

23 May 2022

High Grade Zinc, Copper, Lead and Silver Assays at Depth at Gibsons in Step Out Holes

Critical Resources Limited (ASX:**CRR**) ("Critical Resources" or the "Company") is pleased to advise that it has received assay results from its 8th and 9th drill holes at its 100% owned Gibsons prospect. Diamond drill holes CRR21DD_02A ("Hole 02A") and CRR21DD_07A ("Hole 07A") have intersected further zinc, lead, copper and silver bearing zones of sulphide mineralisation. Hole 02A and Hole 07A are step out holes that further demonstrates the increased potential of the mineralised extent of the Halls Peak system.

<u>Highlights</u>

Hole 02A

- 6.37m @ 7.31% Zn, 0.89% Pb, 0.22% Cu, 10.33g/t Ag, 0.08g/t Au, from 72.65-79.02m downhole
 - Including 2.01m @ 13.14% Zn, 1.82% Pb, 0.44% Cu, 17.20/t Ag, 0.09 g/t Au from 73.38-75.39m downhole
- 5.3m @ 4.10% Zn, 1.78% Pb, 0.49% Cu, 25.17g/t Ag, 0.09g/t Au from 166.3-171.6m downhole
 - Including 1.2m @ 9.4% Zn, 4.76% Pb, 1.29% Cu, 74.39g/t Ag, 0.16g/t Au from 170.4 – 171.6m downhole

Hole 07A

- 34.3m @ 2.14% Zn, 0.83% Pb, 0.32% Cu, 7.02g/t Ag, 0.05g/t Au from 70.3-104.6m downhole
- Including 3.35m @ 6.06% Zn, 2.06% Pb, 0.23% Cu, 7.86g/t Ag, 0.02g/t Au from 83.55-86.9m downhole and
- 4.5m @ 9.22% Zn, 4.34% Pb, 0.98% Cu, 23.81g/t Ag, 0.08g/t Au from 98–102.5m downhole
- Holes 02A and 07A are step-out holes in an area previously untested
- Strong mineralisation at depth continues to expand the potential of the Halls Peak System
- Cores from completed holes 02, 04, 14, 15 and 16 are currently being assayed at the ALS laboratory in Brisbane with results expected progressively

The Company is pleased to receive further assays from Hole 02A and Hole 07A at its 100% owned Halls Peak project in New South Wales. Results continue to demonstrate the scale potential of the Halls Peak system, particularly at depth and provides strong support for an expanded drill program.

Critical Resources Managing Director Alex Biggs said: "Further positive results confirm the growing potential of the Halls Peak system. As our drill program continues we are excited to see significant grades and intersections that provide increased confidence that Halls Peak could be a transformational asset for the Company. Our drill program is continuing and we look forward to starting drilling at our Sunnyside prospect which is approximately 1.5km along strike from our current drilling at the Gibsons prospect. This will add further growth potential to the Project".

Summary of Key Polymetallic Intersections

Hole 02A

- 6.37m @ 7.31% Zn, 0.89% Pb, 0.22% Cu, 10.33g/t Ag, 0.08g/t Au, from 72.65-79.02m downhole
 - Including 2.01m @ 13.14% Zn, 1.82% Pb, 0.44% Cu, 17.20/t Ag, 0.09 g/t Au from 73.38-75.39m downhole
- 5.3m @ 4.10% Zn, 1.78% Pb, 0.49% Cu, 25.17g/t Ag, 0.09g/t Au from 166.3-171.6m downhole
 - Including 1.2m @ 9.4% Zn, 4.76% Pb, 1.29% Cu, 74.39g/t Ag, 0.16g/t Au from 170.4 171.6m downhole

Hole 07A

- 34.3m @ 2.14% Zn, 0.83% Pb, 0.32% Cu, 7.02g/t Ag, 0.05g/t Au from 70.3-104.6m downhole
- Including 3.35m @ 6.06% Zn, 2.06% Pb, 0.23% Cu, 7.86g/t Ag, 0.02g/t Au from 83.55–86.9m downhole and
- o 4.5m @ 9.22% Zn, 4.34% Pb, 0.98% Cu, 23.81g/t Ag, 0.08g/t Au from 98-102.5m downhole

Figure 1: CRR21DD_02A, Portion of sample 384935 exhibiting abundant yellowy-brown sphalerite (zinc sulphide) from sampled downhole interval 73.38-74.38m that assayed 16.7% Zn (NQ core, 50mm diameter)

Figure 2: CRR21DD_02A, 6.37m interval comprising samples P384934–P384940 assaying at 7.31% Zn, 0.89% Pb, 0.22% Cu, 10.33g/t Ag, 0.08g/t Au, from 72.65-79.02m downhole (NQ core, 50mm diameter)

Figure 3: CRR21DD_02A. 5.3m interval comprising samples P384984-P384987 from 166.3-171.6m depth downhole, grading 4.10% Zn, 1.78% Pb, 0.49% Cu, 25.17g/t Ag, 0.09g/t Au. (NQ core, 50mm diameter)

Figure 4: CRR21DD_07A, 3.35m interval comprising samples 42574 -42575 from 83.55–86.9m downhole assaying 6.06% Zn, 2.06% Pb, 0.23% Cu, 7.86g/t Ag, 0.02g/t Au (NQ core, 50mm diameter)

Figure 5: CRR21DD_07A, Portion (all three rows) of sample 42574 comprising carbonaceous black pelite with yellowybrown sphalerite (zinc sulphide) from a 2.25m downhole interval (83.55-85.80m) assaying 7.52% Zn, 2.92% Pb, 0.32% Cu, 10.7g/t Ag and 0.03g/t Au (NQ core, 50mm diameter)

