g/t Au, from 58.60-63.5m downhole
- 5.6m @ 8.20% Zn, 4.33% Pb, 1.81% Cu, 393.23g/t Ag, 0.51g/t Au from 75.1-80.7m downhole
 - Including 1.65m @ 14.79% Zn, 7.61% Pb, 3.17% Cu, 807.55g/t Ag, 0.45g/t Au from 77.05 78.7m downhole
- 6.91m @ 9.41% Zn, 2.45% Pb, 1.56% Cu, 34.6g/t Ag, 0.23g/t Au from 98.04-104.95m downhole
 - Including 1.69m @ 13.82% Zn, 2.08% Pb, 4.26% Cu, 64.37g/t Ag, 0.37g/t Au from 103.26 - 104.95m downhole

Hole 02

- 17.75m @ 2.20% Zn, 1.28% Pb, 0.18% Cu, 19.34g/t Ag, 0.09g/t Au from 87.8-105.55m downhole
 - Including 1.1m @ 7.45% Zn, 4.36% Pb, 0.67% Cu, 43g/t Ag, 0.24g/t Au from 90.3–91.4m downhole and
 - 1.4m @ 10.4% Zn, 7.53% Pb, 0.48% Cu, 33.8g/t Ag, 0.14g/t Au from 99.6-101m downhole

Figure 1: CRR21DD_04, Portion of sample 384768 (77.65-78.10m downhole) exhibiting extensive massive sulphide – sample assayed 19.95% Zn, 10.5% Pb, 4.42% Cu, 1,165g/t Ag and 0.42g/t Au, part of the longer downhole interval of 5.6m @ 8.20% Zn, 4.33% Pb, 1.81% Cu, 393.23g/t Ag, 0.51g/t Au from 75.1-80.7m downhole (NQ core, 50mm diameter)

Figure 2: CRR21DD_04, 4.9m interval comprising samples P384745-P384750 assaying at 3.91% Zn, 1.24% Pb, 0.15% Cu, 8.55g/t Ag, 0.04g/t Au, from 58.60-63.5m downhole (NQ core, 50mm diameter)

Figure 3: CRR21DD_04. 5.6m interval comprising samples P384762-P384771 assaying at 8.20% Zn, 4.33% Pb, 1.81% Cu, 393.23g/t Ag, 0.51g/t Au from 75.1-80.7m downhole (NQ core, 50mm diameter)

Figure 4: CRR21DD_04, 6.91m interval comprising samples P384787-P384797 (assaying at 9.41% Zn, 2.45% Pb, 1.56% Cu, 34.6g/t Ag, 0.23g/t Au from 98.04-104.95m downhole (NQ core, 50mm diameter)

Figure 5: CRR21DD_02, 17.75m interval comprising samples P384649-P384708 assaying at 2.20% Zn, 1.28% Pb, 0.18% Cu, 19.34g/t Ag, 0.09g/t Au from 87.8-105.55m downhole (NQ core, 50mm diameter)

Figure 6: CRR21DD_04, Portion of sample 384792 (102.26-103.26m downhole) exhibiting extensive massive sulphide (some brecciated) – sample assayed 25.5% Zn, 5.03% Pb, 0.49% Cu, 75.8g/t Ag and 0.49g/t Au, part of the longer downhole interval of 6.91m @ 9.41% Zn, 2.45% Pb, 1.56% Cu, 34.6g/t Ag, 0.23g/t Au from 98.04-104.95m downhole (NQ core, 50mm diameter)

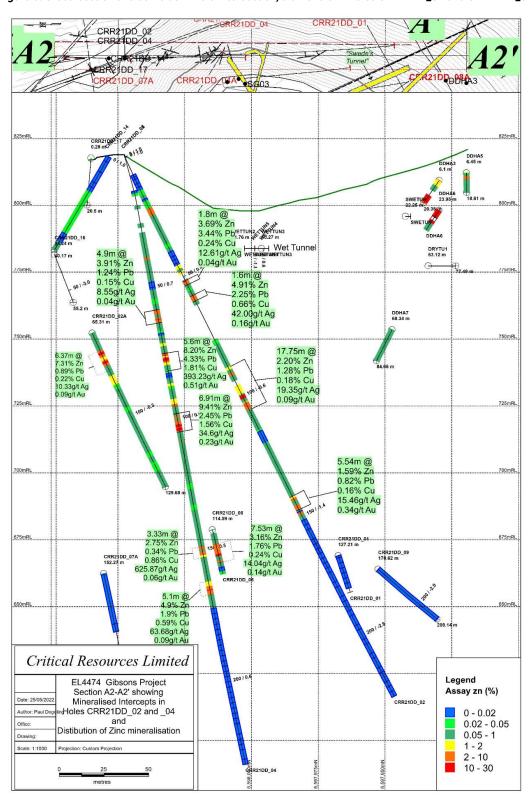


Figure 7: CRR21DD_04, Portion of sample 384796 (104.40-104.68m downhole) exhibiting extensive massive sulphide with abundant brassy yellow chalcopyrites (copper sulphide mineral) – sample assayed 15.4% Zn, 0.58% Pb, 13.30% Cu, 71.9g/t Ag and 0.17g/t Au, part of the longer downhole interval of 6.91m @ 9.41% Zn, 2.45% Pb, 1.56% Cu, 34.6g/t Ag, 0.23g/t Au from 98.04-104.95m downhole (NQ core, 50mm diameter)

Figure 8: Cross-section and some downhole intersection, diamond drill holes CRR21DD_04 and CRR21DD_02

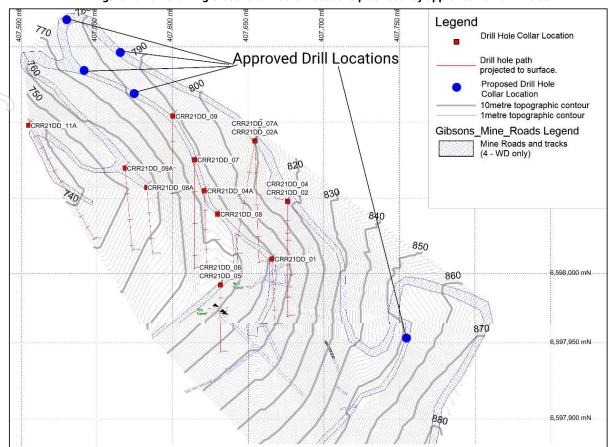


Figure 9: Plan showing Gibsons drill collar locations plus recently approved new drill holes

Halls Peak Project Description

The 100% owned Halls Peak project is located in New South Wales approximately 45km South-East of Armidale in the New England Fold Belt, an area well known for its mineral endowment and production. The Halls Peak massive sulphide deposits were discovered in 1896 where near surface mining extracted high-grade Zinc, Lead, Copper and Silver. Recent exploration at the Gibsons prospect has yielded excellent high-grade intersections of zinc, lead, copper and silver.

