

22% Increase in Mineral Resources

Key Highlights:

- Initial Koppies JORC Inferred Mineral Resource Estimate ("MRE") of 20.3 Mlb eU₃O₈.
 - Potential for significant extensions to this mineralisation, beneath and adjacent to the 20.3 Mlb eU₃O₈ resource envelopes.
- Recent exploration drilling has identified a large new mineralised zone outside of the MRE envelopes.

Elevate's total uranium mineral resources have increased by 22% to 115 Mlb U_3O_8 .

Elevate Uranium Limited ("Elevate Uranium", or the "Company") (ASX:EL8) (OTC:ELVUF) is pleased to announce an initial JORC Inferred Mineral Resource Estimate ("MRE") of 20.3 million pounds ("MIb") eU₃O₈ for its Koppies Uranium Project in Namibia.

Elevate Uranium's Managing Director, Murray Hill, commented:

^{4*}The Company is pleased with the 20.3 Mlb eU₃O₈ mineral resource estimate for Koppies but is even more encouraged by the significant potential for an expansion of this resource.

Conventional exploration strategy for palaeochannel hosted uranium mineralisation is to assume that uranium mineralisation only occurs within the confines of a palaeochannel. However, as detailed analysis of drilling results at Koppies progressed, it became apparent that many holes outside of the palaeochannels and in basement rocks, were mineralised. The March/April 2022 drilling program confirmed mineralisation beneath and on the banks of the palaeochannels and led to a change in strategy to drill deeper and beyond the palaeochannel extents.

In addition, the March/April 2022 drilling also discovered uranium mineralisation at least one kilometre beyond the MRE envelopes. The mineralisation is open to the northeast and southwest. These outcomes are exciting as they indicate significant potential for the mineralised zones to expand with further drilling. This new discovery has not been included in the MRE envelopes.

We have now adapted our exploration techniques by extending the target areas outside of the paleochannels, which will have the potential to increase the Koppies mineralised areas. We are excited about the possibility of further extensions to the Koppies mineralised area, both below and outside of the known palaeochannels.

This 20.3 Mlb eU_3O_8 MRE for the Koppies Uranium Project increases the Company's total uranium resources to 115 Mlb." (See Resource Table 3)

Koppies JORC (2012) Inferred Mineral Resource Estimate at 100 ppm Cut-off Grade

	Mt	eU ₃ O ₈ (ppm)	Mlb
Total	41.4	220	20.3

Exploration Strategy

The Company's exploration has been focussed on the detection and delineation of uranium mineralisation within palaeochannels. Ground and airborne electromagnetic ("EM") surveys have been used to map these palaeochannels by virtue of the fact that the palaeochannels are more conductive than the surrounding metamorphic rocks. Palaeochannels were systematically drilled to confirm the interpretation of EM data and to detect mineralisation within them. Drillholes were typically halted after drilling 2 m of unmineralised metamorphic "basement" rocks at the base of the palaeochannels or when unmineralised metamorphic "basement" rocks were intersected immediately below the surface.

As drilling at Koppies progressed, however, it became apparent that more and more holes in basement rocks were mineralised. For this reason, some holes in the March/April 2022 drilling program were deepened and drilling extended beyond the palaeochannels. This change in approach recently lead to the discovery of a significant flat-lying body of uranium mineralisation centred 1.6 km east of Koppies I (see Figure 1) which currently extends over 1 km in a NE-SW direction and is 400 m wide. This body is open to the SW and to the NE and is between 2 and 16 m deep. Most of the uranium is hosted by metasedimentary rock which makes this deposit unique in the Erongo district.

The new basement-hosted discovery has not been included in the current MRE as further drilling is required to fully define its extent. Additional mineralisation may also be present underneath the currently defined palaeochannels, requiring additional deeper holes to overlap the holes previously drilled.

The recognition of this new type of target is significant as it cannot be detected by EM surveys and requires a different exploration approach. The geological team is currently reviewing all exploration data and planning future exploration programs including deeper drilling to delineate additional mineralised areas around the current resource and the new discovery.

U-pgrade[™] Metallurgical Compatibility

The Company completed metallurgical testing on uranium mineralisation within basement ore from the Marenica Uranium Project during development of the U- $pgrade^{TM}$ beneficiation process and confirmed the applicability of U- $pgrade^{TM}$ on the basement mineralisation from that project. The Company expects U- $pgrade^{TM}$ to work on this 'new' style of mineralisation at Koppies.

Figure 1 shows the drilling completed to date, the outline of the resource and the new discovery (in the centre of Figure 1) which appears to be widening to the northeast. The holes drilled to the north and east of the new discovery are mostly 2 metres deep, but as discussed above, there is potential for mineralisation below 2 metres.

The proximity of Koppies to the Company's other tenements in the Namib area is shown in Figure 2.

534,000mE

532,000mE

Figure 2 Location of Koppies with respect to Elevate Uranium's large tenement holding in the Namib Area

Koppies Mineral Resource Estimate Summary

The Mineral Resource was estimated by Multi Indicator Kriging. The final Inferred Mineral Resource Estimate ("MRE") is reported at a number of cut-off grades from 50 ppm to 200 ppm eU_3O_8 and the Mineral Resource derived from these cut-off grades indicate the mineralisation remains robust and consistent (see Table 2).

The MRE covers the Koppies deposit, between coordinates 527,500E to 531,500E, as shown on Figure 1. Mineral resources have been clipped to the Koppies tenement boundary to the west, where the deposit is contiguous with the Tumas 1E resource (owned by Deep Yellow Ltd).

The most recent drilling program at Koppies was announced to the ASX on 19 January 2022 titled 'Shallow Uranium Mineralisation Delineated at Koppies' with previous drilling and geophysical surveys

at the deposit announced as follows; 26 March 2020, 10 February 2020, 5 December 2019, 7 November 2019, 27 August 2019.

The 100 ppm eU_3O_8 cut-off grade was selected based on mining studies on immediately adjacent properties and represents the most continuous mineralisation within the deposit.

Table

1	JORC (2012) Inferred Minera	I Resource Estimate at 100 ppm Cut-off Grade
---	-----------------------------	--

	Mt	eU ₃ O ₈ (ppm)	Mlb
Koppies I	8.7	240	4.6
Koppies II	32.8	215	15.7
Total	41.4	220	20.3

Table 2 Koppies – JORC(2012) Inferred MRE at various cut-off grades

Cut off	Koppies 1			۲	Coppies 2			Total		
(eU₃O ₈ ppm)	Mt	eU₃Oଃ ppm	Mlb	Mt	eU₃O ₈ ppm	Mlb	Mt	eU₃O₅ ppm	MIb	
50	10.9	205	4.9	44.1	180	17.5	54.9	185	22.4	
75	9.6	225	4.8	37.7	200	16.6	47.4	205	21.4	
100	8.7	240	4.6	32.8	215	15.7	41.4	220	20.3	
125	7.5	260	4.3	27.0	240	14.3	34.5	245	18.5	
150	6.2	285	3.9	21.8	265	12.7	28.0	270	16.6	
200	4.2	335	3.1	13.5	320	9.5	17.7	325	12.6	

Notes: Figures have been rounded and totals may reflect small rounding errors.

Mineral resource grades are a combination of assay and downhole radiometric logging using calibrated probes.

Downhole logging was completed using a geophysical contractor.

ASX Additional Information

The following is a summary of the material information used to estimate the Mineral Resource as required by Listing rule 5.8.1 and JORC 2012 Reporting Guidelines

Deposit Parameters: The Koppies uranium mineralisation is of the calcrete-type located within an extensive, mainly east-west trending, palaeochannel system. The uranium mineralisation occurs in association with calcium carbonate precipitations (calcrete) in sediment filled palaeovalleys. Uranium is the only economically extractable metal in this type of mineralisation, although vanadium production could potentially be considered if the vanadium price increases substantially. Uranium minerals are limited to uranium vanadates, principally carnotite. The geology of this type of mineralisation is well understood, having been explored within the region for nearly fifty years. The Langer Heinrich uranium mine, located 30 km to the north, mines this type of deposit and has been in operation since 2007.

The mineralised domains used for the current extended MRE study were interpreted to capture continuous zones of mineralisation above a nominal 80 ppm eU_3O_8 downhole sample grade. The mineralisation included in this study has a strike length of approximately 4 km in total and ranges in width between 350 m to 1,700 m extending to a maximum depth of 12 m along the main Koppies 2 palaeochannel. Within the smaller, higher grade, Koppies 1 palaeochannel the strike length is

approximately 1 km with widths varying between 250 m and 900 m. Thicknesses vary from 1 m to 12 m. The mineralisation occurs in a reasonably continuous, seam-like horizon, occurring between depths of 1 m to 15 m and extends east beyond the infill drilled area at Koppies 2. Both of the Koppies palaeochannels are interpreted to be extensions of the adjacent Tumas 1E palaeochannel.

Drilling on the project has used reverse circulation (RC), rotary air blast (RAB) and diamond (DDH) drilling methods. Drilling that formed the basis of the MRE included the recently completed infill drilling as well as Elevate Uranium drilling dating back to 2019 and amounted to 992 drill holes for a total of 8,705 m. Drilling achieved recoveries of around 90%. All drill chips were geologically logged, and their radioactivity was measured. All the data was added into a well-maintained database.

The 2021 and 2022 infill drilling of the previously wide spaced holes was carried out along 100 m spaced lines using 100 m hole spacing. This was deemed sufficient for the determination of an Inferred Mineral Resource (Figure 1). Due to the original collar positions being defined using handheld GPS, the collar locations were draped on a DTM surface constructed from 0.5 m resolution satellite imagery. Due to the large MIK panel size used in the MRE relative to the drill spacing, minor variations in the X and Y location of the drill collars is not considered material. In order to improve the MRE classification, during the next round of infill drilling, the drill collar locations will be surveyed using differential GPS equipment. As all drill holes are relatively short (less than 20 m) and are drilled vertical no downhole deviation surveys of drill holes have been deemed necessary.

Twin Hole Study: A number of drill holes were identified as being drilled short during the preceding drilling programmes and a decision was taken to re-drill these holes rather than attempt to re-enter and extend them to full depth. This afforded the opportunity to assess the close spaced variability of grades within the deposit. In all, 29 holes were duplicated and this resulted in a total 1m comparison dataset of 323 intervals. The offset between the collars was in most cases, in the order of 1-2 m so the drill holes represent a good twin hole dataset.

As expected, in common with experience at both the adjacent Tumas and nearby Langer Heinrich deposits, there is significant short-range variability between the adjacent samples, as shown in Figure 3, however the two datasets (original and re-drill) show the same population – excluding a limited number of very high grade intervals, shown in Figure 4.

500

Figure 3 Metre by Metre comparison, limited to 500 ppm

Methodology: Data used in the MRE is largely based on down-hole radiometric gamma logging employing contractor Terratec's fully calibrated gamma logging system which was used in the recent and previous drilling programs. Down-hole gamma readings were taken at 1 cm intervals and converted into equivalent uranium values (eU_3O_8) before being composited to 1 m intervals. Geochemical assays were collected from 1 m RC-drilling intervals, which were split to 1 to 1.5 kg samples by riffle splitters. 120 grams were further pulverised for use in XRF or ICP-MS analysis.

The geochemical assays were used to confirm the validity of the eU_3O_8 values determined by downhole gamma probing. After validation, the eU_3O_8 values derived from the down-hole gamma logging

were given preference over geochemical assays for the resource estimation due to the greater sampling volume.

Figure 1 shows the Koppies Deposit drill hole collar locations outlining the extent and nature of the mineralisation over the length of palaeochannel tested which was the focus of this current MRE work. One North-South cross-sections through the resource of the Koppies 1 and 2 uranium mineralisation are shown in Figures 5 and 6 respectively.

Mineral Resource Estimate

The Koppies MRE was undertaken in order to define an initial Mineral Resource estimate following the infill drilling of a significant portion of the deposit. In this instance an MIK estimate was completed using data supplied from the Elevate Uranium database in conjunction with updated basement profile and top and bottom mineralisation surfaces.

The estimation dataset was broken into three separate domains, with domains 1 and 3 representing the waste portion and domain 2 representing the mineralised zone in both Koppies 1 and 2. Indicator variography was undertaken on domains 1 and 3 (combined as a waste domain) and 2 as the mineralised domain in order to more reasonably represent the mineralisation within the deposit. Individual metal variograms were calculated for all three domains in order to enable the correct assessment of the variance adjustment to be applied to the MIK estimate for each domain. In all cases the short range variography was dominated by the downhole direction as this contained both the best continuity and shortest sample spacing with continuity and ranges in the X and Y directions being dominated by the drill hole spacing and general mineralisation continuity throughout the deposit.

Block sizes used in the estimation of the mineral resource were set at 50 m x 50 m x 2 m as this was deemed appropriate to the sample spacing of the underlying dataset and general thickness of the mineralisation. As an MIK estimate was being undertaken the expected SMU size was set at 4 m x 4 m x 2 m (similar in X and Y extent to that employed at the nearby Langer Heinrich Mine) with an expected grade control spacing of 4 m x 4 m x 1 m being completed prior to actual mining.

A three-pass expanding search process was employed in the estimate with the search distance starting at 100 m x 100 m x 5.2 m, expanding to 200 m x 200 m x 10.4 m. Initial sample requirements for an estimate to be undertaken for a block were set at a minimum of sixteen samples, a maximum of forty-eight samples and samples to be selected for at least four octants. This sample requirement was progressively reduced to a minimum of eight samples from two octants for the final search pass, maximum sample numbers were maintained throughout the search process.

