

3 May 2022

# SUBSTANTIAL INCREASE TO MAKUUTU RESOURCE TO OVER 500 MILLION TONNES

- Significant <u>70% increase</u> in Makuutu Mineral Resource Estimate (MRE) exceeds expectation:
  - Mineral Resource Estimate increased to <u>532 million tonnes at 640 ppm</u> <u>TREO</u>, maintaining a cut-off grade of 200 parts per million (ppm) Total Rare Earth Oxide minus CeO<sub>2</sub> (TREO-CeO<sub>2</sub>)
  - Indicated Resource component <u>increased 512% to 404 million tonnes at</u>
     670 ppm TREO
  - Indicated Resource base is approximately 76% of the total Mineral Resource which will support the Feasibility Study
- Makuutu now cementing its position as key strategic, near development ready, non-China controlled ionic adsorption clay (IAC) resource, and a potential longlife supplier of magnet and heavy rare earths, with product available for US and EU markets
- Revised Makuutu Exploration Target underway to incorporate new data including highly successful Phase 3 scout drilling results

The Board of Ionic Rare Earths Limited ("IonicRE" or "The Company") (ASX: IXR) is pleased to report the substantial 70% increase to the total Mineral Resource Estimate (MRE) and a material increase in resource confidence classification, at its 51% owned Makuutu Rare Earths Project ("Makuutu").

The updated Makuutu MRE is estimated at 532 million tonnes at 640ppm Total Rare Earth Oxide (TREO), above a cut-off grade of 200 parts per million (ppm) TREO minus CeO<sub>2</sub> (TREO-CeO<sub>2</sub>). The Indicated component of the MRE has been increased to 404 million tonnes at 670 ppm TREO, representing a 512% increase on the previous March 2021 Indicated resource estimate<sup>1</sup>.

\_

<sup>&</sup>lt;sup>1</sup> ASX announcement 03/03/2021 "MINERAL RESOURCE ESTIMATE INCREASED THREEFOLD AT MAKUUTU"

This updated MRE cements Makuutu amongst the world's largest ionic adsorption clay (IAC) deposits, with the potential to significantly increase, and as a globally strategic resource for low-cost, high-margin and long-term security of magnet and heavy rare earth oxide (HREO) supply.

Additionally, the updated Makuutu MRE contains a significant portion of highly valuable HREO (25%) and critical rare earth oxides (CREO, 34%), which collectively account for a substantial 42% of the Resource mineralisation.

The Makuutu MRE has been updated based on the following key inputs:

- 1. Phase 4 drill program of 432 HQ core drill holes for 8,200 metres, drilled between June and November 2021. A total of 8,503 samples from the drilling were analysed for a multi-element suite by ALS Perth laboratory;
- 2. Total drilling in the MRE is 711 HQ core drill holes for 12,935 metres and 14,044 analysed samples from 2020 and 2021 drilling campaigns;
- 3. The majority of the Phase 4 drilling was completed to provide a 200-metre grid of infill holes, in conjunction with previous programs, over the much of the resource area. This has increased resource confidence to Indicated status for these areas of the MRE;
- 4. 1,206 insitu dry bulk density measurements from drill core samples; and
- 5. Accurate surface digital terrain model (DTM) derived from high resolution satellite imagery acquired in 2021 covering all resource areas.

Table 1: Makuutu Resource above 200ppm TREO-CeO₂ Cut-off Grade

| Resource Classification | Tonnes<br>(millions) | TREO<br>(ppm) | TREO-<br>CeO₂<br>(ppm) | LREO<br>(ppm) | HREO<br>(ppm) | CREO<br>(ppm) | Sc₂O₃<br>(ppm) |
|-------------------------|----------------------|---------------|------------------------|---------------|---------------|---------------|----------------|
| Indicated Resource      | 404                  | 670           | 450                    | 500           | 170           | 230           | 30             |
| Inferred Resource       | 127                  | 540           | 360                    | 400           | 140           | 180           | 30             |
| Total Resource          | 532                  | 640           | 430                    | 480           | 160           | 220           | 30             |

Rounding has been applied to 1Mt and 10ppm which may influence averaging calculation.

All REO are tabulated in Appendix 1 with formulas defining composition of (Light Rare Earth Oxides ("LREO"), HREO and Critical Rare Earth Oxides ("CREO").

Sc<sub>2</sub>O<sub>3</sub> formula provided in Appendix 1.

Commenting on this significant MRE update, IonicRE's Managing Director, Mr Tim Harrison said:

"This resource update at Makuutu has significantly exceeded my expectation. In essence, the mineralised system appears to be significantly larger than we had contemplated."

"The potential of Makuutu is now clearly defined in a global context. This resource update will support the feasibility study currently underway, which will now look at incorporating both a faster ramp up and greater annual production capacity driven by a material step change in Indicated resources. The feasibility study to be completed later this year will be used to support a mining licence application expected to be submitted before the end of October 2022. Makuutu is clearly a unique asset, near development ready, with product to be available for markets developing in the US and Europe."

"Beyond this MRE update, we will also review and update the previous Exploration Targets which will now be revised to incorporate new data plus the Phase 3 scout drilling from last year on EL00147 and the inclusion of the new tenement at EL00257."

#### **Resource Limits**

The MRE was conducted over eleven (11) low plateaus defined by radiometric eU/eTh anomalism on mineral retention licences RL00007, RL1693 and RL00234. These three tenements cover only 134 square kilometres (km²) of the 298 km² which makes up the Makuutu Rare Earths Project. Figure 1 shows the 11 areas, denoted from A to I, along with the Makuutu Central Zone ("MCZ") and Makuutu Central Zone East ("MCZE").

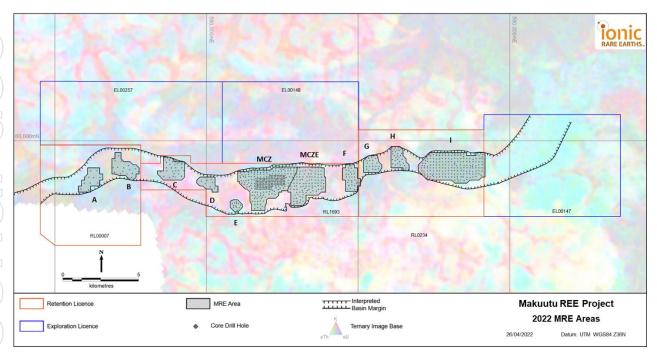



Figure 1: Figure 1: Plan view of resource estimation areas, drill hole locations and mineral licences on ternary radiometric image

The MRE only includes clay and saprolite regolith types, with surface hardcap material excluded while processing alternatives are tested for this material. This is consistent with the Company's knowledge of other IAC deposits, especially those in southern China.

#### **Resource Areas**

The MRE has determined classified resources in all of the eleven (11) drilled areas.

Indicated Resources have been determined in all areas where the drill spacing is 200-metre x 200-metre or closer and has provided adequate data and displayed geological continuity to support this level of confidence.

The Inferred Resource areas are located in areas where the drilling is at a 400-metre x 400-metre spacing and on the margins of the Indicated Resource areas. To increase confidence on the Inferred Resources requires further drilling to reduce the drill spacing.

The reported resources designated by each of the areas is detailed within Table 2, the resource areas shown by resource classification in Figure 2.

Table 2: Mineral Resources by Area

| C   | Classification  | Indic      |       |                       |            | rred Res | ource                 | То         | tal Reso | urce                  |
|-----|-----------------|------------|-------|-----------------------|------------|----------|-----------------------|------------|----------|-----------------------|
|     | Area            | Tonnes     | TREO  | TREO-CeO <sub>2</sub> | Tonnes     | TREO     | TREO-CeO <sub>2</sub> | Tonnes     | TREO     | TREO-CeO <sub>2</sub> |
|     | Area            | (millions) | (ppm) | (ppm)                 | (millions) | (ppm)    | (ppm)                 | (millions) | (ppm)    | (ppm)                 |
|     | Α               |            |       |                       | 13         | 580      | 390                   | 13         | 580      | 390                   |
|     | В               |            |       |                       | 26         | 410      | 290                   | 26         | 410      | 290                   |
|     | С               | 31         | 580   | 400                   | 3          | 490      | 350                   | 35         | 570      | 400                   |
|     | D               |            |       |                       | 6          | 560      | 400                   | 6          | 560      | 400                   |
|     | Е               |            |       |                       | 18         | 430      | 280                   | 18         | 430      | 280                   |
|     | Central Zone    | 151        | 780   | 540                   | 12         | 670      | 460                   | 163        | 770      | 530                   |
| Cei | ntral Zone East | 59         | 750   | 490                   | 12         | 650      | 430                   | 72         | 730      | 480                   |
|     | F               | 18         | 630   | 420                   | 7          | 590      | 400                   | 25         | 620      | 410                   |
|     | G               | 9          | 750   | 500                   | 5          | 710      | 450                   | 14         | 730      | 480                   |
|     | Н               | 6          | 800   | 550                   | 7          | 680      | 480                   | 13         | 740      | 510                   |
|     | I               | 129        | 540   | 350                   | 19         | 530      | 350                   | 148        | 540      | 350                   |
| To  | otal Resource   | 404        | 670   | 450                   | 127        | 540      | 360                   | 532        | 640      | 430                   |

Rounding has been applied to 1Mt and 10ppm which may influence averaging calculations.

The distribution of resource tonnes above cut-off grade is dominated by the combined higher grade Makuutu Central and Makuutu Central East Zones. These areas were <u>not</u> joined in the previous MRE (3<sup>rd</sup> March 2021), however following the Phase 4 drilling they now provide a continuous resource area over 5.5km long and 3km wide for a combined 234 million tonnes or 44% of the total resource and 52% of the total Indicated Resource above cut-off.

The next significant contiguous resource area is Area I which has been drilled to a 200-metre spaced drill pattern and now is estimated to contain 148 million tonnes above cut-off.

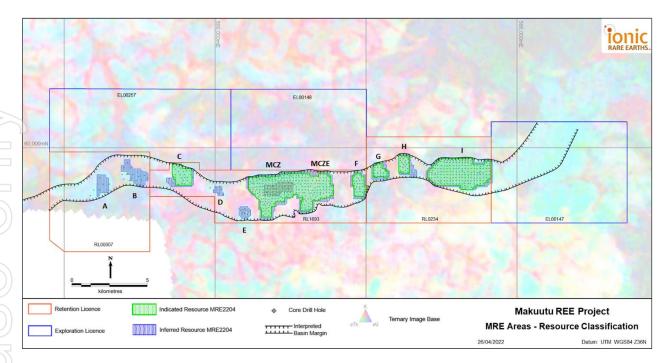



Figure 2: Mineral Resource Estimate (MRE) areas by classification. Green shading on Indicated resource areas and blue on Inferred resource areas.

# **Grade Tonnage Relationship**

Grade tonnage curve analysis of the resource shows the robustness of grade continuity in the Indicated resources with a gradual reduction in tonnes and grade with increasing cut-off.

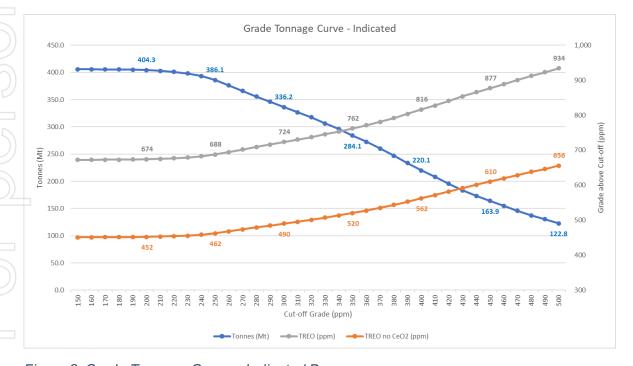



Figure 3: Grade Tonnage Curve – Indicated Resource

The Inferred resource displays a steeper relationship indicating the lower grade and marginal location of these resource areas.

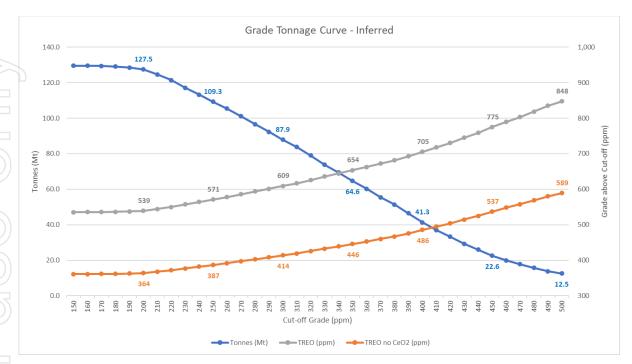



Figure 4: Grade Tonnage Curve - Inferred Resource

# **Summary of Material Information Used to Estimate the Mineral Resource**

The following is a summary of material information used to estimate the Mineral Resource, as required by Listing Rule 5.8.1 and JORC 2012 Reporting Guidelines. The MRE was prepared by independent specialist resource and mining consulting group, Cube Consulting Pty Ltd ("Cube").

#### **Mineral Tenement and Land Tenure Status**

The Makuutu Rare Earths Project is in the Republic of Uganda. The Project includes six (6) mineral tenements covering approximately 298 km², comprising of three (3) granted Retention Licences (RL00007, RL1693 and RL00234) and three (3) Exploration Licence (EL00147, EL00148 and EL00257). All licences are in good standing with no known impediments. Figure 1 shows the licence areas and Table 3 lists the details of each licence.

Table 3: Makutu Rare Earths Project Tenement Details.

|    | Licence ID | Licence Type | Application Date | Granted Date | Expiry / Renewal Date | Area (km²) |
|----|------------|--------------|------------------|--------------|-----------------------|------------|
|    | RL00007    | Retention    | 27/03/2019       | 27/11/2019   | 27/11/2022            | 43.38      |
| // | RL 1693    | Retention    | 11/07/2017       | 02/11/2017   | 01/11/2022            | 43.78      |
|    | RL00234    | Retention    | 26/06/2021       | 06/07/2021   | 05/07/2024            | 47.03      |
|    | EL00257    | Exploration  | 15/07/2021       | 21/10/2021   | 20/10/2024            | 55.51      |
|    | EL00147    | Exploration  | 19/10/2020       | 28/12/2020   | 27/12/2023            | 60.30      |
| )  | EL00148    | Exploration  | 21/10/2020       | 28/12/2020   | 27/12/2023            | 48.15      |

The Makuutu Rare Earths Project is 100% owned by Rwenzori Rare Metals Limited (RRM), a Ugandan registered company. IonicRE currently has earned a 51% shareholding in RRM and may increase its shareholding to 60% by meeting further commitments as follows:

- 1. IonicRE to fund to completion of a Bankable Feasibility Study (BFS) to earn an additional 9% interest for a cumulative 60% interest in RRM; and
- 2. A Milestone payment, payable in cash or IonicRE shares at the election of the Vendor, of US\$375,000 on conversion of Retention Licence 1693 to a mining licence.

At any time should IonicRE not continue to invest in the Project and project development ceases for at least two months RRM has the right to return the capital sunk by IonicRE and reclaim all interest earnt by IonicRE.

# Geology

The Makuutu deposit is confirmed to be an ionic adsorption rare earth element (REE) clay-type deposits like those in south China, Myanmar, Madagascar, Chile and Brazil.

The mineralisation is contained within the tropical lateritic weathering profile of a basin filled with sedimentary rocks including shales, mudstones and sandstones potentially derived from the surrounding granitic and mafic rocks. These sediments then form the protolith that was subjected to prolonged tropical weathering.

The weathering developed a lateritic regolith with a surface indurated hardcap, followed downward by clay rich zones that grade down through saprolite and saprock to unweathered sediments (Figure 5). The thickness of the regolith is between 10 and 20 metres from surface.

The REE mineralisation is concentrated in the weathered profile where it has dissolved from its primary mineral form, such as monazite and xenotime, then ionically bonded (adsorbed) or colloidally bonded on to fine particles of aluminosilicate clays (e.g. kaolinite, illite, smectite). The adsorbed and colloidal REE is the target for extraction and production of REO at Makuutu.

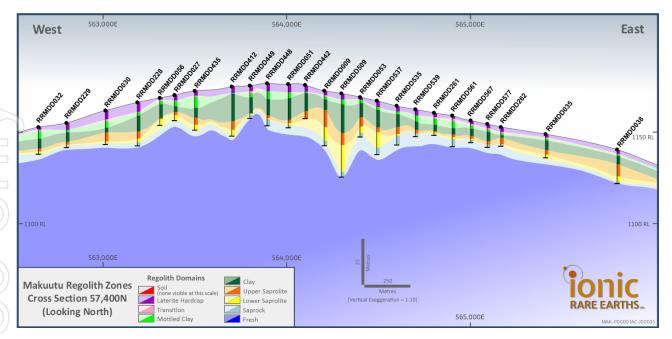



Figure 5: Makuutu Central Zone cross section 57,400N (Looking North) Regolith Zonation (10x vertical exaggeration)

# **Drilling Techniques and Hole Spacing**

Drilling completed at Makuutu and used to support the MRE includes 711 diamond core (DDH) holes for a total of 12,935 m (average depth is 18.2 m). All diamond holes are drilled from surface and oriented vertically. Drilling used a HQ triple tube size (~61.1 mm diameter) with the triple tube techniques used to maximise core recovery. Drill core was collected from a core barrel and placed in appropriately marked core trays. Down hole core run depths were measured and marked with core blocks. Core was measured for core loss and core photography and geological logging completed.

## Sampling

Sample lengths were determined by geological boundaries with a maximum sample length of 1 metre applied in clay zones and up to 2 metres in laterite zones where core recovery was occasionally low. Where the core contained continuous lengths of soft clay a carving knife was used to cut the core. When the core was too hard to knife cut it was cut using an electric core saw. Using either method, core was initial cut in half then one half was further cut in half to give quarter core. Quarter core was submitted to ALS Perth laboratory for chemical analysis using industry standard sample preparation and analytical techniques. Half core was collected for metallurgical test work.

Certified reference materials ("CRM"), analytical blanks, and field duplicates were used as part of the QAQC procedures and were each inserted at a rate of 1:25 samples. Alternate method analysis has been conducted on a selection of sample pulps using Laser Ablation MS technique at Bureau Veritas Minerals laboratory in Perth WA.

# Sample Analysis

All DDH samples were dispatched by air freight direct to ALS Perth laboratory, Australia. Sample preparation included whole sample crushing to 70% less than 2mm, Boyd rotary slitting to generate a 750g sub-sample, and pulverising to achieve better than 85% passing 75 microns. Analysis for REE suite was via Lithium Borate Fusion ICP-MS (ALS code ME-MS81), with elements analysed at ppm levels. This method is considered a total analysis.