Figure 6: CRR21DD_07A, 4.5m interval (second tray) comprising samples 42583-42585 from 98-102.5m downhole assaying 9.22% Zn, 4.34% Pb, 0.98% Cu, 23.81g/t Ag, 0.08g/t Au (NQ core, 50mm diameter)

Figure 7: CRR21DD_07A, Portion (both rows) of sample 42583 exhibiting close-up of mineralised breccia with abundant yellowy-brown sphalerite (zinc sulphide) from a 1.9m downhole interval (98.00-99.90m) assaying 18.35% Zn, 9.08% Pb, 0.94% Cu, 44.5g/t Ag and 0.14g/t Au (NQ core, 50mm diameter)

Figure 8: Cross-section and some downhole intersection, diamond drill holes CRR21DD_02A and CRR21DD_07A

Figure 9: Plan showing Gibsons drill collar locations plus recently approved new drill holes

Halls Peak Project Description

The 100% owned Halls Peak project is located in New South Wales approximately 45km South-East of Armidale in the New England Fold Belt, an area well known for its mineral endowment and production. The Halls Peak massive sulphide deposits were discovered in 1896 where near surface mining extracted high-grade Zinc, Lead, Copper and Silver. Recent exploration at the Gibsons prospect has yielded excellent high-grade intersections of zinc, lead, copper and silver.

Halls Peak is considered to have potential to contain world class deposits similar to those already being mined in northern Australia. The project area comprises multiple historic mines and prospects including Gibsons, Sunnyside, Firefly, Faints, Khans Creek, Keys and Mickey Mouse. All current exploration activities are focused on exploration licence EL 4474 with primary targets being the Gibsons and Sunnyside prospects. A summary of the project location is shown in Figure 10.

Previous drilling results includes:

Critical Resources Limited – ASX Announcements 7.63 metres @ 0.23% Zn, 0.01% Pb, 1.15% Cu, 73.15g/t Ag, 0.01g/t Au (refer ASX Announcement 05 April 2022) 3.6 metres @ 15.06% Zn, 8.38% Pb, 0.69% Cu, 37.51g/t Ag, 0.09g/t Au (refer ASX Announcement dated 09 March 2022) 7.53m @ 4.20% Zn, 1.92% Pb, 0.39% Cu, 19.15g.t Ag, 0.11g/t Au 7.18m @ 3.63% Zn, 1.89% Pb, 0.77% Cu, 15.82g/t Ag, 0.09g/t Au 1.28m @ 13.5% Zn, 4.75% Pb, 0.71% Cu, 21.5g/t Ag, 0.09g/t Au (refer ASX Announcement dated 21 February 2022) 5.30m @ 26.29% Zn, 12.49% Pb, 1.28% Cu, 49.18g/t Ag, 0.15g/t Au 5.99m @ 8.17% Zn, 4.33% Pb, 0.84% Cu, 25.36g/t Ag, 0.13g/t Au (refer ASX announcement dated 09 February 2022) 12.45m @ 10.91% Zn 5.73% Pb , 1.15% Cu, 331.63g/t Ag and 1.50g/t Au

(refer ASX announcement dated 11 January 2022)

¹Sovereign Gold Company and Force Commodities Limited – ASX Announcements

11.3m @ 15.18% Zn, 8.02% Pb, 597g/t Ag, 1.61% Cu from hole SG-03 (refer ASX announcement dated 15 December 2016) 11.2m @ 19.71% Zn, 10.77 % Pb, 134.96 g/t Ag, 0.8% Cu from hole SG-06 (refer ASX announcement dated 29 December 2016) 7.2m @ 20.19% Zn, 7.17 % Pb, 30.93gpt Ag, 0.66% Cu from hole SG-05 (refer ASX announcement dated 29 December 2016) 5.7m @ 9.44% Zn, 7.09% Pb, 155g/t Ag, 0.53% Cu from hole SG-03 (refer ASX announcement dated 15 December 2016)

²Precious Metal Resources Limited – ASX Announcements

37.2m @ 8.7% Zn, 3.0% Pb, 85g/t Ag, 1.4% Cu from hole DDH HP 026 (refer to ASX announcement dated 03 January 2014) 7.45m @ 8.88% Zn, 3.11% Pb, 22 g/t Ag, 0.56% Cu from hole DDH HP 027 (refer ASX announcement dated 15 January 2014)

^{1,2}The information required pursuant to listing rule 5.7 is included in ASX announcement dated 08 July 2021

This announcement has been approved for release by the Board of Directors.

-End-

EXPLORATION WORK - COMPETENT PERSONS STATEMENT

The information in this ASX Announcement that relates to Exploration Results is based on information compiled by Mr Michael Leu, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Leu is a full-time employee of Critical Resources Limited. Mr Leu has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Leu consents to the inclusion in this ASX Announcement of the matters based on his information in the form and context in which it appears.

ABOUT CRITICAL RESOURCES LIMITED

Critical Resources is a base metals and lithium exploration and development focused company headquartered in Perth, Western Australia and is listed on the Australian Securities Exchange (ASX:CRR). The Company has recently been undergoing a structured process of change at the Director and Executive level. These changes mark the commencement of a renewed focus by the Company on providing shareholder value through the exploration, development and advancement of the Company's long held NSW assets, its newly acquired Lithium assets in Canada and also of its Copper assets in Oman.