Halls Peak is considered to have potential to contain world class deposits similar to those already being mined in northern Australia. The project area comprises multiple historic mines and prospects including Gibsons, Sunnyside, Firefly, Faints, Khans Creek, Keys and Mickey Mouse. All current exploration activities are focused on exploration licence EL 4474 with primary targets being the Gibsons and Sunnyside prospects. A summary of the project location is shown in Figure 10.

Previous drilling results includes:

Critical Resources Limited – ASX Announcements

6.37m @ 7.31% Zn, 0.89% Pb, 0.22% Cu, 10.33g/t Ag, 0.08g/t Au 5.3m @ 4.10% Zn, 1.78% Pb, 0.49% Cu, 25.17g/t Ag, 0.09g/t Au 34.3m @ 2.14% Zn, 0.83% Pb, 0.32% Cu, 7.02g/t Ag, 0.05g/t Au (refer ASX Announcement 23 May 2022)

7.63 metres @ 0.23% Zn, 0.01% Pb, 1.15% Cu, 73.15g/t Ag, 0.01g/t Au (refer ASX Announcement 05 April 2022)

3.6 metres @ 15.06% Zn, 8.38% Pb, 0.69% Cu, 37.51g/t Ag, 0.09g/t Au (refer ASX Announcement dated 09 March 2022)

7.53m @ 4.20% Zn, 1.92% Pb, 0.39% Cu, 19.15g.t Ag, 0.11g/t Au

7.18m @ 3.63% Zn, 1.89% Pb, 0.77% Cu, 15.82g/t Ag, 0.09g/t Au

1.28m @ 13.5% Zn, 4.75% Pb, 0.71% Cu, 21.5g/t Ag, 0.09g/t Au (refer ASX Announcement dated 21 February 2022) 5.30m @ 26.29% Zn, 12.49% Pb, 1.28% Cu, 49.18g/t Ag, 0.15g/t Au 5.99m @ 8.17% Zn, 4.33% Pb, 0.84% Cu, 25.36g/t Ag, 0.13g/t Au (refer ASX announcement dated 09 February 2022) 12.45m @ 10.91% Zn 5.73% Pb , 1.15% Cu, 331.63g/t Ag and 1.50g/t Au (refer ASX announcement dated 11 January 2022)

¹Sovereign Gold Company and Force Commodities Limited – ASX Announcements

11.3m @ 15.18% Zn, 8.02% Pb, 597g/t Ag, 1.61% Cu from hole SG-03 (refer ASX announcement dated 15 December 2016)
11.2m @ 19.71% Zn, 10.77 % Pb, 134.96 g/t Ag, 0.8% Cu from hole SG-06 (refer ASX announcement dated 29 December 2016)
7.2m @ 20.19% Zn, 7.17 % Pb, 30.93gpt Ag, 0.66% Cu from hole SG-05 (refer ASX announcement dated 29 December 2016)
5.7m @ 9.44% Zn, 7.09% Pb, 155g/t Ag, 0.53% Cu from hole SG-03 (refer ASX announcement dated 15 December 2016)

²Precious Metal Resources Limited – ASX Announcements

37.2m @ 8.7% Zn, 3.0% Pb, 85g/t Ag, 1.4% Cu from hole DDH HP 026 (refer to ASX announcement dated 03 January 2014) 7.45m @ 8.88% Zn, 3.11% Pb, 22 g/t Ag, 0.56% Cu from hole DDH HP 027 (refer ASX announcement dated 15 January 2014)

^{1,2}The information required pursuant to listing rule 5.7 is included in ASX announcement dated 08 July 2021

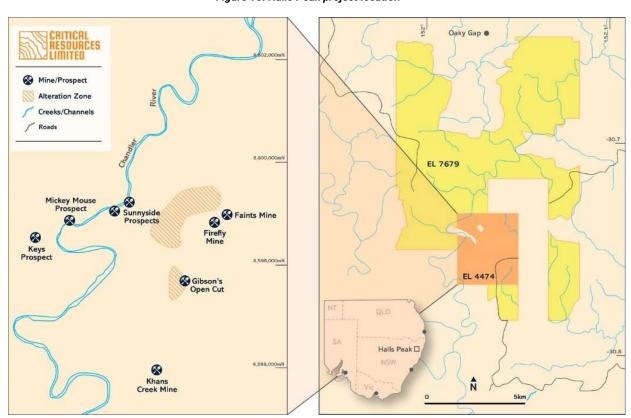


Figure 10: Halls Peak project location

This announcement has been approved for release by the Board of Directors.

-End-

EXPLORATION WORK - COMPETENT PERSONS STATEMENT

The information in this ASX Announcement that relates to Exploration Results is based on information compiled by Mr Michael Leu, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Leu is a full-time employee of Critical Resources Limited. Mr Leu has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Leu consents to the inclusion in this ASX Announcement of the matters based on his information in the form and context in which it appears.

ABOUT CRITICAL RESOURCES LIMITED

Critical Resources is a base metals and lithium exploration and development focused company headquartered in Perth, Western Australia and is listed on the Australian Securities Exchange (ASX:CRR). The Company has recently been undergoing a structured process of change at the Director and Executive level. These changes mark the commencement of a renewed focus by the Company on providing shareholder value through the exploration, development and advancement of the Company's long held NSW assets, its newly acquired Lithium assets in Canada and also of its Copper assets in Oman.