## **Estimation Methodology**

The geological interpretation utilised lithological logging data, and assay data to guide and control the Mineral Resource estimation. Leapfrog™ implicit modelling software was utilised to generate three-dimensional wireframes of the applicable regolith units. Estimation domains were based on grouping of the regolith domains into six zones as defined by regolith rheology, and by comparison of regolith statistics:

- Domain 1,2,3 Cover zone (Soil, Hardcap and Transition regolith zones)
- Domain 4 Mottled zone (Mottled regolith zone)
- Domain 5 Clay zone (Clay regolith zone)
- Domain 6 Upper Saprolite zone
- Domain 7 Lower Saprolite zone
- Domain 8,9 Basement zone (Saprock and Fresh Rock regolith zones)

Drill hole sample data was flagged using domain codes generated from three-dimensional mineralisation domains. Sample data was composited to one-metre downhole lengths using a best fit-method. No residuals were generated. Statistical analysis was carried out on data from all estimated domains, with hard boundary techniques employed within each estimation domain.

Analysis of the composite data indicated the presence of outlier values indicating grade capping was required for Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, U, Y and Yb. Capped values were generally selected above the 99th percentile.

A total of 15 REE grade attributes (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), the associated element Sc, and 2 deleterious elements (U, and Th) were estimated. Final estimated values are converted to stoichiometric oxide values by calculation using published ratios to support reporting of rare earth oxides (REO). The grade estimation process was completed using Maptek Vulcan software using Ordinary Kriging (OK) together with dynamic anisotropy to guide the grade interpolation parallel to the regolith boundaries. For estimation domains with insufficient sample data a variogram model from a comparable domain was assigned.

Interpolation parameters were derived using standard exploratory data analysis techniques of statistical and continuity analysis. Appropriate interpolation strategies were developed on a domain basis using kriging neighbourhood analysis ("KNA") with a minimum number of 8 composites and a maximum number of 20 composites, with an octant search applied with a restriction on the number of composites per octant set to five. Blocks were estimated in a two-pass strategy with first pass maximum search distances of 320 and 3,350 metres depending on estimation variable and domain. The second pass relaxed the minimum samples to four and removed the octant restriction. A cross

section looking north through the MCZ and MCZE with estimated TREO block grades is presented in Figure 6.

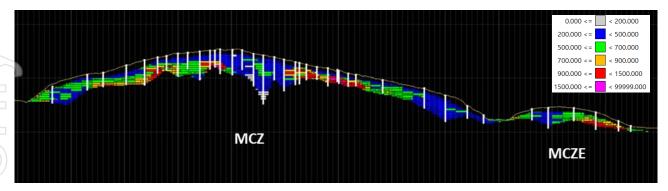



Figure 6: Makuutu Rare Earths Project – Cross section 57,400N (looking north) with TREO block grades (10x vertical exaggeration)

The model has a block size of 100 m (X) by 100 m (Y) by 2 m (Z) with sub-celling of 25 m (X) by 25 m (Y) by 1m (Z). Within the Central Main area drilling has been completed at an average of 100 m (X) by 100 m (Y), with the parent cells in this area reduced to 50 m (X) by 50 m (Y) by 2 m (Z) with sub-celling of 25 m (X) by 25 m (Y) by 1m (Z). Grades were estimated into the parent cells.

The block model was validated using a combination of visual and statistical techniques including global statistics comparisons, correlation coefficients comparisons, and trend plots.

#### **Resource Classification**

A range of criteria was considered by Cube when addressing the suitability of the classification boundaries. These criteria include:

- · Geological continuity and volume;
- Drill spacing and drill data quality;
- Modelling technique; and
- Estimation properties, including search strategy, number of informing composites, average distance of composites from blocks and kriging quality parameters.

Blocks have been classified in both the Indicated (76%) and Inferred (24%) categories, primarily based on drill data spacing in combination with other model estimate quality parameters.

The Indicated Resource is reported from all prospect areas except Areas A, B, D, and E which remain Inferred Resources based on the broad 400m x 400m drill spacing (Figure 7).

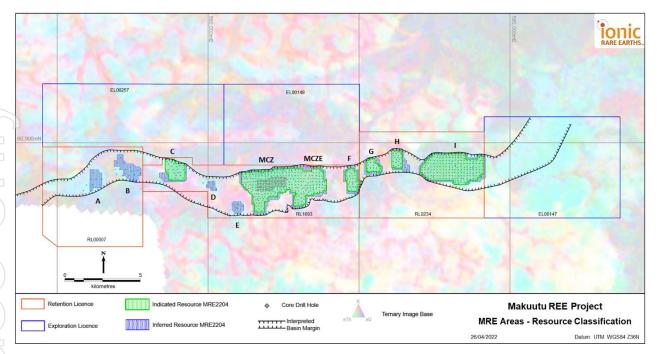



Figure 7: Makuutu Rare Earths Project – Indicated Mineral Resource Limits – Makuutu Central Zone

#### **Cut-off Grade**

The Mineral Resource has been reported above a 200 ppm TREO minus CeO<sub>2</sub> cut-off. Selection of the cut-off has considered metallurgical recoveries and distribution of recovered elements. Based on these results a consensus basket price for the predicted contained REO product has been determined, and together with other cost inputs, an indicative marginal cut-off grade has been defined. The applied cut-off has been reviewed against that reported from peer projects with similar mineralisation styles and proposed processing options and is considered comparable.

Reporting of Mineral Resources have been assessed against a resource limiting optimisation shell using appropriate cost, metallurgical recovery, and price assumptions. Material within the optimised pit shell has, in the opinion of the Competent Person, met the conditions for reporting of a Mineral Resource with reasonable prospects of economic extraction.

#### Mining and Metallurgy

Development of this Mineral Resource assumes mining using standard equipment and methods. The assumed mining method is conventional truck and shovel, open pit mining at an appropriate bench height.

Ongoing metallurgical test work on mineralisation at the Project indicate metallurgical recoveries of up to 75% TREE-Ce (Total Rare Earth Element minus Cerium) were achieved using simple extraction techniques. These results are considered adequate to achieve reasonable expectations of economic metallurgical processing of the project mineralisation.

Additionally metallurgical test work has been successfully completed on heap leach columns up to 3-metres, with a 5-metre column presently underway. A broad scale heap leach variability program

is due to commence in Q2 2022 which will confirm the broad scale metallurgical response across the 26 kilometres of resource area to be tested.

# **Current Makuutu Rare Earths Project Work Program**

The updated MRE is now being used to complete mine planning activities which will feed into the Makuutu feasibility study, which is due to be completed later in 2022, and submitted to the Ugandan Government as part of the mining licence application by the end of October 2022.

The material step change in Indicated resource at Makuutu will now support a significantly faster ramp up and potential increase in annual throughput and production quantities to be adopted in the feasibility study.

# **Exploration Targets at Makuutu**

Further to this material increase in the MRE at Makuutu, the previous Exploration Targets announced at Makuutu (3 March 2021) are now being revised to incorporate new data also including the very successful Phase 3 scout drilling program reported to the ASX in July last year<sup>2,3</sup>.

Additionally, a new exploration program is being prepared to evaluate potential extension of REE bearing clays across the larger 298 km<sup>2</sup> tenement area which contains a 37-km long IAC mineralisation system, including the new tenement to the northwest, EL00257.

#### **Addendums**

Appendix 1: Makuutu Rare Earths Project June 2020 Mineral Resource Estimate Tabulations

Appendix 2: Makuutu Rare Earths Project RRMDD Diamond Core Hole Details

JORC Code, 2012 Edition – Table 1 Report.

Authorised for release by the Board.

For enquiries, contact: Tim Harrison

**Managing Director** 

+61 8 9481 2555

<sup>&</sup>lt;sup>2</sup> ASX announcement 14/07/2021 – 'PHASE 3 DRILLING RESULTS CONFIRM MAJOR EXTENSION POTENTIAL AT MAKUUTU'
<sup>3</sup> ASX announcement 20/07/2021 – 'PHASE 3 DRILLING RESULTS INDICATE POTENTIAL EXTENSION TO NORTHWEST AT MAKUUTU'

# **About Makuutu Rare Earths Project**

The Makuutu Rare Earths Project is an ionic adsorption clay ("IAC") hosted rare earth element ("REE") deposit located 120 km east of Kampala in Uganda and is well serviced by existing high quality infrastructure including roads, rail, power infrastructure and cell communications. The installed infrastructure is illustrated in Figure 8.

The deposit stretches 37 km in length and has demonstrated potential for a long life, low-cost capital source of critical and heavy rare earths. These IAC deposits are prevalent in southern China which have been the source of the world's lowest cost magnet and heavy REE production, however these deposits are gradually being exhausted and Makuutu represents one of only a handful of such deposits outside of southern China.

The Makuutu deposit is shallow, with less than 3 m of cover over a 9 m average thickness clay and saprolite zone which results in low-cost bulk mining methods with low strip ratio. A maximum thickness of 28.5 m has been identified at Makuutu. Processing is via simple acidified salt desorption heap leaching, breaking the chemical ionic bond which washes the rare earths (in a chemical form) from the ore into a pregnant leach solution ("PLS"). The PLS is concentrated up using membrane technology, from which the rare earths are precipitated as a mixed rare earth carbonate product; a product which attracts both a higher payability and achieves a high basket price due to the dominant high value magnet and heavy rare earths which make up over 70% of the product basket.

The Project has the potential of generating a high margin product with an operation life exceeding 27 years. The Project is also prospective for a low-cost Scandium co-product.

# **Existing Infrastructure**

One of the Makuutu Rare Earths Project's competitive advantages is its proximity to existing infrastructure. The Makuutu site is approximately 10km from Highway 109 which is a sealed bitumen road connecting to Kampala, to Kenya and on to the Port of Mombasa. All weather access roads connecting the site to the adjacent sealed bitumen highway are already existing. A rail line lies within 10 kilometres north of the Makuutu site near the town of Iganga. There are four hydroelectric power plants located within 65 km of the project area, with total installed generating capacity of approximately 810 MW, providing an abundant supply of cheap power to the Project.

Water will be sourced at the project by harvesting water from the Makuutu site, given the Project location in a positive rainfall environment, and a net positive process water balance will require membrane processes to be used to process site discharge water for reagent recovery. Excess water management will be a key focus of the Project the ensure environmental standards are met and reagent consumption is minimised.

A workforce of semi-skilled and artisanal workers is available in nearby towns and population centres. The closest major population centre is Iganga, which has a population of 50,000. The town of Mayuge is approximately 10 km from the Project site and the intent is to source local operations staff from the immediate districts and train staff accordingly. The operation is to be staffed by a residential workforce. No fly in – fly out is envisaged, and the number of expatriate staff is intended to be low, and to be phased out over time.

Industrial facilities are available in the city of Jinja, approximately 40 km from the Project area. Additional industrial facilities are available on the outskirts of Kampala.



Figure 8: Makuutu Rare Earths Project Location with major existing infrastructure

#### **Competent Person Statements**

The information in this report that relates to Mineral Resources is based on information compiled by Mr Daniel Saunders, a Competent Person who is a Fellow of The Australasian Institute of Mining and Metallurgy. Mr Saunders is a full-time employee of Cube Consulting Pty Ltd, acting as independent consultants to lonic Rare Earths Limited. Mr Saunders has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Saunders consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this Report that relates to exploration results including drilling, sampling, assay and bulk density data applied to the mineral resource estimate for the Makuutu Project is based on information compiled by Mr. Geoff Chapman, who is a Fellow of the Australian Institute of Mining and Metallurgy (AuslMM). Mr. Chapman is a Director of geological consultancy GJ Exploration Pty Ltd that is engaged by to lonic Rare Earths Limited. Mr. Chapman has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code).

Mr. Chapman consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

#### **Forward Looking Statements**

This announcement has been prepared by lonic Rare Earths Limited and may include forward-looking statements. Forward-looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of lonic Rare Earths Limited. Actual values, results or events may be materially different to those expressed or implied in this document. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this document speak only at the date of issue of this document. Subject to any continuing obligations under applicable law and the ASX Listing Rules, lonic Rare Earths Limited does not undertake any obligation to update or revise any information or any of the forward-looking statements in this document or any changes in events, conditions or circumstances on which any such forward looking statement is based.

#### Appendix 1: Makuutu Rare Earths Project April 2022 Mineral Resource Estimate Tabulations

Table 4: Makuutu Rare Earth Resource Tabulation at 200ppm TREO- CeO₂ Cut-off Grade

| Resource<br>Classification | Tonnes<br>(millions) | La₂O₃<br>(ppm) | CeO <sub>2</sub> (ppm) | Pr <sub>6</sub> O <sub>11</sub><br>(ppm) | Nd₂O₃<br>(ppm) | Sm <sub>2</sub> O <sub>3</sub> (ppm) | Eu₂O₃<br>(ppm) | Gd₂O₃<br>(ppm) | Tb₄O <sub>7</sub><br>(ppm) | Dy <sub>2</sub> O <sub>3</sub> (ppm) | Ho <sub>2</sub> O <sub>3</sub> (ppm) | Er <sub>2</sub> O <sub>3</sub> (ppm) | Tm <sub>2</sub> O <sub>3</sub> (ppm) | Yb₂O₃<br>(ppm) | Lu₂O₃<br>(ppm) | Y₂O₃<br>(ppm) |
|----------------------------|----------------------|----------------|------------------------|------------------------------------------|----------------|--------------------------------------|----------------|----------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------|----------------|---------------|
| Indicated                  | 404                  | 130            | 220                    | 30                                       | 110            | 20                                   | 4              | 20             | 3                          | 10                                   | 3                                    | 10                                   | 1                                    | 10             | 1              | 100           |
| Inferred                   | 127                  | 110            | 180                    | 30                                       | 90             | 20                                   | 3              | 10             | 2                          | 10                                   | 2                                    | 10                                   | 1                                    | 10             | 1              | 80            |
| Total                      | 532                  | 130            | 210                    | 30                                       | 110            | 20                                   | 4              | 20             | 2                          | 10                                   | 3                                    | 10                                   | 1                                    | 10             | 1              | 90            |

Notes: Tonnes are dry tonnes rounded to the nearest 1Mt.

All material REO grades are rounded to the nearest 10 ppm except Eu<sub>2</sub>O<sub>3</sub>, Tb<sub>4</sub>O<sub>7</sub>, Ho<sub>2</sub>O<sub>3</sub>, Tm<sub>2</sub>O<sub>3</sub>, Lu<sub>2</sub>O<sub>3</sub> which are immaterial to overall resource grade.

Table 5: Makuutu Rare Earth Project Resource Tabulation of REO Reporting Groups at 200ppm TREO- CeO₂ Cut-off Grade

| Resource       | Tonnes     | TREO  | TREO- CeO₂ | CREO  | HREO  | LREO  | NdPr  | Sc₂O₃ | U₃O <sub>8</sub> | ThO₂  |
|----------------|------------|-------|------------|-------|-------|-------|-------|-------|------------------|-------|
| Classification | (millions) | (ppm) | (ppm)      | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm)            | (ppm) |
| Indicated      | 404        | 670   | 450        | 230   | 170   | 500   | 150   | 30    | 10               | 30    |
| Inferred       | 127        | 540   | 360        | 180   | 140   | 400   | 120   | 30    | 10               | 30    |
| Total          | 532        | 640   | 430        | 220   | 160   | 480   | 140   | 30    | 10               | 30    |

Notes: All ppm rounded from original estimate to the nearest 10 ppm which may lead to differences in averages from Table 4

Y<sub>2</sub>O<sub>3</sub> is included in the TREO, HREO and CREO calculation.

TREO (Total Rare Earth Oxide) =  $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Yb_2O_3 + Yb_2O_3 + Ua_2O_3$ 

CREO<sup>4</sup> (Critical Rare Earth Oxide) =  $Nd_2O_3 + Eu_2O_3 + Tb_4O_7 + Dy_2O_3 + Y_2O_3$ 

HREO (Heavy Rare Earth Oxide) =  $Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3$ , +  $Y_2O_3 + Lu_2O_3 + U_2O_3 + U$ 

LREO (Light Rare Earth Oxide) =  $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3$ 

 $NdPr = Nd_2O_3 + Pr_6O_{11}$ 

 $U_3O_8$  and  $ThO_2$  are deleterious elements being reported in accordance with JORC (2012) Guidelines.