FORWARD LOOKING STATEMENTS

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

NO NEW INFORMATION

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

Appendix 1: CRRDD21_02A Assay Results

From		То		nterval	Rec		-	Α	ssays
(m)	(m)	(m)	(m)	Sample	Ag (ppm)	Au (ppm)	Cu (%)	Pb (%)	Zn (%)
	()	~ /		No.	5 (11)				
0.00	6.40	6.40	3.2	384901	0.35	<0.01	0.005	0.006	0.011
6.40	10.30	3.90	3.1	384902	0.58	<0.01	0.002	0.002	0.010
10.30	15.50	5.20	2.7	384903	1.49	0.03	0.002	0.004	0.010
15.50	17.50	2.00	2	384904	5.91	0.08	0.001	0.009	0.002
17.50	19.50	2.00	2	384905	5.48	0.07	0.005	0.005	0.017
19.50	22.00	2.50	1.2	384906	9	0.07	0.003	0.006	0.021
22.00	24.00	2.00	2	384907	8.66	0.04	0.009	0.017	0.047
24.00	26.00	2.00	1.6	384908	4.54	0.03	0.007	0.012	0.028
26.00	28.00	2.00	2	384909	4.52	0.04	0.007	0.011	0.017
28.00	30.00	2.00	2	384910	4.43	0.03	0.005	0.014	0.029
30.00	32.00	2.00	1.6	384911	4.05	0.04	0.005	0.011	0.022
32.00	34.00	2.00	2	384912	8.71	0.06	0.010	0.029	0.043
34.00	36.00	2.00	1.7	384913	10.6	0.05	0.009	0.058	0.096
36.00	38.00	2.00	2	384914	2.38	0.01	0.009	0.086	0.171
38.00	40.00	2.00	2	384915	2.7	0.03	0.008	0.054	0.096
40.00	43.16	3.16	2.86	384916	12.05	0.04	0.013	0.077	0.117
43.16	45.38	2.22	1.92	384917	5.23	0.03	0.043	0.374	0.674
45.38 48.50	48.50 50.50	3.12 2.00	2.02	384918 384919	1.48 2.57	0.02	0.003 0.014	0.259	0.509
48.50	50.50	2.00	1.9	384919	2.57	0.02	0.014	0.163	0.477
52.50	54.50	2.00	2	384920	0.53	0.02	0.017	0.323	0.936
52.50	56.50	2.00	2	384921	0.33	0.01	0.001	0.088	0.141
56.50	57.28	0.78	0.78	384922	0.45	0.01	0.001	0.025	0.062
57.28	58.47	1.19	1.19	384924	0.45	0.02	0.002	0.008	1.060
58.47	59.51	1.04	1.04	384925	4.06	0.01	0.504	0.302	3.420
59.51	60.51	1.04	1.04	384926	1.12	0.01	0.086	0.007	2.070
60.51	62.11	1.60	1.6	384927	1.38	0.01	0.032	0.007	0.783
62.11	63.77	1.66	1.66	384928	0.39	0.02	0.002	0.002	0.460
63.77	64.07	0.30	0.3	384929	0.64	0.01	0.044	0.013	7.940
64.07	66.11	2.04	2.04	384930	0.65	0.02	0.009	0.010	0.147
66.11	68.11	2.00	2	384931	1.35	0.02	0.004	0.002	0.187
68.11	70.11	2.00	2	384932	1.11	0.02	0.019	0.116	0.738
70.11	72.65	2.54	2.54	384933	1.28	0.04	0.00568	0.0649	0.201
72.65	73.38	0.73	0.73	384934	2.83	0.07	0.091	0.010	3.180
73.38	74.38	1.00	1	384935	16.75	0.07	0.600	0.992	16.700
74.38	75.39	1.01	1.01	384936	17.65	0.1	0.279	2.640	9.620
75.39	76.65	1.26	1.26	384937	9.87	0.07	0.039	0.436	1.950
76.65	77.24	0.59	0.59	384938	7.52	0.25	0.107	0.311	8.350
77.24	78.02	0.78	0.78	384939	10.35	0.06	0.319	1.540	10.800
78.02	79.02	1.00	1	384940	4.22	0.06	0.109	0.062	2.040
79.02	81.02	2.00	2	384941	1.14	0.01	0.005	0.008	0.092
81.02	83.05	2.03	2.03	384942	2.51	0.02	0.212	0.023	0.580
83.05	84.89	1.84	1.84	384943	6.15	0.03	0.056	0.441	1.530
84.89	86.89	2.00	2	384944	4.92	0.02	0.031	0.298	1.015
86.89	88.54	1.65	1.65	384945	2.05	0.02	0.004	0.009	0.043
88.54	90.20	1.66	1.66	384946	7.17	0.02	0.137	0.745	0.814
90.20	92.20	2.00	2	384947	4.38	0.03	0.019	0.094	0.253
92.20	94.20	2.00	2	384948	4.71	0.03	0.198	0.039	0.129
94.20	96.20	2.00	2	384949	2.48	0.02	0.009	0.016	0.070
96.20	98.20	2.00	2	384950	2.62	0.03	0.004	0.014	0.049
98.20	100.86	2.66	2.66	384951	2.82	0.02	0.010	0.032	0.117
100.86	101.96	1.10	1.1	384952	12.9	0.22	1.230	0.043	0.256
101.96	103.70	1.74	1.74	384953	9.25	0.04	0.438	0.064	0.264
103.70	104.56	0.86	0.86	384954	16.85	0.03	3.300	0.060	0.229
104.56 105.56	105.56 107.39	1.00 1.83	1 1.83	384955 384956	5.22	0.02	0.326 0.512	0.050	0.256
105.56	107.39	2.00	1.83	384956	6.66 2.07	0.04	0.083	0.041	0.164
107.39	109.09	2.00	۷	504957	2.07	0.01	0.003	0.170	0.299