FORWARD LOOKING STATEMENTS

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking

statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

NO NEW INFORMATION

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

Appendix 1: CRRDD21_02 Assay Results

From	To	Interval	Assays			10 (2)	DI (a)	<u> </u>
(m)	(m)	(m)	Sample No.	Ag (ppm)	Au (ppm)	Cu (%)	Pb (%)	Zn (%
0.00	3.30	3.30						
3.30	7.40	4.10	B004650	0.05	2.22	0.00	0.01	0.00
7.40	8.30	0.90	P384652	3.05	0.03	0.00	0.01	0.00
8.30	9.20	0.90	P384653	8.37	0.04	0.00	0.01	0.01
9.20	11.00	1.80	P384654	5.62	0.05	0.00	0.02	0.00
11.00	12.40	1.40	P384655	8.28	0.09	0.00	0.03	0.00
12.40	13.90	1.50	P384656	14.60	0.03	0.01	0.03	0.01
13.90	16.00	2.10	P384657	14.90	0.02	0.01	0.06	0.02
16.00	17.40	1.40	P384658	52.10	0.07	0.02	0.12	0.11
17.40	18.30	0.90	P384659	17.40	0.04	0.01	0.01	0.01
18.30	21.30	3.00	P384660	8.14	0.04	0.01	0.03	0.04
21.30	24.30	3.00	P384661	3.52	0.02	0.04	0.53	2.00
24.30	27.30	3.00	P384662	16.30	0.07	0.08	0.35	0.77
27.30	29.90	2.60	P384663	14.95	0.06	0.02	0.25	0.63
29.90	32.30	2.40	P384664	9.21	0.05	0.01	0.12	0.25
32.30	33.30	1.00	P384665	4.89	0.03	0.01	0.09	0.11
33.30	35.2	1.90	P384666	5.18	0.04	0.01	0.11	0.06
35.2	36.2	1.00	P384667	9.28	0.04	0.13	0.38	0.51
36.20	37.80	1.60	P384668	4.89	0.03	0.01	0.03	0.04
37.80	39.30	1.50	P384669	6.85	0.02	0.01	0.29	0.20
39.30	41.30	2.00	P384670	4.07	0.02	0.01	0.01	0.01
41.30	42.70	1.40	P384671	2.68	0.02	0.00	0.01	0.02
42.70	44.20	1.50	P384672	2.58	0.02	0.00	0.01	0.01
44.20	45.20	1.00	P384673	2.99	0.03	0.00	0.01	0.01
45.20	46.90	1.70	P384674	2.79	0.03	0.09	0.23	1.09
46.9	47.9	1.00	P384675	3.06	0.03	0.01	0.04	0.06
47.90	48.80	0.90	P384676	9.62	0.04	0.21	1.06	1.99
48.80	51.30	2.50						
51.30	51.60	0.30	P384677	4.23	0.05	0.02	0.32	0.48
51.6	52.3	0.70	P384678	20.30	0.06	0.09	5.64	5.93
52.30	53.40	1.10	P384679	7.71	0.03	0.34	2.04	2.27
53.40	55.00	1.60	P384680	1.02	0.03	0.01	0.04	0.08
55.00	55.90	0.90	P384681	0.43	0.03	0.00	0.01	0.05
55.90	56.55	0.65	P384682	13.05	0.06	0.33	0.55	0.95
56.55	57.80	1.25	P384683	4.35	0.06	0.04	0.46	0.64
57.80	60.10	2.30	P384684	42.00	0.16	0.66	2.25	4.91
60.10	61.50	1.40	P384685	4.16	0.09	0.03	0.10	0.21
61.50	66.80	5.30						
66.80	67.80	1.00						
67.80	71.15	3.35						
71.15	72.20	1.05						
72.20	76.40	4.20						
76.4	78.2	1.80	P384686	1.02	0.02	0.00	0.01	0.02
78.20	80.00	1.80	P384687	2.49	0.03	0.01	0.02	0.07
80	81.5	1.50	P384688	4.85	0.06	0.03	0.04	0.08
81.50	82.70	1.20	P384689	9.59	0.07	0.03	0.07	0.13
82.70	84.00	1.30	P384690	8.84	0.10	0.01	0.02	0.14
84.00	85.10	1.10	P384691	6.55	0.11	0.01	0.07	0.15
85.10	86.80	1.70	P384692	7.75	0.10	0.01	0.03	0.14
86.80	87.80	1.00	P384693	22.70	0.29	0.03	0.08	0.31
87.80	89.00	1.20	P384694	55.60	0.35	0.33	0.94	1.53
89.00	89.50	0.50	P384695	6.98	0.07	0.03	0.08	0.25
89.50	90.30	0.80	P384696	12.05	0.12	0.12	0.31	0.67
90.30	91.40	1.10	P384697	43.00	0.24	0.67	4.36	7.45
91.40	91.90	0.50	P384698	9.68	0.13	0.10	0.54	0.83
91.90	93.30	1.40	P384699	2.48	0.06	0.01	0.03	0.17
93.3	95.3	2.00	Coreloss					
95.30	96.70	1.40	P384700	8.69	0.07	0.09	1.09	1.84
96.70	97.80	1.10	P384701	8.57	0.03	0.01	0.76	1.08
97.80	99.10	1.30	P384702	6.06	0.02	0.04	0.55	1.02
99.10	99.60	0.50	P384703	3.56	0.03	0.03	0.55	0.31
99.60	101.00	1.40	P384704	33.80	0.14	0.47	7.53	10.4
101	102.3	1.30	P384705	4.04	0.05	0.06	0.27	0.19
102.3	102.6	0.30	P384706	297.00	0.05	0.08	0.38	1.05
102.60	104.00	1.40	P384707	6.16	0.05	0.03	0.70	2.92
	101.00	1.10	P384708	16.90	0.05	0.60	0.62	2.13