<sup>&</sup>lt;sup>4</sup> U.S. Department of Energy, Critical Materials Strategy, December 2011

Appendix 2: Makuutu Rare Earths Project RRMDD Diamond Core Hole Details (Datum UTM WGS84 Zone 36N)

| Drill Hole ID | UTM East | UTM North | Elevation  | Drill | Hole Length | Azimuth | Inclination |
|---------------|----------|-----------|------------|-------|-------------|---------|-------------|
|               | (m.)     | (m.)      | (m.a.s.l.) | Туре  | EOH (m.)    |         |             |
| RRMDD001      | 564447   | 57983     | 1158       | HQ DD | 21.60       | 0       | -90         |
| RRMDD002      | 564602   | 57807     | 1163       | HQ DD | 15.40       | 0       | -90         |
| RRMDD003      | 564894   | 57630     | 1161       | HQ DD | 15.60       | 0       | -90         |
| RRMDD004      | 565209   | 58002     | 1150       | HQ DD | 15.60       | 0       | -90         |
| RRMDD005      | 564617   | 57016     | 1154       | HQ DD | 21.40       | 0       | -90         |
| RRMDD006      | 564635   | 57437     | 1164       | HQ DD | 20.10       | 0       | -90         |
| RRMDD007      | 564992   | 57437     | 1157       | HQ DD | 11.60       | 0       | -90         |
| RRMDD008      | 565014   | 57028     | 1144       | HQ DD | 13.60       | 0       | -90         |
| RRMDD009      | 564207   | 57405     | 1172       | HQ DD | 30.10       | 0       | -90         |
| RRMDD010      | 564210   | 57775     | 1164       | HQ DD | 14.50       | 0       | -90         |
| RRMDD011      | 563824   | 57766     | 1164       | HQ DD | 29.70       | 0       | -90         |
| RRMDD012      | 563401   | 57788     | 1169       | HQ DD | 19.40       | 0       | -90         |
| RRMDD013      | 563848   | 57440     | 1171       | HQ DD | 16.10       | 0       | -90         |
| RRMDD014      | 563804   | 57003     | 1170       | HQ DD | 14.10       | 0       | -90         |
| RRMDD015      | 564009   | 56616     | 1154       | HQ DD | 14.20       | 0       | -90         |
| RRMDD016      | 564259   | 56999     | 1162       | HQ DD | 21.69       | 0       | -90         |
| RRMDD017      | 563789   | 56419     | 1152       | HQ DD | 20.00       | 0       | -90         |
| RRMDD018      | 563601   | 56553     | 1159       | HQ DD | 13.80       | 0       | -90         |
| RRMDD019      | 563639   | 56181     | 1153       | HQ DD | 14.30       | 0       | -90         |
| RRMDD020      | 563602   | 55502     | 1163       | HQ DD | 20.10       | 0       | -90         |
| RRMDD021      | 563596   | 55789     | 1153       | HQ DD | 18.10       | 0       | -90         |
| RRMDD022      | 563217   | 55785     | 1158       | HQ DD | 17.60       | 0       | -90         |
| RRMDD023      | 563250   | 56602     | 1155       | HQ DD | 23.60       | 0       | -90         |
| RRMDD024      | 563201   | 56196     | 1155       | HQ DD | 15.00       | 0       | -90         |
| RRMDD025      | 563216   | 55508     | 1163       | HQ DD | 11.60       | 0       | -90         |
| RRMDD026      | 563422   | 57037     | 1164       | HQ DD | 16.10       | 0       | -90         |
| RRMDD027      | 563394   | 57400     | 1170       | HQ DD | 14.10       | 0       | -90         |
| RRMDD028      | 562995   | 57874     | 1163       | HQ DD | 17.90       | 0       | -90         |
| RRMDD029      | 562826   | 57635     | 1159       | HQ DD | 15.00       | 0       | -90         |
| RRMDD030      | 563017   | 57416     | 1162       | HQ DD | 18.50       | 0       | -90         |
| RRMDD031      | 562961   | 57040     | 1154       | HQ DD | 11.60       | 0       | -90         |
| RRMDD032      | 562651   | 57374     | 1152       | HQ DD | 14.50       | 0       | -90         |
| RRMDD033      | 564585   | 58149     | 1154       | HQ DD | 17.00       | 0       | -90         |
| RRMDD034      | 565002   | 57796     | 1158       | HQ DD | 12.50       | 0       | -90         |
| RRMDD035      | 565415   | 57396     | 1148       | HQ DD | 12.50       | 0       | -90         |
| RRMDD036      | 565397   | 57804     | 1154       | HQ DD | 15.00       | 0       | -90         |
| RRMDD037      | 565416   | 57008     | 1136       | HQ DD | 8.30        | 0       | -90         |
| RRMDD038      | 565804   | 57430     | 1141       | HQ DD | 19.00       | 0       | -90         |
| RRMDD039      | 566180   | 57799     | 1132       | HQ DD | 9.50        | 0       | -90         |
| RRMDD040      | 566007   | 58035     | 1136       | HQ DD | 16.50       | 0       | -90         |
| RRMDD041      | 565799   | 57806     | 1149       | HQ DD | 13.20       | 0       | -90         |
| RRMDD042      | 572635   | 58755     | 1106       | HQ DD | 15.40       | 0       | -90         |
| RRMDD043      | 574614   | 58303     | 1119       | HQ DD | 15.60       | 0       | -90         |
| RRMDD044      | 576391   | 58482     | 1142       | HQ DD | 15.60       | 0       | -90         |
| RRMDD045      | 577560   | 58312     | 1143       | HQ DD | 21.40       | 0       | -90         |
| RRMDD046      | 570971   | 58486     | 1107       | HQ DD | 20.10       | 0       | -90         |
| RRMDD047      | 563803   | 57189     | 1174       | HQ DD | 27.00       | 0       | -90         |
| RRMDD048      | 563605   | 57004     | 1168       | HQ DD | 24.00       | 0       | -90         |
| RRMDD049      | 563822   | 56802     | 1164       | HQ DD | 18.50       | 0       | -90         |
| RRMDD050      | 563994   | 56977     | 1169       | HQ DD | 19.00       | 0       | -90         |
| RRMDD051      | 564010   | 57409     | 1175       | HQ DD | 24.00       | 0       | -90         |
| RRMDD052      | 564210   | 57605     | 1169       | HQ DD | 19.00       | 0       | -90         |
| RRMDD053      | 564401   | 57397     | 1169       | HQ DD | 21.70       | 0       | -90         |

| RRMDD054 | 564194 | 57215 | 1173 | HQ DD | 28.50 | 0 | -90 |
|----------|--------|-------|------|-------|-------|---|-----|
| RRMDD055 | 564944 | 58121 | 1149 | HQ DD | 17.20 | 0 | -90 |
| RRMDD056 | 565593 | 58051 | 1150 | HQ DD | 24.00 | 0 | -90 |
| RRMDD057 | 567410 | 57394 | 1119 | HQ DD | 16.50 | 0 | -90 |
| RRMDD058 | 563914 | 57209 | 1176 | HQ DD | 22.70 | 0 | -90 |
| RRMDD059 | 563994 | 57214 | 1176 | HQ DD | 19.50 | 0 | -90 |
| RRMDD060 | 564001 | 57098 | 1172 | HQ DD | 28.50 | 0 | -90 |
| RRMDD061 | 563902 | 57099 | 1173 | HQ DD | 23.50 | 0 | -90 |
| RRMDD062 | 563814 | 57098 | 1173 | HQ DD | 26.70 | 0 | -90 |
| RRMDD063 | 563701 | 57107 | 1171 | HQ DD | 27.00 | 0 | -90 |
| RRMDD064 | 563704 | 57005 | 1170 | HQ DD | 18.60 | 0 | -90 |
| RRMDD065 | 563802 | 56896 | 1166 | HQ DD | 15.00 | 0 | -90 |
| RRMDD066 | 563702 | 56896 | 1166 | HQ DD | 14.00 | 0 | -90 |
| RRMDD067 | 563901 | 56994 | 1170 | HQ DD | 16.20 | 0 | -90 |
| RRMDD068 | 563895 | 56901 | 1166 | HQ DD | 15.00 | 0 | -90 |
| RRMDD069 | 562582 | 57733 | 1153 | HQ DD | 15.00 | 0 | -90 |
| RRMDD070 | 564154 | 56479 | 1146 | HQ DD | 12.00 | 0 | -90 |
| RRMDD070 | 564388 | 56731 | 1154 | HQ DD | 25.50 | 0 | -90 |
| RRMDD071 | 564550 | 56449 | 1143 | HQ DD | 21.00 | 0 | -90 |
| RRMDD072 | 564778 | 56781 | 1139 | HQ DD | 16.50 | 0 | -90 |
| RRMDD074 | 565591 | 56807 | 1120 | HQ DD | 10.50 | 0 | -90 |
| RRMDD075 | 565849 | 57007 | 1126 | HQ DD | 10.10 | 0 | -90 |
| RRMDD076 | 566206 | 57410 | 1125 | HQ DD | 12.00 | 0 | -90 |
| RRMDD077 | 566478 | 57809 | 1115 | HQ DD | 8.30  | 0 | -90 |
| RRMDD078 | 567052 | 56703 | 1124 | HQ DD | 24.00 | 0 | -90 |
| RRMDD079 | 567394 | 57030 | 1121 | HQ DD | 12.00 | 0 | -90 |
| RRMDD080 | 567003 | 57017 | 1127 | HQ DD | 13.70 | 0 | -90 |
| RRMDD081 | 566681 | 56711 | 1128 | HQ DD | 12.50 | 0 | -90 |
| RRMDD082 | 567621 | 57397 | 1111 | HQ DD | 9.80  | 0 | -90 |
| RRMDD083 | 567398 | 57779 | 1115 | HQ DD | 14.00 | 0 | -90 |
| RRMDD084 | 566254 | 56957 | 1118 | HQ DD | 6.00  | 0 | -90 |
| RRMDD085 | 566929 | 57805 | 1117 | HQ DD | 9.20  | 0 | -90 |
| RRMDD086 | 566349 | 56724 | 1129 | HQ DD | 12.00 | 0 | -90 |
| RRMDD087 | 566999 | 58202 | 1114 | HQ DD | 11.60 | 0 | -90 |
| RRMDD088 | 567399 | 58197 | 1122 | HQ DD | 25.50 | 0 | -90 |
| RRMDD089 | 566231 | 56096 | 1137 | HQ DD | 12.50 | 0 | -90 |
| RRMDD090 | 566013 | 56004 | 1143 | HQ DD | 29.90 | 0 | -90 |
| RRMDD091 | 566965 | 57424 | 1123 | HQ DD | 19.50 | 0 | -90 |
| RRMDD092 | 566603 | 56994 | 1127 | HQ DD | 13.30 | 0 | -90 |
| RRMDD093 | 566649 | 57344 | 1118 | HQ DD | 9.00  | 0 | -90 |
| RRMDD094 | 566052 | 56466 | 1134 | HQ DD | 27.00 | 0 | -90 |
| RRMDD095 | 565967 | 56205 | 1140 | HQ DD | 13.40 | 0 | -90 |
| RRMDD096 | 566407 | 56431 | 1129 | HQ DD | 26.50 | 0 | -90 |
| RRMDD097 | 569240 | 58054 | 1106 | HQ DD | 16.20 | 0 | -90 |
| RRMDD098 | 569542 | 57929 | 1108 | HQ DD | 13.20 | 0 | -90 |
| RRMDD099 | 569255 | 57603 | 1109 | HQ DD | 10.30 | 0 | -90 |
| RRMDD100 | 569621 | 57603 | 1109 | HQ DD | 16.50 | 0 | -90 |
| RRMDD101 | 569613 | 57258 | 1115 | HQ DD | 11.00 | 0 | -90 |
| RRMDD102 | 569348 | 57253 | 1114 | HQ DD | 23.00 | 0 | -90 |
| RRMDD103 | 569791 | 56766 | 1126 | HQ DD | 15.70 | 0 | -90 |
| RRMDD104 | 569926 | 57199 | 1110 | HQ DD | 22.50 | 0 | -90 |
| RRMDD105 | 569349 | 56803 | 1123 | HQ DD | 22.00 | 0 | -90 |
| RRMDD105 | 570587 | 58116 | 1112 | HQ DD | 15.50 | 0 | -90 |
| RRMDD107 | 570621 | 58517 | 1105 | HQ DD | 10.60 | 0 | -90 |
| RRMDD107 | 570737 | 58832 | 1099 | HQ DD | 11.00 | 0 | -90 |
|          | 510131 |       |      |       |       | _ |     |
| RRMDD109 | 570940 | 58876 | 1099 | HQ DD | 10.70 | 0 | -90 |

| RRMDD111    | 571273 | 58520  | 1102 | HQ DD | 12.00 | 0   | -90 |
|-------------|--------|--------|------|-------|-------|-----|-----|
| RRMDD112    | 570988 | 58117  | 1114 | HQ DD | 21.00 | 0   | -90 |
| RRMDD113    | 571375 | 58136  | 1106 | HQ DD | 11.30 | 0   | -90 |
| RRMDD114    | 572403 | 59404  | 1104 | HQ DD | 10.40 | 0   | -90 |
| RRMDD115    | 572313 | 59134  | 1103 | HQ DD | 8.50  | 0   | -90 |
| RRMDD116    | 572296 | 58748  | 1104 | HQ DD | 6.50  | 0   | -90 |
| RRMDD117    | 572312 | 58474  | 1104 | HQ DD | 7.40  | 0   | -90 |
| RRMDD118    | 572641 | 58492  | 1108 | HQ DD | 11.20 | 0   | -90 |
| RRMDD119    | 572936 | 58774  | 1104 | HQ DD | 10.50 | 0   | -90 |
| RRMDD120    | 572635 | 59138  | 1104 | HQ DD | 16.80 | 0   | -90 |
| RRMDD121    | 573189 | 58211  | 1114 | HQ DD | 24.60 | 0   | -90 |
| RRMDD122    | 572892 | 59157  | 1100 | HQ DD | 8.30  | 0   | -90 |
| RRMDD123    | 572752 | 59361  | 1101 | HQ DD | 11.50 | 0   | -90 |
| RRMDD124    | 573032 | 58496  | 1108 | HQ DD | 7.20  | 0   | -90 |
| RRMDD125    | 574373 | 57976  | 1111 | HQ DD | 15.00 | 0   | -90 |
| RRMDD126    | 574398 | 58337  | 1115 | HQ DD | 25.10 | 0   | -90 |
| RRMDD127    | 574792 | 58029  | 1122 | HQ DD | 16.50 | 0   | -90 |
| RRMDD128    | 574483 | 58685  | 1114 | HQ DD | 16.00 | 0   | -90 |
| RRMDD129    | 575231 | 58013  | 1130 | HQ DD | 17.50 | 0   | -90 |
| RRMDD130    | 575607 | 57979  | 1136 | HQ DD | 17.30 | 0   | -90 |
| RRMDD131    | 575988 | 58009  | 1141 | HQ DD | 11.70 | 0   | -90 |
| RRMDD132    | 576376 | 58027  | 1142 | HQ DD | 8.00  | 0   | -90 |
| RRMDD133    | 576204 | 58384  | 1143 | HQ DD | 12.70 | 0   | -90 |
| RRMDD134    | 576394 | 58827  | 1140 | HQ DD | 20.00 | 0   | -90 |
| RRMDD135    | 576008 | 58806  | 1139 | HQ DD | 20.90 | 0   | -90 |
| RRMDD136    | 575781 | 58400  | 1139 | HQ DD | 12.20 | 0   | -90 |
| RRMDD137    | 575389 | 58394  | 1132 | HQ DD | 16.00 | 0   | -90 |
| RRMDD138    | 575573 | 58805  | 1132 | HQ DD | 11.00 | 0   | -90 |
| RRMDD139    | 575216 | 58785  | 1126 | HQ DD | 9.60  | 0   | -90 |
| RRMDD140    | 574780 | 58824  | 1116 | HQ DD | 13.00 | 0   | -90 |
| RRMDD141    | 575004 | 58393  | 1126 | HQ DD | 18.00 | 0   | -90 |
| RRMDD142    | 574996 | 59063  | 1115 | HQ DD | 18.00 | 0   | -90 |
| RRMDD143    | 575412 | 59127  | 1122 | HQ DD | 14.20 | 0   | -90 |
| RRMDD144    | 575798 | 59138  | 1129 | HQ DD | 18.50 | 0   | -90 |
| RRMDD145    | 576253 | 59147  | 1137 | HQ DD | 20.00 | 0   | -90 |
| RRMDD146    | 576604 | 59118  | 1138 | HQ DD | 22.50 | 0   | -90 |
| RRMDD147    | 576546 | 58345  | 1141 | HQ DD | 13.70 | 0   | -90 |
| RRMDD148    | 576799 | 58812  | 1134 | HQ DD | 18.00 | 0   | -90 |
| RRMDD149    | 576986 | 59117  | 1132 | HQ DD | 27.40 | 0   | -90 |
| RRMDD150    | 577196 | 58812  | 1133 | HQ DD | 19.00 | 0   | -90 |
| RRMDD151    | 576567 | 57619  | 1146 | HQ DD | 11.50 | 0   | -90 |
| RRMDD152    | 576825 | 58024  | 1145 | HQ DD | 12.80 | 0   | -90 |
| RRMDD153    | 576950 | 57605  | 1150 | HQ DD | 18.50 | 0   | -90 |
| RRMDD154    | 577019 | 58346  | 1141 | HQ DD | 20.70 | 0   | -90 |
| RRMDD155    | 577422 | 58341  | 1144 | HQ DD | 24.00 | 0   | -90 |
| RRMDD156    | 576214 | 57608  | 1142 | HQ DD | 17.20 | 0   | -90 |
| RRMDD157    | 577587 | 57958  | 1146 | HQ DD | 21.40 | 0   | -90 |
| RRMDD158    | 575786 | 57619  | 1133 | HQ DD | 14.50 | 0   | -90 |
| RRMDD159    | 577201 | 57960  | 1150 | HQ DD | 16.70 | 0   | -90 |
| RRMDD160    | 575405 | 57612  | 1123 | HQ DD | 14.80 | 0   | -90 |
| RRMDD161    | 577800 | 57625  | 1136 | HQ DD | 20.80 | 0   | -90 |
| RRMDD161    | 577412 | 57572  | 1146 | HQ DD | 22.50 | 0   | -90 |
| RRMDD163    | 574595 | 57785  | 1114 | HQ DD | 12.50 | 0   | -90 |
| RRMDD164    | 578145 | 57725  | 1128 | HQ DD | 19.20 | 0   | -90 |
| RRMDD165    | 577999 | 58012  | 1136 | HQ DD | 17.40 | 0   | -90 |
| RRMDD166    | 578233 | 58423  | 1130 | HQ DD | 19.20 | 0   | -90 |
| RRMDD167    | 574940 | 57714  | 1119 | HQ DD | 19.00 | 0   | -90 |
| עעו חחואועע | 374940 | 3// 14 | 1119 | חע טט | 19.00 | l u | -90 |