91~	CRITICAL
EUN	RESOURCES
MNN	LIMITED

109.39	110.74	1.35	1.35	384958	11.45	0.02	0.191	0.124	0.078
110.74	111.03	0.29	0.29	384959	8.31	0.15	1.705	0.015	0.169
111.03	112.08	1.05	1.05	384960	4.69	0.06	0.193	0.070	0.240
112.08	114.57	2.49	2.49	384961	0.72	0.01	0.044	0.006	0.064
114.57	115.26	0.69	0.69	384962	5.94	0.26	0.038	0.011	0.069
115.26	117.26	2.00	2	384963	2.12	0.07	0.071	0.010	0.030
117.26	119.26	2.00	2	384964	1.11	0.02	0.051	0.004	0.269
119.26	121.26	2.00	2	384965	1.68	0.03	0.006	0.010	0.023
121.26	123.26	2.00	2	384966	3.03	0.03	0.081	0.075	0.023
123.26	125.30	2.04	2.04	384967	3.27	0.01	0.108	0.101	0.070
125.30	127.44	2.14	2.14	384968	4.9	0.02	0.126	0.166	0.507
127.44	129.44	2.00	2	384969	2.71	0.03	0.109	0.217	0.118
129.44	131.44	2.00	2	384970	3.06	0.04	0.043	0.033	0.231
131.44	133.44	2.00	2	384971	2.63	0.06	0.006	0.023	0.082
133.44	135.44	2.00	2	384972	1.15	0.02	0.002	0.003	0.011
135.44	137.44	2.00	2	384973	1.26	0.03	0.007	0.017	0.037
137.44	139.44	2.00	2	384974	3.03	0.06	0.078	0.052	0.260
139.44	141.44	2.00	2	384975	2.69	0.06	0.028	0.022	0.059
141.44	143.44	2.00	2	384976	4.02	0.08	0.648	0.046	0.194
143.44	145.44	2.00	2						
145.44	147.44	2.00	2	384977	3.78	0.02	0.178	0.061	0.174
147.44	149.44	2.00	2	384978	3.07	0.03	0.178	0.058	0.450
149.44	152.2	2.76	2.36	384979	2.6	0.02	0.079	0.220	0.663
152.2	155.7	3.50	1.8	384980	2.47	0.01	0.077	0.070	0.196
155.70	158.70	3.00	3	384981	1.99	0.01	0.064	0.063	0.244
158.70	161.15	2.45	2.45	384982	1.68	0.01	0.059	0.083	0.535
161.15	166.30	5.15	2.25	384983	0.23	0	0.017	0.031	0.141
166.30	168.35	2.05	1.45	384984	8.04	0.02	0.261	0.982	3.060
168.35	169.70	1.35	1.35	384985	7.48	0.12	0.140	0.554	1.740
169.70	170.40	0.70	0.7	384986	25.1	0.11	0.433	1.380	2.630
170.40	171.10	0.70	0.7	384987	89.6	0.21	1.355	5.440	10.70
171.10	171.60	0.50	0.5	384988	53.1	0.1	1.195	3.800	7.580
171.60	172.30	0.70	0.7				0.000	0.000	0.000
172.30	174.30	2.00	2	384989	4.86	0.05	0.016	0.041	0.064
174.30	176.30	2.00	2	384990	116	0.09	0.073	0.195	0.340
176.30	178.30	2.00	2	384991	0.66	0.01	0.010	0.028	0.054
178.30	180.30	2.00	2						
180.30	182.30	2.00	2	384992	1.64	0.01	0.004	0.008	0.019
182.30	184.30	2.00	2						
184.30	186.30	2.00	2	384993	0.75	0.00001	0.002	0.003	0.011
186.30	188.30	2.00	2						
188.30	190.30	2.00	2	384994	0.15	0.00001	0.001	0.003	0.008
190.30	192.30	2.00	2		-	-			
192.30	194.30	2.00	2	384995	0.15	0.14	0.001	0.003	0.005
194.30	201.00	6.70	6.7		-				
201.00	203.00	2.00	2	384996	0.34	0.00001	0.001	0.004	0.007
203.00	206.84	3.84	3.84						
206.84	208.00	1.16	1.16						
208.00	210.00	2.00	2	384997	0.22	0.00001	0.002	0.002	0.009
210.00	210.50	0.50	0.5						