Prior to final compilation of the model, a variance adjustment was applied to the panel grades based on the individual domain variography in order to estimate potentially recoverable mineral resources. Bulk density values used within the MRE are based on those identified at the adjacent and contiguous Tumas 1E deposit and are similar to those encountered at the nearby Langer Heinrich mine. Subsequent to the cut-off date for the mineral resource update eleven diamond core holes were completed which will enable localised measurement of bulk density and a more reasonable definition of the basement contact.

S

625mRL

1

Authorisation

Authorised for release by the Board of Elevate Uranium Ltd.

Contact: Managing Director – Murray Hill T: +61 8 6555 1816 E: <u>murray.hill@elevateuranium.com.au</u>

Competent Persons Statement – General Exploration Sign-Off

The information in this announcement as it relates to exploration results, interpretations and conclusions was compiled by Dr Andy Wilde. Dr Wilde is a Fellow of the Australasian Institute of Mining and Metallurgy and a Chartered Professional Geologist and a fellow of the AIG and registered professional geoscientist. Dr Wilde, who is an employee of the Company, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC 2012). Dr Wilde consents to the inclusion of the information in the form and context in which it appears.

Competent Person's Statement – Mineral Resource Estimate

The information in this announcement that relates to the Koppies Mineral Resource Estimate is based on work completed by Mr. D Princep, B.Sc. Geology, who is a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy. Mr Princep, who is a consult to the Company, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person in terms of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code 2012 Edition). Mr. Princep consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Table 3

Elevate Uranium's JORC Resource Summary

			Cut-off	Tot	al Resou	rce		Elevate	Share	
Deposit		Category	(ppm	Tonnes	U ₃ O ₈	U ₃ O ₈	Elevate	Tonnes	U₃O ₈	U ₃ O ₈
			U₃O ₈)	(M)	(ppm)	(Mlb)	Holding	(M)	(ppm)	(Mlb)
Namibia										
Koppies										
Koppies I	JORC 2012	Inferred	100	8.7	240	4.6				
Koppies II	JORC 2012	Inferred	100	32.8	215	15.7				
Koppies Total	JORC 2012	Inferred	100	41.4	220	20.3	100%	41.4	220	20.3
Marenica	JORC 2004	Indicated	50	26.5	110	6.4				
		Inferred	50	249.6	92	50.9				
MA7	JORC 2004	Inferred	50	22.8	81	4.0				
Marenica Uranium Proj	ect Total			298.9	93	61.3	75%	224.2	93	46.0
Namibia Total				340.3	109	81.6		265.6	113	66.3
Australia - 100% Holdin	g									
Angela	JORC 2012	Inferred	300	10.7	1,310	30.8	100%	10.7	1,310	30.8
Thatcher Soak	JORC 2012	Inferred	150	11.6	425	10.9	100%	11.6	425	10.9
100% Held Resource To	100% Held Resource Total			22.3	850	41.7	100%	22.3	850	41.7
Australia - Joint Ventur	e Holding									
Bigrlyi Deposit		Indicated	500	4.7	1,366	14.0				
		Inferred	500	2.8	1,144	7.1				
Bigrlyi Total	JORC 2004	Total	500	7.5	1,283	21.1	20.82%	1.55	1,283	4.39
Walbiri Joint Venture										
Joint Venture		Inferred	200	5.1	636	7.1	22.88%	1.16	636	1.63
100% EME		Inferred	200	5.9	646	8.4				
Walbiri Total	JORC 2012	Total	200	11.0	641	15.5				
Bigrlyi Joint Venture										
Sundberg	JORC 2012	Inferred	200	1.01	259	0.57	20.82%	0.21	259	0.12
Hill One Joint Venture	JORC 2012	Inferred	200	0.26	281	0.16	20.82%	0.05	281	0.03
Hill One EME	JORC 2012	Inferred	200	0.24	371	0.19				
Karins	JORC 2012	Inferred	200	1.24	556	1.52	20.82%	0.26	556	0.32
Malawiri Joint Venture	JORC 2012	Inferred	100	0.42	1,288	1.20	23.97%	0.10	1,288	0.29
Joint Venture Resource	Total			21.6	847	40.2		3.34	923	6.77
Australia Total				43.9	848	81.9		25.6	859	48.4
TOTAL										114.7

Figures have been rounded and totals may reflect small rounding errors.

Koppies Uranium Project:

The Mineral Resource Estimate for Koppies 1 and Koppies 2, are the subject of this release.

Marenica Uranium Project:

The Company confirms that the Mineral Resource Estimates for the Marenica and MA7 deposits have not changed since the annual review included in the 2021 Annual Report. The Company is not aware of any new information, or data, that effects the information in the 2021 Annual Report and confirms that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Mineral Resource Estimates for the Marenica and MA7 deposits were prepared in accordance with the requirements of the JORC Code 2004. They have not been updated since to comply with the 2012 Edition of the Australian Code for the Reporting of Exploration Results, Minerals Resources and Ore Reserves ("JORC Code 2012") on the basis that the information has not materially changed since they were last reported. A Competent Person has not undertaken sufficient work to classify the estimate of the Mineral Resource in accordance with the JORC Code 2012; it is possible that following evaluation and/or further exploration work the currently reported estimate may materially change and hence will need to be reported afresh under and in accordance with the JORC Code 2012.

Australian Uranium Projects:

The Company confirms that the Mineral Resource Estimates for Angela, Thatcher Soak, Bigrlyi, Sundberg, Hill One, Karins, Walbiri and Malawiri have not changed since the annual review included in the 2021 Annual Report. The Company is not aware of any new information, or data, that effects the information in the 2021 Annual Report and confirms that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Mineral Resource Estimate for the Bigrlyi deposit was prepared in accordance with the requirements of the JORC Code 2004. The Mineral Resource Estimate was prepared and first disclosed under the 2004 Edition of the Australian Code for the Reporting of Exploration Results, Minerals Resources and Ore Reserves ("JORC Code 2004"). It has not been updated since to comply with the 2012 Edition of the Australian Code for the Reporting of Exploration has not materially changed since it was last reported. A Competent Person has not undertaken sufficient work to classify the estimate of the Mineral Resource in accordance with the JORC Code 2012; it is possible that following evaluation and/or further exploration work the currently reported estimate may materially change and hence will need to be reported afresh under and in accordance with the JORC Code 2012.

	Table 4 Ropples Dim Hole Educations								
5	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip	
5	KOD0001	DDH	527800	7447600	673.6	12.0	0	-90	
J	KOD0002	DDH	527900	7447201	674.1	27.0	0	-90	
3	KOD0003	DDH	528499	7447300	681.8	21.0	0	-90	
7	KOD0004	DDH	527665	7447644	669.5	12.0	0	-90	
	KOD0005	DDH	529699	7446800	695.1	18.0	0	-90	
3	KOD0006	DDH	530074	7447610	697.2	15.0	0	-90	
	KOD0007	DDH	528303	7449386	674.5	12.0	0	-90	
1	KOD0008	DDH	529100	7446901	687.0	12.0	0	-90	
_	KOD0009	DDH	527700	7449600	664.0	21.0	0	-90	
7	KOD0010	DDH	529600	7447601	692.0	21.0	0	-90	
J	KOD0011	DDH	528000	7447600	673.6	12.0	0	-90	
	KOR0001	RC	527702	7447702	670.0	13.0	0	-90	
	KOR0002	RC	527700	7447601	670.0	14.0	0	-90	
	KOR0003	RC	527701	7447500	671.0	11.0	0	-90	
)	KOR0004	RC	527701	7447401	671.5	8.0	0	-90	
	KOR0005	RC	527700	7447301	671.5	12.0	0	-90	
)[KOR0006	RC	527701	7447200	671.9	15.0	0	-90	
	KOR0007	RC	527700	7447100	672.0	10.0	0	-90	
	KOR0008	RC	528102	7447951	674.0	4.0	0	-90	
	KOR0009	RC	528099	7447700	676.2	15.0	0	-90	
J	KOR0010	RC	528101	7447599	6745.0	12.0	0	-90	
	KOR0011	RC	528099	7447498	675.6	13.0	0	-90	
	KOR0012	RC	528099	7447397	676.7	12.0	0	-90	
	KOR0013	RC	528101	7447297	676.5	13.0	0	-90	
	KOR0014	RC	528102	7447198	677.0	22.0	0	-90	
	KOR0015	RC	528103	7447097	677.4	10.0	0	-90	
	KOR0016	RC	528500	7447801	679.5	12.0	0	-90	
	KOR0017	RC	528499	7447702	680.0	2.0	0	-90	
	KOR0018	RC	528500	7447601	679.8	3.0	0	-90	
F		··•	/		•				

Table 4Koppies Drill Hole Locations

-90

-90

-90

-90 -90

-90

-90

-90

-90

-90

-90

-90

-90

-90 -90

-90

-90

-90

-90

-90

-90

-90

-90

-90

-90

-90 -90

-90 -90

-90

-90

-90

-90

-90

-90

-90

-90

-90

le Depth

2.0

5.0

18.0

15.0

16.0

16.0

4.0

13.0

13.0

15.0

10.0

16.0 14.0

4.0

14.0 12.0

12.0

5.0

7.0

7.0

16.0

16.0

4.0

16.0 15.0

14.0

13.0

2.0

13.0

9.0

7.0

15.0 19.0

15.0

5.0

20.0

14.0

10.0

Azimuth

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Drill Hole	Drill Type	East	North	RL (m)	Hole
KOR0019	RC	528500	7447500	679.9	
KOR0020	RC	528500	7447404	680. 5	
KOR0021	RC	528499	7447299	681.8]
KOR0022	RC	528501	7447200	682.1	1
KOR0023	RC	528501	7447100	682.4	1
KOR0024	RC	528899	7446999	687.1]
KOR0025	RC	528900	7447700	684.1	
KOR0026	RC	528900	7447600	684.5	1
KOR0027	RC	528900	7447400	685.0]
KOR0028	RC	528900	7447300	686.7]
KOR0029	RC	528900	7447200	687.1]
KOR0030	RC	528900	7447100	687.2]
KOR0031	RC	529302	7447798	689.5]
KOR0032	RC	529302	7447700	689.0	
KOR0033	RC	529301	7447600	688.8]
KOR0034	RC	529300	7447400	689.6]
KOR0035	RC	529300	7447300	690.2]
KOR0036	RC	529300	7447200	690.4	
KOR0037	RC	529300	7447100	691.8	
KOR0038	RC	529300	7447000	692.3	
KOR0039	RC	529699	7447701	694.0]
KOR0040	RC	529700	7447600	693.1]
KOR0041	RC	529700	7447500	693.8	
KOR0042	RC	529700	7447400	694.4]
KOR0043	RC	528901	7446910	687.0]
KOR0044	RC	528500	7446999	682.5]
KOR0045	RC	528499	7446903	682.5]
KOR0046	RC	529298	7447895	689.5	
KOR0047	RC	530098	7447527	699.1]
KOR0048	RC	528102	7446998	677.5	
KOR0049	RC	528100	7446901	677.5	
KOR0050	RC	530498	7447599	702.0	1
KOR0051	RC	530498	7447501	703.5	1
KOR0052	RC	530500	7447398	705.0	-
KOR0053	RC	528098	7446813	677.6	

RC

RC

RC

530900

527700

527700

7447471

7447798

7447004

706.5

670.6

672.1

KOR0054

KOR0055

KOR0056

-90

-90

-90

-90 -90

-90

-90

-90

-90

-90

-90

-90

-90

-90 -90

-90

-90

-90

-90

-90

-90

-90

-90

-90

-90

-90 -90

-90 -90

-90

-90

-90

-90

-90

-90

-90

-90

-90

Azimuth

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7.0

6.0

3.1

D	rill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)
K	OR0057	RC	527700	7446903	671.6	7.0
К	OR0058	RC	527701	7446800	671.5	6.0
K	OR0059	RC	529700	7447801	694.7	17.0
K	OR0060	RC	529699	7447900	693.6	7.0
К	OR0061	RC	530500	7447299	706.7	2.0
K	OR0062	RC	528500	7446800	681.1	6.0
K	OR0064	RC	528899	7446799	685.4	12.0
K	OR0065	RC	527700	7447900	670.6	7.0
К	OR0066	RC	528901	7446700	685.4	5.0
K	OR0068	RC	531500	7447600	716.7	2.0
К	OR0069	RC	531500	7447800	716.2	3.0
K	OR0070	RC	531500	7448000	716.0	3.0
K	OR0071	RC	531500	7448200	715.4	4.0
K	OR0098	RC	531100	7447450	709.4	20
K	OR0099	RC	531100	7447375	709.3	18
К	OR0100	RC	531200	7447400	710.5	21
K	OR0168	RC	530900	7448700	705.1	2.0
K	OR0169	RC	530900	7448800	705.3	4.4
K	OR0170	RC	530100	7448200	698.0	4.2
K	OR0171	RC	530100	7448400	696.5	17.5
КС	R0171_R	RC	530101	7448401	696.5	17.5
К	OR0172	RC	530100	7448500	695.6	2.2
К	OR0173	RC	531300	7448400	712.0	2.4
К	OR0174	RC	531300	7448500	712.1	16.5
КС	0R0174_R	RC	531301	7448501	712.1	16.5
К	OR0175	RC	530500	7447700	702.8	15.3
K	OR0176	RC	530900	7447800	709.4	2.0
K	OR0177	RC	530900	7447700	710.0	2.0
К	OR0178	RC	530900	7447600	708.5	16.1
К	OR0179	RC	531300	7447800	713.5	2.2
K	OR0180	RC	530100	7447800	699.5	4.1
K	OR0181	RC	528500	7447900	678.6	10.1
K	OR0182	RC	528500	7448000	679.7	19.3
KC	DR0182_R	RC	528501	7448001	679.7	19.3
K	OR0183	RC	528900	7446300	686.7	2.0
[1	I		