| RRMDD168 | 578054 | 58807 | 1129 | HQ DD | 17.30 | 0 | -90 |
|----------|--------|-------|------|-------|-------|---|-----|
| RRMDD169 | 576623 | 57329 | 1150 | HQ DD | 16.30 | 0 | -90 |
| RRMDD170 | 578219 | 59071 | 1118 | HQ DD | 12.00 | 0 | -90 |
| RRMDD171 | 577794 | 58341 | 1140 | HQ DD | 21.10 | 0 | -90 |
| RRMDD172 | 577607 | 58753 | 1135 | HQ DD | 18.00 | 0 | -90 |
| RRMDD173 | 577016 | 57371 | 1148 | HQ DD | 20.50 | 0 | -90 |
| RRMDD174 | 555545 | 57973 | 1155 | HQ DD | 19.00 | 0 | -90 |
| RRMDD175 | 555143 | 57846 | 1165 | HQ DD | 15.90 | 0 | -90 |
| RRMDD176 | 554961 | 58082 | 1164 | HQ DD | 25.20 | 0 | -90 |
| RRMDD177 | 554794 | 57802 | 1170 | HQ DD | 27.00 | 0 | -90 |
| RRMDD178 | 555076 | 57569 | 1168 | HQ DD | 23.50 | 0 | -90 |
| RRMDD179 | 554577 | 58202 | 1164 | HQ DD | 21.10 | 0 | -90 |
| RRMDD180 | 554370 | 57804 | 1167 | HQ DD | 20.10 | 0 | -90 |
| RRMDD181 | 555354 | 58143 | 1158 | HQ DD | 17.00 | 0 | -90 |
| RRMDD182 | 553975 | 57916 | 1156 | HQ DD | 15.00 | 0 | -90 |
| RRMDD183 | 554883 | 58364 | 1160 | HQ DD | 21.70 | 0 | -90 |
| RRMDD184 | 554426 | 58648 | 1155 | HQ DD | 26.90 | 0 | -90 |
| RRMDD185 | 553878 | 58216 | 1154 | HQ DD | 10.90 | 0 | -90 |
| RRMDD186 | 554002 | 58658 | 1155 | HQ DD | 15.00 | 0 | -90 |
| RRMDD187 | 554243 | 58992 | 1152 | HQ DD | 16.10 | 0 | -90 |
| RRMDD188 | 553012 | 57579 | 1155 | HQ DD | 12.50 | 0 | -90 |
| RRMDD189 | 552804 | 58008 | 1158 | HQ DD | 12.70 | 0 | -90 |
| RRMDD190 | 552394 | 57995 | 1168 | HQ DD | 18.50 | 0 | -90 |
| RRMDD191 | 552278 | 57586 | 1173 | HQ DD | 24.40 | 0 | -90 |
| RRMDD191 | 552599 | 57571 | 1169 | HQ DD | 11.30 | 0 | -90 |
| RRMDD193 | 552861 | 57205 | 1162 | HQ DD | 14.00 | 0 | -90 |
| RRMDD194 | 552362 | 57206 | 1172 | HQ DD | 16.30 | 0 | -90 |
| RRMDD195 | 551759 | 56815 | 1153 | HQ DD | 8.00  | 0 | -90 |
| RRMDD196 | 552245 | 56762 | 1162 | HQ DD | 22.00 | 0 | -90 |
| RRMDD197 | 551983 | 57192 | 1171 | HQ DD | 12.90 | 0 | -90 |
| RRMDD198 | 554173 | 58233 | 1160 | HQ DD | 12.80 | 0 | -90 |
| RRMDD199 | 557012 | 57938 | 1162 | HQ DD | 18.00 | 0 | -90 |
| RRMDD200 | 557409 | 58005 | 1165 | HQ DD | 11.20 | 0 | -90 |
| RRMDD201 | 557800 | 57979 | 1170 | HQ DD | 19.30 | 0 | -90 |
| RRMDD202 | 557223 | 57639 | 1166 | HQ DD | 12.00 | 0 | -90 |
| RRMDD203 | 557594 | 57558 | 1165 | HQ DD | 23.80 | 0 | -90 |
| RRMDD204 | 558003 | 57598 | 1164 | HQ DD | 21.80 | 0 | -90 |
| RRMDD205 | 558192 | 58025 | 1165 | HQ DD | 17.20 | 0 | -90 |
| RRMDD206 | 558539 | 58016 | 1152 | HQ DD | 17.00 | 0 | -90 |
| RRMDD207 | 557619 | 58427 | 1169 | HQ DD | 18.90 | 0 | -90 |
| RRMDD208 | 557394 | 58564 | 1165 | HQ DD | 16.70 | 0 | -90 |
| RRMDD209 | 557951 | 58407 | 1171 | HQ DD | 12.50 | 0 | -90 |
| RRMDD210 | 558378 | 58457 | 1161 | HQ DD | 10.20 | 0 | -90 |
| RRMDD211 | 558385 | 57648 | 1157 | HQ DD | 17.00 | 0 | -90 |
| RRMDD212 | 559693 | 57328 | 1151 | HQ DD | 19.00 | 0 | -90 |
| RRMDD213 | 560060 | 57372 | 1153 | HQ DD | 20.80 | 0 | -90 |
| RRMDD214 | 560432 | 57229 | 1148 | HQ DD | 18.20 | 0 | -90 |
| RRMDD215 | 560344 | 57446 | 1151 | HQ DD | 22.00 | 0 | -90 |
| RRMDD216 | 559936 | 57148 | 1150 | HQ DD | 15.40 | 0 | -90 |
| RRMDD217 | 560568 | 56867 | 1146 | HQ DD | 15.00 | 0 | -90 |
| RRMDD218 | 560277 | 56966 | 1149 | HQ DD | 20.40 | 0 | -90 |
| RRMDD219 | 562009 | 55869 | 1154 | HQ DD | 23.60 | 0 | -90 |
| RRMDD220 | 561733 | 55851 | 1152 | HQ DD | 18.90 | 0 | -90 |
| RRMDD221 | 562291 | 55761 | 1154 | HQ DD | 11.20 | 0 | -90 |
| RRMDD222 | 561997 | 55621 | 1157 | HQ DD | 20.00 | 0 | -90 |
|          |        |       |      |       | 14.60 | _ |     |
| RRMDD223 | 562803 | 57790 | 1158 | HQ DD | 14 00 | 0 | -90 |

| RRMDD225 | 563197 | 57791 | 1168 | HQ DD | 23.30 | 0 | -90 |
|----------|--------|-------|------|-------|-------|---|-----|
| RRMDD226 | 563200 | 57615 | 1168 | HQ DD | 24.20 | 0 | -90 |
| RRMDD227 | 562996 | 57620 | 1163 | HQ DD | 17.00 | 0 | -90 |
| RRMDD228 | 563186 | 57416 | 1166 | HQ DD | 24.00 | 0 | -90 |
| RRMDD229 | 562801 | 57396 | 1155 | HQ DD | 13.70 | 0 | -90 |
| RRMDD230 | 563002 | 57192 | 1159 | HQ DD | 21.00 | 0 | -90 |
| RRMDD231 | 562812 | 57213 | 1153 | HQ DD | 19.00 | 0 | -90 |
| RRMDD232 | 563203 | 57189 | 1163 | HQ DD | 17.00 | 0 | -90 |
| RRMDD233 | 563381 | 57209 | 1167 | HQ DD | 22.30 | 0 | -90 |
| RRMDD234 | 563396 | 57585 | 1170 | HQ DD | 14.30 | 0 | -90 |
| RRMDD235 | 563200 | 57000 | 1158 | HQ DD | 19.00 | 0 | -90 |
| RRMDD236 | 563602 | 57801 | 1167 | HQ DD | 14.00 | 0 | -90 |
| RRMDD237 | 563208 | 56824 | 1155 | HQ DD | 21.30 | 0 | -90 |
| RRMDD238 | 563599 | 57599 | 1172 | HQ DD | 27.40 | 0 | -90 |
| RRMDD239 | 563377 | 56812 | 1160 | HQ DD | 23.00 | 0 | -90 |
| RRMDD240 | 563395 | 56599 | 1158 | HQ DD | 12.00 | 0 | -90 |
| RRMDD241 | 564024 | 57795 | 1159 | HQ DD | 19.50 | 0 | -90 |
| RRMDD242 | 563819 | 57601 | 1172 | HQ DD | 18.80 | 0 | -90 |
| RRMDD243 | 563596 | 57198 | 1172 | HQ DD | 22.60 | 0 | -90 |
| RRMDD244 | 563186 | 56403 | 1153 | HQ DD | 14.60 | 0 | -90 |
| RRMDD245 | 563986 | 57613 | 1171 | HQ DD | 17.50 | 0 | -90 |
| RRMDD246 | 563593 | 57427 | 1173 | HQ DD | 15.60 | 0 | -90 |
| RRMDD247 | 563386 | 56428 | 1156 | HQ DD | 17.60 | 0 | -90 |
| RRMDD248 | 564368 | 57189 | 1168 | HQ DD | 18.60 | 0 | -90 |
| RRMDD249 | 563385 | 56176 | 1156 | HQ DD | 16.20 | 0 | -90 |
| RRMDD250 | 563605 | 56394 | 1156 | HQ DD | 17.00 | 0 | -90 |
| RRMDD251 | 563803 | 56603 | 1158 | HQ DD | 15.00 | 0 | -90 |
| RRMDD252 | 563606 | 56783 | 1163 | HQ DD | 11.50 | 0 | -90 |
| RRMDD253 | 564007 | 56820 | 1164 | HQ DD | 19.50 | 0 | -90 |
| RRMDD254 | 564101 | 57002 | 1168 | HQ DD | 15.50 | 0 | -90 |
| RRMDD255 | 564198 | 56808 | 1160 | HQ DD | 24.20 | 0 | -90 |
| RRMDD256 | 564598 | 57178 | 1161 | HQ DD | 23.30 | 0 | -90 |
| RRMDD257 | 564795 | 57199 | 1155 | HQ DD | 16.50 | 0 | -90 |
| RRMDD258 | 564396 | 56994 | 1161 | HQ DD | 18.60 | 0 | -90 |
| RRMDD259 | 564799 | 57001 | 1146 | HQ DD | 18.00 | 0 | -90 |
| RRMDD260 | 564977 | 57204 | 1151 | HQ DD | 19.80 | 0 | -90 |
| RRMDD261 | 564801 | 57401 | 1160 | HQ DD | 12.00 | 0 | -90 |
| RRMDD262 | 565164 | 57397 | 1153 | HQ DD | 10.60 | 0 | -90 |
| RRMDD263 | 565169 | 57195 | 1148 | HQ DD | 13.70 | 0 | -90 |
| RRMDD264 | 565132 | 57606 | 1157 | HQ DD | 17.70 | 0 | -90 |
| RRMDD265 | 564815 | 57807 | 1161 | HQ DD | 18.00 | 0 | -90 |
| RRMDD266 | 564970 | 57989 | 1154 | HQ DD | 18.00 | 0 | -90 |
| RRMDD267 | 564779 | 57983 | 1157 | HQ DD | 18.50 | 0 | -90 |
| RRMDD268 | 564818 | 58198 | 1150 | HQ DD | 18.00 | 0 | -90 |
| RRMDD269 | 564577 | 57614 | 1165 | HQ DD | 13.30 | 0 | -90 |
| RRMDD270 | 564600 | 58000 | 1158 | HQ DD | 29.50 | 0 | -90 |
| RRMDD271 | 564385 | 57821 | 1163 | HQ DD | 20.70 | 0 | -90 |
| RRMDD272 | 564374 | 57598 | 1167 | HQ DD | 18.00 | 0 | -90 |
| RRMDD273 | 565205 | 57816 | 1155 | HQ DD | 16.50 | 0 | -90 |
| RRMDD274 | 565303 | 57572 | 1154 | HQ DD | 12.00 | 0 | -90 |
| RRMDD275 | 565408 | 58015 | 1150 | HQ DD | 12.80 | 0 | -90 |
| RRMDD276 | 565507 | 57617 | 1153 | HQ DD | 15.00 | 0 | -90 |
| RRMDD277 | 565600 | 57801 | 1153 | HQ DD | 15.30 | 0 | -90 |
| RRMDD278 | 565797 | 58003 | 1147 | HQ DD | 10.50 | 0 | -90 |
| RRMDD279 | 565705 | 57575 | 1148 | HQ DD | 18.50 | 0 | -90 |
|          | 567202 | 58202 | 1120 | HQ DD | 31.30 | 0 | -90 |
| RRMDD280 | 301202 | 30202 | 1120 | טטאוו | 31.30 | U | -90 |

| RRMDD282 | 566987 | 57993 | 1114 | HQ DD | 8.40  | 0 | -90 |
|----------|--------|-------|------|-------|-------|---|-----|
| RRMDD283 | 567203 | 58002 | 1120 | HQ DD | 14.40 | 0 | -90 |
| RRMDD284 | 567394 | 57991 | 1118 | HQ DD | 11.40 | 0 | -90 |
| RRMDD285 | 567598 | 57999 | 1113 | HQ DD | 8.40  | 0 | -90 |
| RRMDD286 | 567576 | 57781 | 1109 | HQ DD | 11.40 | 0 | -90 |
| RRMDD287 | 567603 | 57601 | 1110 | HQ DD | 8.40  | 0 | -90 |
| RRMDD288 | 567385 | 57579 | 1118 | HQ DD | 14.40 | 0 | -90 |
| RRMDD289 | 567736 | 57388 | 1107 | HQ DD | 5.40  | 0 | -90 |
| RRMDD290 | 567205 | 57398 | 1123 | HQ DD | 12.40 | 0 | -90 |
| RRMDD291 | 567392 | 57204 | 1122 | HQ DD | 13.10 | 0 | -90 |
| RRMDD292 | 567192 | 57607 | 1121 | HQ DD | 19.40 | 0 | -90 |
| RRMDD293 | 567196 | 57810 | 1120 | HQ DD | 15.20 | 0 | -90 |
| RRMDD294 | 566983 | 57603 | 1121 | HQ DD | 11.40 | 0 | -90 |
| RRMDD295 | 566845 | 57604 | 1118 | HQ DD | 10.00 | 0 | -90 |
| RRMDD296 | 566753 | 57808 | 1112 | HQ DD | 4.30  | 0 | -90 |
| RRMDD297 | 566658 | 57609 | 1112 | HQ DD | 14.20 | 0 | -90 |
| RRMDD298 | 566811 | 57394 | 1121 | HQ DD | 10.40 | 0 | -90 |
| RRMDD299 | 566998 | 57198 | 1127 | HQ DD | 12.60 | 0 | -90 |
| RRMDD300 | 567206 | 57195 | 1125 | HQ DD | 13.10 | 0 | -90 |
| RRMDD301 | 567197 | 56973 | 1125 | HQ DD | 14.40 | 0 | -90 |
| RRMDD302 | 567597 | 57213 | 1117 | HQ DD | 11.40 | 0 | -90 |
| RRMDD303 | 567763 | 57171 | 1109 | HQ DD | 5.40  | 0 | -90 |
| RRMDD304 | 567403 | 56790 | 1119 | HQ DD | 9.90  | 0 | -90 |
| RRMDD305 | 567287 | 56680 | 1119 | HQ DD | 22.60 | 0 | -90 |
| RRMDD306 | 566803 | 57174 | 1126 | HQ DD | 15.00 | 0 | -90 |
| RRMDD307 | 567716 | 56856 | 1110 | HQ DD | 10.50 | 0 | -90 |
| RRMDD308 | 567609 | 56801 | 1113 | HQ DD | 9.40  | 0 | -90 |
| RRMDD309 | 567763 | 56967 | 1109 | HQ DD | 5.40  | 0 | -90 |
| RRMDD310 | 567590 | 57006 | 1116 | HQ DD | 11.00 | 0 | -90 |
| RRMDD311 | 566586 | 57188 | 1120 | HQ DD | 8.40  | 0 | -90 |
| RRMDD312 | 566454 | 57164 | 1116 | HQ DD | 5.40  | 0 | -90 |
| RRMDD313 | 567002 | 56887 | 1126 | HQ DD | 14.90 | 0 | -90 |
| RRMDD314 | 566802 | 56992 | 1128 | HQ DD | 11.00 | 0 | -90 |
| RRMDD315 | 566797 | 56795 | 1128 | HQ DD | 14.40 | 0 | -90 |
| RRMDD316 | 566524 | 56855 | 1128 | HQ DD | 13.10 | 0 | -90 |
| RRMDD317 | 566396 | 56993 | 1121 | HQ DD | 8.40  | 0 | -90 |
| RRMDD318 | 566591 | 56565 | 1127 | HQ DD | 12.00 | 0 | -90 |
| RRMDD319 | 566897 | 56573 | 1123 | HQ DD | 16.40 | 0 | -90 |
| RRMDD320 | 566397 | 56598 | 1130 | HQ DD | 17.40 | 0 | -90 |
| RRMDD321 | 566377 | 56248 | 1129 | HQ DD | 8.40  | 0 | -90 |
| RRMDD322 | 566198 | 56327 | 1135 | HQ DD | 26.40 | 0 | -90 |
| RRMDD323 | 566193 | 56601 | 1131 | HQ DD | 23.40 | 0 | -90 |
| RRMDD324 | 566391 | 55998 | 1132 | HQ DD | 11.50 | 0 | -90 |
| RRMDD325 | 566190 | 55919 | 1142 | HQ DD | 10.90 | 0 | -90 |
| RRMDD326 | 566005 | 55881 | 1145 | HQ DD | 19.40 | 0 | -90 |
| RRMDD327 | 565797 | 56005 | 1143 | HQ DD | 19.10 | 0 | -90 |
| RRMDD328 | 565806 | 56203 | 1139 | HQ DD | 19.90 | 0 | -90 |
| RRMDD329 | 565869 | 56413 | 1136 | HQ DD | 13.90 | 0 | -90 |
| RRMDD330 | 565802 | 56790 | 1122 | HQ DD | 6.40  | 0 | -90 |
| RRMDD331 | 565979 | 56590 | 1131 | HQ DD | 16.90 | 0 | -90 |
| RRMDD332 | 566005 | 56798 | 1122 | HQ DD | 4.90  | 0 | -90 |
| RRMDD333 | 565584 | 57216 | 1141 | HQ DD | 11.40 | 0 | -90 |
| RRMDD334 | 565592 | 57000 | 1131 | HQ DD | 9.40  | 0 | -90 |
| RRMDD335 | 565422 | 57204 | 1144 | HQ DD | 13.90 | 0 | -90 |
| RRMDD336 | 565804 | 57196 | 1135 | HQ DD | 7.90  | 0 | -90 |
| RRMDD337 | 565976 | 57009 | 1123 | HQ DD | 13.40 | 0 | -90 |
|          |        |       |      |       |       |   |     |

