

MULTI-ELEMENT SOILS HIGHLIGHT COHERENT ANOMALIES AT YANFOLILA

HIGHLIGHTS

- Results of multi-element soil geochemistry at Yanfolila have identified a strong target immediately north-west of known mineralisation at the Solona Main Zone.
- Several coherent gold anomalies with multi-element support are clustered along shears running parallel to the NE trending Siékerolé shear zone which controls mineralisation on this belt.
- The targets exhibit a typical Birimian geochemical signature, being anomalous in gold, copper and arsenic (Au, Cu, As) (Figures 1 and 2).
- Follow up auger drilling has commenced, with first results expected in June.

Marvel Gold Limited (ASX: MVL) (Marvel or the Company) is pleased to announce the results from multi-element soil geochemistry carried out at the Yanfolila Gold Project (Yanfolila or the Project), located in southern Mali. The Project is held under joint venture with Oklo Resources Limited (Oklo) (ASX: OKU), in which Marvel holds an 80% interest.

During 2021, the Company collected approximately 2,160 soil samples as part of its maiden exploration program at Yanfolila. The main objective of this program was to verify the results of historical soil sampling using modern low-detection, multi-element analysis.

The soil geochemistry was successful in that it verified the historical soil results and confirmed the presence of several large, discrete targets exhibiting gold and multi-element anomalism. The work identified known mineralisation at Solona where historical drilling has intersected **9m at 20.1g/t Au from 43m (and ending in mineralisation)** and **16m at 2.1g/t from surface**. In addition, the soils appear to highlight one zone to the north-west of Solona that is untested by drilling and located between Solona Main Zone and Solona north-west (See Figure 2).

Managing Director Chris van Wijk commented: "These soils results have outlined several strong targets with coincident gold and pathfinder anomalism that are coincident with the regional shears evident in the airborne magnetic data. These results confirm our view of the prospectivity of Yanfolila. The soils results and the airborne magnetics have been used to define a number of targets which will be tested by a maiden auger drilling program that has already commenced."

¹ ASX announcement 29th October 2013 made by Oklo

Figure 1: Yanfolila airborne magnetics with historical soils >1g/t

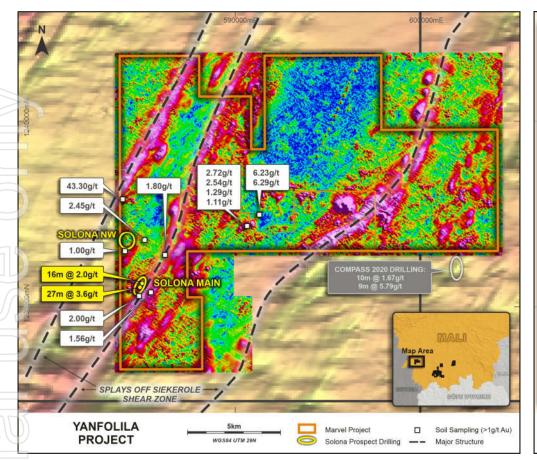
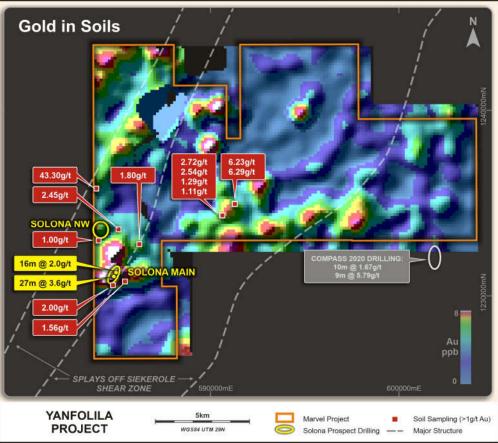