KOR0184

KOR0185

KOR0186

RC

RC

RC

528900

528900

528900

7446400

7446500

7448100

687.5

686.8

684.6

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KOR0187	RC	528900	7448200	683.8	12.3	0	-90
\geq	KOR0188	RC	528900	7448300	683.5	16.2	0	-90
	KOR0189	RC	528900	7448400	683.2	12.1	0	-90
	KOR0190	RC	528900	7448500	682.5	2.0	0	-90
	KOR0191	RC	528900	7448600	682.4	3.0	0	-90
\bigcirc	KOR0192	RC	529300	7446300	693.3	10.2	0	-90
	KOR0193	RC	529300	7446400	692.9	19.6	0	-90
<i>a</i> 15	KOR0193_R	RC	529301	7446401	692.9	19.6	0	-90
QD	KOR0194	RC	529300	7446500	692.0	18.4	0	-90
26	KOR0194_R	RC	529301	7446501	692.0	18.4	0	-90
99	KOR0195	RC	529300	7446600	690.5	10.0	0	-90
	KOR0196	RC	529300	7446700	690.4	9.3	0	-90
	KOR0197	RC	529300	7446800	689.6	12.1	0	-90
	KOR0198	RC	529300	7446900	690.8	6.0	0	-90
	KOR0199	RC	529700	7446700	694.0	20.6	0	-90
SO	KOR0199_R	RC	529701	7446701	694.0	20.6	0	-90
	KOR0200	RC	529700	7446800	695.1	15.2	0	-90
	KOR0201	RC	529700	7446900	696.3	18.2	0	-90
\bigcirc	KOR0202	RC	529700	7447000	696.3	11.5	0	-90
	KOR0203	RC	530100	7447900	698.4	10.1	0	-90
	KOR0204	RC	530100	7448000	698.0	12.3	0	-90
	KOR0205	RC	530100	7448100	697.5	13.1	0	-90
<i>a</i> 15	KOR0206	RC	530500	7448000	703.6	5.3	0	-90
	KOR0207	RC	530500	7448100	702.7	6.3	0	-90
	KOR0208	RC	530500	7448200	703.1	16.2	0	-90
\square	KOR0209	RC	530500	7448300	701.9	2.3	0	-90
~	KOR0210	RC	530500	7448400	701.5	2.1	0	-90
	KOR0211	RC	530500	7448500	701.0	2.2	0	-90
\bigcirc	KOR0212	RC	530500	7448600	699.9	2.0	0	-90
	KOR0213	RC	530500	7448700	700.5	2.1	0	-90
	KOR0214	RC	530900	7448000	708.2	3.0	0	-90
	KOR0215	RC	530900	7448100	708.5	20.4	0	-90
	KOR0216	RC	530900	7448200	707.4	3.0	0	-90
ľ	KOR0217	RC	530900	7448300	707.4	13.4	0	-90
	KOR0218	RC	530900	7448400	706.9	8.2	0	-90
	KOR0220	RC	530900	7449000	713.3	3.0	0	-90
ľ	KOR0221	RC	531300	7447900	713.3	2.3	0	-90
	KOR0222	RC	531300	7448000	713.1	2.0	0	-90

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KOR0223	RC	531300	7448100	712.7	13.3	0	-90
>	KOR0224	RC	531300	7448200	712.4	2.0	0	-90
	KOR0225	RC	531300	7448300	709.5	2.4	0	-90
	KOR0226	RC	531300	7448900	708.8	2.3	0	-90
	KOR0227	RC	531300	7449000	666.0	9.1	0	-90
\bigcirc	KOR0247	RC	527700	7449800	665.5	4.2	0	-90
	KOR0248	RC	527700	7449700	664.0	19.2	0	-90
10	KOR0249	RC	527700	7449600	664.9	19.0	0	-90
JD)	KOR0250	RC	527700	7449500	669.3	12.2	0	-90
6	KOR0252	RC	528100	7450100	670.0	2.0	0	-90
リリ	KOR0253	RC	528100	7450000	671.2	3.2	0	-90
	KOR0254	RC	528100	7449800	671.6	23.2	0	-90
	KOR0255	RC	528100	7449400	669.5	9.3	0	-90
	KOR0256	RC	528100	7449300	670.0	6.2	0	-90
	KOR0257	RC	528100	7449200	674.5	2.0	0	-90
U,	KOR0258	RC	528100	7447900	675.9	2.1	0	-90
	KOR0259	RC	528100	7447800	676.4	17.0	0	-90
	KOR0260	RC	528500	7449900	676.5	20.1	0	-90
	KOR0261	RC	528500	7449800	675.9	2.0	0	-90
\leq	KOR0262	RC	528500	7449700	676.5	2.0	0	-90
	KOR0263	RC	528500	7449500	679.2	3.1	0	-90
	KOR0264	RC	528500	7448100	685.1	6.3	0	-90
10	KOR0267	RC	528900	7446600	693.8	2.0	0	-90
JD	KOR0269	RC	529300	7446200	694.0	7.2	0	-90
	KOR0270	RC	529300	7446100	694.0	4.2	0	-90
	KOR0271	RC	529300	7446000	695.8	2.0	0	-90
	KOR0273	RC	529700	7447300	696.1	2.3	0	-90
	KOR0274	RC	529700	7447200	697.8	2.3	0	-90
	KOR0276	RC	530100	7448300	699.0	2.3	0	-90
$ \ge $	KOR0277	RC	530100	7447700	697.9	17.1	0	-90
]	KOR0278	RC	530100	7447600	700.5	2.2	0	-90
	KOR0279	RC	530100	7447400	700.9	6.0	0	-90
	KOR0280	RC	530100	7447300	701.5	2.1	0	-90
	KOR0281	RC	530100	7447200	704.2	8.3	0	-90
	KOR0282	RC	530500	7447900	705.2	3.2	0	-90
	KOR0283	RC	530500	7447800	705.5	2.0	0	-90
	KOR0285	RC	530900	7448600	706.4	3.2	0	-90
	KOR0286	RC	530900	7448500	708.6	7.3	0	-90

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KOR0287	RC	530900	7447900	708.7	8.3	0	-90
\gg	KOR0288	RC	530900	7447400	710.3	7.3	0	-90
	KOR0289	RC	530900	7447300	711.6	2.0	0	-90
_	KOR0292	RC	531300	7448600	714.0	3.2	0	-90
	KOR0293	RC	531300	7447700	714.7	4.2	0	-90
\square	KOR0294	RC	531300	7447600	715.0	12.2	0	-90
	KOR0295	RC	531300	7447500	675.7	2.0	0	-90
20	KOR0299	RC	528100	7446700	675.5	4.0	0	-90
JD	KOR0300	RC	528100	7446600	680.0	2.0	0	-90
16	KOR0301	RC	528500	7446600	680.7	14.6	0	-90
של	KOR0302	RC	528500	7446700	680.7	14.6	0	-90
\rightarrow	KOR0302_R	RC	528501	7446701	674.2	6.0	0	-90
	KOR0303	RC	528100	7448000	684.2	2.1	0	-90
	KOR0304	RC	528900	7448000	683.9	2.1	0	-90
	KOR0305	RC	528900	7447900	683.5	2.0	0	-90
JU)	KOR0306	RC	528900	7447800	692.5	3.0	0	-90
	KOR0307	RC	529700	7448000	692.5	9.2	0	-90
	KOR0307A	RC	529698	7448006	664.8	2.0	0	-90
	KOR0308	RC	527700	7449300	669.8	15.1	0	-90
	KOR0310	RC	528100	7450200	669.3	2.0	0	-90
	KOR0311	RC	528100	7449700	674.0	4.2	0	-90
	KOR0316	RC	528100	7448100	673.3	4.0	0	-90
20	KOR0317	RC	528100	7448200	676.0	4.0	0	-90
JD	KOR0318	RC	528100	7446500	676.0	4.1	0	-90
	KOR0319	RC	528100	7446400	676.9	4.1	0	-90
\square	KOR0320	RC	528100	7446300	675.2	4.1	0	-90
	KOR0324	RC	528500	7450000	678.3	4.0	0	-90
	KOR0325	RC	528500	7448200	681.0	4.1	0	-90
	KOR0326	RC	528500	7446500	682.3	8.6	0	-90
\square	KOR0327	RC	528500	7446400	682.3	4.1	0	-90
	KOR0328	RC	528500	7446300	693.0	13.6	0	-90
	KOR0332	RC	529700	7448100	694.0	4.1	0	-90
	KOR0333	RC	529700	7446600	705.1	2.0	0	-90
	KOR0355	RC	528700	7449601	678.9	9.2	0	-90
	KOR0356	RC	528700	7449500	678.6	8.0	0	-90
	KOR0357	RC	528700	7449401	679.0	12.5	0	-90
	KOR0358	RC	528901	7451000	677.0	10.0	0	-90
	KOR0359	RC	528901	7450901	677.5	8.0	0	-90

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KOR0360	RC	528900	7450802	678.4	6.0	0	-90
	KOR0361	RC	528900	7450701	679.0	6.0	0	-90
	KOR0362	RC	528901	7450601	679.5	4.0	0	-90
	KOR0363	RC	528901	7450498	679.7	3.0	0	-90
	KOR0364	RC	528900	7450399	678.5	2.0	0	-90
\bigcirc	KOR0365	RC	528901	7450301	679.5	14.4	0	-90
	KOR0366	RC	528901	7450200	680.1	5.5	0	-90
20	KOR0367	RC	528700	7449999	678.0	2.0	0	-90
JD	KOR0368	RC	528801	7450000	679.5	2.0	0	-90
16	KOR0369	RC	528799	7450100	679.5	2.0	0	-90
שש	KOR0370	RC	528799	7449900	679.8	2.0	0	-90
\supset	KOR0371	RC	528600	7449601	677.9	4.0	0	-90
	KOR0372	RC	528600	7449500	677.7	17.4	0	-90
	KOR0373	RC	529200	7446099	692.1	13.3	0	-90
	KOR0374	RC	529200	7446000	692.0	4.0	0	-90
<u>.</u> U	KOR0375	RC	529100	7446099	690.5	7.6	0	-90
	KOR0376	RC	529100	7446200	690.4	3.0	0	-90
	KOR0377	RC	529100	7446000	690.0	3.0	0	-90
\bigcirc	KOR0378	RC	529099	7445901	690.5	3.0	0	-90
	KOR0379	RC	529200	7445899	692.0	3.0	0	-90
JQ	KOR0390	RC	528700	7446600	683.0	15.6	0	-90
	KOR0390_R	RC	528698	7446603	682.8	15.0	0	-90
715	KOR0391	RC	528700	7446500	684.2	8.3	0	-90
JD	KOR0392	RC	528700	7446400	684.9	2.0	0	-90
	KOR0393	RC	528700	7446300	684.5	2.0	0	-90
	KOR0394	RC	529300	7447500	689.5	20.8	0	-90
	KOR0395	RC	529200	7448000	688.2	4.0	0	-90
	KOR0396	RC	529300	7448000	689.4	8.3	0	-90
	KOR0397	RC	530200	7448200	699.3	16.5	0	-90
\leq	KOR0398	RC	530201	7448100	699.0	10.5	0	-90
	KOR0399	RC	530201	7448000	699.7	3.0	0	-90
	KOR0400	RC	530200	7447901	700.0	7.7	0	-90
	KOR0401	RC	530301	7448200	700.6	10.6	0	-90
	KOR0402	RC	530300	7448100	700.3	14.6	0	-90
	KOR0403	RC	530301	7448000	701.0	3.0	0	-90
	KOR0404	RC	530300	7447900	702.0	7.8	0	-90
	KOR0405	RC	530400	7447901	703.2	4.0	0	-90
	KOR0406	RC	530400	7448000	702.1	2.0	0	-90

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KOR0407	RC	530400	7448100	701.7	10.5	0	-90
KOR0408	RC	530400	7448199	702.0	14.7	0	-90
KOR0409	RC	530400	7448299	701.0	9.7	0	-90
KOR0410	RC	530300	7448300	700.1	2.0	0	-90
KOR0411	RC	530201	7448299	698.9	7.3	0	-90
KOR0412	RC	530600	7448299	703.3	4.0	0	-90
KOR0413	RC	530700	7448300	704.7	6.3	0	-90
KOR0414	RC	530800	7448299	706.3	13.4	0	-90
KOR0415	RC	530601	7448200	703.9	13.2	0	-90
KOR0416	RC	530700	7448200	705.0	12.5	0	-90
KOR0417	RC	530800	7448199	706.3	8.4	0	-90
KOR0418	RC	530800	7448100	707.3	16.0	0	-90
KOR0419	RC	530700	7448100	706.0	14.4	0	-90
KOR0420	RC	530600	7448100	704.7	4.0	0	-90
KOR0421	RC	530600	7448000	704.5	2.0	0	-90
KOR0422	RC	530700	7448000	705.7	8.4	0	-90
KOR0423	RC	530799	7448000	707.0	18.6	0	-90
KOR0424	RC	530799	7447901	707.8	3.0	0	-90
KOR0425	RC	530700	7447900	706.5	2.0	0	-90
KOR0426	RC	530600	7447901	705.4	2.0	0	-90
KOR0427	RC	530700	7447801	707.4	2.0	0	-90
KOR0428	RC	530800	7447800	708.5	3.0	0	-90
KOR0429	RC	530800	7447700	708.5	3.0	0	-90
KOR0430	RC	530699	7447700	707.1	2.0	0	-90
KOR0431	RC	530700	7447600	704.0	5.6	0	-90
KOR0432	RC	530800	7447601	706.0	7.6	0	-90
KOR0433	RC	530699	7447500	704.4	19.2	0	-90
KOR0434	RC	530800	7447499	705.4	20.5	0	-90
KOR0435	RC	530699	7447399	707.2	2.0	0	-90
KOR0436	RC	530799	7447400	708.2	2.0	0	-90
KOR0437	RC	530799	7447300	709.2	2.0	0	-90
KOR0438	RC	530699	7447300	708.5	2.0	0	-90
KOR0439	RC	531000	7447701	711.1	2.0	0	-90
KOR0440	RC	531000	7447599	710.7	2.0	0	-90
KOR0441	RC	530999	7447500	707.8	31.0	0	-90
KOR0442	RC	530999	7447400	707.9	31.0	0	-90
KOR0443	RC	530999	7447299	711.0	16.5	0	-90
KOR0444	RC	531099	7447701	712.1	2.0	0	-90