Appendix 2: CRRDD21_07A Assay Results

From		Т	o	Inte	rval	R	ec	Assays	
(m)	(m)	(m)	(m)	Sample	Ag	Au	Cu (%)	Pb (%)	Zn (%)
				No.	(ppm)	(ppm)			
0.00	1.70	1.70	0.50						
1.70	3.50	1.80	0.50						
3.50	6.50	3.00	0.80						
6.50	7.80	1.30	1.30						
7.80	9.50	1.70	1.30						
9.50	11.80	2.30	0.70						
11.80	13.20	1.40	1.40						
13.20	15.00	1.80	1.80						
15.00	17.80	2.80	1.30						
17.80	20.00	2.20	2.20						
20.00	22.00	2.00	1.70	P38499 8	7.6	0.00001	0.003	0.009	0.020
22.00	24.00	2.00	2.00	P38499 9	0.34	0.04	0.001	0.007	0.033
24.00	26.00	2.00	2.00	P38500 0	7.48	0.03	0.009	0.017	0.048
26.00	28.00	2.00	2.00	42543	3.44	0.02	0.007	0.018	0.021
28.00	30.00	2.00	1.40	42544	5.94	0.02	0.006	0.009	0.018
30.00	32.00	2.00	1.00	42545	22.9	0.02	0.029	0.049	0.161
32.00	34.00	2.00	2.00	42546	3.45	0.02	0.006	0.009	0.026
34.00	36.10	2.10	2.10	42547	5.31	0.02	0.026	0.047	0.081
36.10	38.00	1.90	1.90	42548	8.05	0.04	0.009	0.024	0.023
38.00	40.00	2.00	2.00	42549	10.05	0.04	0.008	0.026	0.018
40.00	41.00	1.00	1.00	42550	14	0.06	0.039	0.305	0.742
41.00	43.00	2.00	2.00	42551	8.53	0.01	0.031	0.319	0.611
43.00	45.00	2.00	1.90	42552	6.32	0.01	0.029	0.305	0.536
45.00	47.00	2.00	2.00	42553	6.83	0.02	0.010	0.072	0.093
47.00	49.30	2.30	1.70	42554	7.35	0.01	0.107	1.115	2.170
49.30	51.50	2.20	1.70	42555	5.53	0.01	0.097	1.095	2.450
51.50	54.50	3.00	1.70	42556	1.34	0.01	0.003	0.170	0.296
54.50	57.10	2.60	2.40	42557	2.42	0.02	0.004	0.014	0.165
57.10	58.30	1.20	1.20	42558	11.3	0.02	0.007	0.030	1.165
58.30	60.00	1.70	1.50	42559	1.8	0.01	0.004	0.054	0.378
60.00	62.00	2.00	1.90	42560	1	0.01	0.003	0.006	0.039
62.00	63.50	1.50	1.40	42561	1.08	0.02	0.003	0.006	0.037
63.50	65.50	2.00	1.90	42562	0.98	0.01	0.173	0.002	0.163
65.50	67.60	2.10	2.10	42563	1.16	0.01	0.035	0.002	0.066
67.60	69.00	1.40	1.40	42564	0.4	0.01	0.005	0.001	0.039
69.00	70.30	1.30	1.30	42565	2.44	0.04	0.011	0.003	0.416
70.30	71.20	0.90	0.90	42566	4.38	0.05	0.229	0.011	1.515
71.20	72.40	1.20	1.20	42567	1.58	0.02	0.020	0.143	2.180
72.40	73.50	1.10	1.10	42568	1.56	0.02	0.006	0.005	1.170
73.50	75.50	2.00	1.90	42569	1.32	0.02	0.004	0.003	0.064
75.50	77.50	2.00	2.00	42570	2.7	0.01	0.003	0.003	0.067
77.50	79.50	2.00	2.00	42571	1.08	0.01	0.000	0.002	0.077
79.50	80.50	1.00	0.80	42572	0.45	0.01	0.001	0.002	0.047
80.50	83.55	3.05	1.50	42573	0.88	0.02	0.002	0.002	0.102
83.55	85.80	2.25	2.15	42574	10.7	0.03	0.323	2.920	7.520
85.80	86.90	1.10	1.10	42575	2.08	0.02	0.050	0.299	3.080
86.90	87.90	1.00	1.00	42576	0.8	0.01	0.032	0.103	0.584
87.90	89.00	1.10	1.10	42577	2.69	0.06	0.026	0.096	0.268
89.00	91.00	2.00	2.00	42578	4.52	0.05	0.020	0.000	0.482
91.00	93.00	2.00	2.00	42579	2.41	0.03	0.000	0.200	0.613
93.00	95.00	2.00	2.00	42580	2.31	0.05	0.010	0.070	0.573
	97.00	2.00	2.00	42581	3.35	0.03	0.015	0.070	0.227

Critical Resources Ltd | Level 11, 40 The Esplanade, Perth, WA, 6000 | P: +61 9389 4499 | web:criticalresources.com.au Email: admin@criticalresources.com.au | ABN 12 145 184 667 | ASX:CRR

91~	CRITICAL
EUN	RESOURCES
MW	LIMITED

97.00	98.00	1.00	1.00	42582	4.66	0.04	0.191	0.061	0.485
98.00	99.90	1.90	1.90	42583	44.5	0.14	0.943	9.080	18.350
99.90	101.40	1.50	1.50	42584	3.59	0.04	0.095	0.062	2.580
101.40	102.50	1.10	1.10	42585	15.65	0.05	2.270	2.000	2.510
102.50	104.60	2.10	2.10	42586	25.2	0.19	2.500	0.049	0.158
104.60	106.75	2.15	2.15	42587	3.62	0.02	0.345	0.075	0.474
106.75	108.70	1.95	1.95	42588	3.27	0.04	0.487	0.030	0.922
108.70	110.70	2.00	2.00	42589	4.62	0.04	0.269	0.012	0.054
110.70	112.70	2.00	2.00	42590	2.52	0.04	0.159	0.010	0.156
112.70	114.50	1.80	1.80	42591	2.42	0.03	0.186	0.011	0.153
114.50	116.50	2.00	2.00	42592	1.52	0.02	0.005	0.003	0.062
116.50		2.17	2.15	42593	1.03	0.01	0.003	0.002	0.029
118.67		1.83	1.83	42594	2.11	0.01	0.151	0.003	0.025
120.50	122.00	1.50	1.50	42595	0.85	0.01	0.005	0.002	0.060
122.00	123.30	1.30	1.30	42596	1.56	0.02	0.181	0.002	0.057
123.30		0.70	0.70	42597	3.59	0.01	0.502	0.009	0.093
124.00	125.60	1.60	1.60	42598	1.3	0.02	0.117	0.006	0.043
125.60		0.65	0.65	42599	3.42	<0.01	0.259	0.027	0.088
126.25	127.60	1.35	1.35						
127.60		4.50	4.50						
132.10		1.90	1.90	42600	0.01925	0.01	0.019	0.002	0.032
134.00		1.40	1.40	42601	0.00267	0.03	0.003	0.003	0.037
135.40		1.24	1.24	42602	0.0212	0.06	0.021	0.006	0.083
136.64		0.96	0.96	42603	0.0207	0.05	0.021	0.006	0.560
137.60		0.40	0.40	42604	0.00997	0.05	0.010	0.007	0.136
138.00		1.25	1.25	42605	0.0404	0.04	0.040	0.005	0.850
139.25		0.65	0.65	42606	0.1045	<0.01	0.105	0.006	0.822
139.90		2.10	2.10	42607	0.00492	0.01	0.005	0.005	0.054
142.00	143.30	1.30	1.30	42608	0.00615	0.01	0.006	0.005	0.084
143.30		1.20	1.20	42609	0.00208	0.01	0.002	0.002	0.500
144.50	145.52	1.02	1.02	42610	0.00114	0.01	0.001	0.001	0.037
145.52		1.78	2.10	42611	0.01225	0.01	0.012	0.001	0.064
147.30		1.20	1.20	42612	0.0353	<0.01	0.035	0.043	0.122
148.50		1.50	1.50	42613	0.00744	0.03	0.007	0.010	0.161
150.00		0.70	0.70	42614	0.021	0.04	0.021	0.008	0.058
150.70		0.90	0.90	42615	0.0348	0.01	0.035	0.006	0.577
151.60		1.00	1.00	42616	0.0259	<0.01	0.026	0.005	0.117
	171.50	171.50	18.80						
	174.50	174.50	0.40						