| ſ | RRMDD339 | 566001 | 57411 | 1135 | HQ DD          | 24.60 | 0 | -90        |
|---|----------|--------|-------|------|----------------|-------|---|------------|
| ŀ | RRMDD340 | 565798 | 55794 | 1147 | HQ DD          | 25.40 | 0 | -90        |
| ŀ | RRMDD341 | 566206 | 57179 | 1121 | HQ DD          | 9.40  | 0 | -90        |
| ŀ | RRMDD342 | 566360 | 57437 | 1117 | HQ DD          | 7.90  | 0 | -90        |
| ł | RRMDD343 | 566182 | 57607 | 1129 | HQ DD          | 11.40 | 0 | -90        |
| ŀ | RRMDD344 | 565996 | 57610 | 1137 | HQ DD          | 12.40 | 0 | -90        |
| 1 | RRMDD345 | 566395 | 57608 | 1119 | HQ DD          | 8.40  | 0 | -90        |
| ŀ | RRMDD346 | 565997 | 57797 | 1139 | HQ DD          | 12.00 | 0 | -90        |
| ŀ | RRMDD347 | 566199 | 57994 | 1129 | HQ DD          | 21.40 | 0 | -90        |
| ŀ | RRMDD348 | 566179 | 58199 | 1129 | HQ DD          | 18.40 | 0 | -90        |
| ł | RRMDD349 | 565803 | 58176 | 1144 | HQ DD          | 15.40 | 0 | -90        |
| ŀ | RRMDD350 | 566026 | 58200 | 1136 | HQ DD          | 13.10 | 0 | -90        |
| ŀ | RRMDD351 | 565569 | 58161 | 1147 | HQ DD          | 20.40 | 0 | -90        |
| ŀ | RRMDD352 | 566398 | 58000 | 1118 | HQ DD          | 5.60  | 0 | -90        |
| ŀ | RRMDD353 | 566561 | 58023 | 1109 | HQ DD          | 4.90  | 0 | -90        |
| ŀ | RRMDD354 | 565408 | 58166 | 1146 | HQ DD          | 20.40 | 0 | -90        |
| ŀ | RRMDD355 | 565195 | 56993 | 1138 | HQ DD          | 11.80 | 0 | -90        |
| ŀ | RRMDD356 | 565199 | 58180 | 1135 | HQ DD          | 6.40  | 0 | -90        |
| l | RRMDD356 | 565096 | 56873 | 1132 | HQ DD          | 10.90 | 0 | -90        |
| ŀ | RRMDD357 | 564890 | 56871 | 1138 | HQ DD          | 20.40 | 0 | -90        |
| ŀ | RRMDD359 | 564503 | 56657 | 1148 | HQ DD          | 15.70 | 0 | -90        |
| ļ | RRMDD359 | 564620 | 56884 | 1148 | HQ DD<br>HQ DD | 21.20 | 0 | -90<br>-90 |
| ŀ | RRMDD360 | 564352 | 56490 | 1149 | HQ DD          | 8.50  | 0 | -90        |
| ŀ |          |        |       | _    |                |       | - |            |
| ŀ | RRMDD362 | 564202 | 56628 | 1154 | HQ DD          | 26.90 | 0 | -90        |
| ŀ | RRMDD363 | 563707 | 56286 | 1153 | HQ DD          | 19.70 | 0 | -90        |
| ŀ | RRMDD364 | 563787 | 56013 | 1145 | HQ DD          | 25.90 | 0 | -90        |
| ŀ | RRMDD365 | 563908 | 56278 | 1141 | HQ DD          | 14.40 | 0 | -90        |
| ŀ | RRMDD366 | 563412 | 55979 | 1157 | HQ DD          | 22.40 | 0 | -90        |
| ŀ | RRMDD367 | 563398 | 55808 | 1159 | HQ DD          | 23.00 | 0 | -90        |
| ŀ | RRMDD368 | 563575 | 56017 | 1154 | HQ DD          | 37.90 | 0 | -90        |
| ŀ | RRMDD369 | 563405 | 55596 | 1162 | HQ DD          | 23.30 | 0 | -90        |
| ŀ | RRMDD370 | 563709 | 55658 | 1152 | HQ DD          | 20.40 | 0 | -90        |
| ŀ | RRMDD371 | 563230 | 55985 | 1156 | HQ DD          | 19.50 | 0 | -90        |
| ŀ | RRMDD372 | 563064 | 55998 | 1154 | HQ DD          | 29.40 | 0 | -90        |
| ļ | RRMDD373 | 563288 | 56283 | 1156 | HQ DD          | 24.70 | 0 | -90        |
| ļ | RRMDD374 | 563047 | 56391 | 1147 | HQ DD          | 12.90 | 0 | -90        |
| ļ | RRMDD375 | 563493 | 56299 | 1156 | HQ DD          | 12.40 | 0 | -90        |
| ļ | RRMDD376 | 563081 | 56603 | 1145 | HQ DD          | 19.90 | 0 | -90        |
| ļ | RRMDD377 | 562998 | 56854 | 1149 | HQ DD          | 8.40  | 0 | -90        |
| ļ | RRMDD378 | 562847 | 56962 | 1147 | HQ DD          | 10.80 | 0 | -90        |
| ļ | RRMDD379 | 562916 | 56741 | 1141 | HQ DD          | 17.00 | 0 | -90        |
| ļ | RRMDD380 | 562707 | 56950 | 1140 | HQ DD          | 8.40  | 0 | -90        |
|   | RRMDD381 | 563203 | 57920 | 1167 | HQ DD          | 21.40 | 0 | -90        |
| ĺ | RRMDD382 | 562708 | 57113 | 1147 | HQ DD          | 23.40 | 0 | -90        |
| ĺ | RRMDD383 | 563401 | 57910 | 1168 | HQ DD          | 23.70 | 0 | -90        |
| ĺ | RRMDD384 | 563592 | 57906 | 1166 | HQ DD          | 24.50 | 0 | -90        |
| ĺ | RRMDD385 | 563808 | 57898 | 1159 | HQ DD          | 32.10 | 0 | -90        |
| ĺ | RRMDD386 | 564006 | 57911 | 1149 | HQ DD          | 19.30 | 0 | -90        |
| ľ | RRMDD387 | 562521 | 57101 | 1142 | HQ DD          | 15.90 | 0 | -90        |
| İ | RRMDD388 | 562557 | 57237 | 1147 | HQ DD          | 18.20 | 0 | -90        |
| İ | RRMDD389 | 564218 | 57991 | 1151 | HQ DD          | 23.30 | 0 | -90        |
| ľ | RRMDD390 | 564354 | 58107 | 1151 | HQ DD          | 22.10 | 0 | -90        |
| İ | RRMDD391 | 562363 | 57205 | 1139 | HQ DD          | 6.70  | 0 | -90        |
| ľ | RRMDD392 | 562480 | 57343 | 1148 | HQ DD          | 26.40 | 0 | -90        |
| ŀ | RRMDD393 | 562326 | 57361 | 1141 | HQ DD          | 16.00 | 0 | -90        |
| ŀ | RRMDD394 | 562474 | 57633 | 1150 | HQ DD          | 16.40 | 0 | -90        |
| , |          | •      | i e   | 1    | i .            | 24.10 | 1 |            |

| RRMDD396 | 562275 | 57557 | 1144 | HQ DD          | 15.00 | 0 | -90        |
|----------|--------|-------|------|----------------|-------|---|------------|
| RRMDD397 | 564671 | 58233 | 1151 | HQ DD          | 24.40 | 0 | -90        |
| RRMDD398 | 562377 | 57740 | 1147 | HQ DD          | 17.40 | 0 | -90        |
| RRMDD399 | 562249 | 57665 | 1142 | HQ DD          | 15.20 | 0 | -90        |
| RRMDD400 | 565096 | 58103 | 1140 | HQ DD          | 15.60 | 0 | -90        |
| RRMDD401 | 562287 | 57873 | 1142 | HQ DD          | 21.40 | 0 | -90        |
| RRMDD402 | 565020 | 58211 | 1138 | HQ DD          | 19.20 | 0 | -90        |
| RRMDD403 | 562523 | 57886 | 1151 | HQ DD          | 18.50 | 0 | -90        |
| RRMDD404 | 562804 | 57917 | 1158 | HQ DD          | 23.40 | 0 | -90        |
| RRMDD405 | 564000 | 58021 | 1142 | HQ DD          | 12.40 | 0 | -90        |
| RRMDD406 | 563820 | 57999 | 1155 | HQ DD          | 13.10 | 0 | -90        |
| RRMDD407 | 563394 | 58002 | 1167 | HQ DD          | 24.40 | 0 | -90        |
| RRMDD408 | 563002 | 57975 | 1162 | HQ DD          | 11.40 | 0 | -90        |
| RRMDD409 | 563210 | 58014 | 1166 | HQ DD          | 19.40 | 0 | -90<br>-90 |
| RRMDD410 | 569409 | 58192 | 1106 | HQ DD          | 16.40 | 0 | -90        |
| RRMDD411 | 569494 | 58330 | 1105 | HQ DD          | 15.40 | 0 | -90        |
|          |        |       |      |                |       |   |            |
| RRMDD412 | 569590 | 58180 | 1106 | HQ DD          | 14.00 | 0 | -90        |
| RRMDD413 | 569411 | 58019 | 1108 | HQ DD          | 14.40 | 0 | -90        |
| RRMDD414 | 569407 | 57779 | 1110 | HQ DD          | 15.00 | 0 | -90        |
| RRMDD415 | 569235 | 57791 | 1108 | HQ DD          | 23.40 | 0 | -90        |
| RRMDD416 | 569593 | 57794 | 1107 | HQ DD          | 15.30 | 0 | -90        |
| RRMDD417 | 569749 | 57988 | 1103 | HQ DD          | 11.40 | 0 | -90        |
| RRMDD418 | 569778 | 57823 | 1101 | HQ DD          | 6.20  | 0 | -90        |
| RRMDD419 | 569788 | 57595 | 1102 | HQ DD          | 4.90  | 0 | -90        |
| RRMDD420 | 569444 | 57601 | 1111 | HQ DD          | 11.40 | 0 | -90        |
| RRMDD421 | 569809 | 57405 | 1106 | HQ DD          | 7.90  | 0 | -90        |
| RRMDD422 | 569406 | 57401 | 1113 | HQ DD          | 15.20 | 0 | -90        |
| RRMDD423 | 569605 | 57383 | 1112 | HQ DD          | 17.50 | 0 | -90        |
| RRMDD424 | 569414 | 57055 | 1118 | HQ DD          | 17.40 | 0 | -90        |
| RRMDD425 | 569522 | 56852 | 1125 | HQ DD          | 20.90 | 0 | -90        |
| RRMDD426 | 569958 | 57341 | 1104 | HQ DD          | 13.00 | 0 | -90        |
| RRMDD427 | 569626 | 57083 | 1119 | HQ DD          | 19.50 | 0 | -90        |
| RRMDD428 | 569800 | 57039 | 1118 | HQ DD          | 12.40 | 0 | -90        |
| RRMDD429 | 570581 | 58290 | 1109 | HQ DD          | 16.90 | 0 | -90        |
| RRMDD430 | 570614 | 58666 | 1100 | HQ DD          | 11.00 | 0 | -90        |
| RRMDD431 | 570006 | 57220 | 1107 | HQ DD          | 5.40  | 0 | -90        |
| RRMDD432 | 570801 | 58684 | 1102 | HQ DD          | 10.10 | 0 | -90        |
| RRMDD433 | 563404 | 57509 | 1170 | HQ DD          | 20.40 | 0 | -90        |
| RRMDD434 | 563502 | 57494 | 1172 | HQ DD          | 20.40 | 0 | -90        |
| RRMDD435 | 563500 | 57400 | 1172 | HQ DD          | 21.40 | 0 | -90        |
| RRMDD436 | 563599 | 57499 | 1173 | HQ DD          | 16.40 | 0 | -90        |
| RRMDD437 | 563808 | 57496 | 1174 | HQ DD          | 28.50 | 0 | -90        |
| RRMDD438 | 563898 | 57507 | 1173 | HQ DD          | 23.00 | 0 | -90        |
| RRMDD439 | 564000 | 57510 | 1173 | HQ DD          | 24.00 | 0 | -90        |
| RRMDD440 | 563698 | 57501 | 1173 | HQ DD          | 18.00 | 0 | -90        |
| RRMDD441 | 564090 | 57505 | 1173 | HQ DD          | 18.00 | 0 | -90        |
| RRMDD442 | 564102 | 57394 | 1175 | HQ DD          | 18.40 | 0 | -90        |
| RRMDD442 | 564098 | 57301 | 1176 | HQ DD          | 20.40 | 0 | -90        |
| RRMDD444 | 563497 | 57301 | 1170 | HQ DD          | 20.40 | 0 | -90        |
| RRMDD445 | 563996 | 57298 | 1176 | HQ DD          | 22.30 | 0 | -90        |
| RRMDD446 | 563900 | 57299 | 1176 | HQ DD          | 18.20 | 0 | -90        |
| RRMDD447 | 563405 | 57299 | 1168 | HQ DD<br>HQ DD | 18.80 | 0 | -90<br>-90 |
| RRMDD448 | 563895 | 57404 | 1175 |                | 23.00 | 0 | -90<br>-90 |
| RRMDD449 | 563895 | 57404 | 1175 | HQ DD          | 17.80 | 0 | -90<br>-90 |
|          |        |       |      | HQ DD          |       |   |            |
| RRMDD450 | 571003 | 58704 | 1101 | HQ DD          | 12.90 | 0 | -90        |
| RRMDD451 | 563292 | 57496 | 1169 | HQ DD          | 22.40 | 0 | -90        |
| RRMDD452 | 563704 | 57403 | 1174 | HQ DD          | 26.80 | 0 | -90        |

| RRMDD453 | 571001           | 58313          | 1110 | HQ DD | 14.20 | 0 | -90        |
|----------|------------------|----------------|------|-------|-------|---|------------|
| RRMDD454 | 563805           | 57299          | 1175 | HQ DD | 19.60 | 0 | -90        |
| RRMDD455 | 570791           | 58310          | 1110 | HQ DD | 11.40 | 0 | -90        |
| RRMDD456 | 563310           | 57401          | 1169 | HQ DD | 15.40 | 0 | -90        |
| RRMDD457 | 563700           | 57291          | 1174 | HQ DD | 20.50 | 0 | -90        |
| RRMDD458 | 571198           | 58310          | 1107 | HQ DD | 12.80 | 0 | -90        |
| RRMDD459 | 571409           | 58288          | 1103 | HQ DD | 7.90  | 0 | -90        |
| RRMDD460 | 563694           | 57205          | 1174 | HQ DD | 20.10 | 0 | -90        |
| RRMDD461 | 563306           | 57299          | 1167 | HQ DD | 20.70 | 0 | -90        |
| RRMDD462 | 571192           | 58099          | 1112 | HQ DD | 17.70 | 0 | -90        |
| RRMDD463 | 563607           | 57304          | 1173 | HQ DD | 25.90 | 0 | -90        |
| RRMDD464 | 570705           | 57995          | 1116 | HQ DD | 20.60 | 0 | -90        |
| RRMDD465 | 564104           | 57200          | 1174 | HQ DD | 19.20 | 0 | -90        |
| RRMDD466 | 564106           | 57098          | 1172 | HQ DD | 28.50 | 0 | -90        |
| RRMDD467 | 563299           | 57201          | 1164 | HQ DD | 27.00 | 0 | -90        |
| RRMDD468 | 564199           | 57300          | 1174 | HQ DD | 19.20 | 0 | -90        |
| RRMDD469 | 572769           | 58608          | 1107 | HQ DD | 12.10 | 0 | -90        |
| RRMDD470 | 564202           | 57094          | 1169 | HQ DD | 30.00 | 0 | -90        |
| RRMDD470 | 563291           | 57099          | 1163 | HQ DD | 33.30 | 0 | -90        |
| RRMDD471 | 573092           | 58353          | 1111 | HQ DD | 7.70  | 0 | -90        |
| RRMDD473 | 573092           | 58390          | 1110 | HQ DD | 10.30 | 0 | -90        |
| RRMDD473 | 563501           | 57204          | 1170 | HQ DD | 23.90 | 0 | -90        |
| RRMDD474 | 564299           | 56908          | 1162 | HQ DD | 24.00 | 0 | -90        |
| RRMDD476 | 572483           | 58395          | 1102 | HQ DD | 10.20 | 0 | -90        |
| RRMDD477 | 563300           | 57006          | 1161 | HQ DD | 18.30 | 0 | -90        |
| RRMDD477 | 572480           | 58677          | 1106 | HQ DD | 9.80  | 0 | -90        |
| RRMDD478 | 572520           | 58862          | 1106 | HQ DD | 12.80 | 0 | -90        |
| RRMDD479 | 564201           | 56896          | 1164 | HQ DD | 17.60 | 0 | -90        |
| RRMDD481 | 563394           | 57101          | 1167 | HQ DD | 22.20 | 0 | -90        |
| RRMDD482 | 572725           | 58899          | 1107 | HQ DD | 13.70 | 0 | -90        |
| RRMDD483 | 564296           | 56797          | 1159 |       | 25.20 | - | -90        |
| RRMDD483 |                  | 58999          | 1103 | HQ DD |       | 0 | -90<br>-90 |
|          | 572834<br>563399 |                | 1164 | HQ DD | 6.60  | 0 | -90<br>-90 |
| RRMDD485 |                  | 57001          | 1104 | HQ DD | 25.10 | 0 |            |
| RRMDD486 | 572605           | 58993          | 1105 | HQ DD | 9.10  | 0 | -90        |
| RRMDD487 | 572413           | 59003<br>57003 |      | HQ DD | 10.40 | _ | -90        |
| RRMDD488 | 564196           |                | 1166 | HQ DD | 27.00 | 0 | -90        |
| RRMDD489 | 572489           | 59258          | 1104 | HQ DD | 10.70 | 0 | -90        |
| RRMDD490 | 572313           | 59293          | 1103 | HQ DD | 10.60 | 0 | -90        |
| RRMDD491 | 564302           | 57101          | 1167 | HQ DD | 37.90 | 0 | -90        |
| RRMDD492 | 572592           | 59369          | 1103 | HQ DD | 15.30 | 0 | -90        |
| RRMDD493 | 563500           | 57091          | 1167 | HQ DD | 24.40 | 0 | -90        |
| RRMDD494 | 563496           | 57002          | 1166 | HQ DD | 24.60 | 0 | -90        |
| RRMDD495 | 564331           | 57000          | 1163 | HQ DD | 20.70 | 0 | -90        |
| RRMDD496 | 564293           | 57200          | 1171 | HQ DD | 31.60 | 0 | -90        |
| RRMDD497 | 563501           | 56898          | 1165 | HQ DD | 21.40 | 0 | -90        |
| RRMDD498 | 558005           | 58001          | 1168 | HQ DD | 29.70 | 0 | -90        |
| RRMDD499 | 563392           | 56902          | 1161 | HQ DD | 30.80 | 0 | -90        |
| RRMDD500 | 564399           | 57097          | 1164 | HQ DD | 28.90 | 0 | -90        |
| RRMDD501 | 564494           | 57099          | 1161 | HQ DD | 49.00 | 0 | -90        |
| RRMDD502 | 563499           | 56799          | 1162 | HQ DD | 22.30 | 0 | -90        |
| RRMDD503 | 558197           | 57801          | 1163 | HQ DD | 30.50 | 0 | -90        |
| RRMDD504 | 563296           | 56904          | 1159 | HQ DD | 28.80 | 0 | -90        |
| RRMDD505 | 564291           | 57321          | 1172 | HQ DD | 42.30 | 0 | -90        |
| RRMDD506 | 557903           | 57813          | 1168 | HQ DD | 28.10 | 0 | -90        |
| RRMDD507 | 563302           | 56802          | 1158 | HQ DD | 28.70 | 0 | -90        |
| RRMDD508 | 557831           | 57641          | 1167 | HQ DD | 21.40 | 0 | -90        |
| RRMDD509 | 564299           | 57402          | 1171 | HQ DD | 45.80 | 0 | -90        |