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KOR0445	RC	531100	7447601	712.5	6.4	0	-90
KOR0446	RC	531100	7447500	709.4	4.0	0	-90
KOR0447	RC	531201	7447501	712.6	2.0	0	-90
KOR0448	RC	531200	7447599	713.6	2.0	0	-90
KOR0449	RC	531201	7447700	713.1	2.0	0	-90
KOR0450	RC	531200	7447297	712.6	20.4	0	-90
KOR0451	RC	531103	7447299	712.0	2.0	0	-90
KOR0452	RC	531303	7447299	714.4	22.2	0	-90
KOR0453	RC	531300	7447200	713.9	2.0	0	-90
KOR0454	RC	531200	7447200	712.3	2.0	0	-90
KOR0455	RC	531099	7447200	710.4	2.0	0	-90
KOR0456	RC	531401	7447301	716.0	2.0	0	-90
KOR0457	RC	531400	7447200	715.5	17.5	0	-90
KOR0458	RC	531400	7447500	716.0	2.0	0	-90
KOR0459	RC	531400	7447600	715.7	3.0	0	-90
KOR0460	RC	531500	7447500	717.0	3.0	0	-90
KOR0461	RC	530999	7448401	708.2	7.5	0	-90
KOR0462	RC	531099	7448401	709.6	7.7	0	-90
KOR0463	RC	531201	7448401	710.6	3.0	0	-90
KOR0464	RC	531200	7448300	711.1	10.3	0	-90
KOR0465	RC	531100	7448300	709.9	12.5	0	-90
KOR0466	RC	531000	7448300	708.5	10.6	0	-90
KOR0467	RC	531000	7448200	709.0	8.3	0	-90
KOR0468	RC	531100	7448200	710.0	10.3	0	-90
KOR0469	RC	531200	7448200	711.2	20.6	0	-90
KOR0470	RC	531100	7448500	708.9	2.0	0	-90
KOR0471	RC	531000	7448500	707.8	2.0	0	-90
KOR0472	RC	531200	7448500	710.3	5.4	0	-90
KOR0473	RC	530600	7448400	702.9	2.0	0	-90
KOR0474	RC	530699	7448400	704.1	2.0	0	-90
KOR0475	RC	530800	7448400	705.7	2.0	0	-90
KOR0476	RC	530400	7448400	700.1	3.0	0	-90
KOR0477	RC	530199	7448400	697.9	2.0	0	-90
KOR0478	RC	530300	7448400	698.8	8.6	0	-90
KOR0479	RC	530000	7448400	695.4	2.0	0	-90
KOR0480	RC	531400	7447700	715.0	2.0	0	-90
KOR0481	RC	531499	7447700	716.0	2.0	0	-90
-	L	1		1	1	1	-

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KOR0483	RC	531100	7448100	710.5	17.5	0	-90
KOR0484	RC	531201	7448100	711.8	15.6	0	-90
KOR0485	RC	531200	7448000	712.0	2.0	0	-90
KOR0486	RC	531100	7448000	710.9	15.4	0	-90
KOR0487	RC	531000	7448000	709.4	11.6	0	-90
KOR0488	RC	531000	7447900	709.7	4.0	0	-90
KOR0489	RC	531099	7447900	710.6	3.0	0	-90
KOR0490	RC	531199	7447900	711.7	2.0	0	-90
KOR0491	RC	531000	7447800	710.4	3.0	0	-90
KOR0492	RC	531099	7447801	711.5	4.0	0	-90
KOR0493	RC	531199	7447800	712.3	2.0	0	-90
KOR0494	RC	528599	7446599	681.5	3.0	0	-90
KOR0495	RC	528599	7446399	683.8	2.0	0	-90
KOR0496	RC	528600	7446299	683.5	2.0	0	-90
KOR0497	RC	529501	7446300	696.9	4.0	0	-90
KOR0498	RC	529500	7446200	697.0	3.0	0	-90
KOR0499	RC	529499	7446101	697.0	8.7	0	-90
KOR0500	RC	529399	7446100	695.5	2.0	0	-90
KOR0501	RC	529600	7446100	698.5	3.0	0	-90
KOR0502	RC	529099	7446300	690.0	3.0	0	-90
KOR0503	RC	529499	7446601	693.1	3.0	0	-90
KOR0504	RC	529498	7446498	695.0	14.7	0	-90
KOR0505	RC	529000	7446201	688.7	2.0	0	-90
KOR0506	RC	529000	7446100	688.8	3.0	0	-90
KOR0507	RC	529000	7446000	688.5	2.0	0	-90
KOR0508	RC	528999	7445900	689.0	2.0	0	-90
KOR0509	RC	528900	7446001	687.0	2.0	0	-90
KOR0522	RC	529000	7445801	688.9	2.0	0	-90
KOR0534	RC	528900	7446200	687.2	2.0	0	-90
KOR0535	RC	528900	7446100	687.2	2.0	0	-90
KOR0537	RC	528599	7446499	683.4	2.0	0	-90
KOR0538	RC	529900	7447200	699.3	7.0	0	-90
KOR0539	RC	530000	7447200	700.5	4.0	0	-90
KOR0540	RC	527500	7447900	666.0	2.0	0	-90
KOR0541	RC	527500	7447800	666.7	12.6	0	-90
KOR0542	RC	527500	7447700	667.5	15.6	0	-90
KOR0543	RC	527500	7447600	667.4	10.4	0	-90
KOR0544	RC	527499	7447500	668.9	7.3	0	-90

Drill Hole	Drill Type	East	North
KOR0545	RC	527500	744740
KOR0546	RC	527500	744730
KOR0547	RC	527500	744720
KOR0548	RC	527500	744710
KOR0548_R	RC	527501	744710
KOR0549	RC	527500	744700
KOR0550	RC	527600	744700
KOR0551	RC	527600	744690
KOR0552	RC	527500	744690
KOR0553	RC	527500	744680
KOR0554	RC	527600	744680
KOR0555	RC	527599	744670
KOR0556	RC	527500	744670
KOR0557	RC	527800	744700
KOR0557_R	RC	527801	744700
KOR0558	RC	527800	744690
KOR0559	RC	527799	744680
KOR0560	RC	527800	744670
KOR0561	RC	527901	7446702
KOR0562	RC	527499	744660
KOR0563	RC	527600	744659
KOR0564	RC	527600	744650
KOR0565	RC	527500	744650
KOR0566	RC	527999	744669
KOR0567	RC	527500	744800
KOR0568	RC	527500	744810
KOR0569	RC	527500	744820
KOR0570	RC	528800	745020
KOR0571	RC	528799	744950
KOR0572	RC	528800	7449402
KOR0573	RC	528800	744930
KOR0574	RC	528600	744940
KOR0575	RC	528700	744930
			+

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KOR0545	RC	527500	7447400	668.9	2.0	0	-90
KOR0546	RC	527500	7447300	668.9	6.4	0	-90
KOR0547	RC	527500	7447200	669.2	13.5	0	-90
KOR0548	RC	527500	7447100	669.8	20.3	0	-90
KOR0548_R	RC	527501	7447101	669.8	20.3	0	-90
KOR0549	RC	527500	7447000	669.7	8.5	0	-90
KOR0550	RC	527600	7447000	670.9	8.5	0	-90
KOR0551	RC	527600	7446900	670.3	2.0	0	-90
KOR0552	RC	527500	7446900	669.0	3.0	0	-90
KOR0553	RC	527500	7446800	669.0	2.0	0	-90
KOR0554	RC	527600	7446800	670.0	4.0	0	-90
KOR0555	RC	527599	7446701	670.2	2.0	0	-90
KOR0556	RC	527500	7446701	669.4	4.0	0	-90
KOR0557	RC	527800	7447000	673.5	19.5	0	-90
KOR0557_R	RC	527801	7447001	673.5	19.5	0	-90
KOR0558	RC	527800	7446900	673.0	2.0	0	-90
KOR0559	RC	527799	7446800	673.3	3.0	0	-90
KOR0560	RC	527800	7446700	673.3	2.0	0	-90
KOR0561	RC	527901	7446702	673.7	2.0	0	-90
KOR0562	RC	527499	7446600	668.8	2.0	0	-90
KOR0563	RC	527600	7446599	669.7	2.0	0	-90
KOR0564	RC	527600	7446501	669.5	2.0	0	-90
KOR0565	RC	527500	7446501	668.2	3.0	0	-90
KOR0566	RC	527999	7446698	674.5	2.0	0	-90
KOR0567	RC	527500	7448000	665.9	2.0	0	-90
KOR0568	RC	527500	7448100	665.9	2.0	0	-90
KOR0569	RC	527500	7448200	667.4	2.0	0	-90
KOR0570	RC	528800	7450200	679.0	4.0	0	-90
KOR0571	RC	528799	7449501	680.1	4.0	0	-90
KOR0572	RC	528800	7449402	680.3	13.5	0	-90
KOR0573	RC	528800	7449301	680.6	4.0	0	-90
KOR0574	RC	528600	7449400	678.0	4.0	0	-90
KOR0575	RC	528700	7449301	679.2	4.0	0	-90
KOR0576	RC	528801	7450298	678.5	15.7	0	-90
KOR0582	RC	528899	7449500	681.4	4.0	0	-90
KOR0583	RC	528899	7449399	681.4	4.0	0	-90
KOR0584	RC	528900	7449300	681.8	4.0	0	-90
KOR0585	RC	529000	7450399	679.5	4.0	0	-90

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KOR0586	RC	529000	7450298	680.5	9.0	0	-90
\geq	KOR0587	RC	529000	7450200	681.2	15.5	0	-90
	KOR0588	RC	528800	7449200	681.0	4.0	0	-90
	KOR0589	RC	528901	7449200	682.2	4.0	0	-90
	KOR0590	RC	528999	7449501	682.7	4.0	0	-90
(\bigcirc)	KOR0591	RC	528999	7449399	682.8	4.0	0	-90
	KOR0592	RC	528999	7449297	683.0	4.0	0	-90
<i>a</i> 15	KOR0593	RC	528999	7449199	683.3	4.0	0	-90
	KOR0594	RC	528699	7449700	678.7	4.0	0	-90
26	KOR0595	RC	528800	7449600	680.2	4.0	0	-90
U)	KOR0596	RC	528900	7449601	681.3	4.0	0	-90
	KOR0597	RC	529100	7449501	683.9	4.0	0	-90
	KOR0598	RC	529100	7449400	684.1	4.0	0	-90
	KOR0599	RC	529101	7449299	684.1	4.0	0	-90
GD	KOR0600	RC	529100	7449199	684.5	4.0	0	-90
(U)	KOR0601	RC	528801	7450400	677.5	4.0	0	-90
	KOR0602	RC	531500	7448600	713.5	2.0	0	-90
	KOR0603	RC	531500	7448701	713.0	2.0	0	-90
\square	KOR0604	RC	531500	7448500	714.7	4.0	0	-90
	KOR0605	RC	531500	7448401	714.7	2.0	0	-90
(0)	KOR0606	RC	531499	7448302	714.8	2.0	0	-90
	KOR0607	RC	531501	7448099	715.5	3.0	0	-90
615	KOR0612	RC	529400	7450200	685.3	4.0	0	-90
	KOR0613	RC	529398	7450101	685.9	9.7	0	-90
$\overline{\bigcirc}$	KOR0614	RC	529399	7449899	686.9	4.0	0	-90
\square	KOR0615	RC	529399	7449801	686.9	4.0	0	-90
~	KOR0616	RC	529400	7450301	684.9	4.0	0	-90
	KOR0617	RC	529400	7450400	684.6	4.0	0	-90
\square	KOR0618	RC	529399	7450500	684.1	4.0	0	-90
	KOR0619	RC	529402	7450599	684.2	4.0	0	-90
	KOR0620	RC	529400	7449701	686.0	4.0	0	-90
	KOR0633	RC	527701	7447500	671.0	10.4	0	-90
	KOR0634	RC	527700	7447100	672.0	15.6	0	-90
	KOR0635	RC	527700	7447004	672.1	14.3	0	-90
	KOR0636	RC	527701	7446903	671.6	10.5	0	-90
	KOR0637	RC	527701	7446801	671.5	7.5	0	-90
	KOR0638	RC	529300	7447000	692.3	7.6	0	-90
	KOR0639	RC	529299	7447100	691.8	7.4	0	-90