Appendix 3: JORC Table 1 – CRRDD21_02A Exploration Results

1.1 Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC-Code Explanation	Commentary
ampling echniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Oriented NQ core was cut in half using a diamond saw, with a half core sent for assay and half core retained. No other measurement tools other than directional survey tools have been used in the holes at this stage.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or	 Oriented core was placed V-rail and a consistent cut-line drawn along core to ensure cutting (halving) of representative samples Core sample interval was based in logged mineralisation Determination of mineralisation has been based on geological logging and photo analysis. Diamond Core drilling was used to obtain 3m length samples from the barrel which are then marked in one meter intervals based on the drillers core block measurement. Assay samples will be selected based on geological
Prilling echniques	mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 logging boundaries or on the nominal meter marks. Samples will be dispatched to an accredited laboratory (ALS) in Brisbane, Australia for sample preparation and shipment to analysis NQ2 diamond double tube coring by Sandvik DE710 rig was used throughout the hole. Core orientation was carried out by the drilling contractor.

Criteria	JORC-Code Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	• Lithological logging, photography
D		• Core samples were measured with a standard tape within the core trays. Length of core was then compared to the interval drilled, and any core loss was attributed to individual rock units based on the amount of fracturing, abrasion of core contacts, and the conservative judgment of the core logger. Results of core loss are discussed below.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Experienced driller contracted to carry out drilling. In broken ground the driller produced NQ core from short runs to maximise core recovery. Core was washed before placing in the core trays.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	 Core was assessed by eye before cutting to ensure representative sampling. See "Aspects of the determination of mineralisation that are
Logging	preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Material to the Public Report" above. Core samples were not geotechnically logged. Core samples have been geologically logged to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. The core logging was qualitative in nature. All core was photographed Total depth of the hole was 210.5m 100% of the relevant intersections were logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 Oriented core was placed V-rail and a consistent cut-line drawn along core to ensure cutting (halving) of representative samples Oriented NQ core was cut in half using a diamond saw, with a half core sent for assay and half core retained. Core sample intervals were based in logged mineralisation No duplicates or second half-sampling

	Criteria	JORC-Code Explanation	Commentary
		Whether sample sizes are appropriate to the grain size of the material being sampled.	• Appropriate method: oriented NQ core cut in half using a diamond saw, with a half core sent for assay and half core retained.
~	D		
	Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• Assays methods appropriate for style of mineralisation: ME-MS61 0.25g sample for 48 Elements and Gold by method Au-AA25 30g sample. Samples have been sent to highly accredited Australian Laboratory Services (ALS)
)		For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
		Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	
	Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	• No independent verification completed at this stage
1		The use of twinned holes.	• The reported hole is not a twin of any previous hole
)		Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	• Core measured, photographed and logged by geologists. Digitally recorded plus back-up records.
)		Discuss any adjustment to assay data.	•Assay data presented in this report
)	Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	• Drill collars recorded with Garmin GPS that has an accuracy in the order of ±3 metres for location. A registered surveyor will be contracted to accurately survey all drill collars at completed of drill program.
		Specification of the grid system used.	
7		<i>Quality and adequacy of topographic control.</i>	• MGA94 (Zone 56)
			• Topographic control based on Department of Lands digital terrain model.
)	Data spacing and distribution	Data spacing for reporting of Exploration Results.	
		Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	

Criteria	JORC-Code Explanation	Commentary
	Whether sample compositing has been applied.	• Not relevant to current drilling.
		• Not relevant to current drilling.
D		
		• Core sample intervals were based in logged mineralisation and no sample composting applied. Reporting of final results includes many weighted average- composting of assay data.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• The orientation of the mineralisation is unknown. The drilling program is aimed at determining orientation of the base of mineralisation by drilling three holes.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	• It is uncertain whether sampling bias has been introduced, or whether the thickness drilled is a true thickness.
Sample security	The measures taken to ensure sample security.	• Core samples will be stored at the Gibsons core yard before express overnight freight to Australian Laboratory Services Pty. Ltd. (ALS) Brisbane. Sample movements and security documented by ALS Chain of Custody.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• Not undertaken at this stage