105.55	107	1.45	P384709	2.85	0.04	0.01	0.03	0.14
107.00	108.00	1.00	P384710	3.18	0.03	0.01	0.03	0.14
108.00	108.60	0.60	P384711	6.55	0.03	0.05	0.04	0.13
108.60	109.60	1.00	P384712	0.45	0.03	0.01	0.10	0.16
109.60	111.50	1.90	P384713	0.96	0.02	0.00	0.10	0.05
111.50	112.30	0.80	P384714	0.73	0.02	0.05	0.06	0.05
112.30	113.85	1.55	P384715	3.28	0.04	0.04	0.17	0.33
113.85	114.50	0.65	P384716	2.32	0.04	0.02	0.17	0.05
114.50	119.30	4.80	F 3047 T0	2.32	0.04	0.02	0.07	0.03
119.30	122.05	2.75	P384868	7.65	0.03	0.21	0.16	0.33
122.05	124.60	2.75	P384869	9.95	0.04	0.04	0.10	0.09
124.60	124.00	1.70	P384870	4.00	0.08	0.04	0.04	0.09
124.00	127.30	1.00	P384871	21.50	0.06	0.07	0.12	0.14
120.30	129.30	2.00	P384872	38.20	0.31	3.52	1.04	0.40
129.30	133.10	3.80	P384873	205.00	0.17	0.44	1.23	0.49
133.10	135.00	1.90	P384874	1.26	0.00	0.05	0.10	0.15
135.00	136.00	1.00	P384875	8.28	0.08	0.08	0.16	0.17
136.00	140.62	4.62	P384876	9.99	0.02	0.04	0.09	0.17
140.62	141.70	1.08	P384877	2.54	0.02	0.15	0.08	0.21
141.70	142.56	0.86	P384878	20.10	0.14	0.16	0.64	1.19
142.56	143.56	1.00	P384879	17.90	0.25	0.21	1.46	2.45
143.56	145.35	1.79	P384880	7.33	0.35	0.03	0.12	0.54
145.35	146.05	0.70	P384881	20.60	0.18	0.27	1.30	2.44
146.05	147.24	1.19	P384882	19.25	0.63	0.27	1.18	2.26
147.24	147.90	0.66	P384883	3.17	0.14	0.01	0.14	0.41
147.90	148.40	0.50						
148.40	149.40	1.00	P384884	25.60	0.20	0.29	10.00	2.41
149.40	151.40	2.00	P384885	52.30	0.23	0.09	0.34	0.54
151.40	153.40	2.00	P384886	0.92	0.01	0.00	0.01	0.02
153.40	155.40	2.00	P384887	0.56	0.00	0.00	0.00	0.01
155.40	159.40	4.00						
159.40	161.40	2.00	P384888	0.37	0.01	0.00	0.00	0.01
161.40	163.40	2.00						
163.40	165.40	2.00	P384889	0.63	0.01	0.00	0.00	0.01
165.40	167.40	2.00						
167.40	169.40	2.00	P384890	0.22	0.01	0.00	0.00	0.01
169.40	171.40	2.00						
171.40	173.40	2.00	P384891	0.20	0.01	0.00	0.00	0.01
173.40	177.40	4.00						
177.40	179.40	2.00	P384892	0.91	0.01	0.00	0.00	0.01
179.40	183.40	4.00						
183.40	185.40	2.00	P384893	0.17	0.01	0.00	0.00	0.01
185.40	189.40	4.00						
189.40	191.40	2.00	P384894	0.28	0.01	0.00	0.00	0.01
191.40	195.40	4.00						
195.40	197.40	2.00	P384895	0.15	0.01	0.00	0.00	0.01
197.40	201.40	4.00						
201.40	203.40	2.00	P384896	0.19	0.01	0.00	0.00	0.01
203.40	207.40	4.00						
207.40	209.40	2.00	P384897	0.18	0.01	0.00	0.00	0.01
209.40	213.40	4.00						
213.40	215.40	2.00	P384898	0.47	0.01	0.00	0.00	0.01
215.40	219.40	4.00						
219.40	221.40	2.00	P384899	0.13	0.01	0.00	0.00	0.00
221.40	223.60	2.20						
223.60	225.60	2.00	P384900	0.11	0.01	0.00	0.00	0.00

Appendix 2: CRRDD21_04 Assay Results

From	То	Interval			Assays			
(m)	(m)	(m)	Sample No.	Ag (ppm)	Au (ppm)	Cu (%)	Pb (%)	Zn (%)
0.00	4.00	4.00						
4.00	5.40	1.40						
5.40	6.60	1.20						
6.60	7.70	1.10						
7.70	9.60	1.90						
9.60	11.30	1.70						
11.30	13.20	1.90						
13.20	14.30	1.10	P384718	7.40	0.03	0.01	0.03	0.01
14.30	15.00	0.70	P384719	11.35	0.04	0.01	0.05	0.03
15.00	15.80	0.80						
15.80	16.70	0.90						
16.70	18.90	2.20						
18.90	20.00	1.10	P384720	62.30	0.08	0.03	0.17	0.18
20.00	22.80	2.80						
22.80	25.65	2.85						
25.65	27.00	1.35	P384721	11.90	0.06	0.06	0.27	0.67
27.00	29.10	2.10						
29.10	31.40	2.30	P384722	27.40	0.10	0.05	0.38	0.76
31.40	32.20	0.80	P384723	22.90	0.06	0.10	0.56	0.91
32.20	32.80	0.60	P384724	6.94	0.07	0.02	0.14	0.22
32.80	34.20	1.40	P384725	6.24	0.07	0.04	0.32	0.88
34.20	35.90	1.70	P384726	6.56	0.10	0.03	0.10	0.22
35.90	37.60	1.70	P384727	7.39	0.07	0.07	0.54	0.98
37.60	38.70	1.10	P384728	7.88	0.03	0.17	0.65	0.89
38.70	39.60	0.90	P384729	118.00	0.08	0.04	2.28	3.61
39.60	40.00	0.40	P384730	19.95	0.05	0.02	0.15	0.20
40.00	42.00	2.00	P384731	16.10	0.03	0.02	0.13	0.18
42.00	43.60	1.60	P384732	22.80	0.04	0.09	0.30	0.54
43.60	44.40	0.80	P384733	26.20	0.06	0.02	0.09	0.06
44.40	46.00	1.60	P384734	10.75	0.04	0.01	0.05	0.05
46.00	47.00	1.00	P384735	7.88	0.05	0.01	0.11	0.05
47.00	48.00	1.00	P384736	4.94	0.03	0.01	0.19	0.06
48	50	2.00	P384737	1.88	0.01	0.00	0.00	0.01
50.00	51.00	1.00	P384738	2.10	0.01	0.00	0.01	0.02
51.00	51.60	0.60	P384739	1.30	0.01	0.00	0.13	0.15
51.60	53.18	1.58	P384740	2.66	0.01	0.01	0.10	0.22
53.18	54.50	1.32	P384741	2.33	0.01	0.05	0.12	0.40
54.50	56.40	1.90	P384742	2.34	0.05	0.01	0.02	0.04
56.40	57.50	1.10	P384743	2.48	0.08	0.01	0.10	0.10
57.50	58.60	1.10	P384744	1.98	0.07	0.03	0.08	0.13
58.60	59.40	0.80	P384745	9.90	0.03	0.24	1.46	7.11
59.40	60.60	1.20	P384746	3.79	0.04	0.09	0.15	2.84
60.60	61.70	1.10	P384747	1.81	0.02	0.06	0.04	0.29
61.70	62.20	0.50	P384748	10.50	0.05	0.44	1.17	2.75
62.20	62.43	0.23	P384749	37.30	0.10	0.21	8.60	15.85
62.43	63.50	1.07	P384750	12.70	0.06	0.12	1.97	4.41
63.50	64.50	1.00	P384751	6.29	0.01	0.01	0.24	0.47
64.50	65.50	1.00	P384752	5.67	0.06	0.01	0.04	0.10
65.50	66.50	1.00	P384753	4.20	0.06	0.08	0.08	0.19
66.50	67.50	1.00	P384754	1.94	0.05	0.01	0.01	0.02
67.50	68.50	1.00	P384755	2.07	0.04	0.01	0.01	0.01
68.50	69.40	0.90	P384756	8.32	0.05	0.10	0.23	0.40
59.40	70.40	1.00	P384757	3.72	0.02	0.03	0.10	0.20
70.40	71.40	1.00	P384758	2.05	0.04	0.02	0.12	0.27
71.40	72.50	1.10	P384759	26.10	0.11	0.18	0.58	1.09
72.50	73.50	1.00	P384760	5.88	0.06	0.01	0.06	0.10
73.50	75.10	1.60	P384761	12.15	0.07	0.04	0.07	0.13
75.10	75.45	0.35	P384762	456.00	0.07	6.04	10.35	19.60
75.10 75.45	75.45	0.35	P384763	129.00	0.13	1.11	4.66	8.39
75.45 75.90	76.20	0.45	P384763 P384764	577.00		3.04		15.55
75.90 76.20	76.20	0.50	P384764 P384765	72.10	0.19	0.42	7.61	1.71
76.20 76.70	76.70							
	1 / / .05	0.35	P384766	191.00	0.18	1.81	5.15	9.43
77.05	77.65	0.60	P384767	526.00	0.20	3.38	8.78	18.15