Drill Hole	Drill Type	East	
KOR0640	RC	527700	
KOR0641	RC	530498	
KOR0642	RC	530100	
KOR0643	RC	528902	
KOR0644	RC	529302	
KOR0645	RC	528601	
KOR0646	RC	528598	
KOR0647	RC	528598	
KOR0648	RC	528598	
KOR0649	RC	528700	
KOR0650	RC	528698	
KOR0651	RC	528601	
KOR0652	RC	528601	
KOR0653	RC	528601	
KOR0654	RC	528700	
KOR0655	RC	528701	
KOR0656	RC	528500	
KOR0657	RC	528500	
KOR0658	RC	528500	
KOR0672	RC	528400	
KOR0673	RC	528700	
KOR0674	RC	528500	
KOR0675	RC	528500	
KOR0676	RC	528500	
KOR0677	RC	528400	
KOR0678	RC	528700	
KOR0679	RC	528700	
KOR0680	RC	528700	
KOR0684	RC	529100	
KOR0685	RC	529200	
KOR0686	RC	529200	
KOR0687	RC	529100	
TADDA(00	ЪC	500000	1

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KOR0640	RC	527700	7447900	670.6	8.2	0	-90
KOR0641	RC	530498	7447599	702.0	14.8	0	-90
KOR0642	RC	530100	7447530	699.0	14.7	0	-90
KOR0643	RC	528902	7446701	685.4	6.0	0	-90
KOR0644	RC	529302	7447700	689.0	14.5	0	-90
KOR0645	RC	528601	7450400	675.5	4.0	0	-90
KOR0646	RC	528598	7450502	676.5	18.3	0	-90
KOR0647	RC	528598	7450601	676.3	11.6	0	-90
KOR0648	RC	528598	7450699	675.7	8.0	0	-90
KOR0649	RC	528700	7450400	676.5	4.0	0	-90
KOR0650	RC	528698	7450300	677.0	17.7	0	-90
KOR0651	RC	528601	7450300	676.5	4.0	0	-90
KOR0652	RC	528601	7450200	677.0	4.0	0	-90
KOR0653	RC	528601	7450101	677.0	7.4	0	-90
KOR0654	RC	528700	7450200	678.0	7.2	0	-90
KOR0655	RC	528701	7450502	677.5	4.0	0	-90
KOR0656	RC	528500	7450100	674.6	10.4	0	-90
KOR0657	RC	528500	7450200	675.5	20.5	0	-90
KOR0658	RC	528500	7450300	675.8	4.0	0	-90
KOR0672	RC	528400	7450300	674.7	8.4	0	-90
KOR0673	RC	528700	7450100	678.3	4.0	0	-90
KOR0674	RC	528500	7450400	674.5	4.0	0	-90
KOR0675	RC	528500	7450500	675.4	9.4	0	-90
KOR0676	RC	528500	7450602	675.2	4.0	0	-90
KOR0677	RC	528400	7450501	674.1	4.0	0	-90
KOR0678	RC	528700	7450599	677.3	7.6	0	-90
KOR0679	RC	528700	7450702	676.8	8.0	0	-90
KOR0680	RC	528700	7450799	676.3	9.0	0	-90
KOR0684	RC	529100	7450200	682.3	16.3	0	-90
KOR0685	RC	529200	7450200	683.4	4.0	0	-90
KOR0686	RC	529200	7450101	684.0	15.0	0	-90
KOR0687	RC	529100	7450100	682.7	16.0	0	-90
KOR0688	RC	529300	7450001	685.5	6.3	0	-90
KOR0689	RC	529200	7450001	684.3	4.0	0	-90
KOR0690	RC	529000	7450099	681.6	4.0	0	-90
KOR0691	RC	529100	7450300	681.6	4.0	0	-90
KOR0692	RC	529099	7450000	683.0	4.0	0	-90
KOR0693	RC	529451	7450049	686.8	7.4	0	-90

Drill Hole	Drill Type	East
KOR0694	RC	529350
KOR0695	RC	528649
KOR0696	RC	528649
KOR0697	RC	528649
KOR0698	RC	528648
KOR0699	RC	528649
KOR0700	RC	528750
KOR0701	RC	528851
KOR0702	RC	528851
KOR0703	RC	528799
KOR0704	RC	528802
KOR0705	RC	528751
KOR0706	RC	528950
KOR0707	RC	529049
KOR0708	RC	529150
KOR0709	RC	529249
KOR0710	RC	529248
KP0001	RAB	527718
KP0002	RAB	527771
KP0003	RAB	527824
KP0004	RAB	527878
KP0005	RAB	528039
KP0006	RAB	528092
KP0007	RAB	528353
KP0008	RAB	528407
KP0009	RAB	528091
KP0010	RAB	528037
KP0011	RAB	527983
KP0012	RAB	527944
KP0013	RAB	527900
KP0014	RAB	528590
KP0015	RAB	528647
	.	

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KOR0694	RC	529350	7450049	685.9	5.3	0	-90
KOR0695	RC	528649	7450351	676.4	5.2	0	-90
KOR0696	RC	528649	7450450	677.0	8.3	0	-90
KOR0697	RC	528649	7450550	676.9	7.4	0	-90
KOR0698	RC	528648	7450650	676.5	9.0	0	-90
KOR0699	RC	528649	7450751	675.9	16.0	0	-90
KOR0700	RC	528750	7450849	676.6	8.4	0	-90
KOR0701	RC	528851	7450850	677.5	8.3	0	-90
KOR0702	RC	528851	7450951	676.6	12.3	0	-90
KOR0703	RC	528799	7450901	676.6	8.0	0	-90
KOR0704	RC	528802	7450799	677.4	7.3	0	-90
KOR0705	RC	528751	7450350	677.4	5.1	0	-90
KOR0706	RC	528950	7450250	680.3	16.4	0	-90
KOR0707	RC	529049	7450150	681.8	5.4	0	-90
KOR0708	RC	529150	7450150	683.1	14.6	0	-90
KOR0709	RC	529249	7450151	684.2	5.5	0	-90
KOR0710	RC	529248	7450050	684.8	15.2	0	-90
KP0001	RAB	527718	7449851	666.0	14.0	0	-90
KP0002	RAB	527771	7449767	667.0	20.0	0	-90
KP0003	RAB	527824	7449682	666.2	19.0	0	-90
KP0004	RAB	527878	7449598	666.3	17.0	0	-90
KP0005	RAB	528039	7449358	668.5	19.0	0	-90
KP0006	RAB	528039	7449358	669.5	17.0	0	-90
KP0000 KP0007							
	RAB	528353	7449785	675.0	12.0	0	-90
KP0008	RAB	528407	7449701	673.0	18.0	0	-90
KP0009	RAB	528091	7449715	669.5	4.0	0	-90
KP0010	RAB	528037	7449799	670.5	5.0	0	-90
KP0011	RAB	527983	7449882	670.0	16.0	0	-90
KP0012	RAB	527944	7449944	669.1	20.0	0	-90
KP0013	RAB	527900	7450010	668.3	4.0	0	-90
KP0014	RAB	528590	7449964	677.1	3.0	0	-90
KP0015	RAB	528647	7449878	678.2	4.0	0	-90
KP0016	RAB	528699	7449796	678.5	3.0	0	-90
KP0017	RAB	528753	7449710	679.5	4.0	0	-90
KP0018	RAB	529310	7449404	687.0	4.0	0	-90
KP0019	RAB	529255	7449484	686.3	4.0	0	-90
KP0020	RAB	529200	7449568	685.0	4.0	0	-90
KP0021	RAB	529149	7449656	683.9	4.0	0	-90

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KP0022	RAB	529091	7449736	683.0	4.0	0	-90
KP0023	RAB	529036	7449818	682.5	4.0	0	-90
KP0024	RAB	528982	7449903	681.5	4.0	0	-90
KP0025	RAB	528929	7449985	681.0	4.0	0	-90
KP0026	RAB	528875	7450069	680.5	4.0	0	-90
KP0034	RAB	529465	7449896	687.6	4.0	0	-90
KP0035	RAB	529410	7449977	686.9	3.0	0	-90
KP0036	RAB	529331	7450103	685.3	13.0	0	-90
KP0037	RAB	529277	7450186	684.4	4.0	0	-90
KP0038	RAB	529782	7447575	694.2	16.0	0	-90
KP0039	RAB	529472	7447582	690.6	15.0	0	-90
KP0040	RAB	529233	7447510	688.6	14.0	0	-90
KP0041	RAB	528918	7447507	684.6	13.0	0	-90
KP0042	RAB	528597	7447509	681.0	3.0	0	-90
KP0043	RAB	528638	7447510	681.3	3.0	0	-90
KP0044	RAB	528280	7447533	677.1	13.0	0	-90
KP0045	RAB	527963	7447600	673.1	17.4	0	-90
KP0045_R	RC	527964	7447601	673.1	17.4	0	-90
 KP0046	RAB	527665	7447644	669.5	13.0	0	-90
KP0047	RAB	530074	7447611	697.2	24.4	0	-90
KP0047_R	RC	530075	7447612	697.2	24.4	0	-90
 KP0048	RAB	530378	7447632	700.9	17.0	0	-90
KP0055	RAB	528302	7449386	674.5	19.0	0	-90
KR0001	RC	527500	7449400	663.5	8.1	0	-90
KR0002	RC	527500	7449500	662.8	19.2	0	-90
KR0003	RC	527500	7449600	662.2	18.2	0	-90
KR0004	RC	527500	7449700	662.5	9.0	0	-90
KR0005	RC	527600	7449400	665.5	6.3	0	-90
KR0006	RC	527600	7449500	663.8	19.1	0	-90
KR0007	RC	527600	7449600	663.3	19.0	0	-90
KR0007_R	RC	527601	7449602	663.3	28.4	0	-90
 KR0008	RC	527600	7449700	663.5	10.0	0	-90
KR0009	RC	527600	7449800	665.0	15.2	0	-90
KR0010	RC	527700	7449400	666.5	3.0	0	-90
KR0011	RC	527700	7449900	665.9	16.2	0	-90
KR0012	RC	527800	7449300	666.0	3.1	0	-90
KR0013	RC	527800	7449400	666.3	19.2	0	-90
KR0014	RC	527800	7449500	666.5	16.3	0	-90

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KR0015	RC	527800	7449600	665.1	16.0	0	-90
\geq	KR0016	RC	527800	7449700	666.7	18.3	0	-90
	KR0017	RC	527800	7449800	667.4	20.2	0	-90
	KR0018	RC	527800	7449900	667.2	6.1	0	-90
	KR0019	RC	527800	7450000	667.5	15.4	0	-90
(\bigcirc)	KR0020	RC	527900	7449300	667.3	9.2	0	-90
	KR0021	RC	527900	7449400	667.2	20.4	0	-90
615	KR0022	RC	527900	7449500	667.5	4.1	0	-90
	KR0023	RC	527900	7449600	666.5	12.4	0	-90
26	KR0024	RC	527900	7449700	667.7	12.2	0	-90
02	KR0025	RC	527900	7449800	668.8	4.0	0	-90
	KR0026	RC	527900	7449900	668.7	20.6	0	-90
	KR0027	RC	527900	7450000	668.4	4.1	0	-90
	KR0028	RC	527900	7450100	666.8	4.2	0	-90
GD	KR0029	RC	528000	7449200	669.0	4.0	0	-90
UU	KR0030	RC	528000	7449300	668.5	16.3	0	-90
	KR0031	RC	528000	7449400	668.8	19.1	0	-90
	KR0032	RC	528000	7449500	670.3	3.2	0	-90
\bigcirc	KR0034	RC	528000	7449700	668.2	4.0	0	-90
	KR0035	RC	528000	7449800	670.0	4.2	0	-90
(0)	KR0036	RC	528000	7449900	670.0	19.2	0	-90
Γ	KR0037	RC	528000	7450000	668.7	19.4	0	-90
615	KR0038	RC	528000	7450100	667.9	4.1	0	-90
	KR0039	RC	528000	7450200	668.0	4.1	0	-90
\bigcirc	KR0040	RC	528100	7449100	671.9	3.0	0	-90
$\sum_{i=1}^{n}$	KR0041	RC	528100	7449500	671.7	3.0	0	-90
	KR0042	RC	528100	7449600	669.0	3.0	0	-90
2	KR0043	RC	528100	7449900	671.0	20.3	0	-90
\bigcirc	KR0045	RC	528100	7450300	670.2	6.3	0	-90
	KR0046	RC	528200	7449100	671.9	3.0	0	-90
	KR0047	RC	528200	7449200	671.0	3.3	0	-90
	KR0048	RC	528200	7449300	671.6	7.0	0	-90
	KR0049	RC	528200	7449400	673.5	24.3	0	-90
	KR0050	RC	528200	7449500	673.0	3.0	0	-90
	KR0051	RC	528200	7449600	671.5	3.1	0	-90
·	KR0052	RC	528200	7449700	670.2	3.0	0	-90
ŕ	KR0053	RC	528200	7449800	672.8	20.2	0	-90
	KR0054	RC	528200	7449900	672.6	6.2	0	-90