2 Section 2: Reporting of Exploration Results

Criteria	JORC-Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.The security of the tenure held at the time of reporting along with any known	 The Halls Peak Project comprises granted Exploration Licenses EL 4474 and EL 7679, located in north-eastern NSW and covering an area of about 84km². There are no known impediments to operate on the tenements Tenure is current and in good standing
Exploration	<i>impediments to obtaining a licence to operate in the area.</i> <i>Acknowledgment and appraisal of</i>	• Exploration for base metals and gold have been conducted at Halls Peak
done by other parties	exploration by other parties.	since 1896 when massive sulphide deposits were discovered by prospectors. There was some small-scale mining of deposits of copper, lead, zinc and silver ore on the east side of the Chandler River until 1916. According to Report 52 – The Geological Survey of New South Wales "In 1965, 1,600 tons of ore were mined to give 263 tons of lead, 450 tons of zinc, 46.3 tons of copper and 12523 oz of silver". Following this several exploration campaigns were conducted until the mid-1980's for massive sulphides and silver by major mining companies such as BHP Co. Ltd., Mt. Isa Mines Ltd., The Zinc Corporation Ltd., Halls Peak Australia Limited and Allstate Exploration N.L. but most work was hindered as none were able to secure tenure to the whole area. All of these work programs comprising drilling, geochemistry and geophysics have resulted in an immense body of data.
Geology	Deposit type, geological setting and style of mineralisation.	• Halls Peak is in the southern part of the New England Orogen, a belt of continental crust uplified to form a mountainous region. Mineralisation is hosted in the Permian Halls Peak Volcanics, a sequence of felsic volcanic, volcaniclastic and sedimentary rocks that have been deformed and metamorphosed due to their formation in a rift setting. Sulphide mineralisation is stratiform with several massive sulphide bodies within broad zones of disseminated and stockwork sulphides. Massive sulphide bodies are generally moderate to steeply dipping and up to tens of metres across. The massive sulphides are often associated with sulphidic shale and siltstone within zones of stockwork and disseminated sulphides in sericite-quartz altered rocks. Sulphide mineralisation is dominated by sphalerite and galena, with minor amounts of chalcopyrite, pyrite and tetrahedrite. Metal grades in massive sulphides can average 3.5% Cu, 8% Pb, 24% Zn, 260g/t Ag and 0.42g/t Au.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	- Hole ID Easting Northing RL Azimuth Dip To Depth (m)
	easting and northing of the drill hole collar elevation or RL (Reduced Level –	Hole ID Easting Northing RL Azimuth Dip To Depth (m) CRR21DD_02A 407658.3 6598085 811.2 144 65 210.5
	elevation above sea level in metres) of the drill hole collar	

01110110	voite cour Enplanation	
	dip and azimuth of the hole	
	down hole length and interception depth	
	hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	• Not relevant
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	• Uncut
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	• All aggregate intercepts detailed on tables and in text are weighted averages.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	• None used
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results.	• True width not currently known. All lengths are down-hole lengths and not true width.
intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	• The precise geometry is not currently known but is being tested by the planned drilling, with diamond drill hole azimuths designed to drill normal to the interpreted mineralised structure.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	• Down-hole length reported, true width not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• The drilling is aimed at clarifying the structure of the mineralisation.

JORC-Code Explanation

Commentary

Criteria

Criteria	JORC-Code Explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Representative reporting of all relevant grades is provided in tables to avoid misleading reporting of Exploration Results.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Overview of exploration data leading to selection of drill targets provided. There were no deleterious elements identified.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step- out drilling).	• Drill program totalling 6,400m to both verify historical drilling at Halls Peak but also to test deeper VTEM targets.

Appendix 4: JORC Table 1 – CRRDD21_07A Exploration Results

2.1 Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC-Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Oriented NQ core was cut in half using a diamond saw, with a half core sent for assay and half core retained. No other measurement tools other than directional survey tools have been used in the holes at this stage.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation	 Oriented core was placed V-rail and a consistent cut-line drawn along core to ensure cutting (halving) of representative samples Core sample interval was based in logged mineralisation Determination of mineralisation has been based on geological logging and photo analysis.
	drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	 Diamond Core drilling was used to obtain 3m length samples from the barrel which are then marked in one meter intervals based on the drillers core block measurement. Assay samples will be selected based on geological logging boundaries or on the nominal meter marks. Samples will be dispatched to an accredited laboratory (ALS) in Brisbane, Australia for sample preparation and shipment to analysis
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 NQ2 diamond double tube coring by Sandvik DE710 rig was used throughout the hole. Core orientation was carried out by the drilling contractor.

Criteria JORC-Code Explanation		Commentary		
Drill sample recoveryMethod of recording and assessing core and chip sample recoveries and results assessed.		• Lithological logging, photography		
		• Core samples were measured with a standard tape within the core trays. Length of core was then compared to the interval drilled, and any core loss was attributed to individual rock units based on the amount of fracturing, abrasion of core contacts, and the conservative judgment of the core logger. Results of core loss are discussed below.		
)	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Experienced driller contracted to carry out drilling. In broken ground the driller produced NQ core from short runs to maximise core recovery. Core was washed before placing in the core trays. 		
)	Whether a relationship exists between	• Core was assessed by eye before cutting to ensure representative sampling.		
)	sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• See "Aspects of the determination of mineralisation that are Material to the Public Report" above.		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Core samples were not geotechnically logged. Core samples have been geologically logged to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 		
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 The core logging was qualitative in nature. All core was photographed		
))	The total length and percentage of the relevant intersections logged.	 Total depth of the hole was 174.5m 100% of the relevant intersections were logged. 		
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Oriented core was placed V-rail and a consistent cut-line drawn along core to ensure cutting (halving) of representative samples Oriented NQ core was cut in half using a diamond saw, with a half core sent for assay and half core retained. Core sample intervals were based in logged mineralisation 		
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	• No duplicates or second half-sampling		
1	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.			