78.10	78.70	0.60	P384769	821.00	0.72	2.03	4.26	7.57
78.70	79.70	1.00	P384770	250.00	1.07	0.38	1.30	1.55
79.70	80.70	1.00	P384771	126.00	0.78	0.14	0.19	0.53
80.70	81.70	1.00	P384772	5.72	0.07	0.01	0.02	0.06
81.7	82.7	1.00	P384773	6.18	0.02	0.01	0.01	0.04
82.70	83.70	1.00	P384774	2.27	0.05	0.00	0.01	0.02
83.70	84.70	1.00	P384775	2.79	0.06	0.00	0.01	0.02
		_						
84.70	85.70	1.00	P384776	98.10	0.24	0.11	0.18	0.46
85.70	86.70	1.00	P384777	233.00	0.73	0.32	0.55	0.99
86.70	87.70	1.00	P384778	177.00	0.28	0.33	0.62	1.15
87.70	88.70	1.00	P384779	10.85	0.07	0.03	0.02	0.03
88.70	89.70	1.00	P384780	7.52	0.08	0.01	0.02	0.05
89.70	90.85	1.15	P384781	17.75	0.15	0.13	0.56	0.90
90.85	92.55	1.70	P384782	1.70	0.01	0.02	0.06	0.14
92.55	94.50	1.95	P384783	13.65	0.09	0.21	0.79	1.67
94.50	95.50	1.00	P384784	89.60	0.05	0.99	3.47	8.48
95.50	96.50	1.00	P384785	5.29	0.05	0.12	0.10	0.31
96.50	98.04	1.54	P384786	5.07	0.07	0.02	0.10	0.14
98.04	98.40	0.36	P384787	43.00	0.19	2.53	12.70	18.40
98.40	99.00	0.60	P384788	1.81	0.03	0.02	0.10	0.46
99.00	99.90	0.90	P384789	24.10	0.09	1.47	3.04	5.88
99.90	100.90	1.00	P384790	4.10	0.06	0.14	0.29	0.68
100.90	102.26	1.36	P384791	8.93	0.21	0.68	0.53	2.42
102.26	103.26	1.00	P384792	75.80	0.49	0.28	5.03	25.50
103.26	103.53	0.27	P384793	55.70	0.48	2.30	1.65	6.62
103.53	103.95	0.42	P384794	79.00	0.74	1.21	4.87	19.85
103.95	104.40	0.45	P384795	67.40	0.18	4.15	0.86	15.15
104.40	104.68	0.28	P384796	71.90	0.17	13.30	0.58	15.40
104.68	104.95	0.27	P384797	37.40	0.18	1.76	1.74	7.77
104.95	105.53	0.58	P384798	1.26	0.01	0.04	0.02	0.15
105.53	106.53	1.00	P384799	10.10	0.07	0.51	0.02	0.87
106.53	107.42	0.89	P384800	10.45	0.04	0.55	0.11	0.49
		_						_
107.42	107.87	0.45	P384801	7.95	0.03	0.15	0.13	0.20
107.87	108.19	0.32	P384802	34.80	0.01	3.92	0.57	0.31
108.19	108.48	0.29	P384803	9.20	0.05	0.23	0.54	0.18
108.48	108.81	0.33	P384804	45.40	0.03	1.19	8.50	5.04
108.81	109.81	1.00	P384805	3.00	0.01	0.07	0.15	0.34
109.81	110.81	1.00	P384806	7.11	0.01	0.01	0.02	0.29
110.81	111.81	1.00	P384807	4.16	0.02	0.04	0.08	0.37
111.81	112.81	1.00	P384808	7.00	0.01	0.11	0.25	0.29
112.81	113.81	1.00	P384809	4.60	0.01	0.16	0.16	0.10
113.81	114.81	1.00	P384810	5.32	0.01	0.08	0.10	0.10
114.81	116.81	2.00	P384811	3.31	0.01	0.05	0.07	0.09
116.81	118.81	2.00	P384812	3.73	0.01	0.07	0.11	0.21
118.81	120.81	2.00	P384813	1.64	0.01	0.02	0.05	0.10
120.81	122.81	2.00	P384814	1.33	0.02	0.02	0.05	0.09
							0.07	0.12
122.81 124.81	124.81 126.81	2.00	P384815 P384816	1.23	0.01	0.01	0.07	0.12
	128.81	2.00	P384817	1.02	0.01	0.01	0.03	0.05
126.81								
128.81	130.81	2.00	P384818	1.55	0.03	0.01	0.04	0.14
130.81	132.81	2.00	P384819	3.86	0.06	0.03	0.08	0.23
132.81	134.81	2.00	P384820	1.17	0.01	0.01	0.02	0.04
134.81	136.81	2.00	P384821	3.32	0.02	0.05	0.08	0.13
136.81	138.81	2.00	P384822	10.40	0.02	0.11	0.11	0.21
138.81	140.81	2.00	P384823	56.00	0.10	0.31	0.35	0.26
140.81	142.81	2.00	P384824	8.75	0.07	0.28	0.12	0.15
142.81	144.81	2.00	P384825	9.16	0.02	0.17	0.37	0.58
144.81	146.81	2.00	P384826	38.40	0.07	0.84	0.23	0.40
146.81	148.65	1.84	P384827	11.95	0.03	0.76	0.23	0.58
148.65	149.51	0.86	P384828	12.65	0.01	1.81	0.31	3.05
149.51	149.90	0.39	P384829	5.65	0.08	0.07	0.33	8.81
149.90	150.60	0.70	P384830	1.53	0.00	0.02	0.04	0.38
150.60	151.98	1.38	P384831	1500.00	0.12	0.91	0.52	2.06
151.98	151.96	0.79	P384832	4.02	0.12	0.91	0.05	1.09
	153.90	1.13	P384833	9.42	0.02	0.13	0.05	0.41
	1 133.90	0.90	P384833 P384834					
152.77			rab4834	224.00	0.01	0.10	0.02	0.20
152.77 153.90	154.80			40.05	0.04	0.00	0.00	0.44
152.77 153.90 154.80	154.80 155.14	0.34	P384835	19.85	0.01	2.33	0.20	0.41
152.77 153.90 154.80 155.14	154.80 155.14 156.60	0.34 1.46	P384835 P384836	3.83	0.01	0.02	0.06	0.12
152.77 153.90 154.80 155.14 156.60	154.80 155.14 156.60 158.30	0.34 1.46 1.70	P384835 P384836 P384837	3.83 2.95	0.01 0.01	0.02 0.02	0.06 0.01	0.12 0.07
152.77 153.90 154.80 155.14	154.80 155.14 156.60	0.34 1.46	P384835 P384836	3.83	0.01	0.02	0.06	0.12