-90 -90

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	
	KR0055	RC	528200	7450000	670.9	4.0	0	
\geq	KR0056	RC	528200	7450100	670.8	5.4	0	
	KR0057	RC	528200	7450200	671.0	4.0	0	
	KR0058	RC	528200	7450300	672.4	4.1	0	
	KR0059	RC	528300	7449000	675.0	3.0	0	
	KR0060	RC	528300	7449100	672.8	3.0	0	
	KR0061	RC	528300	7449200	672.5	3.0	0	
	KR0062	RC	528300	7449300	674.5	4.0	0	
	KR0063	RC	528300	7449400	674.5	21.2	0	
	KR0064	RC	528300	7449500	674.3	3.0	0	
	KR0065	RC	528300	7449600	674.0	3.0	0	
5	KR0066	RC	528300	7449700	671.5	4.2	0	
	KR0067	RC	528300	7449800	674.2	3.0	0	
	KR0068	RC	528300	7449900	674.0	3.0	0	
	KR0069	RC	528300	7450000	672.3	4.0	0	
	KR0070	RC	528300	7450100	671.5	4.0	0	
	KR0071	RC	528300	7450200	672.5	4.2	0	
	KR0072	RC	528300	7450300	673.6	4.2	0	
	KR0073	RC	528400	7449000	675.5	3.0	0	
	KR0074	RC	528400	7449100	673.6	3.0	0	
	KR0075	RC	528400	7449200	675.7	3.0	0	
	KR0076	RC	528400	7449300	675.7	3.0	0	
	KR0077	RC	528400	7449400	675.7	20.2	0	
	KR0078	RC	528400	7449500	675.0	15.3	0	
	KR0079	RC	528400	7449600	675.2	3.0	0	
	KR0080	RC	528400	7449700	673.0	18.0	0	
	KR0081	RC	528400	7449800	675.4	3.0	0	
	KR0082	RC	528400	7449900	675.2	3.0	0	
	KR0083	RC	528400	7450000	673.9	4.2	0	
	KR0084	RC	528400	7450100	673.0	6.2	0	
	KR0085	RC	528400	7450200	673.5	4.0	0	
	KR0086	RC	528500	7449000	677.4	3.0	0	
	KR0087	RC	528500	7449400	676.5	3.0	0	
	KR0088	RC	528500	7449600	676.6	7.3	0	
	KR0089	RC	528600	7449700	677.3	3.2	0	
	KR0090	RC	528600	7449800	677.5	3.0	0	
	KR0091	RC	528600	7449900	677.5	8.3	0	
		I	1	T		Г	T	

KR0092

RC

528600

7450000

676.8

0

3.0

-90

-90

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0093	RC	528700	7449800	678.6	4.0	0	-90
KR0094	RC	528700	7449900	678.7	4.0	0	-90
KR0095	RC	527500	7449300	663.3	3.0	0	-90
KR0195	RC	527600	7447901	668.1	3.0	0	-90
KR0196	RC	527600	7447801	668.0	13.6	0	-90
KR0197	RC	527600	7447701	668.5	13.4	0	-90
KR0198	RC	527600	7447601	668.7	13.5	0	-90
KR0199	RC	527600	7447501	669.5	13.4	0	-90
KR0200	RC	527600	7447401	670.1	13.2	0	-90
KR0201	RC	527600	7447301	670.1	8.6	0	-90
KR0202	RC	527600	7447201	670.4	15.6	0	-90
KR0203	RC	527600	7447101	670.8	14.4	0	-90
KR0204	RC	527700	7446699	671.3	5.0	0	-90
KR0205	RC	527700	7446599	670.9	2.0	0	-90
KR0206	RC	527700	7446500	671.0	2.0	0	-90
KR0207	RC	527800	7447901	671.8	3.0	0	-90
KR0208	RC	527800	7447801	672.5	11.3	0	-90
KR0209	RC	527800	7447701	671.4	12.4	0	-90
KR0210	RC	527800	7447601	671.5	14.4	0	-90
KR0211	RC	527800	7447501	672.2	12.0	0	-90
KR0212	RC	527800	7447401	672.8	5.7	0	-90
KR0213	RC	527800	7447301	672.6	11.3	0	-90
KR0214	RC	527800	7447201	673.0	16.3	0	-90
KR0215	RC	527800	7447101	673.1	17.3	0	-90
KR0216	RC	527900	7448001	671.6	2.0	0	-90
KR0217	RC	527900	7447901	673.0	2.0	0	-90
KR0218	RC	527900	7447801	673.7	15.5	0	-90
KR0219	RC	527900	7447701	673.0	20.3	0	-90
KR0219_R	RC	527901	7447702	673.0	20.3	0	-90
KR0220	RC	527900	7447601	672.4	13.4	0	-90
KR0221	RC	527900	7447501	673.4	12.4	0	-90
KR0222	RC	527900	7447401	674.0	17.4	0	-90
KR0222_R	RC	527901	7447402	674.0	17.4	0	-90
 KR0223	RC	527900	7447301	673.8	18.4	0	-90
KR0224	RC	527900	7447201	674.0	25.5	0	-90
KR0225	RC	527900	7447101	674.5	18.5	0	-90
KR0226	RC	527900	7447001	674.4	14.5	0	-90
KR0226_R	RC	527901	7447002	674.4	14.5	0	-90
		1	l		L		<u> </u>

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KR0227	RC	527900	7446901	674.4	5.2	0	-90
\geq	KR0228	RC	527900	7446801	675.0	2.0	0	-90
	KR0229	RC	528000	7448101	672.5	2.0	0	-90
	KR0230	RC	528000	7448001	672.8	2.0	0	-90
	KR0231	RC	528000	7447901	674.5	6.6	0	-90
(\bigcirc)	KR0232	RC	528000	7447801	674.8	3.0	0	-90
	KR0233	RC	528000	7447701	675.0	14.3	0	-90
<u>a</u> 5	KR0234	RC	528000	7447601	673.6	14.4	0	-90
	KR0235	RC	528000	7447501	674.7	13.4	0	-90
26	KR0236	RC	528000	7447401	675.1	14.6	0	-90
92	KR0237	RC	528000	7447301	675.2	15.6	0	-90
	KR0238	RC	528000	7447201	675.4	21.6	0	-90
	KR0239	RC	528000	7447101	675.8	2.0	0	-90
-	KR0240	RC	528000	7447001	676.1	2.0	0	-90
GD	KR0241	RC	528000	7446901	676.0	3.0	0	-90
YU	KR0242	RC	528000	7446801	676.5	2.0	0	-90
	KR0243	RC	528200	7448200	674.5	2.0	0	-90
	KR0244	RC	528200	7448101	675.5	3.0	0	-90
\bigcirc	KR0245	RC	528200	7448001	675.1	2.0	0	-90
	KR0246	RC	528200	7447901	675.5	3.0	0	-90
(U)	KR0247	RC	528200	7447801	676.3	2.0	0	-90
	KR0248	RC	528200	7447701	677.4	9.3	0	-90
615	KR0249	RC	528200	7447601	675.8	14.4	0	-90
(D)	KR0250	RC	528200	7447501	676.1	12.5	0	-90
	KR0251	RC	528200	7447401	678.0	16.2	0	-90
\square	KR0252	RC	528200	7447301	678.0	16.4	0	-90
	KR0253	RC	528200	7447201	678.2	17.5	0	-90
	KR0254	RC	528200	7447101	678.6	19.3	0	-90
\bigcirc	KR0255	RC	528200	7447001	679.0	17.6	0	-90
	KR0255_R	RC	528201	7447002	679.0	17.6	0	-90
	KR0256	RC	528200	7446901	679.1	10.4	0	-90
	KR0257	RC	528200	7446801	678.3	2.0	0	-90
-	KR0258	RC	528200	7446701	677.0	6.0	0	-90
	KR0259	RC	528300	7448200	676.1	3.0	0	-90
	KR0260	RC	528300	7448101	676.5	2.0	0	-90
	KR0261	RC	528300	7448001	677.1	4.0	0	-90
	KR0262	RC	528300	7447901	676.5	4.0	0	-90
	KR0263	RC	528300	7447801	677.1	5.5	0	-90

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KR0264	RC	528300	7447701	678.6	17.4	0	-90
\geq	KR0265	RC	528300	7447601	677.1	14.4	0	-90
	KR0266	RC	528300	7447501	677.5	15.6	0	-90
	KR0267	RC	528300	7447401	679.3	15.4	0	-90
	KR0268	RC	528300	7447301	679.5	21.6	0	-90
(\bigcirc)	KR0268_R	RC	528301	7447302	679.5	21.6	0	-90
	KR0269	RC	528300	7447201	679.5	14.6	0	-90
<i>a</i> 15	KR0270	RC	528300	7447101	680.0	17.5	0	-90
	KR0271	RC	528300	7447001	680.3	11.2	0	-90
26	KR0272	RC	528300	7446901	680.5	16.3	0	-90
02	KR0273	RC	528300	7446801	678.6	15.4	0	-90
	KR0274	RC	528300	7446701	678.3	4.0	0	-90
	KR0275	RC	528400	7448200	677.1	2.0	0	-90
	KR0276	RC	528400	7448101	677.3	2.0	0	-90
GD	KR0277	RC	528400	7448001	678.0	4.0	0	-90
YU	KR0278	RC	528400	7447901	677.7	13.5	0	-90
\square	KR0279	RC	528400	7447801	678.4	18.8	0	-90
	KR0279_R	RC	528401	7447802	678.4	18.8	0	-90
\bigcirc	KR0280	RC	528400	7447701	678.9	16.4	0	-90
	KR0281	RC	528400	7447601	678.4	12.4	0	-90
(0)	KR0282	RC	528400	7447501	678.5	8.6	0	-90
	KR0283	RC	528400	7447401	679.9	9.3	0	-90
615	KR0284	RC	528400	7447301	680.6	17.6	0	-90
	KR0285	RC	528400	7447201	680.9	21.5	0	-90
	KR0286	RC	528400	7447101	681.1	16.4	0	-90
	KR0287	RC	528400	7447001	681.5	15.6	0	-90
	KR0288	RC	528400	7446901	681.5	14.0	0	-90
	KR0289	RC	528400	7446801	679.6	15.6	0	-90
\bigcirc	KR0290	RC	528400	7446701	679.5	4.0	0	-90
	KR0291	RC	528600	7448101	680.8	15.6	0	-90
	KR0292	RC	528600	7448001	681.0	5.7	0	-90
	KR0293	RC	528600	7447901	679.8	5.3	0	-90
	KR0294	RC	528600	7447801	680.4	2.0	0	-90
	KR0295	RC	528600	7447701	681.2	6.4	0	-90
	KR0296	RC	528600	7447601	681.0	2.0	0	-90
"	KR0297	RC	528600	7447401	681.5	13.6	0	-90
	KR0298	RC	528600	7447301	683.0	16.4	0	-90
	KR0299	RC	528600	7447201	683.3	18.4	0	-90

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KR0300	RC	528600	7447101	683.5	16.5	0	-90
\geq	KR0301	RC	528600	7447001	683.5	16.1	0	-90
	KR0302	RC	528600	7446901	683.9	15.5	0	-90
	KR0303	RC	528600	7446801	682.2	4.0	0	-90
	KR0304	RC	528600	7446701	681.7	4.0	0	-90
	KR0305	RC	528700	7448301	681.1	2.0	0	-90
	KR0306	RC	528700	7448201	681.3	15.4	0	-90
	KR0306_R	RC	528701	7448202	681.2	22.0	0	-90
	KR0307	RC	528700	7448101	682.0	4.0	0	-90
	KR0308	RC	528700	7448001	682.1	2.0	0	-90
	KR0309	RC	528700	7447901	681.0	6.5	0	-90
	KR0310	RC	528700	7447801	681.5	15.5	0	-90
	KR0310_R	RC	528701	7447802	681.5	15.5	0	-90
	KR0311	RC	528700	7447701	682.1	4.0	0	-90
GD	KR0312	RC	528700	7447601	682.0	4.0	0	-90
	KR0313	RC	528700	7447501	682.1	5.3	0	-90
	KR0314	RC	528700	7447401	682.7	19.5	0	-90
	KR0315	RC	528700	7447301	684.5	17.3	0	-90
	KR0316	RC	528700	7447201	684.5	17.5	0	-90
	KR0317	RC	528700	7447101	684.7	17.6	0	-90
	KR0318	RC	528700	7447001	684.8	17.6	0	-90
	KR0319	RC	528700	7446901	684.4	16.1	0	-90
	KR0320	RC	528700	7446801	683.1	11.4	0	-90
	KR0321	RC	528700	7446701	682.5	4.0	0	-90
	KR0322	RC	528800	7448501	682.0	2.0	0	-90
	KR0323	RC	528800	7448401	682.0	2.0	0	-90
	KR0324	RC	528800	7448301	682.5	13.5	0	-90
	KR0325	RC	528800	7448201	682.3	14.4	0	-90
	KR0326	RC	528800	7448101	683.1	3.0	0	-90
	KR0327	RC	528800	7448001	683.5	3.0	0	-90
	KR0328	RC	528800	7447901	682.3	2.0	0	-90
	KR0329	RC	528800	7447801	682.2	2.0	0	-90
	KR0330	RC	528800	7447701	683.1	2.0	0	-90
	KR0331	RC	528800	7447601	683.4	19.4	0	-90
	KR0331_R	RC	528801	7447602	683.4	19.4	0	-90
	KR0332	RC	528800	7447501	683.2	14.3	0	-90
	KR0333	RC	528800	7447401	684.0	13.4	0	-90
	KR0334	RC	528800	7447301	685.3	17.5	0	-90