| RRMDD510 | 563598 | 56901 | 1166 | HQ DD | 19.80 | 0 | -90 |
|----------|--------|-------|------|-------|-------|---|-----|
| RRMDD511 | 558002 | 58204 | 1169 | HQ DD | 26.20 | 0 | -90 |
| RRMDD512 | 563600 | 57098 | 1169 | HQ DD | 30.90 | 0 | -90 |
| RRMDD513 | 564201 | 57508 | 1171 | HQ DD | 21.00 | 0 | -90 |
| RRMDD514 | 564101 | 57598 | 1171 | HQ DD | 26.90 | 0 | -90 |
| RRMDD515 | 563902 | 56804 | 1164 | HQ DD | 28.60 | 0 | -90 |
| RRMDD516 | 563701 | 56806 | 1164 | HQ DD | 18.50 | 0 | -90 |
| RRMDD517 | 564208 | 57703 | 1168 | HQ DD | 24.20 | 0 | -90 |
| RRMDD518 | 563999 | 56900 | 1166 | HQ DD | 21.90 | 0 | -90 |
| RRMDD519 | 564299 | 57605 | 1168 | HQ DD | 19.50 | 0 | -90 |
| RRMDD520 | 564098 | 56900 | 1165 | HQ DD | 35.40 | 0 | -90 |
| RRMDD521 | 564293 | 57700 | 1167 | HQ DD | 26.60 | 0 | -90 |
| RRMDD522 | 564105 | 56801 | 1162 | HQ DD | 30.60 | 0 | -90 |
| RRMDD523 | 564402 | 57700 | 1166 | HQ DD | 23.80 | 0 | -90 |
| RRMDD524 | 558403 | 58206 | 1156 | HQ DD | 13.10 | 0 | -90 |
| RRMDD525 | 564604 | 57099 | 1157 | HQ DD | 36.60 | 0 | -90 |
| RRMDD526 | 564302 | 57507 | 1169 | HQ DD | 22.50 | 0 | -90 |
| RRMDD527 | 564705 | 57103 | 1154 | HQ DD | 24.50 | 0 | -90 |
| RRMDD528 | 564500 | 57604 | 1166 | HQ DD | 25.80 | 0 | -90 |
| RRMDD529 | 564400 | 57502 | 1168 | HQ DD | 25.00 | 0 | -90 |
| RRMDD530 | 564698 | 57201 | 1158 | HQ DD | 28.80 | 0 | -90 |
| RRMDD531 | 564500 | 57506 | 1166 | HQ DD | 27.00 | 0 | -90 |
| RRMDD532 | 564599 | 57504 | 1165 | HQ DD | 19.50 | 0 | -90 |
| RRMDD533 | 564805 | 57301 | 1158 | HQ DD | 14.00 | 0 | -90 |
| RRMDD534 | 564702 | 57301 | 1161 | HQ DD | 18.70 | 0 | -90 |
| RRMDD535 | 564600 | 57401 | 1164 | HQ DD | 21.70 | 0 | -90 |
| RRMDD536 | 558131 | 58464 | 1169 | HQ DD | 17.50 | 0 | -90 |
| RRMDD537 | 564492 | 57397 | 1167 | HQ DD | 29.50 | 0 | -90 |
| RRMDD538 | 564593 | 57296 | 1164 | HQ DD | 26.10 | 0 | -90 |
| RRMDD539 | 564703 | 57403 | 1162 | HQ DD | 14.80 | 0 | -90 |
| RRMDD540 | 564502 | 57302 | 1166 | HQ DD | 33.80 | 0 | -90 |
| RRMDD541 | 557393 | 58197 | 1161 | HQ DD | 19.50 | 0 | -90 |
| RRMDD542 | 564706 | 57498 | 1163 | HQ DD | 23.00 | 0 | -90 |
| RRMDD543 | 564895 | 57498 | 1160 | HQ DD | 23.10 | 0 | -90 |
| RRMDD544 | 564499 | 57201 | 1164 | HQ DD | 44.20 | 0 | -90 |
| RRMDD545 | 557717 | 58197 | 1170 | HQ DD | 31.00 | 0 | -90 |
| RRMDD546 | 564705 | 57596 | 1163 | HQ DD | 15.00 | 0 | -90 |
| RRMDD547 | 564806 | 57498 | 1161 | HQ DD | 16.90 | 0 | -90 |
| RRMDD548 | 564601 | 57701 | 1165 | HQ DD | 24.90 | 0 | -90 |
| RRMDD549 | 564800 | 57600 | 1162 | HQ DD | 16.20 | 0 | -90 |
| RRMDD550 | 557305 | 58722 | 1164 | HQ DD | 18.70 | 0 | -90 |
| RRMDD551 | 564505 | 57707 | 1165 | HQ DD | 21.00 | 0 | -90 |
| RRMDD552 | 564801 | 57699 | 1162 | HQ DD | 22.30 | 0 | -90 |
| RRMDD553 | 564398 | 57300 | 1170 | HQ DD | 44.00 | 0 | -90 |
| RRMDD554 | 564900 | 57206 | 1152 | HQ DD | 16.30 | 0 | -90 |
| RRMDD555 | 557580 | 58719 | 1170 | HQ DD | 32.50 | 0 | -90 |
| RRMDD556 | 564802 | 57101 | 1151 | HQ DD | 25.90 | 0 | -90 |
| RRMDD557 | 564698 | 57702 | 1163 | HQ DD | 18.70 | 0 | -90 |
| RRMDD558 | 564897 | 57101 | 1148 | HQ DD | 26.00 | 0 | -90 |
| RRMDD559 | 557775 | 58599 | 1173 | HQ DD | 32.50 | 0 | -90 |
| RRMDD560 | 564899 | 57303 | 1156 | HQ DD | 18.00 | 0 | -90 |
| RRMDD561 | 564903 | 57399 | 1158 | HQ DD | 17.10 | 0 | -90 |
| RRMDD562 | 565097 | 57296 | 1151 | HQ DD | 16.60 | 0 | -90 |
| RRMDD563 | 561883 | 55897 | 1152 | HQ DD | 21.40 | 0 | -90 |
| RRMDD564 | 565100 | 57191 | 1149 | HQ DD | 15.60 | 0 | -90 |
|          | 300100 |       |      |       |       | _ |     |
| RRMDD565 | 565203 | 57103 | 1144 | HQ DD | 16.30 | 0 | -90 |

| RRMDD567  | 565004 | 57402 | 1156 | HQ DD | 12.60 | 0   | -90 |
|-----------|--------|-------|------|-------|-------|-----|-----|
| RRMDD568  | 565102 | 57498 | 1156 | HQ DD | 17.50 | 0   | -90 |
| RRMDD569  | 565001 | 57102 | 1147 | HQ DD | 25.90 | 0   | -90 |
| RRMDD570  | 562016 | 55963 | 1152 | HQ DD | 20.00 | 0   | -90 |
| RRMDD571  | 565200 | 57500 | 1155 | HQ DD | 13.60 | 0   | -90 |
| RRMDD572  | 565201 | 57301 | 1150 | HQ DD | 20.90 | 0   | -90 |
| RRMDD573  | 565194 | 57599 | 1156 | HQ DD | 18.20 | 0   | -90 |
| RRMDD574  | 562148 | 55844 | 1154 | HQ DD | 33.10 | 0   | -90 |
| RRMDD575  | 565105 | 57101 | 1145 | HQ DD | 13.60 | 0   | -90 |
| RRMDD576  | 565205 | 57697 | 1156 | HQ DD | 26.10 | 0   | -90 |
| RRMDD577  | 565093 | 57395 | 1154 | HQ DD | 12.60 | 0   | -90 |
| RRMDD578  | 565101 | 57691 | 1158 | HQ DD | 16.80 | 0   | -90 |
| RRMDD579  | 565090 | 57603 | 1157 | HQ DD | 19.80 | 0   | -90 |
| RRMDD580  | 564998 | 57699 | 1159 | HQ DD | 23.20 | 0   | -90 |
| RRMDD581  | 561972 | 55696 | 1156 | HQ DD | 30.00 | 0   | -90 |
| RRMDD582  | 564898 | 57701 | 1160 | HQ DD | 19.20 | 0   | -90 |
| RRMDD583  | 561817 | 55610 | 1156 | HQ DD | 38.60 | 0   | -90 |
| RRMDD584  | 564996 | 57599 | 1159 | HQ DD | 17.70 | 0   | -90 |
| RRMDD585  | 564995 | 57502 | 1158 | HQ DD | 18.10 | 0   | -90 |
| RRMDD586  | 561828 | 55731 | 1154 | HQ DD | 32.20 | 0   | -90 |
| RRMDD587  | 562194 | 55579 | 1157 | HQ DD | 37.50 | 0   | -90 |
| RRMDD588  | 578199 | 58802 | 1125 | HQ DD | 22.80 | 0   | -90 |
| RRMDD589  | 578200 | 58921 | 1124 | HQ DD | 22.40 | 0   | -90 |
| RRMDD590  | 562064 | 55402 | 1160 | HQ DD | 36.00 | 0   | -90 |
| RRMDD591  | 577998 | 59001 | 1125 | HQ DD | 25.30 | 0   | -90 |
| RRMDD592  | 577810 | 58807 | 1133 | HQ DD | 32.50 | 0   | -90 |
| RRMDD593  | 577401 | 58802 | 1134 | HQ DD | 23.60 | 0   | -90 |
| RRMDD594  | 577799 | 57803 | 1140 | HQ DD | 19.50 | 0   | -90 |
| RRMDD595  | 577599 | 58602 | 1139 | HQ DD | 21.30 | 0   | -90 |
| RRMDD596  | 577996 | 57805 | 1134 | HQ DD | 17.20 | 0   | -90 |
| RRMDD597  | 577795 | 58604 | 1136 | HQ DD | 28.60 | 0   | -90 |
| RRMDD598  | 577594 | 58398 | 1142 | HQ DD | 25.80 | 0   | -90 |
| RRMDD599  | 578199 | 57991 | 1131 | HQ DD | 10.00 | 0   | -90 |
| RRMDD600  | 577198 | 58382 | 1142 | HQ DD | 22.20 | 0   | -90 |
| RRMDD601  | 577599 | 58202 | 1144 | HQ DD | 30.20 | 0   | -90 |
| RRMDD602  | 577211 | 58209 | 1147 | HQ DD | 19.10 | 0   | -90 |
| RRMDD603  | 577797 | 58205 | 1141 | HQ DD | 31.40 | 0   | -90 |
| RRMDD604  | 578202 | 58201 | 1132 | HQ DD | 19.30 | 0   | -90 |
| RRMDD605  | 577981 | 58391 | 1136 | HQ DD | 26.30 | 0   | -90 |
| RRMDD606  | 578200 | 58604 | 1128 | HQ DD | 21.30 | 0   | -90 |
| RRMDD607  | 577999 | 58600 | 1133 | HQ DD | 31.50 | 0   | -90 |
| RRMDD608  | 577807 | 58003 | 1141 | HQ DD | 28.90 | 0   | -90 |
| RRMDD609  | 578003 | 58197 | 1137 | HQ DD | 22.20 | 0   | -90 |
| RRMDD610  | 577416 | 58203 | 1146 | HQ DD | 31.40 | 0   | -90 |
| RRMDD611  | 577600 | 57802 | 1144 | HQ DD | 18.50 | 0   | -90 |
| RRMDD612  | 576782 | 58402 | 1138 | HQ DD | 24.60 | 0   | -90 |
| RRMDD613  | 577392 | 57806 | 1148 | HQ DD | 29.40 | 0   | -90 |
| RRMDD614  | 577201 | 58609 | 1138 | HQ DD | 23.60 | 0   | -90 |
| RRMDD615  | 577602 | 57609 | 1142 | HQ DD | 26.90 | 0   | -90 |
| RRMDD616  | 577212 | 57589 | 1149 | HQ DD | 20.50 | 0   | -90 |
| RRMDD617  | 577384 | 58599 | 1139 | HQ DD | 28.50 | 0   | -90 |
| RRMDD618  | 577198 | 57445 | 1147 | HQ DD | 29.00 | 0   | -90 |
| RRMDD619  | 577000 | 58006 | 1147 | HQ DD | 15.10 | 0   | -90 |
| RRMDD620  | 576984 | 58608 | 1135 | HQ DD | 22.40 | 0   | -90 |
| RRMDD620  | 576813 | 57619 | 1150 | HQ DD | 22.40 | 0   | -90 |
| RRMDD622  | 576785 | 58588 | 1136 | HQ DD | 22.60 | 0   | -90 |
| RRMDD623  | 576584 | 57467 | 1148 | HQ DD | 17.30 | 0   | -90 |
| ערואוטחסק | 370384 | 3/40/ | 114δ | חע טט | 17.30 | l u | -90 |

| RRMDD624             | 576985           | 57795          | 1150         | HQ DD          | 21.50          | 0 | -90        |
|----------------------|------------------|----------------|--------------|----------------|----------------|---|------------|
| RRMDD625             | 576784           | 57408          | 1149         | HQ DD          | 28.00          | 0 | -90        |
| RRMDD626             | 576585           | 58004          | 1143         | HQ DD          | 12.50          | 0 | -90        |
| RRMDD627             | 576996           | 58813          | 1128         | HQ DD          | 25.90          | 0 | -90        |
| RRMDD628             | 576805           | 58190          | 1142         | HQ DD          | 15.00          | 0 | -90        |
| RRMDD629             | 576390           | 57786          | 1144         | HQ DD          | 18.50          | 0 | -90        |
| RRMDD630             | 576211           | 58012          | 1142         | HQ DD          | 7.50           | 0 | -90        |
| RRMDD631             | 576991           | 58936          | 1129         | HQ DD          | 15.90          | 0 | -90        |
| RRMDD632             | 576398           | 57589          | 1144         | HQ DD          | 19.20          | 0 | -90        |
| RRMDD633             | 576382           | 58201          | 1142         | HQ DD          | 13.70          | 0 | -90        |
| RRMDD634             | 576402           | 57398          | 1146         | HQ DD          | 17.20          | 0 | -90        |
| RRMDD635             | 576404           | 58398          | 1142         | HQ DD          | 17.50          | 0 | -90        |
| RRMDD636             | 576211           | 57807          | 1142         | HQ DD          | 18.10          | 0 | -90        |
| RRMDD637             | 576799           | 59001          | 1135         | HQ DD          | 21.00          | 0 | -90        |
| RRMDD638             | 576003           | 57808          | 1140         | HQ DD          | 18.30          | 0 | -90        |
| RRMDD639             | 576397           | 58594          | 1141         | HQ DD          | 21.90          | 0 | -90        |
|                      |                  |                |              |                |                |   |            |
| RRMDD640<br>RRMDD641 | 575793<br>576583 | 57802<br>58196 | 1137<br>1142 | HQ DD          | 15.00<br>17.80 | 0 | -90<br>-90 |
|                      |                  |                |              | HQ DD          |                |   |            |
| RRMDD642             | 576786           | 59116          | 1136         | HQ DD          | 24.10          | 0 | -90        |
| RRMDD643             | 575598           | 57616          | 1127         | HQ DD          | 16.80          | 0 | -90        |
| RRMDD644             | 575611           | 57800          | 1133         | HQ DD          | 13.80          | 0 | -90        |
| RRMDD645             | 576603           | 58999          | 1137         | HQ DD          | 18.00          | 0 | -90        |
| RRMDD646             | 576793           | 57795          | 1148         | HQ DD          | 16.80          | 0 | -90        |
| RRMDD647             | 576598           | 58800          | 1138         | HQ DD          | 24.10          | 0 | -90        |
| RRMDD648             | 576599           | 57799          | 1144         | HQ DD          | 15.00          | 0 | -90        |
| RRMDD649             | 577208           | 57817          | 1150         | HQ DD          | 21.70          | 0 | -90        |
| RRMDD650             | 576594           | 58614          | 1138         | HQ DD          | 27.50          | 0 | -90        |
| RRMDD651             | 576201           | 58205          | 1143         | HQ DD          | 12.00          | 0 | -90        |
| RRMDD652             | 577389           | 57987          | 1149         | HQ DD          | 14.10          | 0 | -90        |
| RRMDD653             | 575799           | 58001          | 1139         | HQ DD          | 18.00          | 0 | -90        |
| RRMDD654             | 576001           | 57600          | 1137         | HQ DD          | 16.00          | 0 | -90        |
| RRMDD655             | 576402           | 58999          | 1139         | HQ DD          | 21.10          | 0 | -90        |
| RRMDD656             | 575402           | 58005          | 1133         | HQ DD          | 19.60          | 0 | -90        |
| RRMDD657             | 575794           | 58192          | 1140         | HQ DD          | 13.50          | 0 | -90        |
| RRMDD658             | 576406           | 59124          | 1138         | HQ DD          | 22.80          | 0 | -90        |
| RRMDD659             | 575189           | 58195          | 1130         | HQ DD          | 15.10          | 0 | -90        |
| RRMDD660             | 576199           | 59001          | 1138         | HQ DD          | 18.30          | 0 | -90        |
| RRMDD661             | 575601           | 58400          | 1136         | HQ DD          | 16.10          | 0 | -90        |
| RRMDD662             | 575205           | 58398          | 1129         | HQ DD          | 11.00          | 0 | -90        |
| RRMDD663             | 575002           | 58802          | 1121         | HQ DD          | 17.00          | 0 | -90        |
| RRMDD664             | 575991           | 59117          | 1133         | HQ DD          | 16.90          | 0 | -90        |
| RRMDD665             | 575194           | 58583          | 1128         | HQ DD          | 15.00          | 0 | -90        |
| RRMDD666             | 576006           | 58997          | 1136         | HQ DD          | 22.10          | 0 | -90        |
| RRMDD667             | 575411           | 58207          | 1134         | HQ DD          | 15.80          | 0 | -90        |
| RRMDD668             | 575402           | 58788          | 1129         | HQ DD          | 13.60          | 0 | -90        |
| RRMDD669             | 575614           | 58199          | 1137         | HQ DD          | 22.70          | 0 | -90        |
| RRMDD670             | 575411           | 58604          | 1132         | HQ DD          | 18.00          | 0 | -90        |
| RRMDD671             | 575802           | 58803          | 1136         | HQ DD          | 19.40          | 0 | -90        |
| RRMDD672             | 576005           | 58197          | 1142         | HQ DD          | 15.40          | 0 | -90        |
| RRMDD673             | 576010           | 58388          | 1142         | HQ DD          | 15.00          | 0 | -90        |
| RRMDD674             | 575815           | 58598          | 1139         | HQ DD          | 22.50          | 0 | -90        |
| RRMDD675             | 575596           | 58597          | 1136         | HQ DD          | 20.40          | 0 | -90        |
| RRMDD676             | 575596           | 58604          | 1141         | HQ DD          | 22.20          | 0 | -90<br>-90 |
| RRMDD676             | 575796           | 59010          | 1132         | HQ DD          | 25.00          | 0 | -90        |
| RRMDD677             | 575796           | 58998          | 1129         | HQ DD<br>HQ DD | 17.40          | 0 | -90<br>-90 |
| RRMDD678             | 575586           | 58998          | 1129         | HQ DD<br>HQ DD | 17.40          | 0 | -90<br>-90 |
| VKINIDD018           | 5/5009           | 39118          | 1126         | חע טט          | 19.00          | U | -90        |

|   | RRMDD681 | 575385 | 59001 | 1125 | HQ DD | 15.70 | 0 | -90 |
|---|----------|--------|-------|------|-------|-------|---|-----|
|   | RRMDD682 | 574804 | 59001 | 1113 | HQ DD | 18.00 | 0 | -90 |
|   | RRMDD683 | 575206 | 59018 | 1121 | HQ DD | 16.90 | 0 | -90 |
|   | RRMDD684 | 574602 | 58795 | 1114 | HQ DD | 17.50 | 0 | -90 |
|   | RRMDD685 | 574453 | 58494 | 1115 | HQ DD | 21.20 | 0 | -90 |
|   | RRMDD686 | 574599 | 58615 | 1116 | HQ DD | 17.40 | 0 | -90 |
|   | RRMDD687 | 574999 | 58604 | 1123 | HQ DD | 19.30 | 0 | -90 |
|   | RRMDD688 | 574600 | 58001 | 1118 | HQ DD | 19.40 | 0 | -90 |
|   | RRMDD689 | 574790 | 58598 | 1120 | HQ DD | 18.60 | 0 | -90 |
|   | RRMDD690 | 574801 | 58389 | 1122 | HQ DD | 17.00 | 0 | -90 |
|   | RRMDD691 | 574398 | 58210 | 1114 | HQ DD | 16.80 | 0 | -90 |
|   | RRMDD692 | 574256 | 58345 | 1111 | HQ DD | 15.00 | 0 | -90 |
|   | RRMDD693 | 574995 | 58201 | 1127 | HQ DD | 22.00 | 0 | -90 |
|   | RRMDD694 | 574205 | 58198 | 1106 | HQ DD | 9.00  | 0 | -90 |
|   | RRMDD695 | 574598 | 58203 | 1119 | HQ DD | 18.00 | 0 | -90 |
|   | RRMDD696 | 574233 | 58016 | 1104 | HQ DD | 6.00  | 0 | -90 |
|   | RRMDD697 | 574796 | 58202 | 1123 | HQ DD | 18.40 | 0 | -90 |
|   | RRMDD698 | 574410 | 57811 | 1107 | HQ DD | 21.00 | 0 | -90 |
|   | RRMDD699 | 574291 | 58506 | 1112 | HQ DD | 17.10 | 0 | -90 |
|   | RRMDD700 | 574618 | 57662 | 1110 | HQ DD | 6.80  | 0 | -90 |
| 7 | RRMDD701 | 574814 | 57809 | 1119 | HQ DD | 17.90 | 0 | -90 |
|   | RRMDD702 | 575005 | 57611 | 1116 | HQ DD | 8.00  | 0 | -90 |
|   | RRMDD703 | 575001 | 57999 | 1125 | HQ DD | 15.20 | 0 | -90 |
|   | RRMDD704 | 574787 | 57614 | 1112 | HQ DD | 9.00  | 0 | -90 |
|   | RRMDD705 | 574991 | 57811 | 1123 | HQ DD | 23.20 | 0 | -90 |
|   | RRMDD706 | 575202 | 57600 | 1120 | HQ DD | 18.00 | 0 | -90 |
|   | RRMDD707 | 575215 | 57793 | 1126 | HQ DD | 15.10 | 0 | -90 |
|   | RRMDD708 | 575385 | 57801 | 1129 | HQ DD | 19.20 | 0 | -90 |
|   | RRMDD709 | 577008 | 58207 | 1144 | HQ DD | 15.50 | 0 | -90 |
|   | RRMDD710 | 576191 | 58784 | 1140 | HQ DD | 26.40 | 0 | -90 |
|   | RRMDD711 | 576180 | 58602 | 1142 | HQ DD | 21.50 | 0 | -90 |
|   |          |        |       |      |       |       |   |     |
|   |          |        |       |      |       |       |   |     |