Figure 2: Yanfolila Gold in soil results

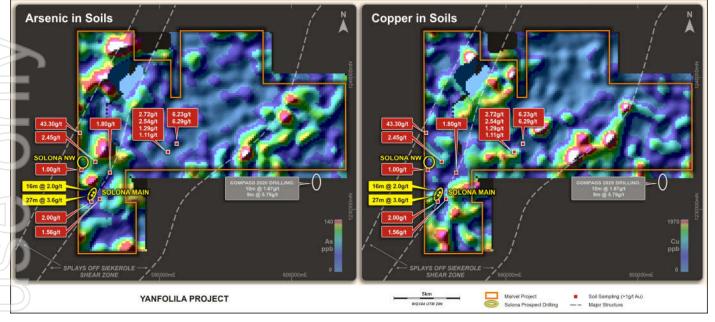


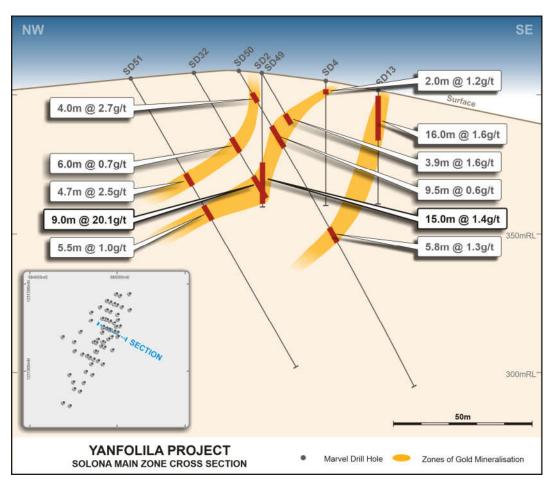
Figure 3: Soil geochemistry grids for Arsenic (As) and Copper (Cu)

In keeping with Marvel's philosophy of conducting systematic exploration on its exploration properties, the Company conducted a soil sampling program at Yanfolila in 2021. Soil sampling was completed on a 300m x 300m sampling grid with soil samples subjected to ionic leach followed by ICP-MS analysis to establish the pathfinder element anomalism across the Project.

Ionic Leach is a powerful geochemical method of determining soil anomalism derived from underlying in situ mineralisation. Over multiple cycles of rain and evaporation, meteoric waters dissolve elements in the ground which rise upwards towards the surface, with the ions being deposited on the surface of soil grains. During analysis, the grains themselves are not dissolved (as with a 4-acid digest, or Aqua Regia digest), but the ions that coat the grain surfaces are washed-off using a weak alkali solution. It is the chemistry of this solution which is assayed and not the chemistry of the physical soil. This means that Ionic Leach will typically yield low absolute values, but the signal-tonoise ratio is enhanced, allowing for robust anomaly detection over large areas.

In the case of Yanfolila, the Ionic Leach method has removed some of the spiky 'noise' in the historical soil data which is produced as a result of nuggety alluvial or transported gold. As a result, the anomalies are broader and more consistent than the historical data and the pathfinder suite gives additional support to the gold anomalies. The pathfinder elements with the greatest correlation to gold are arsenic (As) and copper (Cu) as shown in Figure 2 above. Arsenic and copper are known to occur with gold in some of the largest ore deposits in Mali, including the Morila and Kalana deposits. The close spatial association of these pathfinders with the gold anomalies reinforces the validity of the targets.

The targets generated from the soil geochemistry at Yanfolila are being followed up with an auger drilling program. Auger drilling is a low-cost geochemical drilling technique designed to sample the interface between the overlying soil and the underlying bedrock. This method is an important first pass screening tool and results in


an enhanced geochemical response and tighter geochemical anomalies which can be used to guide follow up work.

This program is currently underway and is expected to be completed towards the end of the second quarter of 2022.

Historical Data review

First-pass drilling of the Solona Main prospect at Yanfolila in 2012 returned significant intersections including **9m at 20.1g/t gold** (ending in mineralisation) and **16m at 1.5g/t gold**² within an extensive gold-in-soil anomaly, where there has been limited drilling (Figures 4 and 5).