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KR0335	RC	528800	7447201	686.0	18.4	0	-90
\geq	KR0335_R	RC	528801	7447202	686.0	18.4	0	-90
	KR0336	RC	528800	7447101	686.0	17.5	0	-90
	KR0337	RC	528800	7447001	685.9	16.5	0	-90
	KR0338	RC	528800	7446901	685.3	18.5	0	-90
(\bigcirc)	KR0339	RC	528800	7446801	684.1	14.6	0	-90
	KR0340	RC	528800	7446701	684.1	12.4	0	-90
615	KR0341	RC	529000	7448601	683.6	2.0	0	-90
	KR0342	RC	529000	7448501	683.7	2.0	0	-90
26	KR0343	RC	529000	7448401	684.0	12.6	0	-90
69	KR0344	RC	529000	7448301	684.4	2.0	0	-90
	KR0345	RC	529000	7448201	685.0	2.0	0	-90
	KR0346	RC	529000	7448101	685.7	2.0	0	-90
	KR0347	RC	529000	7448001	685.5	2.0	0	-90
	KR0348	RC	529000	7447901	685.3	2.0	0	-90
UU	KR0349	RC	529000	7447801	684.7	6.4	0	-90
\square	KR0350	RC	529000	7447701	685.0	5.8	0	-90
	KR0351	RC	529000	7447601	685.7	13.7	0	-90
()	KR0352	RC	529000	7447501	685.5	6.6	0	-90
	KR0353	RC	529000	7447401	686.0	14.6	0	-90
	KR0354	RC	529000	7447301	686.5	14.5	0	-90
<u> </u>	KR0355	RC	529000	7447201	688.1	15.6	0	-90
615	KR0356	RC	529000	7447101	688.4	10.2	0	-90
	KR0357	RC	529000	7447001	688.2	14.6	0	-90
\square	KR0358	RC	529000	7446901	686.2	14.6	0	-90
	KR0359	RC	529000	7446801	686.5	14.7	0	-90
~	KR0360	RC	529000	7446701	686.6	11.6	0	-90
	KR0361	RC	529100	7448601	684.6	2.0	0	-90
\square	KR0362	RC	529100	7448501	685.0	2.0	0	-90
	KR0363	RC	529100	7448401	684.6	7.3	0	-90
	KR0364	RC	529100	7448301	685.0	2.0	0	-90
	KR0365	RC	529100	7448201	686.1	2.0	0	-90
	KR0366	RC	529100	7448101	687.1	4.0	0	-90
	KR0367	RC	529100	7448001	686.8	6.4	0	-90
	KR0368	RC	529100	7447901	686.4	6.4	0	-90
	KR0369	RC	529100	7447801	686.4	8.4	0	-90
	KR0370	RC	529100	7447701	686.3	15.0	0	-90
	KR0371	RC	529100	7447601	686.6	13.5	0	-90

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0372	RC	529100	7447501	686.7	13.7	0	-90
KR0373	RC	529100	7447401	687.3	14.6	0	-90
KR0374	RC	529100	7447301	687.9	14.4	0	-90
KR0375	RC	529100	7447201	689.2	9.6	0	-90
KR0376	RC	529100	7447101	689.5	4.0	0	-90
KR0377	RC	529100	7447001	689.4	15.6	0	-90
KR0378	RC	529100	7446901	687.0	15.7	0	-90
KR0379	RC	529100	7446801	687.6	9.0	0	-90
KR0380	RC	529100	7446701	687.7	10.4	0	-90
KR0381	RC	529100	7446601	687.5	3.0	0	-90
KR0382	RC	529100	7446501	689.7	2.0	0	-90
KR0383	RC	529100	7446401	690.0	3.0	0	-90
KR0384	RC	529200	7447901	687.8	3.0	0	-90
KR0385	RC	529200	7447801	688.0	8.6	0	-90
KR0386	RC	529200	7447701	687.6	14.4	0	-90
KR0387	RC	529200	7447601	687.6	14.4	0	-90
KR0388	RC	529200	7447501	688.1	13.4	0	-90
KR0389	RC	529200	7447401	688.5	11.4	0	-90
KR0390	RC	529200	7447301	689.3	4.0	0	-90
KR0391	RC	529200	7447201	689.4	14.5	0	-90
KR0392	RC	529200	7447101	690.6	3.0	0	-90
KR0393	RC	529200	7447001	690.9	15.7	0	-90
KR0394	RC	529200	7446901	689.1	16.2	0	-90
KR0395	RC	529200	7446801	688.8	18.6	0	-90
KR0395_R	RC	529201	7446802	688.8	18.6	0	-90
KR0396	RC	529200	7446701	689.0	15.6	0	-90
KR0397	RC	529200	7446601	688.9	4.0	0	-90
KR0398	RC	529200	7446501	691.1	10.4	0	-90
KR0399	RC	529200	7446401	691.4	4.0	0	-90
KR0400	RC	529200	7446301	691.7	4.0	0	-90
KR0401	RC	529200	7446201	692.2	10.3	0	-90
KR0402	RC	529400	7448001	690.0	6.3	0	-90
KR0403	RC	529400	7447901	690.8	2.0	0	-90
KR0404	RC	529400	7447801	690.8	7.6	0	-90
KR0405	RC	529400	7447701	690.4	2.0	0	-90
KR0406	RC	529400	7447601	689.9	14.5	0	-90
KR0407	RC	529400	7447501	690.7	14.6	0	-90
			1	I		1	

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KR0409	RC	529400	7447301	691.5	2.0	0	-90
\geq	KR0410	RC	529400	7447201	691.6	20.8	0	-90
	KR0410_R	RC	529401	7447202	691.6	20.8	0	-90
	KR0411	RC	529400	7447101	692.7	2.0	0	-90
	KR0412	RC	529400	7447001	693.6	12.6	0	-90
\supset	KR0413	RC	529400	7446901	692.2	12.5	0	-90
	KR0413_R	RC	529401	7446902	692.2	12.5	0	-90
15	KR0414	RC	529400	7446801	690.6	8.6	0	-90
D	KR0415	RC	529400	7446701	691.3	16.0	0	-90
6	KR0416	RC	529400	7446601	691.9	16.8	0	-90
R	KR0417	RC	529400	7446501	693.2	4.0	0	-90
7	KR0418	RC	529400	7446401	694.6	2.0	0	-90
	KR0419	RC	529400	7446301	694.9	16.3	0	-90
	KR0420	RC	529400	7446201	695.8	3.0	0	-90
	KR0421	RC	529500	7448101	689.9	2.0	0	-90
U	KR0422	RC	529500	7448001	690.4	2.0	0	-90
]	KR0423	RC	529500	7447901	691.8	4.0	0	-90
1	KR0424	RC	529500	7447801	691.8	2.0	0	-90
	KR0425	RC	529500	7447701	691.5	14.6	0	-90
2	KR0426	RC	529500	7447601	691.0	14.2	0	-90
\square	KR0427	RC	529500	7447501	691.0	12.0	0	-90
	KR0428	RC	529500	7447401	691.9	11.3	0	-90
16	KR0429	RC	529500	7447301	693.2	2.0	0	-90
D	KR0430	RC	529500	7447201	692.9	3.0	0	-90
5	KR0431	RC	529500	7447101	693.4	4.0	0	-90
7	KR0432	RC	529500	7447001	694.7	6.6	0	-90
	KR0433	RC	529500	7446901	694.0	8.5	0	-90
]	KR0434	RC	529500	7446801	691.8	16.0	0	-90
	KR0435	RC	529500	7446701	692.0	9.0	0	-90
2	KR0436	RC	529600	7448201	691.2	3.0	0	-90
	KR0437	RC	529600	7448101	691.3	2.0	0	-90
	KR0438	RC	529600	7448001	691.3	2.0	0	-90
	KR0439	RC	529600	7447901	692.7	8.3	0	-90
	KR0440	RC	529600	7447801	693.3	15.3	0	-90
	KR0441	RC	529600	7447701	692.8	14.4	0	-90
	KR0442	RC	529600	7447601	692.0	15.4	0	-90
	KR0443	RC	529600	7447501	692.3	14.5	0	-90
	KR0444	RC	529600	7447401	693.2	12.3	0	-90

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0445	RC	529600	7447301	694.7	2.0	0	-90
KR0446	RC	529600	7447201	694.3	12.6	0	-90
KR0447	RC	529600	7447101	694.1	4.0	0	-90
KR0448	RC	529600	7447001	695.3	7.5	0	-90
KR0449	RC	529600	7446901	695.4	4.0	0	-90
KR0450	RC	529600	7446801	693.0	16.4	0	-90
KR0451	RC	529600	7446701	692.6	11.5	0	-90
KR0452	RC	529600	7446601	694.4	2.0	0	-90
KR0453	RC	529700	7448300	692.1	2.0	0	-90
KR0454	RC	529700	7448201	692.5	3.0	0	-90
KR0455	RC	529700	7447100	695.7	2.0	0	-90
KR0456	RC	529800	7448300	693.3	7.4	0	-90
KR0457	RC	529800	7448201	694.0	12.4	0	-90
KR0458	RC	529800	7448101	694.1	11.2	0	-90
KR0459	RC	529800	7448001	694.0	12.3	0	-90
KR0460	RC	529800	7447901	694.0	13.5	0	-90
KR0461	RC	529800	7447801	696.0	15.7	0	-90
KR0462	RC	529800	7447701	695.5	17.3	0	-90
KR0463	RC	529800	7447601	694.4	16.3	0	-90
KR0464	RC	529800	7447501	695.5	2.0	0	-90
KR0465	RC	529800	7447401	696.0	4.0	0	-90
KR0466	RC	529800	7447301	697.0	2.0	0	-90
KR0467	RC	529800	7447201	698.0	2.0	0	-90
KR0468	RC	529800	7447101	697.2	3.0	0	-90
KR0469	RC	529800	7447001	697.3	13.3	0	-90
KR0470	RC	529800	7446901	698.0	22.5	0	-90
KR0470_R	RC	529801	7446902	698.0	22.5	0	-90
KR0471	RC	529800	7446801	697.2	3.0	0	-90
KR0472	RC	529800	7446701	696.7	4.0	0	-90
KR0473	RC	529800	7446601	695.5	6.5	0	-90
KR0474	RC	529900	7448300	694.7	2.0	0	-90
KR0475	RC	529900	7448201	695.1	2.0	0	-90
KR0476	RC	529900	7448101	695.4	12.4	0	-90
KR0476_R	RC	529901	7448102	695.4	12.4	0	-90
KR0477	RC	529900	7448001	695.0	10.2	0	-90
KR0478	RC	529900	7447901	695.1	12.5	0	-90
KR0479	RC	529900	7447801	697.0	13.4	0	-90
KR0480	RC	529900	7447701	696.5	15.3	0	-90

	Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
	KR0481	RC	529900	7447601	695.5	16.5	0	-90
\gg	KR0482	RC	529900	7447501	696.5	14.5	0	-90
	KR0483	RC	529900	7447401	697.4	12.5	0	-90
	KR0484	RC	529900	7447301	698.6	2.0	0	-90
	KR0485	RC	529900	7447101	698.4	4.0	0	-90
\bigcirc	KR0486	RC	529900	7447001	698.6	11.6	0	-90
	KR0487	RC	529900	7446901	699.5	3.0	0	-90
35	KR0488	RC	529900	7446801	699.6	2.0	0	-90
(JD)	KR0489	RC	529900	7446701	698.6	2.0	0	-90
26	KR0490	RC	529900	7446601	696.5	4.0	0	-90
92	KR0491	RC	530000	7448300	696.0	9.4	0	-90
	KR0492	RC	530000	7448199	696.7	2.0	0	-90
	KR0493	RC	530000	7448100	696.7	25.2	0	-90
	KR0493_R	RC	530000	7448110	696.7	25.2	0	-90
	KR0494	RC	530000	7448001	696.5	11.4	0	-90
92	KR0495	RC	530000	7447901	696.9	11.5	0	-90
\square	KR0496	RC	530000	7447801	697.7	11.5	0	-90
	KR0497	RC	530000	7447701	698.0	2.0	0	-90
\bigcirc	KR0498	RC	530000	7447601	696.4	16.1	0	-90
	KR0499	RC	530000	7447501	698.2	16.3	0	-90
ÚŊ	KR0500	RC	530000	7447401	699.0	2.0	0	-90
	KR0501	RC	530000	7447301	699.4	8.4	0	-90
<u> </u>	KR0502	RC	530000	7447101	700.0	2.0	0	-90
(JD)	KR0503	RC	530000	7447001	700.2	2.0	0	-90
	KR0504	RC	530000	7446901	701.0	2.0	0	-90
\bigcirc	KR0505	RC	530000	7446801	701.0	2.0	0	-90
	KR0506	RC	530000	7446701	700.1	2.0	0	-90
	KR0507	RC	530000	7446601	699.4	2.0	0	-90
\bigcirc	KR0508	RC	530200	7447801	701.0	2.0	0	-90
	KR0509	RC	530200	7447701	699.9	2.0	0	-90
	KR0510	RC	530200	7447601	698.9	19.3	0	-90
	KR0511	RC	530200	7447501	701.3	2.0	0	-90
	KR0512	RC	530200	7447401	702.4	2.0	0	-90
	KR0513	RC	530200	7447301	702.6	3.0	0	-90
	KR0514	RC	530300	7447801	702.0	7.3	0	-90
	KR0515	RC	530300	7447701	699.6	15.4	0	-90
	KR0516	RC	530300	7447601	700.6	18.5	0	-90
	KR0517	RC	530300	7447501	702.0	6.2	0	-90

Drill Hole	Drill Type	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0518	RC	530300	7447401	704.0	3.0	0	-90
KR0519	RC	530300	7447301	704.5	2.0	0	-90
KR0520	RC	530400	7447801	704.0	2.0	0	-90
KR0521	RC	530400	7447701	701.5	15.4	0	-90
KR0522	RC	530400	7447601	702.0	16.2	0	-90
KR0523	RC	530400	7447501	702.4	18.4	0	-90
KR0524	RC	530400	7447401	704.2	8.3	0	-90
KR0525	RC	530400	7447301	705.5	2.0	0	-90
KR0526	RC	530600	7447801	706.3	2.0	0	-90
KR0527	RC	530600	7447701	705.1	2.0	0	-90
KR0528	RC	530600	7447601	703.0	10.0	0	-90
KR0529	RC	530600	7447501	704.7	19.6	0	-90
KR0530	RC	530600	7447401	706.0	3.0	0	-90
KR0531	RC	530600	7447301	708.0	2.0	0	-90
KR0532	RC	528600	7448201	679.8	12.4	0	-90