Criteria	JORC-Code Explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	 Appropriate method: oriented NQ core cut in half using a diamond saw, with a half core sent for assay and half core retained.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• <i>Assays</i> methods appropriate for style of mineralisation: ME-MS61 0.25g sample for 48 Elements and Gold by method Au-AA25 30g sample. Samples have been sent to highly accredited Australian Laboratory Services (ALS)
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	• No independent verification completed at this stage
	The use of twinned holes.	• This hole is not a twin of any previous hole
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	• Core measured, photographed and logged by geologists. Digitally recorded plus back-up records.
	Discuss any adjustment to assay data.	•Assay data presented in this report
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	• Drill collars recorded with Garmin GPS that has an accuracy in the order of ±3 metres for location. A registered surveyor will be contracted to accurately survey all drill collars at completed of drill program.
	Specification of the grid system used.	
	<i>Quality and adequacy of topographic control.</i>	• MGA94 (Zone 56)
		• Topographic control based on Department of Lands digital terrain model.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	• Not relevant to current drilling.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	• Not relevant to current drilling.
	Whether sample compositing has been applied.	• Core sample intervals were based in logged mineralisation and no sample composting applied. Reporting of final results includes many weighted average- composting of assay data.

	Criteria	JORC-Code Explanation	Commentary	
data in relation unbiased sampling of possible structures and present of possible structures and <th possible="" struc<="" th=""><th>unbiased sampling of possible structures and the extent to which this is known, considering</th><th>• The orientation of the mineralisation is unknown. The drilling program is aimed at determining orientation of the base of mineralisation by drilling three holes.</th></th>		<th>unbiased sampling of possible structures and the extent to which this is known, considering</th> <th>• The orientation of the mineralisation is unknown. The drilling program is aimed at determining orientation of the base of mineralisation by drilling three holes.</th>	unbiased sampling of possible structures and the extent to which this is known, considering	• The orientation of the mineralisation is unknown. The drilling program is aimed at determining orientation of the base of mineralisation by drilling three holes.
	D	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	• It is uncertain whether sampling bias has been introduced, or whether the thickness drilled is a true thickness.	
	Sample security	<i>The measures taken to ensure sample security.</i>	• Core samples will be stored at the Gibsons core yard before express overnight freight to Australian Laboratory Services Pty. Ltd. (ALS) Brisbane. Sample movements and security documented by ALS Chain of Custody.	
	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• Not undertaken at this stage	

3 Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)	
--	--

	Criteria	JORC-Code Explanation	Commentary	0,						
ב נ נ נ	Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Halls F and EL 7679, 84km². There are n Tenure is cu 	located in o known im	north-easte pediments t	rn NSW	and cover	ing an	area of about	
	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	There was so silver ore on Report 52 – T of ore were n copper and 1 campaigns w	hen massive me small-sc the east sid Fhe Geologi nined to give 2523 oz of s ere conduct or mining c poration Lt N.L. but mos whole area.	e sulphide d cale mining e of the Cha ical Survey e 263 tons o silver". Fol ted until the ompanies su d., Halls Pe st work was . All of these	leposits v of deposite andler R of New S of lead, 4 lowing t mid-196 uch as B eak Aust hindere e work p	were disco sits of cop iver until South Wal 50 tons oj his severa 80's for m HP Co. Li ralia Limi ed as none programs o	wered b per, lea 1916. A es "In 1 f zinc, 4 l explor assive s td., Mt. ted and were a compris	y prospectors. d, zinc and ccording to 965, 1,600 ton 6.3 tons of ation ulphides and Isa Mines Ltd. Allstate ble to secure ing drilling,	ns
)))))	Geology	Deposit type, geological setting and style of mineralisation.	continental c hosted in the volcaniclastic metamorphos mineralisatio zones of disse generally mo massive sulp within zones altered rocks with minor al	rust uplifte Permian F c and sed sed due t n is stratifo eminated ar derate to su hides are o of stockw . Sulphide n mounts of c	d to form a falls Peak limentary fo o their fo rm with seven ad stockwor teeply dippe often assoc ork and du nineralisatic halcopyrite	a mount Volcania rocks th ormation eral mas ck sulphi ing and iated wi issemina on is don c, pyrite o	ainous re, cs, a sequ hat have i in a sive sulph des. Mass up to tens ith sulphia tted sulph ninated by and tetrah	gion. M ence of been rift se ide bod ive sulp of met dic shau ides in sphale edrite.	rogen, a belt lineralisation felsic volcani deformed ar tting. Sulphia ies within broo hide bodies a tres across. Tri le and siltston sericite-quan rite and galen Metal grades 260g/t Ag ar	is ic, nd de ad re he ne rtz na, in
)	Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	Hole ID CRR21DD_07A	Easting 407658.6	Northing 6598085	RL 811.2	Azimuth 144	Dip 65	To Depth (m) 174.5	

01110	voite cour Enplanation	
	dip and azimuth of the hole	
	down hole length and interception depth	
	hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	• Not relevant
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	• Uncut
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	• All aggregate intercepts detailed on tables and in text are weighted averages.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	• None used
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results.	• True width not currently known. All lengths are down-hole lengths and not true width.
intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	• The precise geometry is not currently known but is being tested by the planned drilling, with diamond drill hole azimuths designed to drill normal to the interpreted mineralised structure.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	• Down-hole length reported, true width not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• The drilling is aimed at clarifying the structure of the mineralisation.

JORC-Code Explanation

Commentary

Criteria

Criteria	JORC-Code Explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Representative reporting of all relevant grades is provided in tables to avoid misleading reporting of Exploration Results.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Overview of exploration data leading to selection of drill targets provided. There were no deleterious elements identified.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step- out drilling).	Drill program totalling 6,400m to both verify historical drilling at Halls Peak but also to test deeper VTEM targets.