Figure 4: Cross section from Solona Main Zone showing historical drilling intercepts

 $^{^{\}rm 2}$ ASX announcements 29 October 2013 and 16 July 2014 respectively, made by Oklo

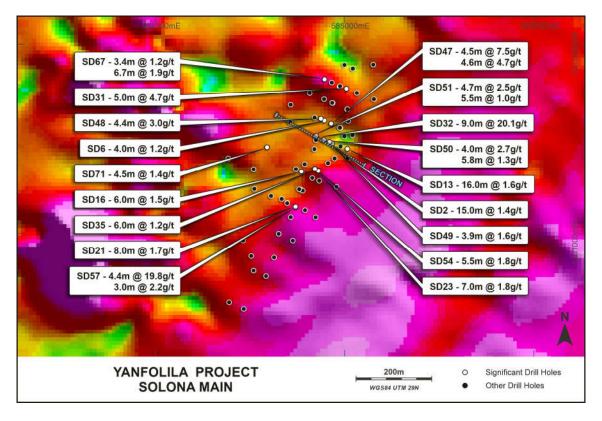


Figure 5: Plan view showing Solona Main Zone historical drilling intercepts

During 2015, Oklo completed a shallow aircore drilling program that tested a new gold geochemical anomaly outlined by soil sampling at the Solona North-West prospect, located 2.1km to the northwest of Solona Main. Significant drill intersections from the program included **6m at 5.29g/t gold**³ and confirmed the presence of bedrock gold mineralisation associated with the extensive quartz veining. A 5-hole RC program that was completed in 2016 returned a best result of **4m at 2.75g/t gold** (including **1m at 8.48g/t gold**).⁴

Compass Gold Corp (TSX-V: CVB) is actively exploring to the south of the Company's Yanfolila East tenement with recent drilling returning impressive results including **9m** at **5.8 g/t gold** including **1m at 36.4 g/t gold**⁵ adjacent to the tenement boundary (See Figures 1 and 6). This is relevant for Marvel as we believe that the shear zone continues north into the Marvel tenure and thus these results highlight the potential for mineralisation in this area.

³ ASX announcement 20 August 2015 made by Oklo

⁴ASX announcement 19 May 2016 made by Oklo

⁵TSX announcement 22 June 2020 made by Compass Gold

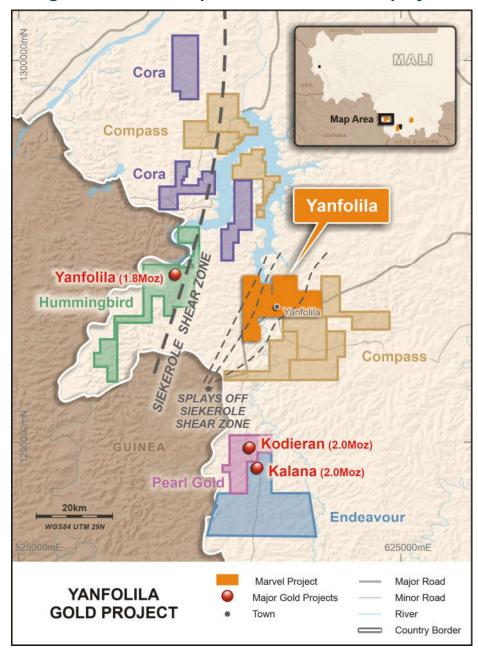


Figure 6: Tenure Map around the Yanfolila project

This announcement has been approved for release by the Board.

For further information, please contact:

CHRIS VAN WIJK Managing Director

Tel: +61 8 9200 4960

Email: <u>info@marvelgold.com.au</u>
Web: www.marvelgold.com.au

ASX:MVL

Competent Person's Statement

The information in this announcement that relates to historical exploration results at Yanfolila is based on information received from Oklo Resources and reviewed by Mr Chris van Wijk, in his capacity as Managing Director of Marvel Gold Limited. All other information in this announcement that relates to exploration results at Yanfolila is based on information compiled by Company geologists and reviewed by Mr Chris van Wijk, in his capacity as Managing Director of Marvel Gold Limited.

Mr. van Wijk is a Member of the Australian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (2012 JORC Code). Mr. van Wijk consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

Reference to previous ASX announcements

In relation to the announcement of the Tabakorole Mineral Resource estimate on 5 October 2021, the Company confirms that it is not aware of any new information or data that materially affects the information included in that announcement and that all material assumptions and technical parameters underpinning the Mineral Resource in that announcement continue to apply and have not materially changed.