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 In most holes uranium grade was estimated using downhole gamma probes. Some early holes used wet chemical analysis at a commercial laboratory and wet chemical analysis was used throughout to check the downhole gamma grades. Gamma probes provide an estimate of uranium grade in a volume extending approximately 1 m from the hole and thus provide much greater representivity than wet chemical samples which represent a much smaller fraction of this volume. Gamma probes were calibrated at the Pelindaba facility in South Africa and at the Husab mine in Namibia.
	• Aspects of the determination of mineralisation that are Material to the Public Report.	 Gamma data (as counts per second) from calibrated probes are converted into equivalent uranium values (eU₃O₈) using appropriate calibration and casing factors. Gamma probes can overestimate uranium grade if high thorium is present or if disequilibrium exists between uranium and its daughters. Neither is thought to be an issue here, although samples will be submitted for analysis of disequilibrium.
	• In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• Reverse circulation percussion (RC) is the main drilling technique used. Hole diameter is approximately 112 mm. Holes are relatively shallow (generally <20 m) and vertical, therefore downhole dip and azimuth were not recorded. Early holes (prefix "KP") used the rotary air blast (RAB) technique.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	• Bags containing 1 m of chip samples were weighed at the rig and weights recorded. The nominal weight of a 1 m sample is 25 kg and recovery is assessed using the ratio of actual to ideal sample weight
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Standard operating procedures are in place at the drill rig in order to ensure that sampling of the drilling chips is representative of the material being drilled.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 In most cases grade is derived from gamma measurement and sample bias is not an issue. There is a possibility that some very fin uranium is lost during drilling, and this will be investigated by twinnin some RC holes with diamond holes in a later campaign.
ogging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 Chip samples are visually logged to a basic level of detail. Parameters recorded include lithology, colour, sample condition (i.e. wet or dry) and total gamma count using a handheld scintillometer. This level of detail is suitable for a mineral resource estimate which will differentiate between palaeochannel and basement-hosted mineralisation.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Logging is qualitative. Reference photographs are taken of RC chip in chip trays. All samples were logged.
Sub- sampling echniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 Core was obtained for this drilling program from 11 holes, but has neyet been sampled 1 m RC chips were subsampled to approximately 1 kg using a 3-wa riffle splitter mounted on the RC rig. A second 1 kg sample was collected as a field duplicate and reference sample. Nearly all samples were dry.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in 	 Samples for geochemical analysis were shipped to Intertek's preparation laboratory at Tschudi for crushing and grinding. Certified reference material, duplicate samples and blank samples were submitted at a rate of 1 per 20. Comparison of analyses of 1 kg field duplicate samples suggests th
	situ material collected, including for instance results for field duplicate/second-half sampling.	the mineralisation is somewhat nuggetty, however this is overcome by the use of gamma logging which measures a significantly larger volume.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	This has not yet been investigated.
Quality of assay data and	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• Samples were analysed at Intertek's state of the art facility in Perth, Australia using a sodium peroxide fusion and ICP-MS finish which measures total uranium content of the samples. This method

0

	Criteria	JORC Code explanation	Commentary
	laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 produces precise and accurate data and has no known issues with respect to uranium analysis. The gamma probes used were checked against assays by logging drill holes at the nearby Hirabeb project for which the Company has geochemical assays. The correlation between assays and derived equivalent uranium values is considered to be acceptable. Review of the company's QA/QC sampling and analysis confirms that the analytical program has provided data with good analytical precision and accuracy. No external laboratory (i.e. umpire) checks have been undertaken.
) 5	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Comparison of downhole gamma and wet chemical grades has confirmed significant intersections. No external verification has been undertaken to date. Twinned holes were only used to compare downhole radiometric
2000		• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 results. Downhole gamma data are provided as LAS files by the company's geophysical logging contractor which are imported into the company's hosted Datashed 5 database where eU₃O₈ is calculated automatically. Data are stored on a secure server maintained by the database consultants, with data made available online.
		Discuss any adjustment to assay data.	No adjustment undertaken.
	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 Most collar locations were fixed using a handheld GPS unit. The KP series holes were surveyed using a differential GPS system. RL's were based on a Worldview 3 DEM and are accurate to better than 50 cm. No downhole surveys were undertaken. The grid system is Universal Transverse Mercator, zone 33S (WGS
		 Quality and adequacy of topographic control. 	 84 datum). Topographic control is provided by a digital elevation model derived from Worldview 3 imagery and is accurate to approximately 50 cm.
\mathcal{D}	Data spacing and distribution	Data spacing for reporting of Exploration Results.	 The early stages of this program were exploratory in nature and used a variety of drill spacings. In the latter stages holes were drilled on a consistent 100 m x 100 m grid.
9 7 5		 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 A 100 m spacing is sufficient to demonstrate continuity of mineralisation.
2		Whether sample compositing has been applied.	Gamma measurements are taken every 10 cm downhole. These 10

	Criteria	JORC Code explanation	Commentary
			cm measurements are composited to 1 m intervals.
	Orientation of data in relation to geological	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 Uranium mineralisation is distributed in moderately continuous horizontal layers. Holes are drilled vertically.
	structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	
	Sample security	• The measures taken to ensure sample security.	Samples at the drill rig are placed into plastic bags and transported from the drill site to a contract transport company in Swakopmund for transfer to the Genalysis Intertek sample preparation facility in Tschudi. A second split (field duplicate) is placed into plastic bags and transported to Elevate's storage shed in Swakopmund by company personnel where it is kept under lock and key. Upon completion of the preparation work the remainder of the drill chip sample bags for each hole are packed into drums and then stored in Elevate's dedicated sample storage shed in Swakopmund. Upon completion of the assay work the remainder of the drill chip sample bags for each hole will be packed back into drums and then stored in Elevate's dedicated sample storage shed in Swakopmund.
IJ	Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	 The Exploration Results relate to exclusive prospecting licence EPL6987 "Koppies" owned 100% by the company and granted on 10 April 2019. The EPL is located within the Namib Naukluft National Park in Namibia. There are no known impediments to the project.
))		• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The EPL was granted to Manmar Investments One Eight Two (Pty) Ltd on 16 May 2019, which then changed its name to Marenica Ventures (Pty) Ltd and is a 100%-owned subsidiary company of Elevate Uranium Ltd. The EPL is due for renewal on 6 April 2022. A renewal application has been lodged.

	Criteria	JORC Code explanation	Commentary
	Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 General Mining is known to have previously explored the area covered by the tenement in the late 1970's, however the results of this work are poorly documented but did include completion of a small number of drillholes.
	Geology	 Deposit type, geological setting and style of mineralisation. 	 Uranium mineralisation occurs as secondary carnotite enrichment in calcretised palaeochannel and sheet wash sediments and adjacent weathered bedrock. Uranium mineralisation is surficial, strata bound and hosted by Cenozoic and possibly Tertiary sediments, which include from top to bottom scree sand, gypcrete, calcareous sand and calcrete. The majority of the mineralisation is hosted in calcrete. Locally, the underlying weathered Proterozoic bedrock is occasionally also mineralised.
- I	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 992 holes for a total of 8,705 m have been drilled at Koppies I and II. All holes were drilled vertically and intersections measured present true thicknesses. Table 4 lists all the drill hole locations.
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	The reported grades have not been cut.
		 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	All grade intervals are arithmetic averages over the stated interval.
IJ		 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Not relevant.
5	Relationship between mineralisatio n widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 The mineralisation is sub-horizontal and all drilling vertical, therefore, mineralised intercepts are considered to represent true widths.

Criteria	JORC Code explanation	Commentary
intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Not relevant.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps and sections are included in the text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Comprehensive reporting of all Exploration Results from this drilling program are detailed in this announcement.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Previous drilling, HLEM and Airborne EM survey results have been reported. No other work has been completed on the tenement by the Company.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Mineral resource estimate and further exploration involving ground geophysics and drilling. See text.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. 	A set of SOPs (Standard Operating Procedures) was defined that safeguard data integrity which covers the following aspects:
	Data validation procedures used.	 Capturing of all exploration data; geology and downhole probing; QA/QC of all drilling, geophysical and laboratory data; Data storage (database management), security and back-up;

Criteria	JORC Code explanation	Commentary
		 Reporting and statistical analyses used industry standars software packages including Micromine.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• The Competent Person for Mineral Resources has visited the site number of times with the most recent being in 2017. Trav restrictions due to the Covid pandemic prevented access to the siduring the past three years.
Geological interpretatio n	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Confidence in the geological interpretation and modelling of the sedimentary palaeochannel-fill is very high. This type of geology well known and readily recognised in the RC drill chips. The factors affecting grade distribution are palaeochannel morphology and bedrock profile, with bedrock "highs" indicating forming areas of mineralisation traps.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• The infill drilled mineralisation at Koppies has a total strike length approximately 5km, 250m to 1,700m wide, 0 to 15m deep. The mamineralised calcrete reaches from a shallow depth below surface on 1 to 2m deep down to 12m
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. 	 The present estimates are based on grade domains controlling t interpolations into block estimates. Block sizes used are 50m Eas 50m North x 2m elevation. Estimation of block values used Multi Indicator Kriging (MII Mineralisation surfaces were derived around an 80ppm eU₃ minimum value. As the estimate was based on MIK no grade capping was applied. The MIK estimate was based on a total of 14 indicator bin valu representing 10% probability increments up to 70% then 5 increments to 95% then 97% and 99% in order to more reasonal model the high-grade component of the dataset. Directional variograms based on 14 indicator bins are used in t current estimates. A maximum search distance of 200m x 200m x 10.4m was us

Criteria	JORC Code explanation	Commentary
D	 Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 within the estimate. Panel proportions were limited by the mode basement profile as any basement hosted mineralisation may no considered for processing. Block validation was done using qualitative drill hole displays block estimates. The current block estimate throughout correl well with composited eU₃O₈ GT (Grade-Thickness) data. No correction for water was made other than any that may h been applied during the calculation of downhole equivalent urar values. A block support correction was applied to the MIK estimate to definal block proportions and grades. This correction value adjusts tonnes and grade for each panel based on the likely mining grade control parameters. The general progression of this proces to increase overall tonnes and reduce overall grades. Final sizes were set at 4m x 4m x 2m with a target grade control span of 4m x 4m x 1m. The MIK estimate is considered to be a recoverable Mir Resource. There is potential to recover the vanadium that is a component o mineralisation (from carnotite) however this has not been considered as part of this MRE. Average drill spacing is a 100m x 100m grid and the Mir Resource panels sit inside of this grid.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	 A visual assessment of sample material was done during the sampling process and samples were classified as either "dry" or "wet". The current drilling program did intersect water at times. A the majority of grade values applied within the MRE are based or downhole logging whether the sample is wet or dry is not conside material. Tonnages are estimated dry.

	Criteria	JORC Code explanation	Commentary
	Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 Composites less than 0.50m were excluded from the estimation process. This only relates to samples at the start or end of drill holes. The final MRE was reported at a range of cut-off grades starting at 50ppm U₃O₈ and going up to 1,000ppm U₃O₈ with the lower grades (50-200ppm) detailed in this announcement. Based on previous studies and the immediately adjacent deposit (Tumas 1E) a cut-off grade of 100ppm was selected for the reporting of the MRE. As the deposit is very shallow and in material that is easily mineable it is considered that all of the mineralisation above the nominated cut-off grade would be available for processing and would therefore meet the criteria for reasonable prospects for eventual economic extraction particularly at this early stage of development.
	Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Potential mining scenarios will be open cast mining using surface miners with an approximate depth of cut of 0.5m; after stripping of unconsolidated sandy grits and screes (expected to be free-digging). The MRE has been limited by the application of a combined mineralisation and basement profile derived from drill hole logging as it is expected that any fresh basement hosted mineralisation would probably require an alternate processing flowsheet to the proposed <i>U-pgradeTM</i> process. Block support corrections applied to the MRE follow the expected mining process. The MRE was assessed for reasonable prospects for eventual economic extraction and the reported estimate reflects the outcome.
\mathcal{O}	Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	• Based on the testwork completed by Elevate Uranium on the adjacent Tumas deposit, and testwork completed on the palaeochannel and basement mineralisation of the Marenica Uranium deposit it is expected that the material contained within the deposit will be able to be processed by Elevate Uranium's <i>U</i> - <i>pgrade</i> [™] process.

Criteria	JORC Code explanation	Commentary
Environmen- tal factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potentia environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 With mining progressing along the palaeochannel perimeter, waste material will be backfilled into mined-out areas so to provide for ongoing rehabilitation of the mined-out areas progressively throughout the life of the mine. Any remaining waste rock stockpiles will be shaped and contoured to blend into the surrounding environment. As the deposit is in the very preliminary stages of assessment no significant environmental studies have been carried out however the deposit is not expected to be materially different to either DYL's Tumas project or the existing Langer Heinrich mine.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	• The current estimate is using a value of 2.35t/m ³ .
Classificatio n	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Maximum search ranges used were set to maximum of 200m. A primary horizontal search of 100m (4 sectors and 16 samples) was

	Criteria	JORC Code explanation
-	Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.
\bigcirc	Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation shoul include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.
	www.elevateurani	

 The geostatistical approach applied to arrive at the current Inferred Mineral Resource is considered sound and is appropriate to the style of mineralisation contained within the deposit. The same estimation methodology has been successfully applied at the nearby Langer Heinrich mine for a period of over 15 years and has been used to estimate the contiguous Tumas 1E deposit.

appropriate for reporting an Inferred Mineral Resource and that the resulting block estimates are true reflections of the underlying drilling

• No additional reviews were conducted beyond those carried out by

the various Competent Persons over time.

Commentary

data.

• The presented block model is considered to be a reasonable representation of the underlying sample data.

• It is this Competent Person's opinion that the classification of portions of this Inferred Mineral Resource could be improved to indicated status by additional infill drilling and confirming the validity of the bulk density information.