161.90	163.80	1.90	P384840	5.04	0.02	0.07	0.56	1.47
163.80	165.10	1.30	P384841	93.30	0.10	0.61	1.58	4.35
165.10	165.40	0.30	P384842	120.00	0.16	1.72	8.86	19.05
165.40	167.00	1.60	P384843	98.70	0.16	0.98	2.43	6.76
167.00	168.70	1.70	P384844	13.35	0.07	0.10	0.27	0.59
168.70	169.70	1.00	P384845	4.92	0.07	0.12	0.30	0.66
169.70	170.70	1.00	P384846	16.75	0.12	0.14	0.39	0.89
170.70	172.10	1.40	P384847	116.00	0.24	0.15	0.36	0.78
172.10	174.10	2.00	P384848	0.77	0.01	0.00	0.01	0.01
174.10	176.10	2.00	P384849	1.42	0.01	0.00	0.01	0.01
176.10	178.10	2.00	P384850	1.98	0.01	0.00	0.01	0.01
178.10	180.10	2.00	P384851	2.12	0.07	0.00	0.00	0.01
180.10	182.10	2.00	P384852	26.00	0.26	0.00	0.01	0.01
182.10	184.10	2.00	P384853	0.51	0.01	0.00	0.00	0.01
184.10	186.10	2.00	P384854	0.30	0.01	0.00	0.00	0.01
186.10	188.10	2.00	P384855	0.39	0.01	0.00	0.00	0.01
188.10	190.10	2.00	P384856	1.95	0.01	0.00	0.01	0.02
190.10	192.10	2.00	P384857	1.54	0.01	0.00	0.01	0.02
192.10	194.10	2.00	P384858	0.75	0.01	0.00	0.01	0.01
194.10	196.10	2.00	P384859	0.14	0.01	0.00	0.00	0.00
196.10	198.10	2.00						
198.10	200.10	2.00	P384860	0.12	0.01	0.00	0.00	0.01
200.10	202.10	2.00						
202.10	204.10	2.00	P384861	0.20	0.01	0.00	0.00	0.01
204.10	206.10	2.00						
206.10	208.10	2.00	P384862	0.30	0.01	0.00	0.00	0.01
208.10	210.10	2.00						
210.10	212.10	2.00	P384863	0.62	0.01	0.00	0.00	0.01
212.10	214.10	2.00						
214.10	216.10	2.00	P384864	0.46	0.01	0.00	0.00	0.01
216.10	220.00	3.90						
220.00	222.00	2.00	P384865	0.06	0.01	0.00	0.00	0.01
222.00	224.00	2.00						
224.00	226.00	2.00	P384866	0.07	0.01	0.00	0.00	0.00
226.00	229.60	3.60						
229.60	231.60	2.00	P384867	0.06	0.01	0.00	0.00	0.00

Appendix 3: JORC Table 1 -CRRDD21_02 Exploration Results

1.1 Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

,	s section apply to all succeeding sec	
Criteria	JORC-Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Oriented NQ core was cut in half using a diamond saw, with a half core sent for assay and half core retained. No other measurement tools other than directional survey tools have been used in the holes at this stage.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Oriented core was placed V-rail and a consistent cut-line drawn along core to ensure cutting (halving) of representative samples
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	 Core sample interval was based in logged mineralisation Determination of mineralisation has been based on geological logging and photo analysis. Diamond Core drilling was used to obtain 3m length samples from the barrel which are then marked in one meter intervals based on the drillers core block measurement. Assay samples will be selected based on geological logging boundaries or on the nominal meter marks. Samples will be dispatched to an accredited laboratory (ALS) in Brisbane, Australia for sample preparation and shipment to analysis
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 NQ2 diamond double tube coring by Sandvik DE710 rig was used throughout the hole. Core orientation was carried out by the drilling contractor.

Criteria	JORC-Code Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results	Lithological logging, photography
	assessed.	• Core samples were measured with a standard tape within the core trays. Length of core was then compared to the interval drilled, and any core loss was attributed to individual rock units based on the amount of fracturing, abrasion of core contacts, and the conservative judgment of the core logger.
		Results of core loss are discussed below.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Experienced driller contracted to carry out drilling. In broken ground the driller produced NQ core from short runs to maximise core recovery.
		Core was washed before placing in the core trays.
	Whether a relationship exists between sample recovery and grade and whether	Core was assessed by eye before cutting to ensure representative sampling.
	sample bias may have occurred due to preferential loss/gain of fine/coarse material.	See "Aspects of the determination of mineralisation that are Material to the Public Report" above.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Core samples were not geotechnically logged. Core samples have been geologically logged to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
	Whether logging is qualitative or quantitative in nature. Core (or costean,	• The core logging was qualitative in nature.
	channel, etc) photography.	• All core was photographed
	The total length and percentage of the relevant intersections logged.	•Total depth of the hole was 225.6m • 100% of the relevant intersections were logged.
Sub-sampling techniques	If core, whether cut or sawn and whether If non-core, whether riffled, tube sampled,	Oriented core was placed V-rail and a consistent cut-line drawn along core to ensure cutting (halving) of representative.
and sample preparation	rotary split, etc and whether sampled wet or dry.	samples
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Oriented NQ core was cut in half using a diamond saw, with half core sent for assay and half core retained.
		Core sample intervals were based in logged mineralisation
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No duplicates or second half-sampling
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	