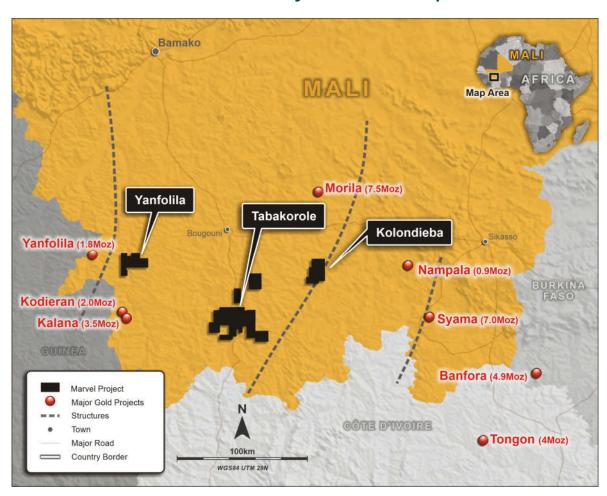
In relation to the information in this announcement that relates to previously reported exploration results, the dates of which are referenced, Marvel confirms that it is not aware of any new information or data that materially affects the information included in those announcements.

About Marvel Gold

Marvel Gold Limited is an Australian resources company listed on the Australian Securities Exchange under stock code MVL. Marvel is a Mali-focused gold explorer with advanced gold exploration projects and extensive landholdings in South Mali.

The Tabakorole Gold Project has a JORC Mineral Resource of 1.025Moz grading 1.2 g/t gold (see ASX announcement dated 5 October 2021), with strong growth prospects along strike and via near-deposit prospectivity over an extensive landholding in excess of 800km². Tabakorole is held through 100%-owned licences as well as two separate joint ventures, with Oklo Resources Limited (ASX: OKU) (Oklo JV), in which the Company holds an 80% interest) and with Altus Strategies plc (Altus JV), in which the Company currently holds a 70% interest which is moving towards 75% through committed expenditure.

Pursuant to the disposal of the Chilalo Graphite Project, Marvel also holds 50 million shares in ASX listed graphite company, Evolution Energy Minerals Limited (ASX Code: EVI).


Marvel has an experienced board and management team with specific skills, and extensive experience, in African based exploration, project development and mining.

Tabakorole Mineral Resource Estimate as at 5th of October 2021 (JORC 2012)

		Indicated	d		Inferred			Total	
	Mt	Au (g/t)	koz (Au)	Mt	Au (g/t)	koz (Au)	Mt	Au (g/t)	koz (Au)
Oxide	1.4	1.2	50	1.3	1.3	55	2.7	1.3	110
Fresh	7.8	1.2	310	16.0	1.2	610	23.8	1.2	915
Total	9.2	1.2	360	17.3	1.2	665	26.5	1.2	1,025

Note: Reported at a cut-off grade of 0.6 g/t Au, differences may occur due to rounding.

Marvel Gold Project Location Map

Appendix 1. Table of significant intercepts.

Significant intercepts defined as >3m length, >0.5g/t Au and <3m internal waste. Holes with * after intercept description end in mineralisation.