# JORC Code, 2012 Edition – Table 1 report

# Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques    | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | Diamond Core Drilling  Drill core was collected from a core barrel and placed in appropriately marked core trays. Down hole core run depths were measured and marked with core blocks. Core was measured for core loss and core photography and geological logging completed.  Sample lengths were determined by geological boundaries with a maximum sample length of 1 metre applied in clay zones and up to 2 metres in laterite zones where core recovery was occasionally low.  Where the core contained continuous lengths of soft clay a carving knife was used to cut the core. When the core was too hard to knife cut it was cut using an electric core saw.  Using either method core was initial cut in half then one half was further cut in half to give quarter core.  Quarter core was submitted to ALS for chemical analysis using industry standard sample preparation and analytical techniques.  Half core was collected for metallurgical testwork. |
| Drilling<br>techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diamond Core Drilling  Core size was HQ triple tube with a nominal diameter of 61.1mm.  The core was not oriented (vertical holes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drill sample recovery  | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Diamond Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|    | Criteria                                | JORC Code explanation                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                             |
|----|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                         | Whether a relationship exists between sample recovery and grade and<br>whether sample bias may have occurred due to preferential loss/gain of<br>fine/coarse material.                                                                                                            | Core recovery was calculated by measuring actual core length versus drillers core run lengths. Core recovery ranged from 70% to 100% and averaged 97%.                                                                 |
|    |                                         |                                                                                                                                                                                                                                                                                   | No relationship exists between core recovery and grade.                                                                                                                                                                |
|    | Logging                                 | Whether core and chip samples have been geologically and<br>geotechnically logged to a level of detail to support appropriate Mineral                                                                                                                                             | All (100%) drill core has been geologically logged and core photographs taken.                                                                                                                                         |
|    |                                         | <ul> <li>Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul> | Logging is qualitative with description of colour, weathering status, alteration, regolith zone, major and minor rock types, texture, grain size and comments added where further observation is made.                 |
|    |                                         | • The total length and percentage of the relevant lintersections logged.                                                                                                                                                                                                          | Additional non-geological qualitative logging includes comments for sample recovery, humidity, and hardness for each logged interval.                                                                                  |
|    | Sub-sampling                            | If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                                                                                                                         | Diamond Drill Core                                                                                                                                                                                                     |
|    | techniques<br>and sample<br>preparation | <ul> <li>sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>was used to cut the core. When the core was too using an electric core saw.</li> </ul>                                          | Where the core contained continuous lengths of soft clay a carving knife was used to cut the core. When the core was too hard to knife cut it was cut using an electric core saw.                                      |
|    | Ď                                       | <ul> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in</li> </ul>                                                                         | Sample lengths were determined by geological boundaries with a maximum sample length of 1 metre applied in clay zones and up to 2 metres in laterite zones where core recovery was occasionally low.                   |
|    |                                         | <ul> <li>situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material training appropriate.</li> </ul>                                                       | Samples were collected from core trays by hand and placed in individually numbered bags. These bags were dispatched to ALS for analysis with no further field preparation.                                             |
|    |                                         | being sampled.                                                                                                                                                                                                                                                                    | Sample weights were recorded prior to sample dispatch. Sample mass is considered appropriate for the grain size of the material being sampled that is generally very fine grained and uniform.                         |
|    |                                         |                                                                                                                                                                                                                                                                                   | Field duplicate sampling was conducted at a ratio of 1:25 samples. Duplicates were created by lengthways halving the ¼ core primary sample into 2 identical portions. Duplicate samples were allocated separate sample |
|    |                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                        |
|    |                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                        |
|    |                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                        |
|    | )                                       |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                        |
| (7 |                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                        |

|                                                                                                                                                                                                                                                                                                                                                                             | Comm                                                                                                                                                                                                                            | entary                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                         |                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                             | number<br>sample.                                                                                                                                                                                                               |                                                                                   | submitte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n the s                                                                                                                    | same a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ınalytic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al batc                                                  | h as th                                                 | e primary                                  |
| Quality of assay data and laboratory tests  • The nature, quality and appropriater procedures used and whether the total.  • For geophysical tools, spectrometer the parameters used in determining make and model, reading times, can derivation, etc.  • Nature of quality control procedure duplicates, external laboratory check accuracy (ie lack of bias) and precisi | s, handheld XRF instruments, etc, the analysis including instrument librations factors applied and their s adopted (eg standards, blanks, s) and whether acceptable levels of on have been established.  The ass code M for REE | a. The p  code  1 22 1 1 21 21 1h 2C 2C 2C 3ay techr E-MS81; suite an  Ba Gd Rb U | dispatorepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepararepar | ched botton and escription and escri | y air fid analy on sample ogin w/ oerature ire sam ning - 7 ole - Be 750g to QC Te g QC to REE w cognise elemen Cs La Sr Y | reight (sis professis prof | direct to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol use to cocol us | litter 75 mid rate Fusional Representations ALS sed is a | s follow  cron  sion ICP  nalysis ed at ppi  Ga  Pr  Tm | ory Perth s:  -MS (ALS technique m levels: |

| Criteria | JORC Code explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                       | All laboratories used are ISO 17025 accredited.                                                                                                                                                                                                                                                                                                                                                            |
|          |                       | QAQC                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                       | <u>Diamond Drill Core Samples</u>                                                                                                                                                                                                                                                                                                                                                                          |
|          |                       | <ul> <li>Analytical Standards</li> <li>CRM AMIS0275 and AMIS0276 and a specific Makuutu CRM MUIACREI0 were included in sample batches at a ratio of 1:25 to drill samples submitted.</li> <li>This is an acceptable ratio.</li> </ul>                                                                                                                                                                      |
|          |                       | The assay results for the standards were consistent with the certified level of accuracy and precision and no bias is evident.                                                                                                                                                                                                                                                                             |
|          |                       | Blanks     CRM blanks AMIS0681 and OREAS22e were included in sample batches a ratio of 1:25 to drill samples submitted for analysis. This is an acceptable ratio.                                                                                                                                                                                                                                          |
|          |                       | Both CRM blanks contain some REE, with elements critical elements Consistent with the certified values for the blanks. No laborator contamination or bias is evident from these results.                                                                                                                                                                                                                   |
|          |                       | • Duplicates Field duplicate sampling was conducted at a ratio of 1:25 samples Duplicates were created by lengthways halving the ¼ core primary sample into 2 identical portions. Duplicate samples were allocated separate samp numbers and submitted with the same analytical batch as the primar sample. Variability between duplicate results is considered acceptable an no sampling bias is evident. |
|          |                       | Alternative Analysis Technique     A selection of sample pulps was re-analysed at Bureau Veritas Minera laboratory Perth W.A. using Laser Ablation MS technique.                                                                                                                                                                                                                                           |

| Criteria        | JORC Code explanation                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                 |                                                                                                                                                                                               | There is no evidence of systematic analytical bias or errors from these results.                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Verification of | The verification of significant intersections by either independent or                                                                                                                        | No independent verification of significant intersection undertaken.                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| sampling and    | <ul><li>alternative company personnel.</li><li>The use of twinned holes.</li></ul>                                                                                                            | No twinning of diamond core drill holes was undertaken.                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| assaying        | <ul> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul> | Sampling protocols for diamond core sampling and QAQC were documented and held on site by the responsible geologist. No procedures for data storage and management have been compiled as yet.                                                                                                                                                                                    |  |  |  |  |
|                 |                                                                                                                                                                                               | Data were collected in the field by hand and entered into Excel spreadsheet. Data are then compiled with assay results compiled and stored in Access database. Data verification is conducted on data entry including hole depths, sample intervals and sample numbers. Sample numbers from assay data are verified by algorithm in spreadsheet prior to entry int the database. |  |  |  |  |
|                 |                                                                                                                                                                                               | Assay data was received in digital format from the laboratory and merged with the sampling data into an Excel spreadsheet format for QAQC analysis and review against field data. Once finalised and validated data is stored in a protected Access database.                                                                                                                    |  |  |  |  |
|                 |                                                                                                                                                                                               | Data validation of assay data and sampling data have been conducted to ensure data entry is correct.                                                                                                                                                                                                                                                                             |  |  |  |  |
| 7               |                                                                                                                                                                                               | All assay data is received from the laboratory in element form is unadjusted for data entry.                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                 |                                                                                                                                                                                               | Conversion of elemental analysis (REE) to stoichiometric oxide (REO) was undertaken by spreadsheet using defined conversion factors.(Source:                                                                                                                                                                                                                                     |  |  |  |  |

| Criteria | JORC Code explanation | Comme                                           | entary                                                                                                   |                                                                                                                             |                                                                      |
|----------|-----------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|          |                       |                                                 |                                                                                                          |                                                                                                                             |                                                                      |
|          |                       |                                                 | Element ppm                                                                                              | Conversion Factor                                                                                                           | Oxide Form                                                           |
|          |                       |                                                 | Ce                                                                                                       | 1.2284                                                                                                                      | CeO <sub>2</sub>                                                     |
|          |                       |                                                 | Dy                                                                                                       | 1.1477                                                                                                                      | Dy <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | Er                                                                                                       | 1.1435                                                                                                                      | Er <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | Eu                                                                                                       | 1.1579                                                                                                                      | Eu <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | Gd                                                                                                       | 1.1526                                                                                                                      | Gd <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | Но                                                                                                       | 1.1455                                                                                                                      | Ho <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | La                                                                                                       | 1.1728                                                                                                                      | La <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | Lu                                                                                                       | 1.1371                                                                                                                      | Lu <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | Nd                                                                                                       | 1.1664                                                                                                                      | Nd <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | Pr                                                                                                       | 1.2082                                                                                                                      | Pr <sub>6</sub> O <sub>11</sub>                                      |
|          |                       |                                                 | Sm                                                                                                       | 1.1596                                                                                                                      | Sm <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | Tb                                                                                                       | 1.1762                                                                                                                      | Tb <sub>4</sub> O <sub>7</sub>                                       |
|          |                       |                                                 | Tm                                                                                                       | 1.1421                                                                                                                      | Tm <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | Υ                                                                                                        | 1.2699                                                                                                                      | Y <sub>2</sub> O <sub>3</sub>                                        |
|          |                       |                                                 | Yb                                                                                                       | 1.1387                                                                                                                      | Yb <sub>2</sub> O <sub>3</sub>                                       |
|          |                       |                                                 | Sc                                                                                                       | 1.5338                                                                                                                      | Sc <sub>2</sub> O <sub>3</sub>                                       |
|          |                       | following<br>evaluation<br>Note that<br>TREO (T | g calculations are<br>on groups:<br>of Y <sub>2</sub> O <sub>3</sub> is included<br>of otal Rare Earth O | stry accepted form for used for compiling REG in the TREO, HREO and wide) = $La_2O_3 + CeO_2 + Dy_2O_3 + Ho_2O_3 + Er_2O_3$ | O into their report<br>d CREO calculat<br>- $Pr_6O_{11}$ + $Nd_2O_3$ |
|          |                       |                                                 |                                                                                                          | Oxide) = $Sm_2O_3 + Eu_2O_3$<br>$Yb_2O_3$ , + $Y_2O_3 + Lu_2O_3$                                                            |                                                                      |

| Criteria                | JORC Code explanation                                                                                                                                                       | Commentary                                                                                                                                                                                                                                  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                             | CREO (Critical Rare Earth Oxide) = Nd <sub>2</sub> O <sub>3 +</sub> Eu <sub>2</sub> O <sub>3 +</sub> Tb <sub>4</sub> O <sub>7 +</sub> Dy <sub>2</sub> O <sub>3 +</sub> Y <sub>2</sub> O <sub>3</sub>                                        |
|                         |                                                                                                                                                                             | (From U.S. Department of Energy, Critical Materials Strategy, December 2011)                                                                                                                                                                |
|                         |                                                                                                                                                                             | LREO (Light Rare Earth Oxide) = La <sub>2</sub> O <sub>3</sub> + CeO <sub>2</sub> + Pr <sub>6</sub> O <sub>11</sub> + Nd <sub>2</sub> O <sub>3</sub>                                                                                        |
|                         |                                                                                                                                                                             | $NdPr = Nd_2O_3 + Pr_6O_{11}$                                                                                                                                                                                                               |
|                         |                                                                                                                                                                             | HREO% of TREO= HREO/TREO x 100                                                                                                                                                                                                              |
|                         |                                                                                                                                                                             | In elemental form the classifications are:                                                                                                                                                                                                  |
|                         |                                                                                                                                                                             | Note that Y is included in the TREE, HREE and CREE calculation.                                                                                                                                                                             |
| 2                       |                                                                                                                                                                             | TREE: La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu+Y                                                                                                                                                                                           |
| 5                       |                                                                                                                                                                             | HREE: Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Y+Lu                                                                                                                                                                                                       |
|                         |                                                                                                                                                                             | CREE: Nd+Eu+Tb+Dy+Y                                                                                                                                                                                                                         |
|                         |                                                                                                                                                                             | LREE: La+Ce+Pr+Nd                                                                                                                                                                                                                           |
| Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. | Drill hole collar locations for holes RRMDD001 to RRMDD711 were surveyed a relational DGPS system. The general accuracy for x,y and z is $\pm$ 0.2m.                                                                                        |
|                         | <ul> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                            | Datum WGS84 Zone 36 North was used for location data collection and storage. This is the appropriate datum for the project area. No grid transformations were applied to the data.                                                          |
|                         |                                                                                                                                                                             | No downhole surveys were conducted. As all holes were vertical and shallow, the rig setup was checked using a spirit level for horizontal and vertical orientation Any deviation will be insignificant given the short lengths of the holes |
| ))                      |                                                                                                                                                                             | Topography has been defined by creating a wireframe from drill hole collar locations                                                                                                                                                        |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data spacing and                                        | and • Whether the data spacing and distribution is sufficient to establish the                                                                                                                                                                                                                                                                                                                     | Drill spacing was optimised to suite grade estimation ranges as determined from variogram analysis of data distribution                                                                                                                                                                                                              |
| distribution                                            | degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.                                                                                                                                                                                                                                                | 162 drill holes were spaced on a nominal 100m x 100m spacing within the MCZ.                                                                                                                                                                                                                                                         |
|                                                         | <ul> <li>Whether sample compositing has been applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                   | 517 holes in Areas C, E MCZ, MCZE, F, G, H and I were drilled on a 200m spacing                                                                                                                                                                                                                                                      |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | 32 drill holes in Areas A, B and D were drilled on a 400m spacing                                                                                                                                                                                                                                                                    |
| Orientation of data in relation to geological structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | The Makuutu mineralisation is interpreted to be in a flat lying weathered profile including cover soil, lateritic caprock, clays transitioning to saprolite and saprock. Below the saprock are fresh shales, siltstones and mudstones. Pit mapping and diamond drilling indicate the mineralised regolith to be generally horizontal |
|                                                         | bias, triis snouid be assessed and reported ii materiai.                                                                                                                                                                                                                                                                                                                                           | All drill holes are vertical which is appropriate for horizontal bedding and regolith profile.                                                                                                                                                                                                                                       |
| Sample<br>security                                      | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | After collection, the samples were transported by Company representatives to Entebbe airport and dispatched via airfreight to Perth Australia. Samples were received by Australian customs authorities in Perth within 48 hours of dispatch and were still contained in the sealed shipment bags.                                    |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | Samples were subsequently transported from Australian customs to ALS Perth via road freight and inspected on arrival by a Company representative.                                                                                                                                                                                    |
| Audits or reviews                                       | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                              | No audits or reviews have been undertaken                                                                                                                                                                                                                                                                                            |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |

## Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

|    | Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Mineral<br>tenement and<br>land tenure<br>status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. | The Makuutu Rare Earths Project is 100% owned by Rwenzori Rare Metals Limited ("RRM"), a Ugandan registered company. IonicRE currently has earned a 51% shareholding in RRM and may increase its shareholding to 60% by meeting further commitments as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                                  | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.                                                                                                                                     | <ol> <li>lonicRE to fund to completion of a Bankable Feasibility Study (BFS) to earn an additional 9% interest for a cumulative 60% interest in RRM.</li> <li>Milestone payments, payable in cash or lonicRE shares at the election of the Vendor, as follows:         <ol> <li>US\$375,000 on production of 10 kg of mixed rare-earth product from pilot or demonstration plant activities; and b. US\$375,000 on conversion of existing licences to mining licences.</li> </ol> </li> <li>At any time should lonicRE not continue to invest in the project and project development ceases for at least two months RRM has the right to return the capital sunk by lonicRE and reclaim all interest earnt by lonicRE.</li> </ol> |
| -  | Exploration                                      | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                | Previous exploration includes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IJ | done by other parties                            |                                                                                                                                                                                                                                                                              | 1980: Country wide airborne geophysical survey identifying uranium anomalies in the Project area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    |                                                  |                                                                                                                                                                                                                                                                              | 1990s: French BRGM and Ugandan DGSM undertook geochemical and geological survey over South-Eastern Uganda including the Project area. Anomalous Au, Zn, Cu, Sn, Nb and V identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                  |                                                                                                                                                                                                                                                                              | 2006-2009: Country wide high resolution airborne magnetic and radiometric survey identified U anomalism in the Project area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | ))<br>=                                          |                                                                                                                                                                                                                                                                              | 2009: Finland GTK reprocessed radiometric data and refined the Project anomalies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Criteria | JORC Code explanation                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                               | 2011: Kweri Ltd undertook field verification of radiometric anomalies including scout sampling of existing community pits. Samples showed an enrichment of REE and Sc.                                                                                                                                                                                                                                                                                                                                                            |
|          |                                                               | 2011: The GTK conducted a ground gravity traverse which indicated a gravity low in the area.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                               | 2011: Kweri Ltd conducted ground radiometric survey and evaluated historic groundwater borehole logs.                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                               | 2012: Kweri Ltd and Berkley Reef Ltd conducted prospect wide pit excavation and sampling of 48 pits and a ground gravity traverse. Pit samples showed enrichment of REE weathered profile.                                                                                                                                                                                                                                                                                                                                        |
|          |                                                               | 2012 Kweri Ltd. Sent Five (5) samples to Toronto Aqueous Research Laboratory for REE leach testwork.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                               | 2016 – 2017: Rwenzori Rare Metals conduct excavation of 11 pits, ground gravity survey, RAB drilling (109 drill holes) and one (1) diamond drill hole.                                                                                                                                                                                                                                                                                                                                                                            |
| 3        |                                                               | The historic exploration has been conducted to a professional standard and is appropriate for the exploration stage of the prospect.                                                                                                                                                                                                                                                                                                                                                                                              |
| Geology  | Deposit type, geological setting and style of mineralisation. | The Makuutu deposit is interpreted to be an ionic adsorption REE clay-type deposits similar to those in South China, Chile, Madagascar and Brazil.                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                               | The mineralisation is contained within the tropical lateritic weathering profile of a basin filled with sedimentary rocks including shales, mudstones and sandstones potentially derived from the surrounding granitic and mafic rocks. These rocks are considered the original source of the REE which were then accumulated in the sediments (via ionic bonds with the clays) of the basin as the surrounding rocks have degraded. These sediments then form the protolith that was subjected to prolonged tropical weathering. |
|          |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                                | JORC Code explanation                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                                                                                                                                                                        | saprolite and saprock to unweathered sediments. The thickness of the regolith is between 10 and 20 metres from surface.                                                                                                                                                                                                                                                                     |
|                                |                                                                                                                                                                                                                                                                                        | The REE mineralisation is concentrated in the weathered profile where it has dissolved from its primary mineral form, such as monazite and xenotime, then ionically bonded (adsorbed) or colloidally bonded on to fine particles of aluminosilicate clays (e.g. kaolinite, illite, smectite). The adsorbed and colloidal REE is the target for extraction and production of REO at Makuutu. |
| Drill hole<br>Information      | • A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:                                                                                                              | The material information for drill holes relating to this announcement are contained in Appendix 2.                                                                                                                                                                                                                                                                                         |
|                                | <ul> <li>easting and northing of the drill hole collar</li> </ul>                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                             |
|                                | <ul> <li>elevation or RL (Reduced Level – elevation above sea level in metres)<br/>of the drill hole collar</li> </ul>                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                             |
|                                | o dip and azimuth of the hole                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |
|                                | o down hole length and interception depth                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                              | o hole length.                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                             |
| 7                              | • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.                                      |                                                                                                                                                                                                                                                                                                                                                                                             |
| Data<br>aggregation<br>methods | • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.                                                                                 | No metal equivalents values are used.                                                                                                                                                                                                                                                                                                                                                       |
|                                | <ul> <li>Where aggregate intercepts incorporate short lengths of high-grade<br/>results and longer lengths of low-grade results, the procedure used for<br/>such aggregation should be stated and some typical examples of such<br/>aggregations should be shown in detail.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                             |
|                                |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |

|   | Criteria                                                                                                                                                                                                                                          | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths                                                                                                                                                                   | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul> | Down hole lengths, true widths are not known.  The mineralisation is interpreted to be horizontal, flat lying sediments and weathering profile, with the vertical drilling perpendicular to mineralisation. Any internal variations to REE distribution within the horizontal layering was not defined, therefore the true width is considered not known. |
|   | Diagrams                                                                                                                                                                                                                                          | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                 | Refer to diagrams in body of text.                                                                                                                                                                                                                                                                                                                        |
|   | Balanced<br>reporting                                                                                                                                                                                                                             | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                                                         | This report contains all drilling results that are consistent with the JORC guidelines. Where data may have been excluded, it is considered not material.                                                                                                                                                                                                 |
|   | Other  Substantive  overlaration  Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and | Metallurgical leach testing was previously conducted on samples derived from exploration pits, RAB drilling, and one 8.5 tonne bulk pit sample.                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |
|   | exploration<br>data                                                                                                                                                                                                                               | method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential                                                                                                                                                                                                                                                                                      | In 2012, 5 pit samples were sent to the Toronto Aqueous Research Laboratory at the University of Toronto for leachability tests                                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                                                                   | deleterious or contaminating substances.                                                                                                                                                                                                                                                                                                                                                                          | In 2017, 2 pit samples were sent to SGS Laboratory Toronto for leachability tests.                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   | 2017/18, 29 samples were collected from 7 RAB drill holes. 20 of these were consigned to SGS Canada and 4 to Aqueous Process Research (APR) in Ontario Canada. The remaining 5 samples were consigned to Bio Lantanidos in Chile.                                                                                                                         |
|   |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   | 2018/19, 8.5 tonne bulk sample was consigned to Mintek, South Africa, to evaluate using Resin-in-leach (RIL) technology for the recovery of REE.                                                                                                                                                                                                          |
|   | <i>)</i>                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |
| T |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |

| Criteria     | JORC Code explanation                                                                                                                | Commentary                                                                                                                                                                                            |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                      | 2019: 118 samples from 31 holes from the 2019 diamond drilling program had preliminary variation testwork conducted TREE-Ce extraction ranged from 3% to 75%.                                         |
|              |                                                                                                                                      | 2020: Testing of composite samples with lower extractions from the 2019 variation testing using increasing rates of acid addition and leach time. Significant increases in extractions were achieved. |
|              |                                                                                                                                      | 2020: Testing of composited samples from two exploration holes east of the Makuutu Central Zone provided an average extraction of TREE-Ce recovery of 41% @ pH1                                       |
|              |                                                                                                                                      | Testing of samples from the project is ongoing.                                                                                                                                                       |
| Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). | Future work programs are intended to evaluate the economic opportunity of the project including extraction recovery maximisation, continued                                                           |
|              | Diagrams clearly highlighting the areas of possible extensions, including resource definition and estimation,                        | resource definition and estimation, regional exploration on adjoining licences and compilation of a Scoping Study.                                                                                    |
|              |                                                                                                                                      |                                                                                                                                                                                                       |
|              |                                                                                                                                      |                                                                                                                                                                                                       |
|              |                                                                                                                                      |                                                                                                                                                                                                       |
|              |                                                                                                                                      |                                                                                                                                                                                                       |
|              |                                                                                                                                      |                                                                                                                                                                                                       |
|              |                                                                                                                                      |                                                                                                                                                                                                       |
|              |                                                                                                                                      |                                                                                                                                                                                                       |
|              |                                                                                                                                      |                                                                                                                                                                                                       |
|              |                                                                                                                                      |                                                                                                                                                                                                       |
|              |                                                                                                                                      |                                                                                                                                                                                                       |
|              |                                                                                                                                      |                                                                                                                                                                                                       |

## Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

| Criteria                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Database integrity           | example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.  • Data validation procedures used.                                                                                                                                                                                                                                                                               | Data collected in the field has been validated against core photography and original data collection files                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analytical data is received in digital format from the laboratory and merged with the sampling data into an Excel spreadsheet format for QAQC analysis and review against field data. Once finalised and validated data is stored in a protected Access database.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Data validation of original sampling and assay data have been conducted on the database on a 1:10 entries spot check basis. Data has also been correlated against interval lengths and EOH details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Any data entry errors identified have been correct in the database.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Site visits                  | <ul> <li>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</li> <li>If no site visits have been undertaken indicate why this is the case.</li> </ul>                                                                                                                                                                                                                                               | The project site has been visited by the Competent Person for Exploration Results who has observed drilling operations, reviewed drill core, and reviewed sampling and QAQC procedures. The project has been visited by the Competent Person responsible for the reporting of Mineral Resources who reviewed the field project area, drill core, sampling and bulk density procedures.                                                                                                                                                                                                                                                                                             |
| Geological<br>interpretation | <ul> <li>Confidence in (or conversely, the uncertainty of ) the geological interpretation of the mineral deposit.</li> <li>Nature of the data used and of any assumptions made.</li> <li>The effect, if any, of alternative interpretations on Mineral Resource estimation.</li> <li>The use of geology in guiding and controlling Mineral Resource estimation.</li> <li>The factors affecting continuity both of grade and geology.</li> </ul> | The mineral deposit is hosted in a tropical laterite regolith profile derived from generally flat lying sediments. The regolith commences from surface to an average depth of approximately 18 metres. All drilling was geologically logged in the field including rock type and degree of weathering. Following field data collection and receipt of analytical data the deposit has been categorised on a Regolith Zone basis based on visual observation from drill core and multi-element ratio analysis.  There is a moderate to high degree of confidence in the interpretation of the regolith units given the flat lying and reasonably consistent nature of the regolith. |

| Criteria                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | There is unlikely to be any significant structural disruption to the mineralisation through the resource area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Estimation domains were based on grouping of the regolith domains into five zones as defined by regolith rheology, and by comparison of regolith statistics:                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Domain 1,2,3 – Cover zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Domain 4 – Mottled zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Domain 5 – Clay zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Domain 6 – Upper Saprolite zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Domain 7 – Lower Saprolite zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Domain 8,9 – Basement zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dimensions                          | The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.  The extent and variability of the Mineral Resource as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.                                                                | The overall defined mineralised zone extends across 11 discrete prospect areas defined by radiometric and topographical features. The overall strike for the eastern-most to western-most prospects is approximately 37 kilometres, with an across strike extent of ~3,000m and an average vertical thickness of 18m.  The top of the mineralised zone is defined by a thin surficial soil / hardcap zone that averages 3.5m in thickness. The base of the mineralised zone is defined by the top of the saprock/fresh rock boundary which extends to an average vertical depth of 17m. |
| Estimation and modelling techniques | <ul> <li>The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.</li> <li>The availability of check estimates, previous estimates and/or</li> </ul> | A total of 15 rare earth element (REE) grade attributes (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) and Sc, and 2 deleterious elements (U, and Th) were estimated. Additionally, bulk density was estimated for those domains with sufficient numbers of measurements. Final estimated values are converted to stoichiometric oxide values by calculation using published ratios to support reporting of rare earth oxides (REO).                                                                                                                                   |

| Criteria JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mine production records and whether the Mineral Resource estimate takes appropriate account of such data.  The assumptions made regarding recovery of by-products.  Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).  In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.  Any assumptions behind modelling of selective mining units.  Any assumptions about correlation between variables.  Description of how the geological interpretation was used to control the resource estimates.  Discussion of basis for using or not using grade cutting or capping.  The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. | The grade estimation used the Ordinary Kriging ("OK") technique together with dynamic anisotropy to guide the grade interpolation parallel to the regolith boundaries.  Grade interpolation used 1m composited samples constrained by the estimation domain boundaries which were either treated as hard or soft boundaries based on statistical boundary analysis.  An appropriate top cutting strategy (generally above the 99th grade percentile) was used to minimise the influence of isolated high-grade outliers. Interpolation parameters were derived using standard exploratory data analysis techniques of statistical and continuity analysis. Appropriate interpolation strategies were developed on a domain basis using kriging neighbourhood analysis ("KNA"), which included:  • Oriented ellipsoidal search radii ranged from 600m to 1500m depending on the estimation domain;  • Minimum number of samples = 8;  • Maximum number of samples = 20, and  • Octant search with a maximum of 5 samples per octant  The maximum extrapolation distance from the last data points was no more than 200m.  Computer software used for the modelling and estimation were:  • Leapfrog Geo v2021 was used for geological domain modelling.  • Supervisor v8.14 was used for geostatistical analysis.  • Maptek Vulcan 2022 was used for grade estimation, block modelling and reporting. |

| Criteria | JORC Code explanation | Commentary                                                                                                                                                                                                                                                                            |
|----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                       | The estimation block model definitions are:                                                                                                                                                                                                                                           |
|          |                       | <ul> <li>Non-rotated block model with an azimuth of 000°GN;</li> </ul>                                                                                                                                                                                                                |
|          |                       | OK panel size was set at 100m x 100m x 2m (XYZ)                                                                                                                                                                                                                                       |
|          |                       | <ul> <li>A smaller parent cell size of 50m x 50m x 2m (XYZ) was<br/>used in the Central Main prospect where drilling was<br/>completed to 100m x 100m on average</li> </ul>                                                                                                           |
|          |                       | <ul> <li>Sub-block size of 25m x 25m x 1m (XYZ);</li> </ul>                                                                                                                                                                                                                           |
|          |                       | The bulk of the drilling data is on 200m by 200m grid spacings with a portion of the Central Main prospect infilled to 100m spacing, and                                                                                                                                              |
|          |                       | <ul> <li>Appropriate search ellipses were derived from KNA with an<br/>average search radii of 600m to 1500m and average anisotropy<br/>of 30:20:1 (major/semi/minor).</li> </ul>                                                                                                     |
| 5        |                       | Selection of the block size was based on the geometry of the mineralisation data density, and the likely degree to which selective mining can be successfully applied to the geologically based domain boundaries.                                                                    |
|          |                       | Estimations of U and Th elements were completed for the Mineral Resource estimate. Estimates of Sc were also completed. No other deleterious elements or other non-grade variables of economic significance are reported                                                              |
|          |                       | Correlations between the elements were determined from statistical analysis of the REE and demonstrated strong positive correlations between the majority of REE variables, particularly for the heavy rare earth elements in the primary mineralised domains (domains 4, 5, 6 and 7) |
|          |                       | The estimation model was validated using the following techniques:                                                                                                                                                                                                                    |

| Criteria                      | JORC Code explanation                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture                      | Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture                                                                                                                                                                                                                                         | <ul> <li>Visual 3D checking and comparison of informing samples and estimated values;</li> <li>Global statistical comparisons of raw sample and composite grades to the block grades;</li> <li>Comparison of correlation coefficients between composite and block data;</li> <li>Validation 'swath' plots by northing, easting and elevation for each domain, and</li> <li>Analysis of the grade tonnage distribution.</li> <li>No by-product recoveries were considered.</li> <li>No mining production has taken place at the deposit.</li> <li>Tonnes are estimated on an Insitu Dry Bulk Density basis. No moistur content has been determined by testwork or used in estimation.</li> </ul> |
| Cut-off<br>parameters         | The basis of the adopted cut-off grade(s) or quality parameters applied.                                                                                                                                                                                                                                                                                            | lonic Rare Earths Ltd have completed numerous metallurgical studies of composite samples of mineralisation at Makuutu as previously announced to the ASX on 18 February 2020, 26 May 2020, and most recently 4 August 2020. These results together with indicative mining and processing costs and other cost inputs supports application of a marginal cut-off grade of 200 ppr TREO (excluding CeO <sub>2</sub> ). This cut-off is comparable to peer projects with similar mineralisation types and processing assumptions.                                                                                                                                                                  |
| Mining factors or assumptions | Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters | Mineralisation is near surface, broadly flat lying, and of grades amenable to conventional open pit mining methods.  The assumed mining method would be 'free dig' using truck and shovel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | when estimating Mineral Resources may not always be rigorous.  Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Metallurgical factors or assumptions        | The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.                                                                                                                                                       | Processing of the REE mineralisation is considered relatively simple, with the clay undergoing a desorption process in which the REE are desorbed from the mineralisation into a salt solution, concentrated, and precipitated to creat a mixed rare earth product.  Preliminary metallurgical test work has been completed on core samples from the project area (ASX Releases 18 February 2020, 26 May 2020, August 2020). This reports metallurgical recoveries up to 75% TREE minus Cerium using simple extraction techniques. These recoveries compart favourably to other known ionic clay hosted rare earth projects. |
| Environmen-tal<br>factors or<br>assumptions | Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. | Tailings (the processed clay) are expected to be returned to the mined oper pits and areas progressively rehabilitated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bulk density                                | <ul> <li>Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.</li> <li>The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones</li> </ul>                                                                                                                                                                                                                        | Bulk density has been determined from 1,223 individual drill cormeasurements using Archimedes method. Samples were oven dried weighed, coated with wax then weighed dry and in water using an appropriate analytical balance.  Bulk densities for the primary mineralised domains (domain 4, 5, 6 and were estimated using an omnidirectional variogram with soft boundaries.)                                                                                                                                                                                                                                               |

| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | <ul> <li>within the deposit.</li> <li>Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | following boundary analysis. Densities for the remaining regolith zones were by direct assignment based on reported measurements.                                                                                                                                                                                                                                                                                                    |
| Classification                             | <ul> <li>The basis for the classification of the Mineral Resources into varying confidence categories.</li> <li>Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).</li> <li>Whether the result appropriately reflects the Competent Person's view of the deposit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Classification of the mineral resource considered the interpretation confidence, drilling density, demonstrated continuity, estimation statistics (conditional bias, kriging efficiency) and block model validation results.  The Makuutu Mineral Resource has been classified into Indicated (76%) and Inferred (24%) categories. The assigned Mineral Resource classification reflects the Competent Person's view of the deposit. |
| Audits or reviews                          | The results of any audits or reviews of Mineral Resource estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No audits or review have been completed for the Mineral Resource estimate.                                                                                                                                                                                                                                                                                                                                                           |
| Discussion of relative accuracy/confidence | <ul> <li>Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.</li> <li>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</li> <li>These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</li> </ul> | The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code.  The statement relates to the global estimates of tonnes and grades.  No production data is available.                                                                                                                                                                     |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                      |