Criteria	JORC-Code Explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Appropriate method: oriented NQ core cut in half using a diamond saw, with a half core sent for assay and half core retained.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• Assays methods appropriate for style of mineralisation: ME-MS61 0.25g sample for 48 Elements and Gold by method Au-AA25 30g sample. Samples have been sent to highly accredited Australian Laboratory Services (ALS)
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No independent verification completed at this stage
	The use of twinned holes.	The reported hole is not a twin of any previous hole
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Core measured, photographed and logged by geologists. Digitally recorded plus back-up records.
	Discuss any adjustment to assay data.	•Assay data presented in this report
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill collars recorded with Garmin GPS that has an accuracy in the order of ±3 metres for location. A registered surveyor will be contracted to accurately survey all drill collars at completed of drill program.
	Specification of the grid system used.	
	Quality and adequacy of topographic control.	• MGA94 (Zone 56)
		Topographic control based on Department of Lands digital terrain model.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and	

Criteria	JORC-Code Explanation	Commentary
	Ore Reserve estimation procedure(s) and classifications applied.	Not relevant to current drilling.
		Not relevant to current drilling.
D	Whether sample compositing has been applied.	
		Core sample intervals were based in logged mineralisation and no sample composting applied. Reporting of final results includes many weighted average- composting of assay data.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the denosit type. If the relationship between the drilling	The orientation of the mineralisation is unknown. The drilling program is aimed at determining orientation of the base of mineralisation by drilling three holes.
structure	orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is uncertain whether sampling bias has been introduced, or whether the thickness drilled is a true thickness.
Sample security	The measures taken to ensure sample security.	Core samples will be stored at the Gibsons core yard before express overnight freight to Australian Laboratory Services Pty. Ltd. (ALS) Brisbane. Sample movements and security documented by ALS Chain of Custody.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Not undertaken at this stage

2 Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC-Code Explanation	Commentary	′					
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	• The Halls I 4474 and EL of about 84I • There are r • Tenure is o	7679, loca km². no known ir	ated in nort	h-easte	rn NSW a	nd cov	ering an area
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	prospectors lead, zinc an 1916. Accor Wales "In 19 450 tons of this several for massive BHP Co. Ltd Australia Lir hindered as	896 when There was d silver ore ding to Rep 165, 1,600 t zinc, 46.3 t exploration sulphides on the difference were orograms of the difference were difference	massive so s some sm. e on the east oort 52 – The ons of cop n campaign and silver b dines Ltd., T Allstate Exp able to sec comprising	all-scale all-scale at side of the Geol were m per and s were by major the Zinc loration drilling,	deposits e mining of the Cha logical Sui ined to gi 12523 oz conducte r mining o Corporat n N.L. but geochem	were done of depoint of depoint of the control of t	iscovered by a sits of copper intil New South tons of lead, wer". Following the mid-1980 ines such as l., Halls Peak work was
Geology	Deposit type, geological setting and style of mineralisation.	continental is hosted ir volcanic, vol and metamineralisative broad zones bodies are gacross. The and siltstom sericite-qual sphalerite a	crust uplift the Perm caniclastic orphosed (on is stratii of dissem enerally mo massive so e within zo tz altered nd galena, Metal grac	ed to form nian Halls I and sedim due to thei form with s inated and oderate to s ulphides are nes of stor rocks. Sul with mino des in mass	a mou. Peak Vinentary r forma reveral i stockwo teeply o e often ckwork phide r r amou	ntainous intainous interpretation in a massive sork sulphidipping an associate and dissenineralisa	region. a sequent have a rift seculphid des. Mad up to de with eminate alcopy	rogen, a belt Mineralisation Juence of felst been deformating. Sulphine e bodies with assive sulphine tens of metro sulphidic sha ed sulphides dominated surite, pyrite an ge 3.5% Cu, 8
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following	Hole ID	Easting	Northing	RL	Azimuth	Dip	To Depth (m)
	easting and northing of the drill hole collar	CRR21DD_02	407674.2	6598047.3	818.2	180	65	225.6
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar			1	1	1	1	

C	riteria	JORC-Code Explanation	Commentary
		dip and azimuth of the hole down hole length and interception depth	
		hole length.	
		If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	• Not relevant
a	Pata ggregation nethods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	• Uncut
		Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	• All aggregate intercepts detailed on tables and in text are weighted averages.
		The assumptions used for any reporting of metal equivalent values should be clearly stated.	
L			• None used
/ b	elationship etween nineralisation vidths and	These relationships are particularly important in the reporting of Exploration Results.	• True width not currently known. All lengths are down-hole lengths and not true width.
	ntercept engths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	• The precise geometry is not currently known but is being tested by the planned drilling, with diamond drill hole azimuths designed to drill normal to the interpreted mineralised structure.
		If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	• Down-hole length reported, true width not known.
	iagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The drilling is aimed at clarifying the structure of the mineralisation.

Criteria	JORC-Code Explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative reporting of all relevant grades is provided in tables to avoid misleading reporting of Exploration Results.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Overview of exploration data leading to selection of drill targets provided. There were no deleterious elements identified.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	• Drill program totalling 6,400m to both verify historical drilling at Halls Peak but also to test deeper VTEM targets.

Appendix 4: JORC Table 1 -CRRDD21_04 Exploration Results

2.1 Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC-Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Oriented NQ core was cut in half using a diamond saw, with a half core sent for assay and half core retained. No other measurement tools other than directional survey tools have been used in the holes at this stage.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse	 Oriented core was placed V-rail and a consistent cut-line drawled along core to ensure cutting (halving) of representative sample Core sample interval was based in logged mineralisation Determination of mineralisation has been based on
	circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	geological logging and photo analysis. • Diamond Core drilling was used to obtain 3m length samples from the barrel which are then marked in one meter intervals based on the drillers core block measurement. • Assay samples will be selected based on geological logging boundaries or on the nominal meter marks. • Samples will be dispatched to an accredited laboratory (ALS) if Brisbane, Australia for sample preparation and shipment to analysis
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 NQ2 diamond double tube coring by Sandvik DE710 rig was used throughout the hole. Core orientation was carried out by the drilling contractor.