	Hole ID	Hole Type	East	North	Dip	Azi	EOH (m)	From	То	Au (g/t)	Intercept
1	RCYA016-003	RC	584149	1233632	-55	95	162	126	138	0.52	12m at 0.52 g/t
-	RCYA016-003	RC	584149	1233632	-55	95	162	142	156	0.75	14m at 0.75 g/t
1	SAC003	AC	584129	1233535	-90	0	47	15	18	0.8	3m at 0.8 g/t
+	SAC004	AC	584079	1233535	-90	0	48	36	39	0.62	3m at 0.62 g/t
Ī	SAC005	AC	584025	1233636	-90	0	30	9	12	0.95	3m at 0.95 g/t
1	SAC005	AC	584025	1233636	-90	0	30	24	27	2.22	3m at 2.22 g/t
1	SAC007	AC	584127	1233634	-90	0	27	24	27	1.23	3m at 1.23 g/t*
1	SAC013	AC	584155	1233685	-90	0	30	27	30	0.66	3m at 0.66 g/t*
	SAC014	AC	584208	1233683	-90	0	50	9	12	1.31	3m at 1.31 g/t
Ī	SAC016	AC	584279	1233636	-90	0	50	21	27	5.29	6m at 5.29 g/t
-	SAC023	AC	584202	1233726	-90	0	50	27	30	0.85	3m at 0.85 g/t
ŀ	SAC025	AC	584491	1233635	-90	0	50	0	3	0.96	3m at 0.96 g/t
-	SAC027	AC	584286	1233888	-90	0	50	27	30	0.7	3m at 0.7 g/t
1	SD12	DD	585010	1231297	-90	0	41	0	6	0.72	6m at 0.72 g/t
1	SD13	DD	585007	1231224	-90	0	41	2	18	1.62	16m at 1.62 g/t
-	SD16	DD	584886	1231164	-90	0	41	19	25	1.53	6m at 1.53 g/t
+	SD2	DD	584968	1231238	-90	0	48	32	47	1.4	15m at 1.4 g/t
	SD21	DD	584870	1231070	-90	0	50	25	33	1.67	8m at 1.67 g/t
-	SD21	DD	584870	1231070	-90	0	50	37	48	1.48	11m at 1.48 g/t
	SD23	DD	584930	1231166	-90	0	70	14	21	1.82	7m at 1.82 g/t
4	SD31	DD	585005	1231383	-60	120	43	20	25	4.68	5m at 4.68 g/t
-	SD32	DD	584945	1231248	-60	120	52	27	33	0.74	6m at 0.74 g/t
1	SD32	DD	584945	1231248	-60	120	52	43	52	20.12	9m at 20.12 g/t
	SD33	DD	584848	1231081	-60	120	52	44	49	0.69	5m at 0.69 g/t
1	SD35	DD	584921	1231170	-60	120	50	5	11	1.19	6m at 1.19 g/t
-	SD35	DD	584921	1231170	-60	120	50	19	25	0.75	6m at 0.75 g/t
ľ	SD47	DD	584964	1231290	-60	120	132	38.25	42.74	7.49	4.49m at 7.49
	SD47	DD	584964	1231290	-60	120	132	69.11	73.67	4.74	4.56m at 4.74
	SD48	DD	584937	1231303	-60	120	97.2	25.2	29.55	3.03	4.35m at 3.03 g
ľ	SD49	DD	584968	1231238	-60	120	20.9	17	20.9	1.61	3.9m at 1.61 g/t
-	SD5	DD	584989	1231279	-90	0	44	23	33	2.23	10m at 2.23 g/t
	SD50	DD	584960	1231242	-60	120	129.32	9.05	13	2.73	3.95m at 2.73 g
	SD50	DD	584960	1231242	-60	120	129.32	22.55	32.05	0.56	9.5m at 0.56 g/
ľ	SD50	DD	584960	1231242	-60	120	129.32	65.32	71.12	1.27	5.8m at 1.27 g/
ľ	SD51	DD	584925	1231258	-60	120	120	40	44.65	2.54	4.65m at 2.54 g
ľ	SD51	DD	584925	1231258	-60	120	120	53	58.5	0.98	5.5m at 0.98 g/
ľ	SD52	DD	584988	1231279	-60	135	144	0	15.65	2.11	15.65m at 2.11 g
ŀ	SD53	DD	585006	1231328	-60	120	130.5	11	15	0.72	4m at 0.72 g/t
ľ	SD54	DD	584921	1231171	-60	120	120	18.5	24	1.8	5.5m at 1.8 g/t
ŀ	SD57	DD	584870	1231071	-60	30	124.5	13.9	21	0.62	7.1m at 0.62 g/
ŀ	SD57	DD	584870	1231071	-60	30	124.5	27.5	31.9	19.78	4.4m at 19.78 g

	SD57	DD	584870	1231071	-60	30	124.5	121.5	124.5	2.18	3m at 2.18 g/t*
	SD6	DD	584947	1231298	-90	0	44	25	29	1.17	4m at 1.17 g/t
	SD60	DD	584826	1230999	-60	120	111	66.6	69.95	0.64	3.35m at 0.64 g/t
_	SD65	DD	584733	1230801	-60	120	100.5	63.1	67.2	0.99	4.1m at 0.99 g/t
	SD67	DD	584947	1231407	-60	120	141	85.2	88.55	1.2	3.35m at 1.2 g/t
	SD67	DD	584947	1231407	-60	120	141	104.1	108.35	0.72	4.25m at 0.72 g/t
	SD67	DD	584947	1231407	-60	120	141	129	135.7	1.87	6.7m at 1.87 g/t
	SD71	DD	584795	1231228	-60	120	183	139.5	144	1.41	4.5m at 1.41 g/t
	SD76	DD	584880	1231117	-60	120	168	20.3	23.9	0.7	3.6m at 0.7 g/t
	SD8	DD	585007	1231328	-90	0	41	10	23	0.81	13m at 0.81 g/t
	5		•	pendix 2				-			
	Section 1 - Sampling Techniques and Data										

Appendix 2. JORC Table 1 Reporting.

Section 1 - Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Soil samples were collected from pits dug to approximately 30cm below the surface. A 2.5kg bulk sample was taken and sent to the lab. Samples were not sieved, but large stones and organic material were removed by hand, where encountered. The bulk sampling reduces the risk of contamination from field sieving.
	Aspects of the determination of mineralisation that are Material to the Public Report.	All samples are assayed by ALS Chemex in Ireland: no sample preparation is used for ionic leach, with the entire sample being 'washed' prior to assay. Gold and multi-element data is assayed using ionic leach followed by ICP-MS finish. This is considered a partial digest.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling referenced in this announcement is RC, Aircore or Diamond drilling as indicated in the table of drillholes.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recoveries for Diamond drilling have been recorded. No records exist of sample recovery for other methods.
	Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No known bias exists, the target is still at an early stage of understanding.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or	Field data collected includes actual location of the soil sample as well as depth of sample collection, sample condition, colour and regolith and landscape features. Drill core and chips have been logged qualitatively and to sufficient detail to be used in future Mineral Resource estimation. Logging is qualitative as above.
	costean, channel, etc) photography.	

Criteria	Explanation	Commentary
	The total length and percentage of the relevant intersections logged.	All drillholes have been logged in full.
Sub-Sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Half core was used for Diamond drilling.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were collected using a riffle splitter, Aircore samples were spear sampled.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sampling techniques are considered industry standard.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Field duplicates and Blanks were used to monitor laboratory QAQC.
	Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling.	Field Duplicates are the primary means of ensuring representativeness of sampling. Duplicates and blanks have been used to ensure assay quality and representativeness of sampling.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All soil samples were assayed for gold and a multi-element suite using Ionic Leach followed by ICP-MS finish. Samples were analysed at ALS Chemex in Ireland. Ionic leach is considered a partial digest. Drill samples were analysed by Fire Assay at SGS Laboratories in Bamako.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable – no geophysics released.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Certified Reference Materials, Field duplicates and Blanks were used for laboratory quality control.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts have been verified against historical Oklo resources announcements referenced within the body text.
	The use of twinned holes.	No twinned holes are reported.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All sample details are recorded on paper in the field before being transferred to spreadsheets which are then validated and imported into a Datashed database, administered in Perth, Western Australia.
	Discuss any adjustment to assay data.	No assay data was adjusted, and no averaging was employed other than gridding for imagery
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Final sample locations were recorded using handheld GPS with 3-5m accuracy.
	Specification of the grid system used Quality and adequacy of topographic control	All results reported use WGS84 UTM Zone 29. Topography is taken from country wide SRTM data for section generation only.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill spacing is variable as the prospect is at an early stage of evaluation.