Criteria	JORC-Code Explanation	Commentary		
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results	Lithological logging, photography		
D	assessed.	• Core samples were measured with a standard tape within the core trays. Length of core was then compared to the interval drilled, and any core loss was attributed to individual rock units based on the amount of fracturing, abrasion of core contacts, and the conservative judgment of the core logger.		
		Results of core loss are discussed below.		
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Experienced driller contracted to carry out drilling. In broken ground the driller produced NQ core from short runs to maximise core recovery. 		
		• Core was washed before placing in the core trays.		
	Whether a relationship exists between	Core was assessed by eye before cutting to ensure representative sampling.		
	sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	See "Aspects of the determination of mineralisation that are Material to the Public Report" above.		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Core samples were not geotechnically logged. Core samples have been geologically logged to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 		
	Whether logging is qualitative or quantitative in nature. Core (or costean,	• The core logging was qualitative in nature.		
	channel, etc) photography.	All core was photographed		
	The total length and percentage of the			
	relevant intersections logged.	•Total depth of the hole was 231.6m		
		• 100% of the relevant intersections were logged.		
Sub-sampling	If core, whether cut or sawn and whether	Oriented core was placed V-rail and a consistent cut-line		
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	drawn along core to ensure cutting (halving) of representative samples		
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Oriented NQ core was cut in half using a diamond saw, with a half core sent for assay and half core retained.		
		Core sample intervals were based in logged mineralisation		
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No duplicates or second half-sampling		
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.			

Criteria	JORC-Code Explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Appropriate method: oriented NQ core cut in half using a diamond saw, with a half core sent for assay and half core retained.
5		
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Assays methods appropriate for style of mineralisation: ME-MS61 0.25g sample for 48 Elements and Gold by method Au-AA25 30g sample. Samples have been sent to highly accredited Australian Laboratory Services (ALS)
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No independent verification completed at this stage
	The use of twinned holes.	This hole is not a twin of any previous hole
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Core measured, photographed and logged by geologists. Digitally recorded plus back-up records.
	Discuss any adjustment to assay data.	•Assay data presented in this report
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	• Drill collars recorded with Garmin GPS that has an accuracy in the order of ±3 metres for location. A registered surveyor will be contracted to accurately survey all drill collars at completed of drill program.
	Specification of the grid system used.	
	Quality and adequacy of topographic control.	• MGA94 (Zone 56)
		Topographic control based on Department of Lands digital terrain model.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	

0 :: .	1000 0 1 5 1 11	
Criteria	JORC-Code Explanation	Commentary
	Whether sample compositing has been applied.	Not relevant to current drilling.
		Not relevant to current drilling.
D		
		Core sample intervals were based in logged mineralisation and no sample composting applied. Reporting of final results includes many weighted average- composting of assay data.
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is	The orientation of the mineralisation is unknown. The drilling program is aimed at determining orientation of the base of mineralisation by drilling three holes.
geological structure	known_considering the denosit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is uncertain whether sampling bias has been introduced, or whether the thickness drilled is a true thickness.
Sample security	The measures taken to ensure sample security.	Core samples will be stored at the Gibsons core yard before express overnight freight to Australian Laboratory Services Pty. Ltd. (ALS) Brisbane. Sample movements and security documented by ALS Chain of Custody.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Not undertaken at this stage

3 Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC-Code Explanation	Commentary	′					
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	• The Halls I 4474 and EL of about 84I • There are r • Tenure is c	7679, loca km². no known ir	ited in nort	h-easte	rn NSW a	nd cov	ering an area
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	prospectors lead, zinc an 1916. Accor Wales "In 19 450 tons of this several for massive BHP Co. Ltd Australia Lir hindered as	896 when There was d silver ore ding to Rep 165, 1,600 t zinc, 46.3 t exploration sulphides and A none were programs c	massive si s some sm e on the ea oort 52 – To ons of cop a campaign and silver b lines Ltd., T illstate Exp able to se omprising	ulphide all-scalest side of the Geolowere mper and its were by majo. The Zincoloration drilling,	deposits e mining of the Cha logical Su ined to gi 12523 oz conducte r mining oz Corpora n N.L. but ure to the	were d of depo andler I rvey of ve 263 z of silv d until compar tion Ltc most v e whole	iscovered by osits of copper intil New South tons of lead, ver". Followin the mid-1980 ines such as d., Halls Peak vork was
Geology	Deposit type, geological setting and style of mineralisation.	• Halls Peak is in the southern part of the New England Orogen, a beha continental crust uplifted to form a mountainous region. Mineralisat is hosted in the Permian Halls Peak Volcanics, a sequence of fel volcanic, volcaniclastic and sedimentary rocks that have been deform and metamorphosed due to their formation in a rift setting. Sulph mineralisation is stratiform with several massive sulphide bodies with broad zones of disseminated and stockwork sulphides. Massive sulph bodies are generally moderate to steeply dipping and up to tens of met across. The massive sulphides are often associated with sulphidic sh and siltstone within zones of stockwork and disseminated sulphides sericite-quartz altered rocks. Sulphide mineralisation is dominated sphalerite and galena, with minor amounts of chalcopyrite, pyrite a tetrahedrite. Metal grades in massive sulphides can average 3.5% Cu, Pb, 24% Zn, 260g/t Ag and 0.42g/t Au.						
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following							
	easting and northing of the drill hole	Hole ID CRR21DD_04	Easting 407647	Northing 6598047	RL 818.2	Azimuth 180	Dip 80	231.6
	elevation or RL (Reduced Level – elevation above sea level in metres)				1.0.2	1 .55	1 30	

Criteria	JORC-Code Explanation	Commentary		
	dip and azimuth of the hole down hole length and interception			
	depth			
	hole length.			
D	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	• Not relevant		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	• Uncut		
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	• All aggregate intercepts detailed on tables and in text are weighted averages.		
	The assumptions used for any reporting of metal equivalent values should be clearly stated.			
		None used		
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results.	True width not currently known. All lengths are down-hole lengths and not true width.		
intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The precise geometry is not currently known but is being tested by planned drilling, with diamond drill hole azimuths designed to drill normal to the interpreted mineralised structure.		
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	• Down-hole length reported, true width not known.		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• The drilling is aimed at clarifying the structure of the mineralisation.		

Criteria	JORC-Code Explanation	Commentary		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative reporting of all relevant grades is provided in tables to avoid misleading reporting of Exploration Results.		
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Overview of exploration data leading to selection of drill targets provided. There were no deleterious elements identified.		
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	Drill program totalling 6,400m to both verify historical drilling at Halls Peak but also to test deeper VTEM targets.		