Criteria	Explanation	Commentary
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Not applicable to soil samples. There is insufficient drilling to establish a Mineral Resource. Aircore and RC samples are 2m composites.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Soils have been collected on a systematic grid. Systematic soil sampling is unlikely to lead to biased sampling of geological structures. No biases due to drilling orientations are known.
1) M	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Not applicable – no bias known.
Sample Security	The measures taken to ensure sample security.	Samples were stored on site in the field camp until despatch. Samples were bagged and consolidated into sacks secured with zip ties. A contracted transport company was used to collect the samples and transport them by road to the laboratory in Bamako before their export to Ireland. A chain of custody was maintained at all times.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been conducted.

Section 2 - Reporting of Exploration Results

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The exploration work that is the subject of this announcement was conducted over Yanfolila and Yanfolila Nord, both of which are held under a joint venture with Oklo Resources. Marvel Gold owns 80% of the joint venture company. Yanfolila is held under Arrêté N°2021-4448 which was granted on the 28th October 2021. The tenement is in its second renewal period and is valid for 3 years. The Yanfolila Nord permit is currently under renewal.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	There are no known impediments to operating on any of the licences.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The tenements were first soil sampled as part of the PNUD geochemical sampling program between 1985-86 which established a 1000m x 200m grid over southern Mali.The area that is presently covered by the Yanfolila permit was explored was explored intermittently by Compass Gold Corporation between 2010 to 2013. Exploration consisted of aeromagnetic surveys, gridding, soil sampling, trenching, Auger drilling and RC drilling.
Geology	Deposit type, geological setting and style of mineralisation	The tenements are though to be prospective for orogenic, hydrothermal gold deposits, with features in common with other volcano-sedimentary hosted Birimian style orogenic gold deposits found throughout the region.
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	All relevant details are reported within of referenced to historical announcements as appropriate.

Criteria	Explanation	Commentary
	o easting and northing of the	
	drill hole collar	
	 elevation or RL (Reduced Level – elevation above sea 	
	level in metres) of the drill	
	hole collar	
	o dip and azimuth of the hole	
	 down hole length and interception depth 	
	o hole length.	
Data	In reporting Exploration Results,	All soil samples have been used to generate gridded soil maps, as such, all samples
aggregat	ion weighting averaging techniques,	are considered to have been reported. No top cuts or exclusions have been used.
methods	maximum and/or minimum grade truncations (eg cutting of high	For historical drill results, no top cuts or exclusions have been made. Intercepts are
	grades) and cut-off grades are usually	reported as minimum 3m width and minimum 0.5g/t Au cutoff with maximum 3m
	Material and should be stated.	internal waste.
(U/2)	Where aggregate intercepts	As above.
	incorporate short lengths of high-	
	grade results and longer lengths of low-grade results, the procedure	
	used for such aggregation should be	
	stated and some typical examples of	
	such aggregations should be shown	
	in detail.	
	The assumptions used for any reporting of metal equivalent values	No metal equivalents are reported.
	should be clearly stated.	
Relations	thip These relationships are particularly	Drilling was targeted to intercept the mineralisation at a high angle although the
between		target is at an early stage so the true orientation of mineralisation is not fully
mineralis	F	understood.
widths intercept	and If the geometry of the mineralisation	
lengths	with respect to the drill hole angle is	
	known, its nature should be reported.	
75	If it is not known only the down hole	
	lengths are reported, there should be	
	a clear statement to this effect (eg	
	'down hole length, true width not known').	
- D:		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts	See body of announcement for diagrams.
	should be included for any significant	
	discovery being reported These	
	should include, but not be limited to a plan view of drill hole collar	
П	locations and appropriate sectional	
	views.	
Balanced	Where comprehensive reporting of	All soil results from the current program have been reported. All historical
reporting	· · · · · · · · · · · · · · · · · · ·	significant intercepts have been reported.
	practicable, representative reporting of both low and high grades and/or	
	widths should be practiced to avoid	
	misleading reporting of Exploration	
	Results.	
Other	Other exploration data, if meaningful	All applicable geological observations have been reported at this time.
substanti explorati	, , , , , , , , , , , , , , , , , , , ,	
data	geological observations; geophysical	
	3 3, 8	

Criteria	Explanation	Commentary
	survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	A follow-up campaign of Auger drilling is planned later in 2022.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	